CSC373

Midterm 2 answers and notes
Question 1

a) The DP reccurence is:
C[j]= 0 if j=1. Otherwise: C[j] = min;«<; {C[i]+pi}

Common mistakes:

1. People basically gave a Bellman-Ford recurrence, solving for every
endpoints: C[i,j]=min; <« <;{C[i,k]+C[k,j],pij}. This is unnecessary since
the question explicitly asked for the cost of getting to post j from the starting
post - 3 points deduction.

2. Some people forgot to give the base case (j=1) - 1 point deduction.

b)

1. Initialize amay: C[1 . . . n]

2 C[M]=0

3 for i «—2ton do:

4, Cli] < =

5. for j «— 1 to i1 do:

6 C [i] « min{C [i], C [I] + pu}
1

8

 rm C [N]

Common mistakes:
1.Not initializing the array, or not initializing properly. 1 point deduction in most of the cases.

2.For people who used the Bellman-Ford solution: No extra deduction was made, however many people didn't implement their
algorithms correctly. Namely, they gave 3 nested for-loops, traversing on i (1 <=1i<=n-1),j (2 <=j <=n) and an intermediate
index: k, where: i < k < j, and evaluated the expression C[i,k]+C[k,j]. However, this expression will not work since it uses values
which haven't been set yet. 3 points deduction.



¢) The reduction is correct. Most people got this part right.

d) Using the reduction from part (c): O(n?log n). Using the reduction from part (a): O(n?).
The algorithm from part (a) is faster. People who used the Bellman-Ford solution for
part (a) and analyzed their algorithms correctly got full marks for this part (they got
an O(n®) running-time).

Question 2
Part (a)

We can simply replace every edge e of the edge-set with two opposite edges of the same capacity and
reduce the problem to finding a minimum s-t cut in a directed graph. We know from the lectures that this
can be done by a maximum flow computation using the Ford-Fulkerson algorithm. To find the min-cut,
run an exploration algorithm on the (final) residual graph of the FF algorithm (BFS or DFS) starting from
the vertex s. Set A the set of the vertices that you visited on this exploration, and B =V \A . This will
corresponds to the undirected min-cut of G.

Common mistakes:

® Unclear construction of the directed graph., i.e., not specifying capacities, not replaced all
undirected edges (2 marks off)

® Wrong Reduction to directed graph. ( 3-5 marks off).

® Don't specify how to find the min-cut from the residual graph, i.e., run BFS or argue how to find
it: (1-2 marks off).

Part (b)

A naive solution is to run algorithm of part (a) for every distinct pair of vertices s,t and keep the minimum
cut over all distinct pairs. This takes O(n"2) calls to the algorithm of part (a).

It can be done using O(n) calls to the algorithm of part (a). First we can arbitrary choose a vertex s. Let
S~* be a subset of vertices of V, that gives an optimal cut ( (S, V\S) is an optimal cut), then s will either be
in S or in V\ S.. Thus, for every t in V\S, we solve two maximum flow problems, one giving us the
minimum s->t cut, the other giving us the minimum t-s cut. Taking the minimum over all such cuts, we get
the global min-cut in a undirected graph.

Common mistakes:
® Design an algorithm that gets as input vertices s, t. (2-4 marks off)
® Wrong algorithm, don't run algorithm of part (a) over all pairs or run it only on two arbitrary
pairs. (2-4 marks off)
Question 3
Most students got this question right. There are two possible solutions:
® Using the max-flow min-cut theorem immediately implies the claim.
® Argue that the Ford-Fulkerson algorithm holds the invariant that at every iteration the current

flow is multiple of 3; therefore at the last iteration will have a flow which is multiple of 3 and by
correctness of FF is the max-flow.



