CSC373

Midterm 2 answers and notes

Question 1

a) The DP reccurence is:
$\mathrm{C}[\mathrm{j}]=0$ if $\mathrm{j}=1$. Otherwise: $\mathrm{C}[\mathrm{j}]=\min _{1<=1<\mathrm{j}}\left\{\mathrm{C}[\mathrm{i}]+\mathrm{p}_{\mathrm{i}, \mathrm{j}}\right\}$

Common mistakes:

1. People basically gave a Bellman-Ford recurrence, solving for every endpoints: $C[i, j]=\min _{i<k<j}\left\{C[i, k]+C[k, j], p_{i, j}\right\}$. This is unnecessary since the question explicitly asked for the cost of getting to post j from the starting post-3 points deduction.
2. Some people forgot to give the base case $(\mathrm{j}=1)-1$ point deduction.
b)
```
Initialize array: \(\mathrm{C}[1 \ldots \mathrm{n}]\)
C [1] \(=0\)
for \(\mathrm{i} \leftarrow 2\) to n do:
    C \([i] \leftarrow \infty\)
    for \(\mathrm{j} \leftarrow \mathbf{1}\) to \(\mathrm{i}-1\) do:
        \(\mathrm{C}[\mathrm{i}] \leftarrow \min \left\{\mathrm{C}[\mathrm{i}], \mathrm{C}[\mathrm{I}]+\mathrm{p}_{\mathrm{ik}}\right\}\)
retum C [n]
```

Common mistakes:
1.Not initializing the array, or not initializing properly. 1 point deduction in most of the cases.
2.For people who used the Bellman-Ford solution: No extra deduction was made, however many people didn't implement their algorithms correctly. Namely, they gave 3 nested for-loops, traversing on $\mathrm{i}(1<=\mathrm{i}<=n-1), \mathrm{j}(2<=j<=n)$ and an intermediate index: k, where: $i<k<j$, and evaluated the expression $C[i, k]+C[k, j]$. However, this expression will not work since it uses values which haven't been set yet. 3 points deduction.
c) The reduction is correct. Most people got this part right.
d) Using the reduction from part (c): $O\left(n^{2} \log n\right)$. Using the reduction from part (a): $O\left(n^{2}\right)$. The algorithm from part (a) is faster. People who used the Bellman-Ford solution for part (a) and analyzed their algorithms correctly got full marks for this part (they got an $O\left(n^{3}\right)$ running-time).

Question 2

Part (a)
We can simply replace every edge e of the edge-set with two opposite edges of the same capacity and reduce the problem to finding a minimum s-t cut in a directed graph. We know from the lectures that this can be done by a maximum flow computation using the Ford-Fulkerson algorithm. To find the min-cut, run an exploration algorithm on the (final) residual graph of the FF algorithm (BFS or DFS) starting from the vertex s. Set A the set of the vertices that you visited on this exploration, and $B=V \backslash A$. This will corresponds to the undirected min-cut of G .

Common mistakes:

- Unclear construction of the directed graph., i.e., not specifying capacities, not replaced all undirected edges (2 marks off)
- Wrong Reduction to directed graph. (3-5 marks off).
- Don't specify how to find the min-cut from the residual graph, i.e., run BFS or argue how to find it: (1-2 marks off).

Part (b)

A naive solution is to run algorithm of part (a) for every distinct pair of vertices s, t and keep the minimum cut over all distinct pairs. This takes $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ calls to the algorithm of part (a).

It can be done using $O(n)$ calls to the algorithm of part (a). First we can arbitrary choose a vertex s. Let $\mathrm{S}^{\wedge *}$ be a subset of vertices of V , that gives an optimal cut ($(\mathrm{S}, \mathrm{V} \backslash \mathrm{S})$ is an optimal cut), then s will either be in S or in $V \backslash S$.. Thus, for every t in $\mathrm{V} \backslash \mathrm{S}$, we solve two maximum flow problems, one giving us the minimum s->t cut, the other giving us the minimum t-s cut. Taking the minimum over all such cuts, we get the global min-cut in a undirected graph.

Common mistakes:

- Design an algorithm that gets as input vertices s, t. (2-4 marks off)
- Wrong algorithm, don't run algorithm of part (a) over all pairs or run it only on two arbitrary pairs. (2-4 marks off)

Question 3

Most students got this question right. There are two possible solutions:

- Using the max-flow min-cut theorem immediately implies the claim.
- Argue that the Ford-Fulkerson algorithm holds the invariant that at every iteration the current flow is multiple of 3 ; therefore at the last iteration will have a flow which is multiple of 3 and by correctness of FF is the max-flow.

