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Abstract

We introduce Impromptu Clusters (ICs), a new ab-
straction that makes it possible to leverage cloud-based
clusters to execute short-lived parallel tasks, for ex-
ample Internet services that use parallelism to deliver
near-interactive responses. ICs are particularly relevant
for resource-intensive web applications in areas such
as bioinformatics, graphics rendering, computational fi-
nance, and search. In an IC, an application encapsulated
inside a virtual machine (VM) is swiftly forked into mul-
tiple copies that execute on different physical hosts, and
then disappear when the computation ends. SnowFlock,
our IC prototype, offers near-interactive response times
for many highly-parallelizable workloads, achieves sub-
second parallel VM clone times, and has negligible run-
time overhead.

1 Introduction

Over the past several years we have seen the development
of two trends pertaining to parallelism and resource avail-
ability. One trend is the growth in web-based services that
leverage parallel execution on compute clusters to deliver
near-interactive performance (seconds to a few minutes)
for resource-intensive applications. This trend is easy to
observe in several fields, including bioinformatics. NCBI-
BLAST, maintained by the National Center for Biotech-
nology Information (NCBI), is perhaps the most widely
used bioinformatics tool. The BLAST service accepts
DNA or protein sequences as queries, and allows biol-
ogists to quickly learn what other known biological se-
quences are similar. BLAST typically delivers search re-
sults within a few seconds through the use of cluster com-
puting [23]. Many other examples of compute-intensive
Internet services exist in diverse domains such as finance,
graphics rendering, and search. Unfortunately, the hard-
ware and staffing costs of creating and operating a large
computational center form a high barrier to entry for new
services of this genre.

The second trend is a growing interest in “cloud com-
puting,” suggesting the emergence of a utility model [2].
Here, the large fixed costs of operating the data center are
borne by a third party service provider, such as Amazon or
Yahoo. The creator of a new cloud-based service – a small
organization or even an individual – only has to cover the
marginal cost of actual resource usage, lowering the bar-
rier to entry for a cloud-based service. Unfortunately, the
programming interfaces available in today’s cloud infras-
tructure are not a good match for parallel Internet services
such as BLAST. Specifically, they lack support for rapidly
creating an execution instance of an application with a
very high degree of parallelism. Without such support,
the ability to deliver near-interactive performance for such
applications is lost.

We propose the Impromptu Cluster (IC), an abstraction
that lies at the nexus of these two trends and has the po-
tential to speed their convergence. In an IC, an applica-
tion encapsulated inside a virtual machine (VM) is swiftly
forked into multiple copies that execute on different phys-
ical hosts, and then disappear when the computation ends.
ICs simplify the development of parallel applications and
reduces management burden by enabling the instantiation
of new stateful computing elements: workers that need
no setup time because they have a memory of the appli-
cation state achieved up to the point of forking. This ap-
proach combines the benefits of cluster-based parallelism
with those of running inside a VM. The latter include se-
curity, performance isolation, flexibility of running in a
custom environment configured by the programmer, and
the ability to migrate between execution sites. ICs make
development of high performance applications accessi-
ble to a broader community of scientists and engineers
by streamlining the execution of parallel applications on
cloud-based clusters.

Our prototype implementation of the IC abstraction,
called SnowFlock, provides swift parallel VM cloning
that makes it possible for Internet applications to de-
liver near-interactive performance for resource-intensive
highly-parallelizable tasks. SnowFlock makes use of four
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key techniques: VM descriptors (condensed VM images
that allow for sub-second suspension of a running VM
and resumption of a number of replicas); a memory-on-
demand subsystem that lazily populates the VM’s mem-
ory image during runtime; a set of avoidance heuristics
that minimize the amount of VM memory state to be
fetched on demand; and a multicast distribution system
for commodity Ethernet networking hardware that makes
the overhead of instantiating multiple VMs similar to that
of instantiating a single one.

Experiments conducted with applications from the do-
mains of bioinformatics, quantitative finance, rendering
and parallel compilation confirm that SnowFlock offers
sub-second VM clone times with a runtime overhead of
less than 7 % for most workloads. This allows IC ap-
plications to scale in an agile manner, and to offer near-
interactive response times for many highly-parallelizable
applications.

The remainder of this paper is organized as follows.
Section 2 describes the Impromptu Cluster paradigm and
motivates the need for fast parallel VM cloning. In Sec-
tion 3 we present SnowFlock, our implementation of the
IC abstraction. Section 4 describes the representative ap-
plications used to evaluate SnowFlock in Section 5. We
discuss related work in Section 6, and conclude the paper
in Section 7.

2 Impromptu Cluster

Today’s cloud computing interfaces lack support for rapid
instantiation of VMs needed by highly parallel applica-
tions. We propose the Impromptu Cluster (IC) abstraction
to address this shortcoming. In IC, an application run-
ning inside a VM takes advantage of cluster computing by
forking multiple copies of its VM, which then execute in-
dependently on different physical hosts. Use of an IC pre-
serves the isolation and ease of software development as-
sociated with VMs, and greatly reduces the performance
overhead of creating a collection of identical VMs on a
number of physical machines.

A key property of an IC is the ephemeral nature of the
replicas. Forked VMs are transient entities whose mem-
ory image and virtual disk are discarded once they exit.
A VM fork in an IC is similar in nature to a traditional
process fork in that the forked VMs have identical views
of the system. However, each forked VM has its own in-
dependent copy of the operating system and virtual disk,
and state updates are not propagated between VMs. We
refer to the original VM that was initially forked to cre-
ate the IC as the master, and to the other resulting VMs
as slaves. Due to the transient nature of the slaves, any
application-specific state or values they generate (e.g., a
result of computation on a portion of a large dataset) must
be explicitly communicated to the master VM, for exam-
ple by message passing or via a distributed file system.

ICs can leverage the growing popularity of multi-
processor architectures by providing parallel execution as
a combination of VM and process-level replication. VM
replication is performed first, and process-level replica-
tion afterward. This allows for the creation of VMs which
span multiple physical hosts, and processes which span
the cores within each host.

We envision the creation of ICs as a highly dynamic
task, driven by workload characteristics or resource avail-
ability. The IC abstraction is particularly apt for deploy-
ing Internet services that respond to requests by executing
parallel algorithms. More broadly, impromptu parallelism
lends itself well to applications with unpredictable request
arrival and therefore varying resource demand.

2.1 Usage Model

Table 1 describes the IC API. VM forking has two
stages. In the first stage, the application places a
reservation for the desired number of clones with an
ic_request_ticket call. Due to spikes in load
or management policies, the cluster management system
may allocate fewer nodes than the number requested.
In this case the application has the option to re-balance
the computation to account for the smaller node alloca-
tion. In the second stage, we fork the VM across the
nodes provided by the cluster management system with
the ic_clone call. When a slave VM finishes its part of
the parallel computation, it executes an ic_exit oper-
ation that removes it from the IC. A parent VM can wait
for its slaves to terminate by making an ic_join call, or
force their termination with ic_kill. In section 4 we
show API usage examples in the context of representative
applications.

Hierarchical replication is optionally available to ap-
plications. In this mode, VMs are forked to span physi-
cal hosts, and process-level replication is used to span the
processors within a host. Depending on the allocated re-
sources, an IC might not obtain strictly symmetrical VMs,
e.g. one four-processor VM and two dual-processor VMs
for a reservation of size eight. The ticket object returned
by an allocation request describes how the m process-level
clones are distributed among the forked VMs. An appli-
cation writer may wish to only leverage the VM cloning
aspect of ICs and retain control over process-level repli-
cation. This can be achieved by simply disabling hierar-
chical replication in the ticket request.

When a child VM is forked, it is configured with a new
IP address and is placed on the same virtual subnet as
the VM from which it was created. In principle, IC VMs
are only visible and can only communicate with their IC
peers. This requirement can be relaxed to allow visibility
of certain IP addresses on the physical cluster or on the
Internet. This enables external access to the IC, for exam-
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ic_request_ticket (n,
hierarchical)

Requests an allocation for n clones. If hierarchical is true, process forking will be con-
sidered on top of VM forking. Returns a ticket describing an allocation for m ≤ n clones.

ic_clone(ticket) Clones, using the allocation in the ticket. Returns the clone ID, 0 ≤ ID ≤ m.
ic_exit() For slaves (1 ≤ ID ≤ m), deallocates the slave.
ic_join(ticket) For the master (ID = 0), blocks until all slaves in the ticket reach their ic_exit call. At

that point all slaves are deallocated and the ticket is discarded.
ic_kill(ticket) Master only, immediately deallocates all slaves in ticket and discards the ticket.

Table 1: The Impromptu Cluster API

ple through a web-based frontend, or to a dataset hosted
by the physical infrastructure.

Finally, to enable domain-specific configuration of
the IC, we provide a callback interface for registering
command-line scripts or functions to be called as part of
the VM forking process. For example, this feature can
be used for simple file system sharing across an IC: after
replication the master starts an NFS server and the rest of
the VMs mount the NFS partition.

2.2 The Need for Agile VM Fork
We anticipate that VM fork will be a frequent operation.
For instance, some servers will create impromptu clusters
on many incoming requests. In this context, the instanti-
ation of new VMs must be a rapid operation introducing
low runtime overhead.
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Figure 1: Latency for creating ICs by suspending a VM to
disk and distributing the image over NFS and multicast. Ex-
periments are conducted with Xen 3.0.3 and a VM with 1 GB
of RAM.

Figure 1 shows that a straightforward approach (creat-
ing an IC by suspending a VM and resuming the saved
image on a set of remote hosts) does not provide the nec-
essary agility required for near-interactive response times.
Overall, the latency in our testbed (see Section 5) for sus-
pending and resuming a VM to and from local storage
ranges from 9 to 22 seconds and from 6 to 38 seconds,
respectively. The figure shows that latency grows linearly
to the order of hundreds of seconds when NFS is used to
distribute the VM image, as the source node quickly be-
comes a bottleneck. Using a multicast networking tech-
nique (described in Section 3.4) to distribute the VM im-
age results in better scalability. However, multicast still
averages more than a minute to replicate a VM and thus
fails to provide the required swift setup time.

At first glance, an alternative to on-demand VM cre-
ation is to set up long-lived worker VMs that idle while
they wait for user requests. However, because statistical

multiplexing lies at the heart of cloud computing, the idle
VMs are likely to be consolidated on a smaller number
of physical hosts. As a result, when the worker VMs are
needed to address a user request they have to be migrated
first to free physical hosts – time-sharing a physical pro-
cessor between VMs running a high-performance applica-
tion is counter-productive. Moreover, because the mem-
ory images of the consolidated VMs diverge over time,
VM migration has to be handled with individual point-to-
point transmissions, creating hotspots that further impact
application response time. Thus, for services that do not
experience constant peak demand (the common case and
the motivation for cloud computing), this approach will
exhibit similar performance characteristics to the results
in Figure 1.

In summary, deployment of services with near-
interactive response times in cloud computing settings re-
quires an ability to swiftly instantiate new parallel work-
ers that none of the existing techniques is capable of pro-
viding. In the next section we introduce our solution to
this problem.

3 SnowFlock

SnowFlock is our prototype implementation of the IC
abstraction. At its core lies a low-latency VM replica-
tion facility capable of instantiating new VM workers
in sub-second time, with negligible runtime overhead.
SnowFlock extends the Xen 3.0.3 Virtual Machine Mon-
itor (VMM) [4]. Xen consists of a hypervisor running at
the highest processor privilege level controlling the exe-
cution of domains (VMs). The domain kernels are par-
avirtualized, i.e. aware of virtualization and interact with
the hypervisor through a hypercall interface. A privi-
leged VM (domain0) has control over hardware devices
and manages the state of all other domains through a con-
trol toolstack. SnowFlock additionally consists of a client
library running inside VMs, and a daemon running in each
physical host’s domain0.

API calls from Table 1 are available to workflow scripts
or via C and python bindings. The client library marshals
such calls and transfers them via a shared memory inter-
face to the SnowFlock daemon. Daemons keep track of
the current composition of each IC, including the location
and status of each VM. The process of VM replication and
deallocation is coordinated by the local daemon assigned
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to the master VM; other local daemons interact with the
extended Xen VMM in each host and spawn helper pro-
cesses. SnowFlock defers VM allocation decisions to a
resource manager plug-in. Cluster resource management,
allocation and accounting fall outside of the scope of this
work, and the purpose of our plug-in architecture is to
leverage existing work such as Usher [16], Moab [18], or
Sun Grid Engine [11]. The experiments we report in this
paper use a simple first-come first-served resource man-
ager.

Condensed VM descriptors are distributed to cluster
hosts to spawn VM replicas. Memtap populates the
VM replica state on demand, using multicast distribution.
Avoidance heuristics substantially reduce the number of
necessary fetches.

Figure 2: Agile VM Replication Architecture

Our low-latency VM replication mechanism uses four
techniques. First, the Master VM is temporarily sus-
pended to produce a condensed VM image we call a VM
descriptor. A VM descriptor is a small file that only con-
tains basic VM metadata and the guest kernel memory
management data structures, not the bulk of the VM’s
memory state. A VM descriptor can be created, dis-
tributed to other physical hosts, and used to spawn a
new VM in less than a second. Our second technique
is memtap, a memory-on-demand mechanism that lazily
fetches the rest of the VM memory state as execution pro-
ceeds. Our third technique is the introduction of avoid-
ance heuristics which substantially reduce the amount of
memory that needs to be fetched on-demand by augment-
ing the guest kernel. Our fourth technique is mcdist, a
multicast distribution system that uses the multicast fea-
tures of commodity Ethernet network cards and switches.
mcdist optimizes the on-demand propagation of VM state
by leveraging the fact that the forked VMs take part in
parallel computation, which results in substantial tempo-
ral locality in memory accesses across VMs. The inter-
actions between these four mechanisms are depicted in
Figure 2.

In this section, we describe in detail each of these four
techniques. We then discuss the specifics of the virtual
I/O devices of a SnowFlock VM, namely the virtual disk
and network isolation implementations.

3.1 VM Descriptors

We observe that a VM suspend and resume cycle can be
distilled to the minimal operations required to begin ex-
ecution of a VM replica on a separate physical host. We
thus modify the standard Xen suspend and resume pro-
cess to yield VM Descriptors, condensed VM images that
allow for swift clone spawning.

Construction of a VM descriptor starts by spawning a
thread in the VM kernel that quiesces its I/O devices, de-
activates all but one of the virtual processors (VCPUs),
and issues a hypercall suspending the VM from execu-
tion. When the hypercall succeeds, a privileged process
in domain0 maps the suspended VM memory to populate
the descriptor. The descriptor contains metadata describ-
ing the VM and its virtual devices, a few memory pages
shared between the VM and the Xen hypervisor and con-
trol tools, the registers of the remaining VCPU, and the
contents of the guest kernel memory management data
structures.

The most important memory management structures
are the page tables of the VM, which make up the bulk
of a VM descriptor. In the x86 architecture each process
has a separate page table, although there is a high-degree
of inter-process page table sharing, particularly for kernel
code and data. The cumulative size of a VM descriptor
is thus loosely dependent on the number of processes the
VM is executing. Additionally, a VM descriptor preserves
the Global Descriptor Tables (GDT). These per-processor
tables are required by the x86 segmentation hardware, and
Xen relies on them to establish privilege separation be-
tween the hypervisor and the kernel of a VM.

A page table entry in a Xen paravirtualized VM con-
tains a virtual to “machine” address translation. In Xen
parlance, the machine address space is the true physical
address space of the host machine, while physical frame
numbers refer to the VM’s notion of its own contiguous
physical memory. A VM keeps an internal physical-to-
machine table describing this additional level of indirec-
tion, and Xen maintains the reverse machine-to-physical
table. When saving page tables to a descriptor, all the
valid entries must be made host-independent, i.e. con-
verted to VM-specific physical frame numbers. Certain
values in the VCPU registers and in the pages the VM
shares with Xen need to be translated as well.

The resulting descriptor is multicast to multiple phys-
ical hosts using the mcdist library we describe in sec-
tion 3.4, and used to spawn a VM replica on each host.
The metadata is used to allocate a VM with the appropri-
ate virtual devices and memory footprint. All state saved
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in the descriptor is loaded: pages shared with Xen, seg-
ment descriptors, page tables, and VCPU registers. Physi-
cal addresses in page table entries are translated to use the
physical-to-machine mapping of the new host. The VM
replica resumes execution by returning from its suspend
hypercall, and undoing the actions of its suspend thread:
enabling the extra VCPUs and reconnecting its virtual I/O
devices to the new frontends.

We evaluate the VM descriptor mechanism in Sec-
tion 5.2.1. In summary, the VM descriptors can be used
to suspend a VM and resume a set of 32 replicas in less
than a second, with an average descriptor size of roughly
one MB for a VM with one GB of RAM.

3.2 Memory On Demand

Immediately after being instantiated from a descriptor,
the VM will find it is missing state needed to proceed.
In fact, the code page containing the very first instruc-
tion the VM tries to execute upon resume will be miss-
ing. SnowFlock’s memory on demand subsystem, mem-
tap, handles this situation by lazily populating the VM
replica’s memory image with state fetched from the origi-
nating host, where an immutable copy of the VM’s mem-
ory from the time of cloning is kept.

Memtap is a user-space process attached to the VM
replica that communicates with the hypervisor via a
shared memory page and a set of event channels (akin to
software interrupt lines), one per VCPU. The hypervisor
detects when a missing page will be accessed for the first
time by a VCPU, pauses that VCPU and notifies the mem-
tap process with the corresponding event channel. Mem-
tap maps the missing VM page, fetches its contents, and
notifies the hypervisor to unpause the VCPU.

To allow the hypervisor to trap memory accesses to
pages that have not yet been fetched, we leverage Xen
shadow page tables. In shadow page table mode, the x86
register that points to the base of the current page table
is replaced by a pointer to an initially empty page table.
The shadow page table is filled on demand as faults on
its empty entries occur, by copying entries from the real
page table. Shadow page table faults thus indicate that a
page of memory is about to be accessed. At this point
the hypervisor checks if this is the first access on a page
of memory that has not yet been fetched, and if so noti-
fies memtap. We also trap hypercalls by the VM kernel
requesting explicit page table modifications. Paravirtual
kernels have no other means of modifying their own page
tables, since otherwise they would be able to address ar-
bitrary memory outside of their sandbox.

Memory-on-demand is supported by a single data
structure, a bitmap indicating the presence of the VM’s
memory pages. The bitmap is indexed by physical frame
number in the contiguous address space private to a VM,
and is initialized by the VM resume process by setting all

bits corresponding to pages constructed from the VM de-
scriptor. The Xen hypervisor reads the bitmap to decide
if it needs to alert memtap. When receiving a new page,
the memtap process sets the corresponding bit. The guest
VM also uses the bitmap when avoidance heuristics are
enabled. We will describe these in the next section.

Certain paravirtual operations need the guest kernel to
be aware of the memory-on-demand subsystem. When
interacting with virtual I/O devices, the guest kernel hands
page grants to domain0. A grant authorizes domain0 to
behave as a DMA unit, by performing direct I/O on VM
pages and bypassing the VM’s page tables. To prevent
domain0 from reading inconsistent memory contents, we
simply touch the target pages before handing the grant,
thus triggering the necessary fetches.

Our implementation of memory-on-demand is SMP-
safe. The shared bitmap is accessed in a lock-free manner
with atomic (test_and_set, etc) operations. When
a shadow page table write triggers a memory fetch via
memtap, we pause the offending VCPU and buffer the
write of the shadow page table. Another VCPU using the
same page table entry will fault on the still empty shadow
entry. Another VCPU using a different page table entry
but pointing to the same VM-physical address will also
fault on the not-yet-set bitmap entry. In both cases the ad-
ditional VCPUs are paused and queued as depending on
the very first fetch. When memtap notifies completion of
the fetch, all pending shadow page table updates are ap-
plied, and all queued VCPUs are allowed to proceed with
execution.

3.3 Avoidance Heuristics

While memory-on-demand guarantees correct VM execu-
tion, it may still have a prohibitive performance overhead,
as page faults, network transmission, and multiple context
switches between the hypervisor, the VM, and memtap
are involved. We thus augmented the VM kernel with two
fetch-avoidance heuristics that allow us to bypass unnec-
essary memory fetches, while retaining correctness.

The first heuristic intercepts pages selected by the ker-
nel’s page allocator. The kernel page allocator is invoked
when a user-space process requests more memory, typ-
ically via a malloc call (indirectly), or when a kernel
subsystem needs more memory. The semantics of these
operations imply that the recipient of the selected pages
does not care about the pages’ previous contents. Thus, if
the pages have not yet been fetched, there is no reason to
do so. Accordingly, we modified the guest kernel to set
the appropriate present bits in the bitmap, entirely avoid-
ing the unnecessary memory fetches.

The second heuristic addresses the case where a virtual
I/O device writes to the guest memory. Consider block
I/O: the target page is typically a kernel buffer that is be-
ing recycled and whose previous contents do not need to
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be preserved. Again, the guest kernel can set the corre-
sponding present bits and prevent the fetching of memory
that will be immediately overwritten.

In section 5.2.3 we show the substantial improve-
ment that these heuristics have on the performance of
SnowFlock for representative applications.

3.4 Multicast Distribution

A multicast distribution system, mcdist, was built to ef-
ficiently provide data to all cloned virtual machines si-
multaneously. This multicast distribution system accom-
plishes two goals that are not served by point-to-point
communication. First, data needed by clones will often
be prefetched. Once a single clone requests a page, the
response will also reach all other clones. Second, the load
on the network will be greatly reduced by sending a piece
of data to all VM clones with a single operation. This im-
proves scalability of the system, as well as better allowing
multiple ICs to co-exist.

We use IP-multicast in order to send data to multiple
hosts simultaneously. Multiple IP-multicast groups may
exist simultaneously within a single local network and
mcdist dynamically chooses a unique group in order to
eliminate conflicts. Multicast clients subscribe by send-
ing an IGMP protocol message with the multicast group to
local routers and switches. The switches then relay each
message to a multicast IP address to all switch ports that
subscribed via IGMP. Off-the-shelf commercial Gigabit
hardware supports IP-multicast.

In mcdist, the server is designed to be as minimal as
possible, containing only membership management and
flow control logic. No ordering guarantees are given by
the server and requests are processed on a first-come first-
served basis. Ensuring reliability thus falls to receivers,
through a timeout based mechanism. In this section,
we describe the changes to memtap necessary to support
multicast distribution. We then proceed to describe two
domain-specific enhancements, lockstep detection and the
push mechanism.

3.4.1 Memtap Modifications

Our original implementation of memtap used standard
TCP networking. A single memtap process would receive
only the pages that it had asked for, in exactly the order
requested, with only one outstanding request (the current
one) per VCPU. Multicast distribution forces memtap to
account for asynchronous receipt of data, since a mem-
ory page may arrive at any time by virtue of having been
requested by another VM clone. This behaviour is exac-
erbated in push mode, as described in section 3.4.3.

On receipt of a page, the memtap daemon executes a
hypercall that maps the target page of the VM in its ad-
dress space. The cost of this hypercall can prove pro-

hibitive if executed every time page contents arrive asyn-
chronously. Furthermore, in an SMP environment, race
conditions may arise when writing the contents of pages
not explicitly requested: a VCPU may decide to use any
of these pages without fetching them.

Consequently, in multicast mode, memtap batches all
asynchronous responses until a threshold is hit, or a page
that has been explicitly requested arrives and the mapping
hypercall is needed regardless. To avoid races, all VC-
PUs of the VM are paused. Batched pages not currently
mapped in the VM’s physical space, or for which the
corresponding bitmap entry is already set are discarded.
A single hypercall is then invoked to map all remaining
pages; we set our batching threshold to 1024 pages, since
this is the largest number of pages mappable with a sin-
gle context switch to the hypervisor. The page contents
are copied, bits are set, and the VCPUs un-paused. The
impact of this mechanism is evaluated in section 5.2.2.

3.4.2 Lockstep Detection

Lockstep execution is a term used to describe computing
systems executing the same instructions in parallel. Many
clones started simultaneously exhibit a very large amount
of lockstep execution. For example, shortly after cloning,
VM clones generally share the same code path because
there is a deterministic sequence of kernel hooks called
during resumption of the suspended VM. Large numbers
of identical page requests are generated at the same time.

When multiple requests for the same page are received
sequentially, requests following the first are ignored, un-
der the assumption that they are not the result of lost pack-
ets, but rather of lockstep execution. These requests will
be serviced again after a sufficient amount of time, or
number of requests, has passed.

3.4.3 Push

Push mode is a simple enhancement to the server which
sends data pro-actively. This is done under the assumption
that the memory access patterns of a VM exhibit spatial
locality. Our algorithm works as follows: when a request
for a page comes to the server, in addition to providing
the data for that request, the server adds a counter starting
immediately above the requested page to a pool of coun-
ters. These counters are cycled through and incremented
in turn, with the appropriate data sent for each one. As
data, both requested and unrequested, is sent out by the
server, a bit is set in a large bitmap. No data is sent twice
due to the automated counters, although anything may be
explicitly requested any number of times by a client, as in
pull mode. Experimentally, we found that using any suf-
ficiently large number of counters (e.g., greater than the
number of clients) provides very similar performance.
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Flow Control

Sending data at the highest possible rate quickly over-
whelms clients, who face a significant cost for mapping
pages and writing data. A flow control mechanism was
designed for the server which limits and adjusts its send-
ing rate over time. Both server and clients estimate their
send and receive rate, respectively, using a weighted aver-
age of the number of bytes transmitted each millisecond.
Clients provide explicit feedback about their current rate
to the server in request messages. The server increases its
rate limit linearly. Experimental evidence indicates that a
10 KB/s increment every 10 milliseconds is appropriate.
When a loss is detected implicitly by a client request for
data that has already been sent, the server scales its rate
limit back to three quarters of its estimate of the mean
client receive rate.

3.5 Virtual I/O Devices in an IC
Outside of the four techniques addressing fast and scal-
able VM replication, our IC implementation needs to pro-
vide a virtual disk for the cloned VMs, and must guarantee
the necessary network isolation between ICs.

3.5.1 Virtual Disk

The virtual disks of VMs in an IC are implemented with a
blocktap[29] driver. Multiple views of the virtual disk are
supported by a hierarchy of copy-on-write slices located
at the site where the master VM runs. Each clone opera-
tion adds a new COW slice, rendering the previous state
of the disk immutable, and launches a disk server process
that exports the view of the disk up to the point of cloning.
Slaves access a sparse local version of the disk, with the
state from the time of cloning fetched on-demand from
the disk server. The virtual disk exploits the same opti-
mizations as the memory subsystem: unnecessary fetches
during writes are avoided using heuristics, and the origi-
nal disk state is provided to all clients simultaneously via
multicast.

In most cases the virtual disk is not heavily exercised
in an IC. Most work done by slaves is processor inten-
sive, resulting in little disk activity that does not hit kernel
caches. Further, thanks to the heuristic previously men-
tioned, writes generally do not result in fetches. Our im-
plementation largely exceeds the demands of many real-
istic tasks and did not cause any noticeable overhead for
the experiments in section 5. For more complex scenarios,
however, disk infrastructures such as Parallax [17] may be
more suitable.

3.5.2 IC Network Isolation

In order to prevent interference or eavesdropping between
ICs on the shared network, either malicious or accidental,

we employ a mechanism to isolate the network for each
IC at the level of Ethernet packets, the primitive exposed
by Xen virtual network devices. Before being sent on
the shared network, the source MAC addresses of pack-
ets sent by a SnowFlock VM are rewritten as a special
address which is a function of both the IC and clone iden-
tifiers. Simple filtering rules are used by all hosts to en-
sure that no packets delivered to a VM come from an IC
other than its own. Conversely, when a packet is deliv-
ered to a SnowFlock VM, the destination MAC address
is rewritten to be as expected by the VM, rendering the
entire process transparent. Additionally, a small number
of special rewriting rules are required for protocols with
payloads containing MAC addresses, such as ARP. De-
spite this, the overhead imposed by filtering and rewriting
is imperceptible and full compatibility at the IP level is
maintained.

4 Applications

To evaluate the generality and performance of
SnowFlock, we tested several usage scenarios in-
volving 3 typical applications from bioinformatics and 3
applications representative of the fields of graphics ren-
dering, parallel compilation, and financial services. We
devised workloads for these applications with runtimes
ranging above an hour on a single-processor machine,
but which can be substantially reduced to near interactive
response times if provided enough resources. In general,
application experiments are driven by a workflow shell
script that clones the VM and launches an application
process properly parameterized according to the clone ID.
Results are dumped to temporary files which the clones
send to the master before reaching an ic_exit call.
Once the master successfully completes an ic_join,
the results are collated. The exception to this technique is
ClustalW in section 4.3, where we modify the application
code directly.

4.1 NCBI BLAST
The NCBI implementation of BLAST[1], the Basic Local
Alignment and Search Tool, is perhaps the most popular
computational tool used by biologists. BLAST searches
a database of biological sequences – strings of charac-
ters representing DNA or proteins – to find sequences
similar to a query. Similarity between two sequences is
measured by an alignment metric, that is typically simi-
lar to edit distance. BLAST is demanding of both com-
putational and I/O resources; gigabytes of sequence data
must be read and compared with each query sequence,
and parallelization can be achieved by dividing either the
queries, the sequence database, or both. We experimented
with a BLAST search using 1200 short protein fragments
from the sea squirt Ciona savignyi to query a 1.5GB por-
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tion of NCBI’s non-redundant protein database, a con-
solidated reference of protein sequences from many or-
ganisms. VM clones access the database, which is a
set of plain text files, via an NFS share. Database ac-
cess is parallelized across VMs, each reading a differ-
ent segment, while query processing is parallelized across
process-level clones within each VM.

4.2 SHRiMP
SHRiMP [25] (SHort Read Mapping Package) is a tool for
aligning large collections of very short DNA sequences
(“reads”) against a known genome: e.g. the human
genome. This time-consuming task can be easily paral-
lelized by dividing the collection of reads among many
processors. While overall similar to BLAST, SHRiMP is
designed for dealing with very short queries and very long
sequences, and is more memory intensive, requiring from
a hundred bytes to a kilobyte of memory for each query.
In our experiments we attempted to align 1.9 million 25
letter-long reads, extracted from a Ciona savignyi individ-
ual using the AB SOLiD sequencing technology, to a 5.2
million letter segment of the known C. savignyi genome.

4.3 ClustalW
ClustalW [14] is a popular program for generating a mul-
tiple alignment of a collection of protein or DNA se-
quences. Like BLAST, ClustalW is offered as a web
service by organizations owning large computational re-
sources [9]. ClustalW uses progressive alignment – a
greedy heuristic that significantly speeds up the multi-
ple alignment computation, but requires precomputation
of pairwise comparisons between all pairs of sequences –
to build a guide tree. The pairwise comparison is com-
putationally intensive and embarrassingly parallel, since
each pair of sequences can be aligned independently.

We have modified the standard ClustalW program to
allow parallelization with SnowFlock: Figure 3 shows the
integration of API calls into the ClustalW code. After
cloning, each slave computes the alignment of a set of
pairs statically assigned according to the clone ID. The re-
sult of each alignment is a similarity score. Simple socket
code allows these scores to be relayed to the master, be-
fore joining the IC. Replacing IC cloning with process
forking yields an equivalent parallel program confined to
executing within a single machine. Using this implemen-
tation we conducted experiments performing guide-tree
generation by pairwise alignment of 200 synthetic protein
sequences of 1000 amino acids (characters) each.

4.4 QuantLib
QuantLib [22] is an open source development toolkit
widely used in quantitative finance. It provides a vast set

sequences = ReadSequences(InputFile)
ticket = ic_request_ticket(n, hierarchical=true)
m = ticket.allocation
ID = ic_clone(ticket)
for i in sequences:

for j in sequences[i+1:]:
if ((i*len(sequences)+j) % m == ID):

PairwiseAlignment(i, j)
if (ID > 0):

RelayScores()
ic_exit()

else:
PairsMatrix = CollatePairwiseResults()
ic_join(ticket)

BuildGuideTree(PairsMatrix, OutputFile)

Figure 3: ClustalW Pseudo-Code Using the IC API

of models for stock trading, equity option pricing, risk
analysis, etc. Quantitative finance programs are typically
single-program-multiple-data (SPMD): a typical task us-
ing QuantLib runs a model over a large array of param-
eters (e.g. stock prices,) and is thus easily parallelizable
by splitting the input. In our experiments we ran a set of
Monte Carlo, binomial and Black-Scholes variant models
to assess the risk of a set of equity options. Given a fixed
maturity date, we processed 1024 equity options varying
the initial and striking prices, and the volatility. The result
is the set of probabilities yielded by each model to obtain
the desired striking price for each option.

4.5 Aqsis – Renderman
Aqsis [3] is an open source implementation of Pixar’s
RenderMan interface [20], an industry standard widely
used in films and television visual effects since 1989. This
renderer accepts scene descriptions produced by a mod-
eler and specified in the RenderMan Interface Bitstream
(RIB) language. Rendering also belongs to the SPMD
class of applications, and is thus easy to parallelize: mul-
tiple instances can each perform the same task on differ-
ent frames of an animation. For our experiments we fed
Aqsis a sample RIB script from the book “Advanced Ren-
derMan: Creating CGI for Motion Pictures”.

4.6 Distcc
Distcc [7] is software which distributes builds of C/C++
programs over the network for parallel compilation. It
operates by sending preprocessed code directly to a com-
piling process on each host and retrieves object file results
back to the invoking host. Because the preprocessed code
includes all relevant headers, it is not necessary for each
compiling host to access header files or libraries; all they
need is the same version of the compiler. Distcc is dif-
ferent from our previous benchmark in that it is not em-
barrassingly parallel: actions are tightly coordinated by a
master host farming out preprocessed files for compila-
tion by slaves. In our experiments we compile the Linux
kernel (version 2.6.16.29) from kernel.org.
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5 Evaluation

We first examine the high-level performance of
SnowFlock with experiments using representative
application benchmarks described in section 4. In
section 5.2, we turn our attention to a detailed micro
evaluation of the different aspects that contribute to
SnowFlock’s performance and overhead.

All of our experiments were carried out on a cluster of
32 Dell PowerEdge 1950 blade servers. Each machine
had 4 GB of RAM, 4 Intel Xeon 3.2 GHz cores, and a
Broadcom NetXtreme II BCM5708 gigabit network adap-
tor. All machines were running the SnowFlock prototype
based on Xen 3.0.3, with paravirtualized Linux 2.6.16.29
running as the OS for both host and guest VMs. All ma-
chines were connected to two daisy-chained Dell Power-
Connect 5324 gigabit switches. Unless otherwise noted,
all results reported in the following subsections are the
means of five or more runs, error bars depict standard de-
viations, and all VMs were configured with 1124 MB of
RAM.

In several experiments we compare SnowFlock’s per-
formance against an “ideal” baseline. The ideal results
are obtained with VMs previously allocated with all nec-
essary resources and in an idle state, ready to process the
jobs alloted to them. These VMs are vanilla Xen 3.0.3
domains, with no cloning or state-fetching overhead, sim-
ilarly configured in terms of kernel version, disk contents,
RAM, and number of processors. We note that the ideal
results are not representative of cloud computing environ-
ments, in which aggressive consolidation of VMs is the
norm.

5.1 Macro Evaluation
In our macro evaluation we aim to answer the following
two questions:

• What is the performance of SnowFlock for the rep-
resentative applications described in section 4?

• How capable is SnowFlock of delivering near-
interactive response times when supporting multiple
concurrent ICs, and how does it react to stressful
conditions that include repeated cloning and adverse
VM allocation patterns?

5.1.1 Application Results

We test the performance of SnowFlock with the applica-
tions described in section 4 and the following features
enabled: memory on demand, multicast without push,
avoidance heuristics, and hierarchical cloning. For each
application we spawn 128 threads of execution (32 4-core
SMP VMs on 32 physical hosts) in order to fully utilize
our testbed. SnowFlock is tested against an ideal with 128
threads to measure overhead, and against an ideal with a
single thread in order to measure speedup.
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Figure 4: Application Benchmarks

Figure 4 shows the results. We obtain speedups very
close to the ideal, and total time to completion no more
than five seconds (or 7%) greater than the ideal. The over-
heads of VM replication and on-demand state fetching are
small. These results demonstrate that the execution time
of a parallelizable task can be reduced, given enough re-
sources, to a near-interactive range. We note three as-
pects of application execution. First, ClustalW yields the
best results, showing that tighter coupling of SnowFlock
into application logic is beneficial. Second, while most of
the applications are embarrassingly parallel, the achiev-
able speedups are below the maximum: some slaves may
finish ahead of others, so that “time to completion” effec-
tively measures the time required for the slowest VM to
complete. Third, distcc’s tight synchronization results in
underutilized slaves and low speedup, although distcc still
delivers a near-interactive time to completion.

5.1.2 Scale and Agility

In this section we address SnowFlock’s capability to sup-
port multiple concurrent ICs. We launch four VMs that
each simultaneously spawn an IC of 32 uniprocessor
VMs. To further stress the system, after completing a
parallel task each IC joins and deallocates its slaves and
immediately launches another parallel task, repeating this
cycle five times. Each IC runs a different application. We
selected the four applications that exhibited the highest
degree of parallelism (and slave occupancy): SHRiMP,
BLAST, QuantLib, and Aqsis. To even further stress the
system, we abridged the length of the cyclic parallel task
so that each cycle would finish in between 20 and 35 sec-
onds. We employed an “adversarial allocation” in which
each task uses 32 processors, one per physical host, so
that 128 SnowFlock VMs are active at most times, and
each physical host needs to fetch state for four ICs. The
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“ideal” results were obtained with an identical distribu-
tion of VMs; since there is no state-fetching performed in
the ideal case, the actual allocation of VMs does not affect
those results.
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For each task we cycle cloning, processing and joining
repeatedly.

Figure 5: Concurrent Execution of Multiple ICs
The results, shown in Figure 5, demonstrate that

SnowFlock is capable of withstanding the increased de-
mands of multiple concurrent ICs. As we will show in
section 5.2.3, this is mainly due to the small overall num-
ber of memory pages sent by the multicast server, when
pushing is disabled and heuristics are enabled. The intro-
duction of multiple ICs causes no significant increase in
overhead, although outliers with higher time to comple-
tion are seen, resulting in wider error bars. These outliers
are caused by occasional congestion when receiving si-
multaneous bursts of VM state for more than one VM;
we believe optimizing mcdist will yield more consistent
running times.

5.2 Micro Evaluation
To better understand the behaviour of SnowFlock, and to
isolate the factors which cause the small overhead seen in
the previous section, we performed experiments to answer
several performance questions:

• How fast does SnowFlock spawn an IC? How scal-
able is the cloning operation?

• What are the sources of overhead when SnowFlock
fetches memory on demand to a VM?

• How is the performance of SnowFlock sensitive to
the use of avoidance heuristics and the choice of net-
working strategy?

5.2.1 Fast VM Replica Spawning

Figure 6 shows the time spent replicating a single-
processor VM to n VM clones, with each new VM
spawned on a different physical host. For each size n we
present two bars: the “Master” bar shows the global view
of the operation, while the “Create Clone” bar shows the
average time spent by all VM resume operations on the n
physical hosts. The average size of a VM descriptor for
these experiments was 1051 ± 7 KB.

Recall that in section 3, the process used to replicate
a VM was introduced. For the purposes of evaluating the
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Figure 6: Time To Create Clones

time required for VM cloning, we decompose this process
into the following steps corresponding to bars in Figure 6:
1) Suspending the running VM and generating a VM de-
scriptor. These are the “Save Time” and “Xend” com-
ponents in the “Master” bar; “Xend” stands for unmodi-
fied Xen code we leverage. 2) Contacting all target phys-
ical hosts to trigger VM instantiation (“Starting Clones”).
3) Each target host pulls the VM descriptor via multicast
(“Clone Set up” in the “Create Clone” bar). 4) Spawn-
ing each clone VM from the descriptor (“Restore Time”
and “Xend”). 5) Set up, including network isolation, for
each clone. (“Clone Set Up”). 6) Waiting to receive noti-
fication from all target hosts (“Waiting for Clones”, which
roughly corresponds to the total size of the corresponding
“Create Clone” bar).

From these results we observe the following: first, VM
replication is an inexpensive operation ranging in general
from 600 to 800 milliseconds; second, VM replication
time is largely independent of the number of replicas be-
ing created. Larger numbers of replicas introduce, how-
ever, a wider variance in the total time to fulfill the opera-
tion. The variance is typically seen in the time to multicast
each VM descriptor, and is due in part to a higher likeli-
hood that on some host a scheduling or I/O hiccup might
delay the VM resume for longer than the average.

5.2.2 Memory On Demand

To understand the overhead involved in our memory-
on-demand subsystem, we devised a microbenchmark in
which a VM allocates and fills in a number of mem-
ory pages, invokes SnowFlock to have itself replicated
and then touches each page in the allocated set. We in-
strumented the microbenchmark, the Xen hypervisor and
memtap to timestamp events during the fetching of each
page. The results for multiple microbenchmark runs to-
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talling ten thousand page fetches are displayed in Fig-
ure 7. The “Single” columns depict the result when a
single VM fetches state. The “Dual” columns show the
results when two VM clones concurrently fetch state.
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Figure 7: Page Fault Time

We split a page fetch operation into six components.
“Page Fault” indicates the hardware overhead of using
the shadow page tables to detect first access to a page
after VM resume. “Xen” is the cost of executing the
Xen hypervisor shadow page table logic. “HV Logic”
is the time consumed by our logic within the hypervisor
(bitmap checking and SMP safety.) “Dom0 Switch” is the
time spent while context switching to the domain0 mem-
tap process, while “Memtap Logic” is the time spent by
the memtap internals, consisting mainly of mapping the
faulting VM page. Finally, “Network” depicts the soft-
ware and hardware overheads of remotely fetching the
page contents over gigabit Ethernet.

The overhead of page fetching is modest, averaging
275 µs with unicast (standard TCP). Our implementation
is frugal, and the bulk of the time is spent in the network-
ing stack. With multicast, substantially higher variances
are observed in three components. As explained in sec-
tion 3.4.1, memtap fully pauses the VM and batches mul-
tiple page mappings in a single hypercall with multicast,
making the average operation more costly. Also, mcdist’s
logic and flow control are not as optimized as TCP’s, and
they run in user space. The need to perform several sys-
tem calls results in a high scheduling variability. A final
contributor to multicast’s variability is the effectively bi-
modal behaviour caused by implicit prefetching. Some-
times, the page the VM needs may already be present,
in which case the logic defaults to a number of simple
checks. This is far more evident in the dual case – re-
quests by one VM result in prefetching for the other, and
explains the high variance and lower overall “Network”

averages for the multicast case.

5.2.3 Sensitivity Analysis

In this section we perform a sensitivity analysis on the
performance of SnowFlock, and measure the benefits
of the heuristics and multicast distribution. Throughout
these experiments we employed SHRiMP as the driving
application. The experiment spawns n uniprocessor VM
clones and runs on each a set of reads of the same size
against the same genome. N clones perform n times the
amount of work as a single VM, and should complete in
the same amount of time, yielding an n-fold throughput
improvement. We tested twelve experimental combina-
tions by: enabling or disabling the avoidance heuristics;
increasing SHRiMP’s memory footprint by doubling the
number of reads from roughly 512 MB (167116 reads)
to roughly 1 GB (334232 reads); and varying the choice
of networking substrate between unicast, multicast, and
multicast with push.

Figure 8 (a) illustrates the memory-on-demand activ-
ity for a memory footprint of 1 GB and 32 VM clones.
Consistent results were observed for all experiments with
smaller numbers of clones, and with the 512 MB foot-
print. The immediate observation is the substantially ben-
eficial effect of the avoidance heuristics. Nearly all of
SHRiMP’s memory footprint is allocated from scratch
when the reads are loaded. The absence of heuristics
forces the VMs to request pages they do not really need,
inflating the number of requests from all VMs by an order
of magnitude. Avoidance heuristics have a major impact
in terms of network utilization, as well as enhancing the
scalability of the experiments and the system as a whole.
The lower portion of Figure 8 (b) shows that the decreased
network utilization allows the experiments to scale grace-
fully. Even unicast is able to provide good performance,
up to 16 clones.

Three aspects of multicast execution are reflected in
Figure 8 (a). First, even under the extreme pressure of
disabled heuristics, the number of pages served is reduced
dramatically. This enables a far more graceful scaling
than with unicast, as seen in the upper portion of Fig-
ure 8 (b). Second, lockstep avoidance works effectively:
lockstep executing VMs issue simultaneous requests that
are satisfied by a single response from the server. Hence
the difference between the “Requests” and “Served” bars
in three of the four multicast experiments. Third, push
mode increases the chances of successful prefetching and
decreases the overall number of requests from all VMs,
at the cost of sending more pages. The taller error bars
(up to 8 seconds) of the push experiments, however, re-
veal the instability caused by the aggressive distribution.
Constantly receiving pages keeps memtap busy and not
always capable of responding quickly to a page request
from the VM, hurting the runtime slightly and causing
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Figure 8: Sensitivity Analysis with SHRiMP – 1 GB Memory Footprint
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(a) Speedup – 256 MB DB
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(b) Speedup – 512 MB DB

2 4 8 16 32
Number of Clones

0

500

1000

1500

2000

P
a
g
e
s
 S

e
rv

e
d
 (

T
h
o
u
s
a
n
d
s
)

Unicast

Multicast Push

Multicast

DB 256MB
DB 512 MB

Aggregate number of pages sent by
the memory server to all clones.

(c) Memory Pages Served
Figure 9: Sensitivity Analysis with NCBI BLAST

VMs to lag behind.
Figure 8 (c) shows the requests of three randomly se-

lected VMs as time progresses during the execution of
SHRiMP. Heuristics are enabled, the footprint is 1 GB,
and there are 32 VM clones using multicast. Page re-
quests cluster around three areas: kernel code, kernel data,
and previously allocated user space code and data. Imme-
diately upon resume, kernel code starts executing, caus-
ing the majority of the faults. Faults for pages mapped in
user-space are triggered by other processes in the system
waking up, and by SHRiMP forcing the eviction of pages
to fulfill its memory needs. Some pages selected for this
purpose cannot be simply tossed away, triggering fetches
of their previous contents. Due to the avoidance heuris-
tics, SHRiMP itself does not directly cause any fetches,
and takes over the middle band of physical addresses for
the duration of the experiment; fetches are only performed
rarely when kernel threads need data.

5.2.4 Heuristic-adverse Experiment

While the results with SHRiMP are highly encourag-
ing, this application is not representative of workloads in
which an important portion of memory state is needed af-
ter cloning. In this scenario, the heuristics are unable to

ameliorate the load on the memory on demand subsystem.
To synthesize such behaviour we ran a similar sensitivity
analysis using NCBI BLAST. We aligned 2360 queries
split among an increasing number of n VM clones. The
queries were run against a portion of the NCBI genome
database cached in main memory before cloning the VMs.
We enable avoidance heuristics, while varying the net-
working substrate and the size of the cached DB, from
roughly 256 MB to roughly 512 MB.

Figure 9 (a) plots the speedups achieved for a DB of
256 MB by cloning a uniprocessor VM to n replicas.
Speedups are against an ideal with a single VM, and the
labels indicate the runtime for 32 VMs. We see an almost
linear speedup for multicast, closely tracking the speedup
exhibited with ideal execution, while unicast ceases to
scale after 16 clones. Multicast push is better than uni-
cast but unable to perform as well as multicast, due to
memtap and network congestion. With a larger database
(Figure 9 (b)) even multicast starts to suffer a noticeable
overhead, showing the limits of the current implementa-
tion.

Figure 9 (c) shows the number of pages fetched vs. the
number of clones for the three networking substrates. The
information is consistent with that in Figure 8 (a). The
linear scaling of network utilization by unicast leads di-
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rectly to poor performance. Multicast is not only the bet-
ter performing, but also the one with the least network
utilization, allowing for better co-existence with other
SnowFlock ICs. These observations, coupled with the in-
stabilities of push mode shown in the previous section,
led us to choose multicast with no push as SnowFlock’s
default behaviour for the macro-evaluation in section 5.1.

6 Related Work

To the best of our knowledge, we are the first group to ad-
dress the problem of low-latency replication of VMs for
cloud-based services that leverage parallelism to deliver
near-interactive response times. A number of projects
have worked to develop efficient multiplexing of many
VMs on a single machine. The Potemkin project [27]
implements a honeypot spanning a large IP address
range. Honeypot machines are short-lived lightweight
VMs cloned from a static template in the same machine
with memory copy-on-write techniques. Potemkin does
not address parallel applications and does not fork multi-
ple VMs to different hosts. Denali [30] dynamically mul-
tiplexes VMs that execute user-provided code in a web-
server, with a focus on security and isolation.

Emulab [12] uses virtualization to efficiently sup-
port large-scale network emulation experiments in their
testbed. The “experiment” notion in Emulab bears a re-
semblance to SnowFlock’s IC: it is a set of VMs con-
nected by a virtual network. Experiments are long-lived
and statically sized: the number of nodes does not change
during the experiment. Instantiation of all nodes takes
tens to hundreds of seconds. Emulab uses Frisbee [13]
as a multicast distribution tool to apply disk images to
nodes during experiment setup. Frisbee and mcdist dif-
fer in their domain-specific aspects: for instance, Frisbee
uses filesystem-specific compression techniques which do
not apply to memory state; conversely the lockstep prob-
lem in memory sending addressed by mcdist does not ap-
ply to Frisbee’s disk distribution.

One objective of SnowFlock is to complement the ca-
pabilities of a shared computing platform. The Amazon
Elastic Compute Cloud [2] (EC2) is the foremost utility
computing platform in operation today. While the de-
tails are not publicly known, we believe it follows in-
dustry standard techniques for the provisioning of VMs
on the fly [26]: consolidation via memory sharing [28]
or ballooning, resuming from disk, live migration [6],
etc. Amazon’s EC2 claims to instantiate multiple VMs
in “minutes” – insufficient performance for the agility ob-
jectives of SnowFlock.

The term “virtual cluster” has been employed by
many projects [8, 10, 24] with semantics differing from
SnowFlock’s IC. The focus has been almost exclusively
on the resource provisioning and management aspects.
Chase et al. [5] present dynamic virtual clusters in

which nodes are wiped clean and software installed from
scratch to add them to a long-lived on-going computation.
Nishimura’s virtual clusters [19] are statically sized, and
created from a single image also built from scratch via
software installation. Usher [16] is a modular manager
of clusters of VMs; Usher’s virtual clusters can be dy-
namically resized via live migration or VM suspend and
resume. Usher could complement SnowFlock’s architec-
ture by acting as the resource manager and implementing
policies for VM allocations. Another alternative is Plat-
form EGO [21].

We view the use of high-speed interconnects, if avail-
able, as a viable alternative to multicasting. Huang et
al. [15] demonstrate very fast point-to-point VM migra-
tion times with RDMA on Infiniband. We note that la-
tency increases linearly, however, when a single server
pushes a 256 MB VM to multiple receivers, which is a
crucial operation to optimize for use in SnowFlock.

7 Conclusion and Future Directions

In this work, we introduced Impromptu Clusters (IC), a
new abstraction that streamlines the execution of parallel
applications on cloud-based clusters. ICs preserve the iso-
lation and ease of development associated with executing
inside a VM, while allowing applications to take advan-
tage of cluster computing by forking multiple copies of
their VM, which then execute independently on different
physical hosts.

SnowFlock, our IC prototype, can clone a VM over
a large number of physical hosts in less than a sec-
ond. SnowFlock’s fast parallel cloning makes it possible
for web-based services to leverage cloud-based clusters
to deliver near-interactive response times for resource-
intensive, highly parallel applications.

SnowFlock makes use of two key observations. First,
it is possible to drastically reduce the time it takes to
clone a VM by copying only the critical state. The rest
of the VM’s memory image can be fetched efficiently on-
demand. Moreover, simple modifications to the guest ker-
nel significantly reduce network traffic by eliminating the
transfer of pages that will be overwritten. Second, the
parallel nature of the application being forked results in
a locality of memory accesses that makes it beneficial to
distribute the VM image using multicasting. This allows
for the instantiation of a large number of VMs at a cost
similar to that of forking a single copy.

We observe that the IC paradigm is not only useful
to utility computing operations but can also be used by
organizations that prefer to share internal compute re-
sources instead. For example, an animation studio can
use SnowFlock to share a large cluster among several an-
imation teams, or a financial company can share a large
cluster between their financial derivatives groups.
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In this paper we have remained within the scope of em-
barrassingly parallel applications, which need little ex-
plicit synchronization. A natural progression is to con-
sider problems that demand tighter sharing, particularly
of areas of memory. Similarly, developing a SnowFlock-
friendly version of MPI, in which the task of spawn-
ing an IC is transparently triggered by “mpirun” invoca-
tion, holds the promise of enabling transparent and binary
compatibility for a large number of existing applications.
Our initial experience with MPI versions of BLAST and
ClustalW has thus far been positive.

In closing, by combining the benefits of parallelization
with the strengths of VM technology, ICs will make high
performance applications accessible to a much broader
community of scientists and engineers. From a broader
perspective, ICs may prove to be a catalyst for scientific
discovery as it will speed up the adoption of new appli-
cations that will enable scientists to conduct experiments
that are currently not possible.

Acknowledgments

This research was supported by the National Science Founda-
tion (NSF) under grant number CNS-0509004, the National Sci-
ence and Engineering Research Council (NSERC) of Canada
under a strategic grant and a Canada Graduate Scholarship, by
the Canadian Foundation for Innovation (CFI), and the Ontario
Innovation Trust (OIT) under grant number 7739, and by a re-
search grant from Paltform Computing Corp. Any opinions,
findings, conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the
views of the NSF, NSERC, CFI, OIT, Platform Computing Corp,
Carnegie Mellon University, or the University of Toronto.

We thank Young Yoon for his help with QuantLib, Ryan
Lilien for his early involvement in this work, and Lionel Litty
for comments on earlier drafts.

References
[1] ALTSCHUL, S. F., MADDEN, T. L., SCHAFFER, A. A., ZHANG,

J., ZHANG, Z., MILLER, W., AND LIPMAN, D. J. Gapped
BLAST and PSI–BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25 (1997), 3389–3402.

[2] AMAZON.COM. Amazon Elastic Compute Cloud (Amazon
EC2). http://www.amazon.com/gp/browse.html?
node=201590011.

[3] Aqsis. http://aqsis.org/.
[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS,

T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A.
Xen and the Art of Virtualization. In Proc. of the 17th Symposium
on Operating Systems Principles (SOSP) (Bolton Landing, NY,
Oct. 2003).

[5] CHASE, J. S., IRWIN, D. E., GRIT, L. E., MOORE, J. D., AND
SPRENKLE, S. E. Dynamic Virtual Clusters in a Grid Site Man-
ager. In Proc. 12th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC) (Washington, DC, 2003).

[6] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live Migration of

Virtual Machines. In Proc. 2nd Symposium on Networked Systems
Design and Implementation (NSDI) (Boston, MA, May 2005).

[7] distcc: a Fast, Free Distributed C/C++ Compiler. http://
distcc.samba.org/.

[8] EMENEKER, W., AND STANZIONE, D. Dynamic Virtual Cluster-
ing. In Proc. IEEE International Conference on Cluster Comput-
ing (Cluster) (Austin, TX, Sept. 2007).

[9] European Bioinformatics Institute - ClustalW2. http://www.
ebi.ac.uk/Tools/clustalw2/index.html.

[10] FOSTER, I., FREEMAN, T., KEAHEY, K., SCHEFTNER, D., SO-
TOMAYOR, B., AND ZHANG, X. Virtual Clusters for Grid Com-
munities. In Proc. IEEE International Symposium on Cluster
Computing and the Grid (CCGrid) (Singapore, May 2006).

[11] GENTZSCH, W. Sun Grid Engine: Towards Creating a Com-
pute Power Grid. In Proc. 1st International Symposium on Cluster
Computing and the Grid (Brisbane, Australia, May 2001).

[12] HIBLER, M., RICCI, R., STOLLER, L., DUERIG, J., GU-
RUPRASAD, S., STACK, T., WEBB, K., AND LEPREAU, J.
Feedback-directed Virtualization Techniques for Scalable Net-
work Experimentation. Tech. Rep. FTN-2004-02, University of
Utah, May 2004.

[13] HIBLER, M., STOLLER, L., LEPREAU, J., RICCI, R., AND
BARB, C. Fast, Scalable Disk Imaging with Frisbee. In Proc.
of the USENIX 2003 Annual Technical Conference (San Antonio,
TX, June 2003).

[14] HIGGINS, D., THOMPSON, J., AND GIBSON, T. Clustal w:
improving the sensitivity of progressivemultiple sequence align-
ment through sequence weighting,position-specific gap penalties
and weight matrix choice. Nucleic Acids Res. 22 (1994), 4673–
4680.

[15] HUANG, W., GAO, Q., LIU, J., AND PANDA, D. K. High Per-
formance Virtual Machine Migration with RDMA over Modern
Interconnects. In Proc. IEEE International Conference on Cluster
Computing (Cluster) (Austin, TX, Sept. 2007).

[16] MCNETT, M., GUPTA, D., VAHDAT, A., AND VOELKER, G.
Usher: An Extensible Framework for Managing Clusters of Vir-
tual Machines. In Proc. 21st Large Installation System Adminstra-
tion Conference (LISA) (Dallas, TX, Nov. 2007).

[17] MEYER, D., AGGARWAL, G., CULLY, B., LEFEBVRE, G.,
HUTCHINSON, N., FEELEY, M., AND WARFIELD, A. Parallax:
Virtual Disks for Virtual Machines. In Proc. Eurosys 2008 (Glas-
gow, Scotland, Apr. 2008).

[18] MOAB. Moab Cluster Suite, Cluster Resources Inc.,
2008. http://www.clusterresources.com/pages/
products/moab-cluster-suite.php.

[19] NISHIMURA, H., MARUYAMA, N., AND MATSUOKA, S. Virtual
Clusters on the Fly – Fast, Scalable and Flexible Installation. In
Proc. IEEE International Symposium on Cluster Computing and
the Grid (CCGrid) (Rio de Janeiro, Brazil, May 2007).

[20] Pixar’s RenderMan. https://renderman.pixar.com/.
[21] PLATFORM COMPUTING, INC. Technical Whitepaper: Integrat-

ing Enterprise Infrastructures with Platform Enterprise Grid Or-
chestrator (EGO), 2006.

[22] QuantLib: a Free/Open-source Library for Quantitative Finance.
http://quantlib.org/index.shtml.

[23] RPS-BLAST. http://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd_help.shtml.

[24] RUTH, P., MCGACHEY, P., JIANG, J., AND XU, D. VioClus-
ter: Virtualization for Dynamic Computational Domains. In Proc.
IEEE International Conference on Cluster Computing (Cluster)
(Boston, MA, Sept. 2005).

[25] SHRiMP - SHort Read Mapping Package. http://compbio.
cs.toronto.edu/shrimp/.

[26] STEINDER, M., WHALLEY, I., CARRERA, D., GAWEDA, I.,
AND CHESS, D. Server Virtualization in Autonomic Management

14

http://www.amazon.com/gp/browse.html?node=201590011
http://www.amazon.com/gp/browse.html?node=201590011
http://aqsis.org/
http://distcc.samba.org/
http://distcc.samba.org/
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.clusterresources.com/pages/products/moab-cluster-suite.php
http://www.clusterresources.com/pages/products/moab-cluster-suite.php
https://renderman.pixar.com/
http://quantlib.org/index.shtml
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml
http://compbio.cs.toronto.edu/shrimp/
http://compbio.cs.toronto.edu/shrimp/


of Heterogeneous Workloads. In Proc. 10th Integrated Network
Management (IM) conference (Munich, Germany, 2007).

[27] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A., VOELKER, G., AND SAVAGE, S. Scalabil-
ity, Fidelity and Containment in the Potemkin Virtual Honeyfarm.
In Proc. of the 20th Symposium on Operating Systems Principles
(SOSP) (Brighton, UK, Oct. 2005).

[28] WALDSPURGER, C. A. Memory Resource Management in
VMWare ESX Server. In Proc. 5th USENIX Symposium on Op-
erating System Design and Implementation (OSDI) (Boston, MA,
2002).

[29] WARFIELD, A., HAND, S., FRASER, K., AND DEEGAN, T. Fa-
cilitating the development of soft devices. In Proc. USENIX An-
nual Technical Conference (Anaheim, CA, Apr. 2005).

[30] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale
and Performance in the Denali Isolation Kernel. In Proc. 5th

USENIX Symposium on Operating System Design and Implemen-
tation (OSDI) (Boston, MA, Dec. 2002).

15


	Introduction
	Impromptu Cluster
	Usage Model
	The Need for Agile VM Fork

	SnowFlock
	VM Descriptors
	Memory On Demand
	Avoidance Heuristics
	Multicast Distribution
	Memtap Modifications
	Lockstep Detection
	Push

	Virtual I/O Devices in an IC
	Virtual Disk
	IC Network Isolation


	Applications
	NCBI BLAST
	SHRiMP
	ClustalW
	QuantLib
	Aqsis -- Renderman
	Distcc

	Evaluation
	Macro Evaluation
	Application Results
	Scale and Agility

	Micro Evaluation
	Fast VM Replica Spawning
	Memory On Demand
	Sensitivity Analysis
	Heuristic-adverse Experiment


	Related Work
	Conclusion and Future Directions

