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Topics: 

1. Needleman-Wunsch (Global Alignment) 
2. Hirschberg’s Algorithm 
3. Smith-Waterman (Local Alignment) 

 
 
Background: Importance of Sequence Alignment 
Comparative analysis is the backbone of evolutionary biology.  It was phenotypic 
variation which allowed Darwin to compose his theory of natural selection.  That theory 
rests on the fact that transfer of the genetic code from parent to progeny does not exist 
without change.  It is these changes in genetic sequence which allow for divergence of 
species, and thus provide a backdrop for natural selection.  Just as comparative analysis 
was key for evolutionary biology, sequence alignment is the cornerstone of modern 
bioinformatics.  Rapid and automated sequence analysis facilitates everything from 
functional classification & structural determination of proteins, to studies of genetic 
expression and evolution.     
 
 
1.  Needleman-Wunsch (Global Alignment) 
In the last class we discussed how dynamic programming can be used to solve alignment 
problems (recall that dynamic programming algorithms finds the best solution by 
breaking the original problem into smaller sub-problems and then solving).  The 
Needleman-Wunsch algorithm is an application of a best-path strategy (dynamic 
programming) used to find optimal sequence alignment (Needleman and Wunsch, 1970).  
Basically, the concept behind the Needleman-Wunsch algorithm stems from the 
observation that any partial sub-path that tends at a point along the true optimal path must 
itself be the optimal path leading up to that point.  Therefore the optimal path can be 
determined by incremental extension of the optimal sub-paths.  In a Needleman-Wunsch 
alignment, the optimal path must stretch from beginning to end in both sequences (hence 
the term ‘global alignment’).  Recall that the score at any position in a global alignment 
matrix is:  
 
 

M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj) 
Mi-1, j + gap 
Mi,j-1 + gap) 

  
 

**when tracing back the alignment path, horizontal and vertical movement is a 
gap, and diagonal movement is a match 

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://www.csse.monash.edu.au/%7Elloyd/tildeAlgDS/Dynamic/Hirsch/
http://en.wikipedia.org/wiki/Smith_Waterman_algorithm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=5420325&query_hl=4&itool=pubmed_docsum


In order to perform a Needleman-Wunsch alignment, a matrix is created which allows us 
to compare the two sequences.  The score as determined through use of the above 
calculation is placed in the corresponding cell.  This algorithm performs alignments with 
a time complexity of O(mn) and a space complexity of O(mn). 
 
 
Example: 

Find the best alignment of these two sequences: 
  

ACTGATTCA 
ACGCATCA 

 
Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a 
match. 

 
 
Solution: 

Step 1: Draw the matrix 
For 2 sequences (length m and length n) what size scoring matrix is 
needed for their alignment?  Grid dimensions must be (m+1) × (n+1).  
Think of each increment as a division of the sequence members: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Step 2: Assign scores 
 

 
 
 
 
 
 Step 3: Trace back  

The optimal path is traced beginning from the lower right-hand corner 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Result: 
This analysis yielded the following alignment: 

 
ACTG-ATTCA 
|| | || || 
AC-GCAT-CA 

 
The alignment score is equal to the value in the lower right-hand corner of 
the matrix (8). 
 

Score = (AA) + (CC) + (T-) + (GG) + (-C) +  
   (AA) + (TT) + (T-) + (CC) + (AA) 

           = 2+2–2+2–2+2+2-2+2+2 
 = 8 

 
 
2. Hirschberg’s Algorithm 
While the Needleman-Wunsch algorithm works well for sequence alignment, its space 
complexity (O(mn)) limits the size of sequences it can align.  Hirschberg’s algorithm uses 
a divide and conquer strategy to decrease the space requirement.  Specifically, for two 
sequences (m and n) the first string is cut (m1 and m2) and the second string is cut in a 
corresponding place (into n1 and n2).  The alignment is then solved recursively on m1 
and n1, and m2 and n2.  It is important to note that the two sub-strings (i.e. n1 and n2) 
need not have the same length.   
 
Example 1:  

With respect to sequence alignment, the objective is to take the sum at given 
intervals and use the value corresponding to the alignment score as the dividing 
point.  

 
 
 
 
 
 
 
In this figure 
the sum up to 
the dividing 
line (37 + 5) adds 
up to the alignment 
score. 
 
 
 
 
 

http://www.nist.gov/dads/HTML/divideAndConquer.html


Example 2: 
What is the sequence of recursive calls on the following sequence 
alignment when using Hirschberg’s algorithm: 
 
 ACTG 
 ACTT 
 
The alignment is: 
  
 s1: ACTG 
     ||| 
 s2: ACTT 
 
 

 Solution: 
 
s1[0..3] : s2[0..3] 
   s1[0..1] : s2[0..1] 
      s1[0..0] : s2[0..0] 
      s1[1..1] : s2[1..1] 
   s1[2..3] : s2[2..3] 
      s1[2..2] : s2[2..2] 
      s1[3..3] : s2[3..3] 

  
 
 
 
3. Relating Local Alignments to Global Alignments 
When aligning two very large sequences, it is often useful to determine the locations of 
high similarity regions.  Now that we know how to calculate the global alignments, how 
can we find all local high-scoring hits, or local alignments above a given threshold for 
two large sequences?  The answer is related to a programming “pearl”, the ‘Maximum 
Contiguous Subsequence Sum’ (MSS). 
 
 
Problem:  

Given integers A1, A2, ..., AN find (and identify the sequence corresponding to) 
the maximum value of: 

 
  
 

∑ 
k=1 

j 

Ak

 
 
 
 
 
 



Solution:  
Can be solved in time complexity of ‘n’. 

 
mss(A) { 
 max = 0; 
 sum = 0; 
 for (i=1; i ≤ n; i+1) { 
  sum = sum + A[i]; 
  if (sum > max)  
   max = sum; 
  if (sum < 0) 
   sum = 0; 
 } 
 return max; 
} 

 
 
Analysis: 

When a subsequence occurs which has a negative sum, the subsequence which 
will be examined next can begin after the first subsequence (the one that produced 
the negative sum).  Basically, the entire first subsequence is regarded as not 
having a starting point which will generate a positive sum.  For example, consider 
this set of numbers: 
  
4, 6, -2, 2, -14, 9 
 
Some sums are positive (4, 4+6, 4+6+(-2), 4+6+(-2)+2) but the sum of the first 5 
terms (4+6+(-2)+2-14) is negative.  Therefore it follows logically that any 
sequence starting between the 4 and -14 and ending with the -14 will have a 
negative sum.    

 
The maximum contiguous subsequence sum searches exactly for the highest scoring local 
area. We now generalize this approach for sequence alignment. 
 
 
 
4. Smith-Waterman (Local Alignment) 
Over a decade after the initial publication of the Needleman-Wunsch algorithm, a 
modification was made to allow for local alignments (Smith and Waterman, 1981).  
Today, the Smith-Waterman alignment algorithm is the one used by the Basic Local 
Alignment Search Tool (BLAST) which is the most cited resource in biomedical 
literature.  In this adaptation, the alignment path does not need to reach the edges of the 
search graph, but may begin and end internally.  In order to accomplish this, 0 was added 
as a term in the score calculation described by Needleman and Wunsch.   
 
 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7265238&query_hl=2&itool=pubmed_docsum


Recall that for global alignments the value at any point is:  
M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj) 

Mi-1,j + gap 
Mi,j-1 + gap) 

 
However for local alignments the score calculation becomes: 

M(I,j) = MAX(Mi-1,j-1 + S(Ai, Bj) 
Mi-1,j + gap 
Mi,j-1 + gap 

0) 
The implication of this is that there are no values below zero in a local alignment scoring 
matrix, and the reason for the zero is exactly the same as in the MSS problem above.   
 
 
Example:  
 Find the best local alignment between these two sequences: 
 

ATGCATCCCATGAC 
TCTATATCCGT 

 
Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a 
match. 

 
 
Solution: 
 Traceback begins at the highest value (which is also the alignment score). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Which yields the alignment: 
 

ATCC 
|||| 
ATCC 

 
 With an alignment score of 8. 
 
  Score = (AA) + (TT) + (CC) + (CC) 
    = 2 + 2 + 2 + 2 
    = 8 
 
 
Local alignments are performed everywhere possible along two sequences.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When trying to find the best local alignments corresponding to a global alignment, a sub-
matrix is created with the highest positive score for all alignments above a given 
threshold.  Therefore, the same thing that the MSS was doing on a linear matrix, the 
Smith-Waterman alignment does on a rectangular matrix.   
 
 


