
The discovery of structural variation1–3 as an important 
contributor to heterozygosity has revolutionized our 
understanding of the landscape of human genotypes 
(for an introduction, see ref. 4). Recognition of the 
extensive presence of structural variants in the human 
genome5–11 has had broad ramifications for several 
areas of biology, including association studies12, cancer 
genomics13 and molecular evolution14. For instance, 
genetic variants associated with cancer often result from 
rearrangements and alterations in proto-oncogenes 
or tumor suppressor genes, and many chromosomal 
aberrations in tumor genomes have been found to join 
separate gene sequences into fusion genes13,15,16. Other 
diseases, such as autism17 and Parkinson’s disease18, 
have also been associated with changes in gene dosage 
resulting from alterations in copy number. Besides bio-
medical applications, analysis of structural variants has 
led to a better understanding of how the genome has 
been shaped throughout evolutionary history. Recent 
studies found that although a surge in Alu element 
activity 40 million years ago fueled a high rate of non-
allelic homologous recombination, the prominence of 
this mechanism has since diminished in favor of non-
homologous end joining3,19.

These applications have driven the development 
of methods for the discovery of structural variants in 
the human population. In addition to specificity and 
sensitivity, a method’s quality is judged by its ability to 
accurately predict the location of the breakpoints, the 
variant’s size, and the change in copy count. Although 
the term ‘structural variant’ has in the past been used 
for events >1,000 base pairs (1 kbp) in size, this is a 
rather arbitrary cutoff, and we use structural variants 
to designate polymorphisms that change the structure 
of the genome, including all insertions, deletions and 
inversions. Structural variants are generally categorized 
on the basis of whether they affect the copy count of 
any genomic region. Events such as insertions and dele-
tions (indels) are referred to as copy-number variants 
(CNVs), to distinguish them from events that are copy-
count invariant, such as inversions.

The earliest methods for discovering structural vari-
ants are based on whole-genome array comparative 
genome hybridization (aCGH), which tests the rela-
tive frequencies of probe DNA segments between two 
genomes20–22 (for a comprehensive review, see ref. 23). 
Alternative approaches take advantage of the exten-
sive data available from the HapMap project24 and use 
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In the last several years, a number of studies have described large-scale structural 
variation in several genomes. Traditionally, such methods have used whole-genome array 
comparative genome hybridization or single-nucleotide polymorphism arrays to detect 
large regions subject to copy-number variation. Later techniques have been based on 
paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. 
With the advent of next-generation sequencing, a new generation of methods is being 
developed to tackle the challenges of short reads, while taking advantage of the high 
coverage the new sequencing technologies provide. In this survey, we describe these 
methods, including their strengths and their limitations, and future research directions.
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in certain aspects, they all provide a many-fold improvement over 
Sanger sequencing in throughput and cost per base pair. This has 
enabled initiatives such as the 1000 Genomes project32, an ambi-
tious undertaking that aims to sequence the genomes of 1,000 
individuals using NGS platforms in order to expand databases 
of human variation and to help understand the genetic factors 
behind human diseases. Nevertheless, these technologies are also 
limited by the read lengths, which at present range from 35–400 
bp, and the raw accuracy of base calls, making direct assembly of 
the whole genome from raw read data difficult.

a cataLog of signatures
Detecting structural variant differences between two individuals 
would be a trivial task if their genomes were already assembled. 
Because this is as yet prohibitive for humans, current methods use 
only one assembled genome (the ‘reference’) and another sequenced 
genome (the ‘donor’). Thus, they are unable to compare the 
sequences directly, and instead rely on detecting variation through 
‘signatures’—patterns of PEMs that are created by structural varia-
tion. Most current methods distinguish themselves by the signatures 
they can detect, and we therefore first discuss these signatures and 
their intrinsic limitations.

signatures based on Pem
Basic insertion, deletion and inversion. Two of the easiest and most 
commonly detected signatures are the ‘basic insertion’ and ‘basic 
deletion’2,15 (Fig. 1a,b). A mate pair that spans an isolated deletion 
event maps to the corresponding regions of the reference, but the 
mapped distance is greater than the insert size. Conversely, if the 
event is an insertion, then the distance is smaller. Another variant 
that leaves a clear signature is an inversion. A mate pair that spans 
either (but not both) of its breakpoints will map to the reference 
with the orientation of the read, lying within the inversion, flipped. 
Two such mate pairs, respectively spanning each of the two break-
points, form the ‘basic inversion’ signature2,8 (Fig. 1c).

Note that the basic insertion signature does not appear when the 
size of the insertion is greater than the insert size of the sequenced 
fragment, and it does not indicate the inserted sequence itself. 
However, if the inserted segment is present elsewhere in the genome, 
a different, linking, signature can be used to identify the connection 
between the location of insertion and the inserted sequence.

Linking: linked insertion and everted duplication. Consider two 
distant regions of the reference genome that are adjacent in the 
donor. A mate pair spanning the donor’s breakpoint will map with 
a distance much greater than the insert size. The two spanning mate 
pairs that are closest to the breakpoint from the 3′ and 5′ ends, 
respectively, form a ‘linking’ signature (Fig. 1d). This signature is 
not associated with any particular type of event; it can be caused by 
any rearrangement that creates a donor adjacency that is not present 
in the reference. For example, a basic deletion signature is a type of 
linking signature, indicating that two segments that were not adja-
cent in the reference have become adjacent in the donor. Other link-
ing signatures can connect regions that are arbitrarily distant or even 
on different chromosomes. For example, a fusion gene in a cancer 
cell can be identified by detecting a linking signature between two 
distant genes33,34.

An insertion event where the inserted sequence is present else-
where in the genome can create a ‘linked insertion’ signature3, 

single-nucleotide polymorphism (SNP) arrays to measure the inten-
sity of probe signals at known SNP loci. By also considering allelic 
ratios at heterozygous sites, they are able to detect CNVs6,7,25–27, as 
well as, to a smaller extent, inversions28. However, although compu-
tational methods based on array data have been successfully used to 
identify CNVs, their power is limited. The size and breakpoint reso-
lution of any prediction is correlated with the density of the probes 
on the array, which is limited by either the density of the array itself 
(for aCGH) or by the density of known SNP loci (for SNP arrays).

More recently, sequencing-based methods have used mate-pair 
or paired-end reads for structural variant discovery2,3,5,9 (Box 1). In 
this approach, two paired reads are generated at an approximately 
known distance in the donor genome. The reads are mapped to a ref-
erence genome, and pairs mapping at a distance that is substantially 
different from the expected length, or with anomalous orientation, 
suggest structural variants. Paired-end mapping (PEM) techniques, 
which are based on the mining of such mate pairs, have been success-
fully used to discover structural variants, including copy-invariant 
events, at a much higher resolution than array-based methods.

Whereas earlier PEM-based methods use low-coverage Sanger-
style sequencing, the last few years have seen the emergence of sev-
eral high-throughput sequencing platforms, such as Roche’s 454, 
Illumina’s Genome Analyzer and ABI’s SOLiD, which are able to 
sequence millions of reads simultaneously, thus substantially accel-
erating data acquisition. In these next-generation sequencing (NGS) 
platforms, clonal amplification is performed by PCR-based methods 
instead of bacterial transformation. PCR ‘colonies’ are tethered to an 
array and sequenced in parallel, using either polymerases or ligases 
for primer elongation during each cycle. Such parallel sequenc-
ing of the colonies not only markedly increases the speed of data 
generation, but also reduces the amounts of reagents needed. (See 
refs. 29–31 for reviews.) Finally, all three NGS platforms are capable 
of generating mate-pair or paired-end data, enabling their use for 
structural variant discovery using PEM techniques.

The advent of NGS has opened many opportunities for struc-
tural variant discovery. Though the various NGS platforms differ 

 BOx 1 MatE PaIrS/PaIrED ENDS
Sequencing technologies can generate two reads at an 
approximately known distance in the genome using two 
disparate sequencing strategies to generate reads from both 
sides of a segment of DNA (the insert). Mate pairs are created 
when genomic DNA is fragmented and size-selected inserts are 
circularized and linked by means of an internal adaptor. The 
circularized fragment is then randomly sheared, and segments 
containing the adaptor are purified. Finally, the mate pairs 
are generated by sequencing around the adaptor. Paired-end 
reads, by contrast, are generated by the fragmentation of 
genomic DNA into short (<300 bp, owing to space constraints 
on the slide) segments, followed by sequencing of both ends 
of the segment. Paired-end reads provide tighter insert-size 
distributions, and thus higher resolution, whereas mate pairs 
give the advantage of larger insert sizes. Although the wet-lab 
techniques used to generate these two types of data are very 
different, from a computational perspective the distinction 
between mate pairs and paired ends is not crucial. All of the 
methods described in this survey work for both paired-end and 
mate-pair data, and we will use the term mate pair throughout.
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one read maps while the other one does not. Such pairs form a ‘hang-
ing insertion’ signature5 (Fig. 1i). De novo assembly of such hanging 
reads can be used to reconstruct a small inserted segment, although 
if it is substantially larger than the insert size, hanging reads will not 
cover the entire insertion.

signatures based on depth of coverage
The high coverage of NGS makes it possible to identify a completely 
different type of signature, based on the depth of coverage (DOC). 
Assuming the sequencing process is uniform, the number of reads 
mapping to a region follows a Poisson distribution and is expected 
to be proportional to the number of times the region appears in the 
donor. Thus, a region that has been deleted (duplicated) will have 
less (more) reads mapping to it. Although earlier work used DOC 
to identify recent segmental duplications in the human genome37 
and compare segmental duplications between human and chimp38, 
Campbell et al.34 were the first to use these ‘gain/loss’ signatures 
to detect CNVs between tumor and healthy samples of the same 
individuals (Fig. 2). Unlike the PEM insertion signatures, the gain 
signature does not indicate where an insertion occurred, but rather 

which is composed of two linking signatures 
where the linked regions are close to each 
other (Fig. 1e). Unlike the basic insertion, 
the linked insertion signature can be used 
to identify the region that has been insert-
ed. However, if the size of the insertion is 
large, then the confidence that the two link-
ing signatures are associated with the same 
insertion decreases, and thus this signature 
becomes weak for very large insertions.

Another type of linking signature is creat-
ed by a region of the reference that has been 
tandemly duplicated in the donor. Cooper et 
al.7 first observed that a mate pair that has 
an end in each of the two copies will have an 
‘everted’ mapping: the order of the mates is 
reversed while the orientation stays the same 
(Fig. 1f). We call this an ‘everted duplication’ 
signature. This signature can only be used 
to detect a novel tandem duplication—for 
example, it cannot detect a tandemly repeat-
ed region whose copy count changes from 
two to three.

All of  the methods outlined above, 
although able to identify approximate loca-
tions of breakpoints, cannot indicate the 
exact locations. The methods below describe 
signatures that address this shortcoming.

Breakpoint identification: split mapping 
and hanging insertion. A read sampled 
across a deletion breakpoint will leave a 
‘split mapping’ signature in the reference, 
with a prefix and suffix of the read map-
ping to different locations. Whereas this 
signature is detectable with longer reads5,35, 
there are too many such spurious mappings 
of short read halves, and hence too many 
spurious signatures, with short read data. 
Nevertheless, Ye et al.36 showed that if one uses the fact that the mate 
of a split read must map nearby, then the search space for the split 
mapping of the hanging read can be much reduced. Thus we have 
the ‘anchored split mapping’ signature, in which one of the mates 
maps to the reference and the other has a split mapping with one of 
its parts about 1 insert size away (Fig. 1g). A similar situation occurs 
when there is an insertion of a few base pairs. This will leave behind a 
similar signature, except that the split read will have a prefix and suf-
fix mapping to adjacent locations, and there will be a middle part of 
the read (the bases inserted) that will not be part of either the prefix 
or suffix mapping (Fig. 1h).

The anchored split mapping signature has the advantage that it 
can pinpoint the breakpoint of the event with base-pair precision. 
However, if the deletion is too large, then there will be too many 
spurious hits for the farther part of the split mapping. Similarly, the 
size of the insertion detectable with this signature is only a few base 
pairs, as every inserted base reduces the fraction of the read that 
matches the genome.

To identify insertions that contain a novel genomic segment, it is 
possible to use mate pairs spanning either of the breakpoints, where 
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figure 1 | Illustrations of PEM signatures. Mate pairs are sampled from the donor, where they 
are ordered with opposite orientation (the blue mate follows the orange), and are mapped to the 
reference (ref). Basic signatures include (a) insertions and (b) deletions, where the mapped distance 
is different from the insert size, as well as (c) inversions, where the order of the two mates is 
preserved but one of them changes orientation. (d) The linking signature has several discordant mate 
pairs with similar mapped distances identifying adjacency in the donor (dashed orange arrows) of 
two distal segments of the reference. The orientation and order of the mapped mate pairs depends 
on the orientation and order of the two segments in the reference; here, these are unchanged. (e) 
A linked insertion signature is composed of two linking signatures and arises when the inserted 
sequence (green) is copied from another location in the genome. (f) A tandem duplication will 
create an everted duplication linking signature, with mates mapping out of order but with proper 
orientations. These mate pairs link the end of the duplicated region to its beginning. (g,h) In the 
anchored split mapping signature, one mate has a good mapping, whereas the other has a split 
mapping. For a deletion (g) the prefix and suffix surround the deletion, whereas for an insertion 
(h) the split read has the prefix and suffix mapped to adjacent locations, while a middle part does 
not map. (i) When a novel genomic segment is inserted, a hanging insertion signature is created, in 
which only one of the mates has a good mapping.
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the current technologies, which cause certain regions of the genome 
to be over- or under-sampled. Though the bias in G+C rich regions 
and in homopolymeric stretches of DNA has been well document-
ed39,40, other sources of bias remain unaccounted for.

To overcome noise, current methods group signatures that sup-
port the same variation together into either clusters (for PEM 
approaches) or windows (for DOC approaches). Along with the 
types of detectable signatures, the techniques for clustering or 
windowing serve as the two main distinguishing characteristics 
of structural variant discovery methods. Having already discussed 
the types of signatures, we now turn our attention to aspects of 
clustering or windowing.

Paired-end mapping clusters
Clustering not only helps to improve confidence in the predictions 
but also to increase the precision of the predicted breakpoints and 
event size (Fig. 3). Clustering can have an even stronger impact with 
hanging insertion signatures, for which Kidd et al.5 showed that, by 
feeding all the hanging reads within one cluster into an assembler, 
one can partially determine the novel inserted sequence.

The most common clustering strategy, introduced by Tuzun et al.2, 
only considers mate pairs that do not have a ‘concordant’ mapping—
one with the correct orientation and with a mapped distance within 
2–4 s.d. of the mean insert size. Such mate pairs are called ‘discordant’. 
Moreover, the strategy ignores any mate pair that has more than one 
good mapping. A cluster is then formed if there is at least some mini-
mum number (usually two) of signatures of the same type and with 
similar size and location. This so-called standard clustering strategy 
was later used by the methods of Korbel et al. 3, Bentley et al.9, Korbel 
et al.41, Ye et al.36, McKernan et al.42 and Chen et al.43.

what duplicate sequence has been inserted; thus, it is not able to 
detect insertions of novel sequence.

Owing to its statistical nature, the strength of a gain/loss signa-
ture is directly related to the coverage of the dataset and to the size 
of the CNV. In contrast to most PEM signatures, DOC signatures 
can be used to detect very large events—in fact, the larger the event, 
the stronger the signature. However, they are not able to identify 
smaller events that PEM signatures, even with low coverage, are able 
to detect; they are also much poorer at localizing breakpoints.

methods for detecting signatures
The basic framework of all structural variant discovery meth-
ods is to detect signatures and then call the underlying variants. 
Different events leave behind different types of signatures, and 
therefore any method that aims to achieve high sensitivity across 
a wide range of events needs to detect a combination of signature 
types. In Table 1, we describe several existing methods in terms of 
the types they can detect.

Moreover, the observation of a single signature is usually insuffi-
cient to identify the underlying structural variant with high specific-
ity, owing to the noise in the signature signal. Sequencing errors and 
chimeric reads may result in a read being incorrectly mapped to the 
reference genome, whereas chimeric clones will result in incorrect 
information about the distance and orientation between two reads. 
The PEM signatures are also dependent on the insert size, which 
in practice follows a distribution rather than being known exactly. 
Depending on the tightness of this distribution, it can be difficult 
to distinguish a true PEM signature caused by a small indel from a 
mate pair with an insert size from the tail of the distribution. The 
DOC signatures, by contrast, are affected by the sequencing bias of 
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figure 2 | Depth-of-coverage signature and distribution-based clustering. (a) Depth-of-coverage signature, and its relation to the linking signature (Campbell 
et al.34). Two distant genomic regions where the plotted dots, representing coverage depth, are grouped together into windows using horizontal bars to show 
the average depth. The vertical bars denote the borders between windows, where there is a sudden change in the coverage depth. The blue lines connect the 
two regions of a linking signature cluster. Observe that the ends of blue linking lines correspond closely to the location of the vertical bars. In other words, 
the loci of coverage depth changes correspond to the loci of linking signatures. (b–d) Distribution-based clustering (Lee et al.11). Each graph shows both 
the empirical (gray bars) and fitted (solid lines) distributions of the mapped distances of all concordant and discordant mate pairs spanning a given point. 
(b) Area where there is no variation. The mean of the distribution is at about the insert size (208 bp). (c) Homozygous deletion of size 24 bp. The mean is at 
~232 bp. (d) Hemizygous deletion of size 22 bp, which results in a mixture of two separate distributions with means of 208 bp and 230 bp.
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another limitation of most current methods—namely, that they are 
not able to reliably distinguish between homozygous and heterozy-
gous variants. Similar ‘distribution-based’ clustering approaches 
have been adopted by McKernan et al.42 and Chen et al.43.

depth-of-coverage windows 
Methods that use DOC signatures must partition the reference into 
windows so that the coverage depth is consistent within a window but 
has a sharp difference between adjacent windows. Then each win-
dow will correspond to a single loss, gain, or no event. Building upon 
similar techniques from aCGH, the methods of Campbell et  al.34 and 
Chiang et al.44 use binary circular segmentation and local change-
point analysis techniques to find the proper breakpoints for the win-
dows. They use theoretical analysis and simulations to determine the 
minimum size of the windows so that they are large enough to have 
a statistically strong signal from the read distribution. This results 
in a minimum window size, and hence of a prediction, of at least 30 
kbp. They help to mitigate the sequencing bias by making relative 
calls between two sequenced genomes (a healthy and a tumor line), 
instead of making absolute calls with respect to a reference.

tools 
Several methods have been packaged into algorithms and are pub-
licly available, including SegSeq44, PEMer41, VariationHunter10, 
MoDIL11, Pindel36, BreakDancer43 and ABI SOLiD Software Tools42. 
Each one can be characterized in terms of two distinguishing factors: 
the signatures they detect and the way they cluster or window these 
signatures. These characterizations are shown in Table 1, and the 
experimental results of these studies on concrete data sets in Table 2. 
These tables can be used to guide a user’s decision on which method 
is most applicable.

In addition to the methods already mentioned in the previous 
section, there have been more recent ones that have combined previ-
ously developed methodologies into a single framework9,42,43. For 
example, BreakDancer combines the standard clustering paradigm 
(BreakDancerMax) with the distribution-based approach pro-
posed in MoDIL (BreakDancerMini), albeit without hemizygous 
event detection. ABI SOLiD Software Tools combine the standard 
clustering paradigm with a different distribution-based approach to 
indel identification and the binary circular segmentation algorithm 

The two parameters that define this strategy—the minimum num-
ber of mate pairs required for a cluster and the number of standard 
deviations after which a mate pair is considered discordant—are 
interdependent and related to the coverage. That is, with increasing 
coverage one can decrease the number of mate pairs and/or stan-
dard deviations while achieving the same specificity. Similarly, one 
can decrease the number of standard deviations if one increases the 
number of mate pairs, and vice versa. Recently, Korbel et al.41 and 
Bashir et al.33 quantified these dependencies using both theoretical 
and simulation analyses.

One of the weaknesses of the standard clustering strategy is that, 
in ignoring mate pairs that have multiple good mappings, it does 
not allow the detection of signatures within repetitive regions of 
the genome. Given the strong association between segmental dupli-
cations and copy-number variation14,19, these regions are actually 
among the most interesting to study. Several approaches have tried 
to address this problem by considering all good mate-pair mappings, 
to improve the sensitivity within duplicate regions8,10,11. Such ‘soft’ 
clustering approaches face the challenge of maintaining high speci-
ficity given the many spurious signatures that are created in this way; 
this is done by using various optimization procedures to assign each 
mate pair to a cluster where it will have the most support from other 
mate pairs. Thus, even though all good mappings are considered, a 
mate pair is allowed to be part of only one cluster.

Another limitation of the standard clustering strategy is that 
it uses a fixed cutoff for the number of standard deviations after 
which a mapped distance is considered to be discordant. This 
implies that even if there are multiple basic deletion signatures 
spanning a common point, and they all have a mapped distance 
of, for example, 1 s.d. away from the mean, then if the discordance 
threshold is set at 2 s.d. no cluster will be formed. This limitation 
is addressed by the method of Lee et al.11, which forms basic indel 
clusters by looking at the distribution of all the mappings span-
ning a given location on the genome. If this distribution matches 
the typical insert size distribution but with a shift, then a cluster 
is formed. This allows the detection of much smaller indels than 
is possible with the standard clustering strategy. If, however, the 
distribution resembles a mixture of two separate insert size dis-
tributions with different means, then a hemizygous event can be 
detected by forming two separate clusters (Fig. 2b). This addresses 

table 1 | Description of current methods for structural variant prediction with NGS
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strategies

3, 41 PEMer Downloadable • • • • • Standard

34 None • • Binary circular segmentation

44 SegSeq Downloadable • Local change-point analysis

9 In the future • • • • Standard

10 VariationHunter Downloadable • • • • Soft

11 MoDIL Downloadable • • Soft, distribution-based

36 Pindel Downloadable • Standard

43 BreakDancer Downloadable • • • • Standard, distribution-based

42 ABI Tools Downloadable • • • • Standard, distribution-based, 
binary circular segmentation
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many advantages over NGS, such as the abil-
ity to detect split mapping signatures. But 
clever techniques such as that of Ye et al.36, 
who introduced anchored split mapping, 
can do much to bridge the gap. Moreover, 
the overriding advantage of NGS over 
Sanger sequencing continues to be the much 
lower cost and higher throughput.

Array CGH and other array-based tech-
nologies are considerably cheaper than NGS 
and will certainly play a role in genotyping 
individuals for previously known variants. 
However, for the discovery of new variants, 
NGS provides many advantages that have 
justified its higher cost. It is able to detect 

copy-invariant structural variants, such as inversions. It is better 
than aCGH at detecting smaller events and at determining the exact 
location of variation breakpoints. It does not suffer from oversatu-
ration at high copy counts, allowing depth-of-coverage methods 
to be more accurate than aCGH at determining very high copy 
counts34,41,44. Moreover, it allows one to improve breakpoint reso-
lution, copy-number accuracy, specificity and sensitivity by simply 
increasing coverage.

Despite these advantages of NGS, it is still not a one-stop solu-
tion for structural variation discovery, as some types of structural 
variants are more difficult to detect with NGS than with other 
approaches. For instance, current NGS-based methods have low 
sensitivity for detecting variation in repeating regions. However, 
these are among the regions that show the most variation: cur-
rent estimates predict a strong enrichment of CNVs within seg-
mental duplications1,2,14,19,21,22,46–48. Though DOC methods can 
detect such variation, their resolution is relatively poor. For most 

to identify regions of gain/loss. Another prominent tool is PEMer, 
a highly modularized framework for detecting structural variants 
that is specifically tailored to easy modification and development 
by the user. Some of the PEMer modules include read mapping, 
filtering of low-quality reads, signature detection, and clustering. 
Such a modularized framework has the potential to facilitate future 
algorithmic development by allowing improvements to particular 
modules without the need for implementing a whole structural vari-
ant discovery pipeline. However, there is still work to be done to 
create full-fledged, user-friendly tools for biologists.

strengths, Limitations, and the road ahead
Despite current limitations, emerging technologies45 promise to 
increase the read length to thousands of base pairs, so that the full 
assembly of human genomes would become economically feasible 
for structural variant discovery. Until then, however, Sanger sequenc-
ing continues to provide the longest reads, which undoubtedly offer 

table 2 | The experimental results of existing structural-variant discovery studies using NGS

refs. technology
individual  
or cell line read length

mean insert 
size coverage

detectable 
events

mean breakpoint 
resolution range of calls

3 454 NA15510 
NA18505

109 bp ~3,000 bp ×2.1 
×4.3a,b

Ins, del, inv 644 bp >3 kbp

34 Illumina NCI-H2171 
NCI-H1770

29–36 bp ~400 bp 
~90 bp

2.4 Gb 
1.8 Gba,c

Ins, del 500 bp >30 kbp

44 Illumina HCC1954 
HCC1143 
HCI-H2347

32–36 bp Unpaired 637 Mb 
541 Mb 
503 Mbd

Ins, del 440 bp 10–500 kbp

9

Illumina NA18507 ~36 bp ~200 bp ~×42e

Ins, del Not available 50 bp–35 kbp (del) 
60–160 bp (ins)

10 Ins, del, inv Not available <500 kbp (del) 
<137 bp (ins) 
<10 Mb (inv)

11 Ins, del <100 bp >20 bp (del) 
20–120 bp (ins)

36 Ins, del 1 bp <10 kbp (del) 
<20 bp (ins)

43 Ins, del, inv Not available >10 bp (del) 
10–130 bp (ins)

42 ABI SOLiD NA18507 25–50 bp 600–3,500 bp ~×15e Ins, del, inv Not available >80 bp (del) 
30–1,300 bp (ins)

Ins, insertion; del, deletion; inv, inversion.
aTotal sequence generated by reads that were part of a mate pair that had a mapping that was not rejected by the algorithm. bWith respect to the diploid genome. cClone coverage. dTotal sequence generated 
that had a high-quality alignment. eTotal sequence generated with respect to the haploid genome.

Basic deletion cluster Basic duplication clusterBasic inversion cluster

Donor

Ref

a cb

figure 3 | The power of clustering for improving resolution. Blue gradient, the variant region; gray 
boxes, the possible location of the breakpoint. (a) With a basic deletion cluster, the possible location 
of the event can be narrowed down much more than with a single signature (fig. 1b). (b) For a 
basic inversion, clustering helps to localize the breakpoints of the inverted segment. (c) An everted 
duplication cluster can more precisely localize the borders of the tandemly duplicated segment.
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12. McCarroll, S.A. & Altshuler, D.M. Copy-number variation and association 
studies of human disease. Nat. Genet. 39, S37–S42 (2007).

13. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 
177–183 (2004).

14. Cooper, G.M., Nickerson, D.E. & Eichler, E.E. Mutational and selective 
effects on copy-number variants in the human genome. Nat. Genet. 39, 
S22–S29 (2007).

15. Volik, S. et al. End-sequence profiling: Sequence-based analysis of aberrant 
genomes. Proc. Natl. Acad. Sci. USA 100, 7696–7701 (2003).

16. Raphael, B.J., Volik, S., Collins, C. & Pevzner, P.A. Reconstructing tumor 
genome architectures. Bioinformatics 19 (suppl. 2), 162–171 (2003).

17. Sebat, J. et al. Strong association of de novo copy number mutations with 
autism. Science 316, 445–449 (2007).

18. Singleton, A.B. et al. Alpha-synuclein locus triplication causes Parkinson’s 
disease. Science 302, 841 (2003).

19. Kim, P.M. et al. Analysis of copy number variants and segmental 
duplications in the human genome: Evidence for a change in the process 
of formation in recent evolutionary history. Genome Res. 18, 1865–1874 
(2008).

20. Pinkel, D. et al. High resolution analysis of DNA copy number variation 
using comparative genomic hybridization to microarrays. Nat. Genet. 20, 
207–211 (1998).

21. Sebat, J. et al. Large-scale copy number polymorphism in the human 
genome. Science 305, 525–528 (2004).

22. Sharp, A.J. et al. Segmental duplications and copy-number variation in the 
human genome. Am. J. Hum. Genet. 77, 78–88 (2005).
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25. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A 
high-resolution survey of deletion polymorphism in the human genome. 
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26. Hinds, D.A., Kloek, A.P., Jen, M., Chen, X. & Frazer, K.A. Common deletions 
and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 
38, 82–85 (2006).

27. McCarroll, S.A. et al. Common deletion polymorphisms in the human 
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28. Sindi, S. & Raphael, B. Identification and frequency estimation of inversion 
polymorphisms from haplotype data. in Research in Computational 
Molecular Biology: Proc. RECOMB 2009 vol. 5541 (ed. Batzoglou, S.) 418–
433 (Springer, Berlin, 2009).

29. Rusk, N. & Kiermer, V. Primer: Sequencing—the next generation. Nat. 
Methods 5, 15 (2008).

30. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 
1135–1145 (2008).

31. Ansorge, W.J. Next-generation sequencing techniques. New Biotechnol. 25, 
195–203 (2009).

32. Siva, N. 1000 Genomes project. Nat. Biotechnol. 26, 256 (2008).
33. Bashir, A., Volik, S., Collins, C., Bafna, V. & Raphael, B.J. Evaluation of 

paired-end sequencing strategies for detection of genome rearrangements 
in cancer. PLOS Comput. Biol. 4, e1000051 (2008).

34. Campbell, P.J. et al. Identification of somatically acquired rearrangements 
in cancer using genome-wide massively parallel paired-end sequencing. 
Nat. Genet. 40, 722–729 (2008).

 the first study to use the doc signatures in ngs data, detecting cnvs 
in tumor samples.

35. Mills, R.E. et al. An initial map of insertion and deletion (INDEL) variation 
in the human genome. Genome Res. 16, 1182–1190 (2006).

36. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern 
growth approach to detect breakpoints of large deletions and medium sized 
insertions from paired-end short reads. Bioinformatics published online, 
doi:10.1093/bioinformatics/btp394 (26 June 2009).

 a method that is able to detect indels with base-pair breakpoint 

PEM-based methods, conversely, the difficulty lies in the reliance 
on unique mappings. The introduction of soft clustering, which 
allows the use of mate pairs with multiple good mappings, is a step 
in the right direction; however, more work is needed before we can 
reliably predict variation in these regions.

Another important factor in the power of a study is the insert size 
of its library. Long insert sizes offer the advantage of allowing the 
detection of larger events. For instance, the strongest signature from 
an insertion is the basic insertion, and it is only present when the 
size of the insertion is less than the insert size. By contrast, shorter 
insert sizes increase the sensitivity for smaller events. Bashir et al.33 
performed a quantitative study, concluding that larger sizes are better 
for detection, whereas smaller ones are better for localization. Bentley 
et al.9 also observed that, when using two libraries with different sizes, 
most of their predictions were unique to one data set. Thus, future 
studies may need to use multiple libraries with varying insert sizes to 
discover the whole size range of structural variants9,34,41.

Many of the methods we have described here pioneered a new 
clustering strategy or a new type of signature when they were first 
introduced. These studies were intended to show the feasibility of a 
new technique and were not necessarily intended to provide a com-
prehensive method that incorporated the whole state of the art. As 
the field matures, newer methods will begin to combine previous 
approaches to improve their predictions. In particular, we believe 
one fruitful direction is the use of different types of signature to 
support any one event. For example, consider an insertion of a novel 
sequence, which might result in both basic and hanging insertion 
signatures. Current methods will consider support from one or the 
other, but not both, in making a call. However, by recognizing that 
the evidence from both types of signature supports the same event, 
one could detect it with less coverage and in the presence of more 
noise than current methods. Such approaches should also provide 
better resolution of sizes and breakpoints, areas where there is still 
much room for improvement.
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