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What is SNP

Source: A Science Primer.

e A Single Nucleotide Polymorphism, or SNP is a small genetic
change, or variation, that can occur within a person’s DNA
sequence.

e An example of a SNP is the alteration of the DNA segment
AAGGTTA to ATGGTTA

e Most SNPs are found outside of “coding sequences”.

e SNPs found within a coding sequence are of particular
interest to researchers because they are more likely to alter the
biological function of a protein.



SNPs and Disease Diagnosis

Source: A Science Primer.

e Each person’s genetic material contains a unique SNP pattern
that is made up of many different genetic variations.

e Researchers have found that most SNPs are not responsible
for a disease state.

e Instead, they serve as biological markers for pinpointing a
disease on the human genome map:

— Reason: they are usually located near a gene found to be
associated with a certain disease.

e Occasionally, a SNP may actually cause a disease and,
therefore, can be used to search for and isolate the
disease-causing gene.

e We will see how a Bayesian method (PolyBayes) can be used
to detect SNPs.



Bayes’ Rule

e For any hypothesis h and data d we have:

dlh)p(h
p(hld) = p(d|h)p(h)
> nen Pld|R)p(h)
, Likelihood x Prior
Posterior =
P(data)

e [dea. Suppose we have aligned DNA sequences (EST’s) of 10
individuals and we are looking at one specific position. We

have two hypothesises: h; - there is a SNP or h — there is no
SNP.

e Well, the prior p(h1)=0.003 and p(h()=1-0.003, because we
believe that SNP’s typically occur once every 333 bp.

e Once we observe the data (aligned ESTs) we can judge what
are the posterior odds in favor of h;.



Bayesian inference

Source: Josh Tenenbaum’s example

e Data: John is coughing.

e Some hypotheses:

1. John has a cold
2. John has lung cancer
3. John has a stomach flu

e Prior P(h) favors 1 and 3 over 2
e Likelihood P(d|h) favors 1 and 2 over 3

e Posterior P(h|d) favors 1 over 2 and 3



What they do in the paper: PolyBayes

e The goal of the paper is to find SNPs from ESTs, pieces of
DNA sequence, of 10 genomic clones (of 10 individuals).

e ESTs are small pieces of DNA sequence (usually 200 to 500
nucleotides long) that are generated by sequencing either one
or both ends of an expressed gene.

e How they do it:

— First obtain ESTs and construct an alignment against a
fragment of the finished human reference sequence (less
than 1 error per 10.000 bp). Draw this on the board.

—Identify paralogues. These are the sequences that represent
highly similar regions duplicated elsewhere in the genome.
They may give rise to false SNP predications.

— Use multiple alignment of sequences to detect SNPs using
PolyBayes.



Identifying paralogues

e [s the number of mismatches observed between the genomic
reference sequence and a matching EST was consistent with
polymorphic variation as opposed to sequence difference
between duplicated chromosomal locations.

e Key observation: Most “paralogous” sequences exhibit a
pair-wise dissimilarity rate higher than Ppr = 0.02 (2%).

e This is compared with the average pair-wise polymorphism
rate, Ppory = 0.001 (0.1%).

e 50, in a pair-wise match of length L, we’d expect L Ppory
mismatches due to polymorphism, versus L Pp4r mismatches
due to paralogous difference.

e We also add E of mismatches that are expected to arise from
sequencing errors.



Overall picture
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Fig. 1 Application of the POLYBAYES procedure to EST data. a, Regions
of knowen human repeats in a genomic sequence are masked. b, Match-
ing hurnan E5Ts are retrieved from dbEST and traces are recalled. ¢, Par-
alogous ESTs are identified and discarded. o, Alignmernts of native EST
reads are screened for candidate variable sites. e, An 5TS is designed for
the verification of a candidate SMP. f, The uniqueness of the genomic
lzcation is determined by ssquencing the 5T5 in CHM1 (homozygous
DMA) g, The presence of a SHP is analysed by ssquencing the 5T5 from
pooled DNA samples.
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Identifying paralogues: The model

e We have two models: My and Mpap.

e The probability (the likelihood) of observing d discrepancies is
approximated by the Poisson distributions with parameters:

-\ = DNAT = LPPOLY + F for model MNAT
— A= Dpyp = LPpsr+ E for model Mp4p.

Remember the Poisson:
)\d
_)\_
d!

e Now, since we don’t have any preference for either model, we
use uninformative prior, or P(Myar) = p(Mpagr) = 0.5.

p(D=d|\) =e

e Crank up Bayesian inference to get:

_ p(d| My ar)p(My ar)
p(MNAT‘d) o p(d‘MNAT)p(MNAT) —|—p(d‘MPAR)p(MPAR)




Bayesian Inference

e Crank up Bayesian inference to get:

_ p(d| My ar)p(My ar)
p(MNAT‘d) o p(d‘MNAT)p(MNAT) —|—p(d‘MPAR)p(MPAR)

1

p(Myar|d) =
1 + ePvar=Drar(Dpyp/ DNAT)d




Bayesian Inference
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SNP detection in multiple alignments

e Suppose we have N cross-sections of a multiple alignment,
Ry, Ry. (Draw on the board).

e We want to identify polymorphic (as opposed to
monomorphic) locations by evaluating the likelihood of
nucleotide heterogeneity within cross-sections of a multiple
alignment.

e FEach of the nucleotides, Si,...,Sy, in a cross-section of N
sequences, can be any one of the four DNA bases, for a total of
4N nucleotide permutations.

e The likelihood, P(S;| R;)=1-P,,, for the called base and
P(S;|R;)=P.,,/3 for each of the three uncalled bases.



SNP detection in multiple alignments

e Total a priori probability that a site is polymorphic is
Pyory = 0.003.

e So the values P, have to be distributed to assign a prior
probability P(.51, ..., Sy) to each polymorphic permutation.

o (1 — P,y,)/4is assigned to each of the four non-polymorphic
permutations, corresponding to a uniform base composition,

P(S)).

e What the heck does that mean? Show an example.



Bayesian Inference

e Once we have defined our likelihoods and priors, we can
estimate the posterior probabilities of a particular
permutation:

Ry, R5|S1, S9)p(Sy, S
p(Sl,SQ‘Rl,RQ):p( 1 2‘ 1 2)p( 1 2):

(R, o)
p(E1|S1)p(Ro]S:) g
p(Ri, Ry) p(S51, 52) ~ p(Ri|S1)p(Ra|S2)p(S1, 52)

Note that

p(S1|R1)p(Ry)

PIIS) =)

Thus

_ P(S1|Ry) p(Sa| Ry)
p(Sb SQ’Rb Rz) p(Sl) p(Sz)

e The Bayesian posterior probability of a SNP is the sum of
posterior probabilities of all heterogeneous permutations
observed in the cross section.

p(Slv SQ)



Bayesian Inference

e The Bayesian posterior probability of a SNP is the sum of
posterior probabilities of all heterogeneous permutations
observed in the cross section.

e Candidate SNP is identified if the corresponding SNI’
posterior probability exceeded a threshold value of 0.40.

e Bayesian model takes into account

— depth of coverge (N)
—base quality values of the sequences F.,,
— a priori expected rate of polymorphic sites in region (F,.,).

e And like all other papers they show fantasic results.



A bit on PyroBayes

e We have the sequencing reads produced by the 454 Life
Sciences pyrosequencers.

e The light intensity signal observed in each cycle is
proportional to the actual number of incorporated nucleotides.

e The signal for a fixed number of incorporated bases (e.g. a
homopolymer AAA) varies substantially, and there is usually
a nonzero signal even when no base is incorporated.



PyroBayes
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A bit on PyroBayes

e Let s is the observed nucleotide incorporation signal and n is
the homopolymer length.

e Use observed frequencies as estimates for the data
probabilities p(s|n).

e For the prior probability values p(n), use the average
frequency of the eukaryote homopolymer frequencies.

e Crank up Bayesian inference (up to n=100):
pls|n)p(n)
p(n\s) — 105
2 k=1 P(s|k)p(k)

e The number n for which this posterior probability is highest is
the most likely number of bases.



THE END



