Comparative genomics of transcriptional regulation in yeasts and its application to identification of a candidate alpha-isopropylmalate transporter.

Abstract

Conservation rates in non-protein-coding regions of five yeast genomes of the genus Saccharomyces were analyzed using multiple whole-genome alignments. This analysis confirmed previously shown decrease in conservation rates observed immediately upstream of the translation start point and downstream of the stop-codon. Further, there was a sharp conservation peak in the upstream regions likely related to the core promoter (-35 bp to +35 bp around TSS) and a conservation peak downstream of the stop-codon whose function is not yet clear. Regulation of leucine and methionine biosynthesis controlled by the global regulator Gcn4p and pathway-specific regulators was analyzed in detail. A candidate alpha-isopropylmalate carrier, YOR271cp, was identified based on conservation of Leu3p binding sites, analysis of ChIP-chip data, protein localization and sequence similarity.

Publication
Journal of bioinformatics and computational biology, 4: 981-998, 2006
Date
Links