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Abstract. Fast and exact comparison of large genomic sequences re-
mains a challenging task in biosequence analysis. We consider the prob-
lem of finding all ε-matches between two sequences, i.e. all local align-
ments over a given length with an error rate of at most ε. We study
this problem theoretically, giving an efficient q-gram filter for solving it.
Two applications of the filter are also discussed, in particular genomic se-
quence assembly and blast-like sequence comparison. Our results show
that the method is 25 times faster than blast, while not being heuristic.

1 Introduction

Searching a biological sequence database for sequences similar to a given query
sequence is a problem of fundamental importance in bioinformatics. Of particu-
lar interest is the case where sequences are considered similar if they have a local
alignment that scores above a given threshold. The first algorithm to solve this
problem is due to Smith and Waterman [19], whose names have become synony-
mous with the search. A Smith-Waterman search is guaranteed to find all local
alignments scoring above a given threshold, and is therefore commonly referred
to as a full-sensitivity search. Unfortunately, the algorithm has quadratic time
complexity and spends most of its running time verifying that there are in fact
no alignments of interest.

This inefficiency led to the development of heuristics such as the very popular
fasta [17] and blast [1,2] programs. The latter is based on the assumption
that biologically interesting alignments must contain at least one pair of highly
similar substrings, called a seed. Aided by a preprocessed query sequence, the
blast algorithm efficiently locates and extends each seed to a local alignment
containing the seed. However, it is important to note that the regions of the
search space thusly disregarded, can actually contain a match.

In contrast, a filter is an algorithm that rapidly and stringently eliminates
a large part of a search space from consideration. That is, unlike a heuristic,
it guarantees not to eliminate a region containing a match. Full sensitivity can



therefore be obtained by applying a full sensitivity algorithm on the unfiltered
regions. Effective filtration under scoring measures typical for protein searches is
very difficult [15]. It is somewhat easier for applications on DNA, when matches
of high identity (≥ 90%) are sought. The first filtration algorithms for this prob-
lem appeared in the early 90’s and include the works of Ukkonen [20], Chang
and Lawler [6] and Myers [13].

Typical for these algorithms is the preprocessing of the query sequence or the
sequence database in order to accelerate searches. In particular, after building
an index, such as a suffix tree or array (see e.g. [8]) or a simple list of locations of
q-grams (i.e. strings of length q), it can be used for any number of searches. This
is important for many applications, where the typically large sequence database
remains unchanged over a high number of usually shorter queries. Myers [13]
was the first to deliver an asymptotic improvement using such preprocessing of
the sequence database. This setting – a filter using an index of the sequence
database, aimed for applications on DNA – is the focus of this paper.

Related Work. The program quasar [3] is the closest precursor to the work
presented in this paper and is itself a refinement of the earlier q-gram algorithm
of Ukkonen [20]. It uses a suffix array to retrieve the positions of any given q-
gram in the target sequence. At query time the target sequence is logically split
into blocks. As a sliding window proceeds over the query sequence, the number
of q-grams co-occurring in the window and each block is determined. Blocks with
less than a certain threshold of q-grams in common with the query sequence are
eliminated, and blast is run on the query sequence and the remaining blocks
to find the reported alignments.

The heuristics ssaha [16] and blat [10] use a q-gram index of the target
sequence, containing however only the positions of the non-overlapping q-grams.
This reduces the index size and the expected number of q-gram seeds by a factor
of q, but at the cost of a loss in sensitivity. At query time the set of matching
q-gram positions between the query and target sequences is collected and sorted
by diagonal. A linear scan locates stretches of hits on identical diagonals. These
stretches are then sorted by target sequence position. Another linear scan iden-
tifies contiguous stretches of matching positions in the target sequence. These
stretches are extended in traditional blast-style to produce the final alignments.
We note that the idea of diagonal sorting actually first appeared in fasta [17].

The use of sample indexing is taken even further in flash [5]. Based on a
probabilistic model, randomly chosen discontiguous patterns are indexed in mul-
tiple highly redundant indexes. Consequently, the index is very large, requiring
approximately 18Gb for a 100Mb nucleotide database. However, it was shown
that this approach yielded high sensitivity in practice. The use of discontiguous,
or gapped, seed patterns has more recently been refined in PatternHunter [12]
and [4], giving fast and sensitive heuristic searches. The gapped-seed idea is
orthogonal to the filtration method we employ here and could conceivable be
layered on, but we do not address it in this paper.



Contributions. In this work we consider the problem of detecting local align-
ments under the unit cost measure or Levenshtein distance. That is, the distance
between two strings is the number of insertions, deletions, and substitutions in
the alignment between them. An absolute threshold on the number of differ-
ences in a local alignment is inappropriate as the lengths of the aligned strings
are unconstrained. Normalizing by dividing by the length of the aligned strings,
we seek instead local alignments where the error rate is at most ε > 0. In other
words, we seek all ε-matches for small ε.

The main contribution of this paper is an efficient filter for identifying regions
of the implied edit matrix that are guaranteed to overlap with possible ε-matches.
The filter is much more selective than quasar and Ukkonen’s early work, while
operating at comparable or superior speeds depending on parameter settings.
Moreover, it finds all matches over a given length, a criterion not considered nor
met by the earlier q-gram filters. It is thus a very effective, full-sensitivity filter
for DNA searches.

The organization of the paper is as follows. In Section 2 we formalize the
problem definition and present a filter criterion that identifies regions of the
query and target sequences that may contain an ε-match. Section 3 gives an
efficient algorithm for realizing the filter. Section 4 describes several applications
of the basic filter and Sect. 5 presents experimental results for these applications.

2 q-Gram Filters for ε-Matches

2.1 Problem Definition

Given a string A over a finite alphabet Σ, |A| is the length of A, A[i] refers to
the ith character of A, and A[i, j] is the substring of A that starts with the ith
character and ends with the jth. A substring of length q > 0 of A is a q-gram of A.
Let ε denote the empty string. An alignment L of strings A and B is a sequence
(α1 → β1, . . . , α` → β`) of edit operations (i.e., insertions ε → β, deletions α → ε,
and substitutions α → β of single character substrings) such that A = α1 . . . α`

and B = β1 . . . β`. We denote the number of edit operations α → β, α 6= β in
an alignment L by δ(L). The (unit cost) edit distance between A and B is then
defined as distδ(A, B) := min{δ(L) |L is an alignment of A and B}. It is well
known that the edit distance can be calculated in quadratic time using dynamic
programming. An (|A| + 1) × (|B| + 1) edit matrix Eδ is tabulated such that
Eδ(i, j) := distδ(A[1, i], B[1, j]). Then, Eδ(|A|, |B|) = distδ(A, B).

The problem we consider is that of finding ε-matches. The normalized relative
distance, or error rate, is defined as the edit distance divided by the length
of the query substring involved in the local alignment. An ε-match is then a
local alignment with an error rate of at most ε. More precisely, our problem is
defined as follows. Given a target string A and a query string B, a minimum
match length n0 and a maximum error rate ε > 0, find all ε-matches (α, β)
where α and β are substrings of A and B, respectively, such that |β| ≥ n0 and
distδ(α, β) ≤ bε|β|c.



2.2 Filters

Our goal is to devise an efficient filter for identifying the regions between A
and B that may contain an ε-match. We derive our idea for the filter from
the q-gram method, which is based on the observation that the substrings of
an approximate match must have a certain number of q-grams in common [9].
Define a q-hit as a pair (i, j) such that A[i, i+ q− 1] = B[j, j + q− 1]. The basic
q-gram method then works as follows. First, find all q-hits between the query and
target strings. Second, identify regions between the strings that have ‘enough’
hits. Such candidate regions are subsequently subject to a closer examination.

We now show that all q-hits in an ε-match occur in a well-defined region of
the edit matrix. We first consider ε-matches of length n0 and then extend to
ε-matches of length n0 or greater.

Finding ε-Matches of Length n0. Let an n × e parallelogram of the edit
matrix be a set of entries on n + 1 consecutive columns and e + 1 consecutive
diagonals. The A-projection pA of an n × e parallelogram is the substring of A
between the last row of the first column and the first row of the last column,
implying |pA| = n − e. Similarly, the B-projection pB of an n × e parallelogram
is the substring of B between the first and the last column of the parallelogram,
with |pB| = n. A q-hit (i, j) between A and B corresponds to a sequence of q +1
consecutive entries along the diagonal j − i of the edit matrix. We say that a
q-hit is contained in a given parallelogram if its entries are a subset of those of
the parallelogram. Figure 1 illustrates.

An ε-match (α, β) of length n between A and B with at most e = bεnc
differences relates to an n × e parallelogram by the following lemma.

Lemma 1. Let α and β be substrings of A and B, respectively, s.t. |β| = n
and distδ(α, β) ≤ e. Then, there exists an n × e parallelogram such that (a) it
contains at least T (n, q, e) := (n + 1)− q(e + 1) q-hits, (b) its B-projection is β,
and (c) its A-projection is contained in α.

Proof. The proof is straightforward, c.f. Fig. 1. ut

Hence, regions between A and B that can hold an ε-match of length n0 can
be found as follows. First, count the number of q-hits in each n0 × bεn0c par-
allelogram. Second, identify parallelograms that contain at least T (n0, q, bεn0c)
q-hits. Then, for each such parallelogram there can be an ε-match (α, β) where
α is intersected by pA and β = pB.

Finding ε-Matches of Length n0 or Greater. We now consider how to
find all ε-matches of length n0 or greater. To solve this problem our idea is to
look for the existence of a w×e parallelogram whose projections intersect α and
β, respectively, and which we can guarantee to contain at least τ q-hits. For a
given choice of the parameters q, ε and n0, the following lemma guarantees the
existence of such a parallelogram. Moreover, it provides its dimensions w and e,
and the q-hit threshold τ .
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Fig. 1. An 8 × 2-parallelogram in the edit graph between the sequences A =
TACATGTCAGTT and B = GACTGGCAGC. For q = 2, there are four q-hits within the paral-
lelogram and distδ(α, β) = 2.

Lemma 2. Let β denote a substring of B of length n0 or greater that has an
ε-match to a substring α of A. Let U(n, q, ε) := (n+1)− q(bεnc+1) and assume
that the q-gram size q and the threshold τ have been chosen such that

q < d1/εe and τ ≤ min{U(n0, q, ε), U(n1, q, ε)}, (1)

where n1 = d(bεn0c + 1)/εe. Then, there is guaranteed to exist a w × e parallel-
ogram containing at least τ q-hits whose projections intersect α and β, where

w = (τ − 1) + q(e + 1) and e =

⌊
2(τ − 1) + (q − 1)

1/ε − q

⌋

. (2)

Further, if |β| ≤ w then the B-projection of the w × e parallelogram contains β,
otherwise it is a substring of β.

Proof. The outline of the proof is as follows. First, we determine the lower bound
τ on the number of q-hits contained in the n×bεnc parallelogram of an ε-match
of length n ≥ n0. Then, we argue that there exists a w × e parallelogram that
contains at least τ q-hits. Finally, we determine the dimensions w and e of such
a parallelogram over all values n ≥ n0.

Consider n ≥ n0 and suppose a substring of B of this length has an ε-
match to a substring of A. Then, there are no more than bεnc differences in the



match and so by Lemma 1 there exists an n × bεnc parallelogram containing
at least T (n, q, bεnc) = U(n, q, ε) q-hits. For fixed values of q and ε, U(n, q, ε)
is a saw-toothed function of n for which each ‘tooth’ has slope 1, dropping
to a minimum at each point {di/εe}i. It is easy to confirm that as long as
q < d1/εe, then U(di/εe, q, ε) is a strictly increasing function of i, i.e., each
successive minimum of the saw-tooth is higher than the previous one. It thus
follows that the smallest value of U(n, q, ε) over all values n ≥ n0 is either
U(n0, q, ε) or the value U(n1, q, ε) at the next tooth value n1 = d(bεn0c+ 1)/εe,
c.f. Fig. 2. Therefore, if one chooses τ ≤ min{U(n0, q, ε), U(n1, q, ε)} there will
always be at least τ q-hits in an n × bεnc parallelogram for n ≥ n0.

n0 n0 n1

Fig. 2. U(n, q, ε) is a sawtoothed function of n. Its minimum over all values n ≥ n0 is
either U(n0, q, ε) or U(n1, q, ε), shown left and right respectively, where n1 is the next
tooth value.

The U(n, q, ε) ≥ τ hits within an n × bεnc parallelogram are interspersed
between up to bεnc differences. For any n, the question is what is the largest e
such that for every consecutive sequence of e differences there are less than τ
q-hits in the e spaces below them? Some thought reveals that a way to maximize
e is to cluster the q-hits into groups of τ − 1 and to then spread these as far

apart between the bεnc differences, and in this case e =
⌊

bεnc
dU(n,q,ε)/(τ−1)e−1

⌋

.

Furthermore, it follows that one will have at least τ hits in a w×e parallelogram
for w = (τ − 1) + q(e + 1).

It thus remains to find the largest value of e (and its associated w) over all
values of n ≥ n0. First observe that one need only consider the minimum points
{di/εe}i of the sawtooth as for any given tooth, U(n, q, ε) increases while bεnc
stays the same. Therefore we seek

e = max
i≥dεn0e

{⌊
i

dU(di/εe, q, ε)/(τ − 1)e − 1

⌋}

. (3)

By the definition of the ceiling function and the fact that di/εe is the only
fractional part of the denominator it follows that this equals

e = max
i≥dεn0e

{⌊
i

dU(i/ε, q, ε)/(τ − 1)e − 1

⌋}

. (4)



For all values of i for which dU(i/ε, q, ε)/(τ − 1)e is the same value, say m, the
largest value of i will give the largest value of e. But this value is

max {j : U(j/ε, q, ε) ≤ m(τ − 1)} =

⌊
m(τ − 1) + (q − 1)

1/ε − q

⌋

. (5)

Moreover, since U(n, q, ε) ≥ τ for all n ≥ n0 we are in effect considering all
m ≥ 2. Thus,

e = max
m≥2












⌊
m(τ−1)+(q−1)

1/ε−q

⌋

m − 1











=

⌊

max
m≥2

{
m(τ − 1) + (q − 1)

(m − 1)(1/ε − q)

}⌋

, (6)

which is clearly decreasing in m and therefore has its maximum at m = 2. ut

Feasible Values of n0 Given τ . For a given choice of the parameters ε and
q, there is a set of pairs (n0, τ) such that for any ε-match a w × e parallelogram
exists that contains this match. In Lemma 2, we give the set of feasible τ for a
given n0. We now compute the set of feasible n0 for a given choice of τ .

Corollary 1. If n0 ≥ q
⌈

τ+q−1
1/ε−q

⌉

+ τ − 1 then a w × e parallelogram, as defined

by Lemma 2, exists.

Proof. Consider a given choice of τ , q, and ε. We seek the value n0 for which
U(n, q, ε) ≥ τ for all n ≥ n0. First we find the smallest tooth point n1 =
dd1/εe whose value U(n1, q, ε) is not less than τ . That is we seek the minimum
d such that dd/εe + 1 − q(d + 1) ≥ τ . Performing a bit of algebra, we get

d1 = min
{

d : d ≥ τ+q−1
1/ε−q

}

=
⌈

τ+q−1
1/ε−q

⌉

. So, n0 occurs in the previous tooth and

satisfies n0 + 1 − q((d1 − 1) + 1) = τ . Solving for n0 gives the result. ut

Table 1 illustrates the complex relationships between the parameters of the
filter, as calculated by Lemma 2 and Corollary 1. Moreover, the values give an
indication of the very good selectivity of the filter.

Table 1. Filter parameters for ε = 0.05, by Lemma 2 and Corollary 1, respectively.

q = 7 q = 9 q = 11
n0 30 50 100 30 50 100 30 50 100

w 44 71 128 48 77 136 40 71 133
e 3 5 9 3 5 9 2 4 8
τ 17 30 59 13 24 47 8 17 35

q = 11
τ 7 8 9 10 11 12 13 14 15

n0 28 29 41 42 43 44 45 46 47
w 39 40 52 53 54 55 67 68 69
e 2 2 3 3 3 3 4 4 4

3 An Efficient Algorithm

We now describe an efficient algorithm for finding all w × e parallelograms for
ε-matches of length n0 or greater between the strings A and B.



3.1 Preprocessing

In the preprocessing step we construct a q-gram index for the target sequence
A. The index consists of two tables. The occurrence table is a concatenation of
the lists L(G) := {i | A[i, i + q − 1] = G} for all q-grams G ∈ Σq in A, and the
lookup table is an array indexed by the natural integer encoding of G to base
|Σ|, giving the start of each list in the occurrence table.

3.2 Finding w × e Parallelograms

The w × e parallelograms that contain at least τ q-hits can be found trivially
using a sliding window. The implied edit matrix is split into all overlapping bins
of e + 1 adjacent diagonals. At any time, each bin counts the number of q-hits
contained in the w× e parallelogram defined by the intersection of the diagonals
of the bin and the rows of the sliding window Wj = B[j, j+w−1]. As the sliding
window proceeds to Wj+1, the bin counters are updated to reflect the changes
caused by the q-grams leaving and entering the window. If a bin counter reaches
τ , the corresponding parallelogram is reported; overlapping parallelograms are
trivially merged on the fly.

Improving space requirements. The number of bin counters is reduced by
searching for w × (e + ∆) parallelograms, where ∆ > 0. We associate each bin
counter with e + ∆ + 1 adjacent diagonals and let successive bins overlap by e
diagonals. This is sufficient as the τ q-hits cannot be spread over more than e+1

diagonals. In total, only
⌈
|A|−e−∆

∆+1

⌉

bin counters are required. A good choice for

∆ is 2z, where z ∈ N and 2z > e. Bin indices are then calculated with fast
bit-operations.

Improving running time. We reduce the considering of each q-hit from twice
to once by use of two observations. First, two q-hits that are more than w − q
apart (counted as the difference between their starting positions in B) cannot
both be in the same w × e parallelogram. Secondly, the τ q-hits in an ε-match
cannot occur in a string shorter than q + τ − 1. Hence, we relax the search to
finding w′ × e parallelograms, where w′ ≥ q + τ − 1, and update the bins as
follows. For each bin we keep track of the minimum and maximum B-position
of the contained q-hits, min and max respectively. The number of q-hits in a
bin is counted until a q-hit (i, j) is found such that j − w + q > max. If the bin
counter has reached the threshold τ , we report the matching (max−min+q)×e
parallelogram. We then reset the bin counter and set min = max = j as the
current q-hit is counted. Algorithm 1 shows the bin updating step in pseudocode.

The improved approach for updating bins has a few subtle points worth men-
tioning. Unless care is taken, it may return too short parallelograms; in fact as
short as q. This can happen when a very dense cluster of q-hits falls into a bin.
In particular, single-character repeat runs are a source of such dense hit clus-
ters. To alleviate the problem, one possibility would be to extend the reporting



Algorithm 1: UpdateBin(r, j, d)

Input : Bin record r; q-hit position j in sequence B; and offset bin diagonal d.
Output: Empty or singleton parallelogram set P .
P ← ∅1

if j − w + q > r.max then2

if r.count ≥ τ then3

p.left← |A| − d4

p.top← r.max + q5

p.bottom← r.min6

P ← { p }7

r.count← 08

if r.count = 0 then9

r.min← j10

if r.max < j then11

r.max← j12

r.count← r.count + 113

return P14

criterion such that also the validity of the parallelogram length is checked. A
more elegant solution is, however, for each bin to count all q-hits with identical
B positions as one hit only. Another point is that parallelograms can be gener-
ated which are not in accordance with the filter criterion. That is, they do not
contain at least τ q-hits within every window of length w. In the worst case, this
happens when a bin receives one q-hit exactly every w − q + 1 positions in B.
Although this is very unlikely to occur in practice, other likewise unfortunate hit
distributions can cause the generation of similar strictly invalid filter parallelo-
grams. However, it should be remarked that when searching for local alignments
in biological sequences the regions triggering such parallelograms are often of
great interest anyway. Algorithm 2 shows the pseudo-code for the main loop of
our filtration algorithm.

Summing up, the specificity of our improved approach is slightly lower than
that of the simple sliding window approach. This is largely due to the use of
larger bins, but also because of the slight risk of producing parallelograms that
do not strictly adhere to the filter criterion. On the other hand, our approach
improves the time and space requirements considerably.

3.3 Complexity

The q-gram index is constructed in O(|A| + |Σ|q) time. Each occurrence list is
found in O(1) time, but the length can be linear in |A|. The worst case time
for the filter is therefore O(|A| · |B|). If we assume random strings of uniformly
i.i.d. characters, the expected length of each occurrence list is |A| · |Σ|−q. Hence,
under this assumption the filter requires O(|B|+ |A| · |B| · |Σ|−q ) expected time.



Algorithm 2: Filter for identifying parallelograms for ε-matches

Input : Query B; q-gram index I for target A; parameters w, e, τ ; and ∆ = 2z

Output: Set of parallelograms P

Allocate and initialize array of bin records Bins1

P ← ∅2

for j ← 0 to |B| − q do3

G←B[j, j + q − 1]4

L(G)← lookup occurrence list for G in I5

foreach i ∈ L(G) do6

d← |A|+ j − i7

b0 ← d�bit z8

bm ← b0 mod |Bins|9

P ← P ∪ UpdateBin(Bins[bm], j, b0 �bit z)10

if (d &bit (∆− 1)) < e then11

bm ← (bm + |Bins| − 1) mod |Bins|12

P ← P ∪ UpdateBin(Bins[bm], j, (b0 − 1)�bit z)13

if (j − e) mod (∆− 1) = 0 then14

b0 ← (j − e)�bit z15

bm ← b0 mod |Bins|16

/* CheckAndResetBin is similar to lines 3–8 of UpdateBin */17

P ← P ∪ CheckAndResetBin(Bins[bm], j, b0 �bit z)18

P ← P ∪ { remaining parallelograms in Bins }19

The space complexity is dominated by the q-gram index, which requires |A|+
|Σ|q integers. Bins and parallelograms are each represented using 3 integers, so
with a bin size of e + 2z we need 3 · 2−z|A| integers for all bins, and 3p integers
to return p parallelograms. In total, the filter requires (3 ·2−z +1)|A|+ |Σ|q +3p
integers. Thus, for 32-bit integers and parameters |A| = 3 ·109, q = 11 and z = 3,
the filter requires only 5.5 bytes per input character and 12p bytes for the result.

4 Applications

This section covers two applications of the basic q-gram filter. We first consider
its use in an overlapper for sequence assembly and then for general purpose
blast-like alignment searching.

4.1 Sequence Assembly

When building a typical DNA assembler, one faces the problem of comparing a
collection of 600 − 1000bp fragments against each other in search of overlaps,
typically say over 50bp long at 95% or greater identity. The filter is ideal for this
application in that the error rate is low and the requirement is to find all matches
under a given percent difference and over a lower length limit. Typically there



are thousands or millions of reads f1, f2, . . . , fn, in total
∑n

i=1 |fi| bases. The
reads are concatenated together to make a single large string A that our filter
is run over, with an auxiliary table map[k] =

∑k
i=1 |fi| giving the start of each

read in A. Note that we are comparing A against itself so we carefully modify
the filter to ignore hits on or below the diagonal of the implied edit matrix.

In essence after running the filter, all we need to do is identify the pairs
of reads that intersect parallelograms and then check each pair for a proper
overlap. This is simply a matter of mapping base positions in A to read positions
through the inverse of map. We used a quick sort of all parallelograms in one
dimension and then an insertion sort in the second dimension as the sort buckets
are expected to be small. Multiple hits to a given read pair are merged during
the insertion sort of a bucket and a parallelogram is required to have more than
5 base pairs in a sequence as often a legitimate parallelogram in one read pair
will extend slightly into the next read due to the concatenation. For each read
pair, we keep track of the maximum and minimum diagonal of the edit matrix
between their sequences that is covered by a parallelogram so that the check for
an overlap need only perform dynamic programming within a band consistent
with these diagonals and the maximum error rate. The dynamic programming
itself is done with a bit-vector acceleration method by Myers [14].

4.2 BLAST-like Searching

Another application of the filter is blast-like alignment searching. In this set-
ting, we use ε-matches as seeds and extend these into longer alignments by dy-
namic programming. After running the filter, we identify the possible ε-matches
in each parallelogram by chaining of the contained q-hits. Our approach uses a
simple variation of sparse dynamic programming [7] and the fact that an ε-match
must contain at least τ q-hits, which are separated by no more than e differences.

We define the partial ordering relation � on a set of q-hits as follows. Let h =
(i, j) and h′ = (i′, j′) denote q-hits and define diag(h) := j − i. Let dist∞(h, h′)
refer to the Chebychev distance max{|i′− i− q|, |j′− j − q|} between the ending
and starting points of h and h′, respectively. Then, h � h′ if and only if (1)
dist∞(h, h′) ≤ e, and (2a) diag(h) 6= diag(h′) and i + q ≤ i′ and j + q ≤ j′,
or (2b) diag(h) = diag(h′) and i < i′. A chain is then a sequence of q-hits
〈h1, h2, . . . , hl〉 where hi � hi+1 for all 1 ≤ i < l. If we assign the score q to each
q-hit and use dist∞ for the penalty of connecting successive q-hits, the score of
a chain C is thus given as chain(C) := q · l−

∑l−1
i=1 dist∞(hi, hi+1). Denoting the

maximum score over all chains ending in q-hit h′ by chain(h′), the recurrence
relation chain(h′) := max{0, maxh�h′{chain(h)−dist∞(h, h′)}+q immediately
gives the basis for the algorithm.

The chaining requires one sweep over each parallelogram. The q-hits are found
column-wise by lookup in a hash table over the q-grams in the sliding window
that is defined on A by the first and the last rows of the current column. A
balanced search structure D maintains the q-hits found on the previous q +e+1
columns, ordered by diagonal number and starting position in B. For each q-
hit h′ in the current column, D is searched for q-hits in the diagonal range



[i−j−e, i−j+e]. In every diagonal in this range, the nearest chain (w.r.t. position
in B) ending in q-hit h, such that h � h′, is candidate for chaining with h′. Of
all such candidate chains, the maximum scoring is chosen. If multiple candidate
chains reach the maximum score, we choose the closest (w.r.t. diagonal). Then,
the new chain ending in h′ is inserted in D.

Chains shorter than τ cannot be part of an ε-match and they are therefore
immediately disposed. Otherwise, the chain is rescored by finding the optimal
gap position between successive q-hits. To avoid reporting multiple only slightly
differing chains, we partition the rescored chains into equivalence classes by their
first q-hit. That is, two chains belong to the same equivalence class if and only
if they begin with the same q-hit. Only the maximum scoring chain for each
equivalence class is extended by gapped X-drop extension [21]. We initiate the
extension procedure at the end and beginning of the first and last q-hits of the
chain, respectively.

5 Experimental Results

In this section we describe some experimental results for the two applications.

5.1 Sequence Assembly

With a gigabyte of memory we can reasonably solve 60Mbp by 60Mbp com-
parisons for 50bp overlaps at less than 5% difference in roughly 90 seconds on
an Apple PowerBook G4 laptop. Larger problems are solved by partitioning the
data set into 60Mbp segments and solving either serially or in parallel all the
necessary pairwise comparisons of segments. On the same laptop, the 1.8Gbp
data set for D. melanogaster can be compared in a total of 18 CPU hours. With
more memory, larger q-grams can be used and larger segments can be accomo-
dated in a single run. For example, on an Intel Itanium II with 16Gb memory
we can compute the same overlaps for D. melanogaster in under two hours.

5.2 EST Clustering

We compare the performance of our blast-like alignment searching application
with that of blast and the Smith-Waterman algorithm. The Smith-Waterman
implementation that we use is ssearch [18], which is part of the fasta package
[24]. The blastn version is 2.2.9 from NCBI [22]. Our blast-like alignment
searching application is implemented in swift, available at [25].

The setup resembles that of [11]. Briefly, we select EST sequences from two
species and perform a full-sensitivity, all-against-all comparison. All sequence
pairs where the best Smith-Waterman local alignment scores above a given
threshold are recorded. The all-against-all comparison is then repeated using
blast and swift. For each, the sensitivity, or recall ratio, is determined as fol-
lows. Suppose the full-sensitivity search finds p pairs with a best local alignment
score of s. If p′ of the p pairs are found with score at least s

2 by blast or swift,



the ratio p′

p is the sensitivity for alignment score s. Neither blast or swift at-
tempt to compute the optimal alignment for found homologies and we therefore
consider a sequence pair recalled if its local alignment score is not lower than s

2 .
We note that any other threshold ratio of s can equally well be used.

The EST sequences are obtained from NCBI [23]. We randomly select 40.000
sequences from H. sapiens (25Mbp) and 5.600 sequences from M. musculus
(2 Mbp). The poly-X tails (X = {A, C, G, T}) typically found in EST sequences
due to sequencing errors are trivially masked to Ns. The q-gram length is set to 11
in both blast and swift. All programs use match/mismatch scores ±1, and gap
open and extension penalties are set to 5 and 1, respectively. The local alignment
score threshold is 16. Searches with ssearch are conducted on a cluster with 50
UltraSparcIIe/500MHz nodes, whereas the searches with blast and swift run
on a 2GHz AMD Athlon-XP Linux PC. Table 2 lists the running times for the
different programs and Fig. 3 compares the sensitivity of blast and swift.

Using parameters for typical EST clustering criteria, ε = 0.05 and n0 = 50,
the sensitivity is a bit lower for swift than for blast. However, this is expected
as swift requires and guarantees the presence of an ε-match before an alignment
is recorded. In other words, the extra alignments found by blast do not conform
to the query criteria. Additionally, note that by using more agressive (ε, n0)
parameters, swift can in general attain sensitivity levels comparable to or better
than blast, while still being more than 25 times faster.
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Fig. 3. Sensitivity of blast and swift. The horizontal line in 1.0 corresponds to the
sensitivity of ssearch. For swift, the (ε, n0) parameters are shown in parentheses.
The inset shows the complete sensitivity range.



Table 2. Running times for EST all-against-all comparison. The time for the database
formatting and preprocessing in blast (3 s) and swift (12 s) is not included.

swift blast ssearch

(ε, n0) (0.05, 50) (0.04, 30) (0.05, 30) — —
Running time 18 s 29 s 35 s 773 s 8 h

The filtration efficiency is the primary gauge of the expected running time
for the application-specific post-processing of the filter output. We therefore also
measure the filtration ratio, which we define as the total area of the unfiltered
regions, i.e. the reported parallelograms, divided by the total size of the implied
edit matrix. Table 3 shows the resulting filtration ratios and times for swift.
For comparison, we include the times and ratios for the closest precursor to our
filter, quasar. We repeated each run with the quasar block size giving the best
possible filtration ratio (128 in first; all others 64) and with the smallest block
size giving filtration time equal or superior to that of swift (1024 for all runs).

Table 3. Filtration ratios and times for EST all-against-all comparison.

swift quasar

(ε, n0) Filtration Filtration, best ratio Filtration, best time

Ratio Time (s) Ratio Time (s) Ratio Time (s)

(0.05, 50) 6.5 · 10−6 6.0 4.5 · 10−4 36.1 2.1 · 10−3 4.2
(0.04, 30) 4.5 · 10−6 5.0 4.0 · 10−4 69.0 3.1 · 10−3 4.4
(0.05, 30) 5.4 · 10−6 6.1 4.3 · 10−4 68.5 3.5 · 10−3 4.4

As stressed by Table 3, our filter is very efficient. Compared to quasar, our
filter is almost two orders of magnitude more specific while being approximately
one order of magnitude faster.

6 Conclusion

The problem of finding ε-matches is a recurring theme in many DNA searches.
We described the theoretical framework and a workable solution for an efficient
filter, that identifies regions of the implied edit matrix guaranteed to overlap
with possible ε-matches. This result is of great practical importance to numerous
applications, including e.g. whole-genome alignment.

An interesting direction for further developments is to increase the interval
of practically usable values of ε by allowing mismatches in the q-grams.
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