
CSC 2427 Algorithms in Molecular Biology
PS2: Due March 25 in Class

Don’t Panic

You may work with others on this homework assignment, but please submit your own
writeup. You must acknowledge the contributions that other students make to your
answers. Note: this homework may have bugs. If you spot something that looks wrong or
is not clear please contact me, or post to the newsgroup: ut.cdf.csc2427h. Note that
questions on the newsgroup will be answered before those sent by e-mail.

1. More Alignment [25 pts]

Recall the LCS to LIS reduction discussed in class. Here we will modify it in order to
build the local alignment chaining algorithm used in LAGAN and similar tools. A local
alignment can be thought of as a rectangle defined by its start and end points. It also has a
score which show how well it is conserved. The requirement that we need to enforce is
that the starting (top right) point of the next rectangle always has to be be below and to
the right of the end point of the previous one.

(a) Given two sequences, A, B with n matches between them as well as a score for every
match show how to use a variation on the Longest Increasing Subsequence (LIS)
algorithm to find the highest scoring common subsequence in time O(n log n). Assume
the LIS algorithm is know to the reader.

(b) Now modify the algorithm developed in part (a) to allow for chains of local
alignments. [Hint: you will need to do some processing for every local alignment twice]

Now let X be a sequence of length L1 and Y be a sequence of length L2. Let AX and AY be two
sequences of (n − 1) anchors that will be used to align X and Y. Anchors in AX and AY are
ordered from left to right (anchor i of AX will match anchor i of AY , and is located to the left of
anchor j of AX if and only if i < j).

Throughout this problem, assume the lengths of the anchors themselves are negligible. Let xi be
the distance between anchors i−1 and i in AX, and similarly for yi. We also include the distances
between the beginning of the sequence and the first anchor, and between the last anchor and the
end; therefore, the sets Xd = x1, . . . , xn and Yd both have cardinality n, 1 greater than the number
of anchors.

We will globally align X and Y by fixing the alignments of corresponding anchors to each other,
and using NW to align the portions of X and Y between neighboring anchors.

(c) Describe the locations of the n points on the alignment matrix that give the worst case
running time, and how many cells in the Needleman-Wunsch algorithm will examine.
locations of the n points on the alignment matrix that give the best case running time, and
how many cells in the Needleman-Wunsch algorithm will examine.

(d) Derive the general formula for the running time in terms of the lengths of the
sequences, the number of anchor points and the covariance of the occurrences of the
anchor points:

Definition. Given sequences of numbers Xd = x1,…, xn, Yd = y1,…, yn, the covariance of Xd,
Yd is:

cov(Xd, Yd) = 1/n Σ{i=1,…,n}(xi – xmean)(yi – ymean)

2. Motifs & Rearrangements [25 pts]

(a) The sequence below is the RNA of a fake gene with exactly one intron. Where is the
intron and what is the coding sequence?

 ATGCAGTCTAGGTAA

(b) In the Gibbs Sampling examples discussed in class we were searching for ungapped
motifs. It is actually not very well known how many – if any gaps transcription binding
sites can tolerate. You are asked to come up with a Gibbs Sampling algorithm that will
search for gapped motifs. Instead of returning a position weight matrix (PWM) of length
K, your algorithm should return an alignment of length K. For simplicity we will treat the
gap as a 5th DNA character.

Describe how one may search for these gapped motifs in the one sequence we are
currently leaving out. Also suggest a method to calculate the background probability of
finding a certain alignment – this is not trivial as very little is know about the statistics of
alignments with gaps

(c) The Gibbs Sampling algorithm we described in class (and many other related
approaches) assume independence between adjacent positions. This is not always a valid
assumption. How would you have to change the PWM in order to incorporate
dependence between positions? What is the related complexity for a full model and a
motif of length k?

 (d) One way to measure rearrangement distances between genomes that we mentioned in
class is by counting breakpoints. In the breakpoint median problem, given a set of 3
signed permutations we want to design a 4th signed permutation such that the total
number of breakpoints between it and the other three is minimal. Show how to reduce
this problem to the Traveling Salesman Problem. (Although TSP is NP-hard, it is very
widely studied and there are many effective heuristics for it).

3. Gene finding [50 pts]

In this problem you will develop and implement a simple Hidden Markov Model to
search for bacterial genes. Bacterial genes do not have introns, and can usually be found
by searching for Open Reading Frames (ORFs), sequences of amino acids that start with
an ATG and go till a stop codon. For the coding sections you can use any language you
wish, you should submit a printout of your code with your solution or by e-mail to the
instructor.

(a) Write a program that given a genomic sequence searches for ORFs of length > K
amino acids, where K is a parameter. Your program should take a genome in FASTA
format (an example will be posted on the website) and find all these ORFs in all 6 frames.
Report the length of the longest ORF, as well as the mean size of all ORFs ≥ 600
nucleotides.

(b) Using the ORFS ≥ 600 bp long, determine the frequency of the various codons (DNA
triplets) in ORFs. Map the codons to the amino acids (so it is a 21 element frequency
table) and include with your writeup. Likewise determine and submit the same emission
table for the four residues {A,C,T,G} in the DNA outside of these ORFs (putatively non-
coding DNA).

(c) Design a Hidden Markov Model that will search for genes in bacterial genomes. Your
HMM should search for genes in 3 frames (it can be run separately on the forward and
reverse strands). Your HMM should have a begin and an end state. It should model start
& stop codons, and also take into account the emission probabilities you computed in
section b. Explain how you computed the remaining parameters (there is more than one
correct way to do this). Hand in the state diagram of your HMM with all transition edges
labeled with your parameters.

(d) Implement the HMM you designed in section (c). Run it on the genome and use the
Vitterbi algorithm to predict the genes in the sequence. Draw a histogram of ORF sizes
that you find. What is the mean ORF size? What is the shortest ORF that you predict? For
the shortest ORF you find use the NCBI BLAST program to find out if it is a real gene or
a false positive: you should translate the ORF into a protein and use the blastp program
available at http://www.ncbi.nlm.nih.gov/blast/ to search against the NR database of all
known proteins. Hand in your ORF and your synopsis of results.

