
CSC373
Midterm 2 answers and notes

Question 1

a) The DP reccurence is:
C[j]= 0 if j=1. Otherwise: C[j] = min1<= I < j {C[i]+pi,j}

Common mistakes:

1. People basically gave a Bellman-Ford recurrence, solving for every
 endpoints: C[i,j]=mini < k < j{C[i,k]+C[k,j],pi,j}. This is unnecessary since
 the question explicitly asked for the cost of getting to post j from the starting
 post - 3 points deduction.
2. Some people forgot to give the base case (j=1) - 1 point deduction.

b)

1. Initialize array: C[1 . . . n]
2. C [1] = 0
3. for i ← 2 to n do:
4. C [i] ← ∞
5. for j ← 1 to i-1 do:
6. C [i] ← min{C [i], C [I] + pik}
7.
8. return C [n]

Common mistakes:

1.Not initializing the array, or not initializing properly. 1 point deduction in most of the cases.

2.For people who used the Bellman-Ford solution: No extra deduction was made, however many people didn't implement their
algorithms correctly. Namely, they gave 3 nested for-loops, traversing on i (1 <= i <= n-1), j (2 <= j <= n) and an intermediate
index: k, where: i < k < j, and evaluated the expression C[i,k]+C[k,j]. However, this expression will not work since it uses values
which haven't been set yet. 3 points deduction.

1

c) The reduction is correct. Most people got this part right.

d) Using the reduction from part (c): O(n2
log n). Using the reduct ion f rom part (a) : O(n2

).
T h e a l g o r i t h m f r o m p a r t (a) i s f a s t e r . P e o p l e w h o u s e d t h e B e l l m an - F o rd s o l u t i o n f o r
p a r t (a) an d a n a l y z e d t h e i r a l g o r i t h m s c o r re c t l y g o t f u l l m a r k s f o r t h i s p a r t (t h e y g o t
a n O(n 3

) r u n n i n g - t i m e) .

Question 2

Part (a)

We can simply replace every edge e of the edge-set with two opposite edges of the same capacity and
reduce the problem to finding a minimum s-t cut in a directed graph. We know from the lectures that this
can be done by a maximum flow computation using the Ford-Fulkerson algorithm. To find the min-cut,
run an exploration algorithm on the (final) residual graph of the FF algorithm (BFS or DFS) starting from
the vertex s. Set A the set of the vertices that you visited on this exploration, and B = V \A . This will
corresponds to the undirected min-cut of G.

Common mistakes:

 Unclear construction of the directed graph., i.e., not specifying capacities, not replaced all
undirected edges (2 marks off)

 Wrong Reduction to directed graph. (3-5 marks off).
 Don't specify how to find the min-cut from the residual graph, i.e., run BFS or argue how to find

it: (1-2 marks off).

Part (b)

A naive solution is to run algorithm of part (a) for every distinct pair of vertices s,t and keep the minimum
cut over all distinct pairs. This takes O(n^2) calls to the algorithm of part (a).

It can be done using O(n) calls to the algorithm of part (a). First we can arbitrary choose a vertex s. Let
S^* be a subset of vertices of V, that gives an optimal cut ((S, V\S) is an optimal cut), then s will either be
in S or in V \ S.. Thus, for every t in V\S, we solve two maximum flow problems, one giving us the
minimum s->t cut, the other giving us the minimum t-s cut. Taking the minimum over all such cuts, we get
the global min-cut in a undirected graph.

Common mistakes:

 Design an algorithm that gets as input vertices s, t. (2-4 marks off)
 Wrong algorithm, don't run algorithm of part (a) over all pairs or run it only on two arbitrary

pairs. (2-4 marks off)

Question 3

Most students got this question right. There are two possible solutions:

 Using the max-flow min-cut theorem immediately implies the claim.
 Argue that the Ford-Fulkerson algorithm holds the invariant that at every iteration the current

flow is multiple of 3; therefore at the last iteration will have a flow which is multiple of 3 and by
correctness of FF is the max-flow.

