Programming Project
CSC373 Winter 2009
Due Date: March 26%, 11:59pm

Administrative details:

This project will be submitted electronically. A full list of receivables is lower. We
encourage you to work in groups, with a maximum of 3 students per group. The
main communication medium for this project will be the Google group; this is where
we'll post clarifications, explanations, and other project-related details.

Motivation & Background:

Sequence alignment, that is the comparison of biological sequences, is one of the
most successful applications of computer science to biology. DNA is a double
stranded molecule, where each strand is a chain of nucleotides. There are four types
of nucleotides (Adenine, Cytosine, Guanine, Thymine), which are commonly
represented by the four letters A, T, C, and G. Because of the large size of biological
data (the human genome has about 3 billion nucleotides, other mammalian genomes
are about the same size) efficient algorithms are necessary when one is analyzing
genomic sequences. In this project you will get to implement one such algorithm.

Edit Distance algorithm

One of the oldest algorithms for alignment of sequences is the Needleman-Wunsch
algorithm, which was published in 1970. This algorithm is closely related to the Edit
distance algorithm that you saw in lecture (and is in the book). This algorithm
calculates the edit distance between the two strings. Given a match score T, a
mismatch score R, and a gap penalty G per each gapped letter, the edit distance
between two strings is defined to be the maximum possible weighted sum of the
number of match, mismatch, & gap scores. The Edit Distance algorithm calculates
the number of operation required to transform stringA:A1...Ax int B:B1...B,, with the
valid operation being insertions, deletions, and substitutions of a single letter. The
algorithm works by creating an kxn matrix M, where the element M;; will store the
edit distance between strings A;...A;j and B;...B;. We can update the matrix by setting

M= MAX(Mi.Lj -1, Mjj1-1, Miq, 1 - S(Ai,Bj))

Where S(A;B;) returns 0 if the two letters are the same, and 1 otherwise. To
reconstruct the alignment we can add back-pointers to keep track which move we
made, and walk the backpointers from Mg, back to M%0to get the actual alignment.

The problem with this approach is that it requires O(k*n) time and memory, and
although it is possible to reduce the memory usage, reducing the time requirement
significantly is impossible without sacrificing optimality.

Heuristic DNA alignment

In order to enable rapid alignment of longer DNA sequence, scientists commonly use
the anchoring heuristic, where a speed up is achieved by first matching K-mers
(exact matching strings of length >K) rather than individual letters. After finding
matching K-mers, these are extended to the left and right until the first mismatch is
detected, and the score of this extended maximal match is typically just its length.
Some chain of these maximal matches are chosen as anchor points. This chain of
anchor points must be consistent: for two adjacent maximal matches, the start of the
second match must be (strictly) after the end of the first in both sequences. The
score of a chain is the sum of the scores of all of the maximal matches that are part
of the chain. Once this chain is found, we only need to do the alighment between the
anchors, making the alignment procedure significantly faster.

Your task:

In this project you will implement a fast DNA aligner, which we will call fastmatch.
Fastmatch can be used for aligning two long DNA sequences. Your data will come in
the form of FASTA files, the most common format for biological sequences. A FASTA
format file may contain one or more sequences, each of which starts with a header
line which has “>” as the first symbol. Every line after the header lines may have
zero or more letters from the alphabet {A,T,C,G}, making up the sequence to be
aligned. Your program will take as input the names of two fasta files and two
command-line options: the K-mer size (zero indicates no anchoring) and either
“greedy” or “dp” for the anchor selection process. If the k-mer size is zero, the
second option is irrelevant.

Your output will be the same two sequences, with dashes (“-“) inserted wherever
you believe there have been insertions/deletions, as well as one additional line,
starting with the “=” symbol and followed by two numbers: the total number of
edits you used to transform one string into the other, and the total weight of all

anchors. For example, given the strings

sequencel.fa:
>s1

ACTGACT

sequence?2.fa:
>s2
ACGCTG

Here are two possible runs: (% is the UNIX prompt, and bold characters are so that
you can see anchors, you don’t have to print bold)

$java fastmatch sequencel.fa sequence2.fa 2 dp
>sl

ACTGACT-

>s2

AC-G-CTG

=3 4

$java fastmatch sequencel.fa sequence2.fa 2 greedy
>sl

A--CTGACT

>s2

ACGCTG---

=5 3

Note that there may be multiple valid alignments with the same edit distance and
anchoring score. All are acceptable.

Grading criteria:

Your program will be grade on correctness and speed. In particular, to get full credit,
your program must be able to handle query files of length up to several million
letters long in a reasonable amount of time (reasonable depends on the k-mer size,
but it should be minutes or seconds rather than hours given large enough K). The K-
mer size may vary between zero (in which case you are just asked for the edit
distance between the two strings) and 20. You will get some partial marks for
printing the correct edit distance (with incorrect alignments), being able to compute
correct alignments without anchors (or only one of the two anchoring schemes),
and printing the correct anchoring score without alighments or edit distance.. You
may assume that the computer on which we will be testing your submission has at
least one gigabyte of memory. We will grade a large portion of your project
automatically, so it is important that you follow the directions about output format
precisely.

You may also receive bonus points for the project by implementing an algorithm
that can efficiently align extremely similar long sequences and a very fast dynamic
programming chaining algorithm (speak to us if you are interested in either of these,
and we’'ll point you to relevant material).

Receivables:

e Your code, in Java.

e A Makefile, that will create the executable fastmatch from your source code.

e A README file explaining the algorithms that you are using, the time and
memory complexity of these algorithms and general details about how you
have implemented them.

While you are welcome to use any standard libraries available in Java, you may not
download any code from the web; all code you submit must be your own work.

Submission information for the project and sample data will be available in the near

future.

Plan of Attack:

This project, as almost all projects that you will ever work on, nicely divides into
several distinct sections, which can be given to different group members. The
division below is just a suggestion. You are free to go about this any way you wish.

Finding maximal matches (A)

Given two strings, you will want to index all of the K-long strings (and their
locations) in one of them, and then use the K-long strings in the other to
query this index. Whenever you find a match, you will want to extend it in
both directions to the first mismatch and return a tuple indicating positions
of this maximal match in both sequences. Note that implementing this
algorithm trivially will lead to quadratic running time for extremely similar
strings. Getting around this will yield bonus points.

Sub-selecting a set of Anchors (B,C)

Given a list of maximal matches, you will want to select a chain of them that
can be used as anchors. You are asked to implement two algorithms for this
problem: the trivial greedy algorithm, that sorts all of the maximal matches
by score, and accepts anchors in order of score if they form a consistent
chain, and a full, Dynamic Programming algorithm that selects the chain with
the largest possible weight (this is similar to the Longest Increasing
Subsequence algorithm). Note that the Greedy algorithm will be much faster:
O(n log n), where n is the number of maximal matches, rather than O(n?) for
the DP. There exists an O(n log n) DP algorithm for this problem, and
implementing it will get you bonus points.

Edit Distance Aligner (D)

You will need to implement the edit distance algorithm to not only compute
the edit distance, but also to reconstruct the full set of operations required to
transform the strings (and print the alignments). This algorithm should take
as input not only strings, but also ranges within the two strings in which to
do the alignment.

Putting it all together

Once all of the pieces are working, you need to put all of them together into a
single package. The way the project is organized, we will be able to test
sections B, C, and D independently - so you will get partial credit for the
subsections - but in order to get full credit you need to make the whole thing
work. Remember it is a group project -- you will all swim together, or sink
together.

