
CSC2427 – Course Notes
Title: Alignment (Needleman-Wunsch, Smith-Waterman)
Date: Feb 1, 2006
Scribe: Gabe Musso

Topics:

1. Needleman-Wunsch (Global Alignment)
2. Hirschberg’s Algorithm
3. Smith-Waterman (Local Alignment)

Background: Importance of Sequence Alignment
Comparative analysis is the backbone of evolutionary biology. It was phenotypic
variation which allowed Darwin to compose his theory of natural selection. That theory
rests on the fact that transfer of the genetic code from parent to progeny does not exist
without change. It is these changes in genetic sequence which allow for divergence of
species, and thus provide a backdrop for natural selection. Just as comparative analysis
was key for evolutionary biology, sequence alignment is the cornerstone of modern
bioinformatics. Rapid and automated sequence analysis facilitates everything from
functional classification & structural determination of proteins, to studies of genetic
expression and evolution.

1. Needleman-Wunsch (Global Alignment)
In the last class we discussed how dynamic programming can be used to solve alignment
problems (recall that dynamic programming algorithms finds the best solution by
breaking the original problem into smaller sub-problems and then solving). The
Needleman-Wunsch algorithm is an application of a best-path strategy (dynamic
programming) used to find optimal sequence alignment (Needleman and Wunsch, 1970).
Basically, the concept behind the Needleman-Wunsch algorithm stems from the
observation that any partial sub-path that tends at a point along the true optimal path must
itself be the optimal path leading up to that point. Therefore the optimal path can be
determined by incremental extension of the optimal sub-paths. In a Needleman-Wunsch
alignment, the optimal path must stretch from beginning to end in both sequences (hence
the term ‘global alignment’). Recall that the score at any position in a global alignment
matrix is:

M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj)
Mi-1, j + gap
Mi,j-1 + gap)

**when tracing back the alignment path, horizontal and vertical movement is a
gap, and diagonal movement is a match

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://www.csse.monash.edu.au/%7Elloyd/tildeAlgDS/Dynamic/Hirsch/
http://en.wikipedia.org/wiki/Smith_Waterman_algorithm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=5420325&query_hl=4&itool=pubmed_docsum

In order to perform a Needleman-Wunsch alignment, a matrix is created which allows us
to compare the two sequences. The score as determined through use of the above
calculation is placed in the corresponding cell. This algorithm performs alignments with
a time complexity of O(mn) and a space complexity of O(mn).

Example:

Find the best alignment of these two sequences:

ACTGATTCA
ACGCATCA

Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a
match.

Solution:

Step 1: Draw the matrix
For 2 sequences (length m and length n) what size scoring matrix is
needed for their alignment? Grid dimensions must be (m+1) × (n+1).
Think of each increment as a division of the sequence members:

 Step 2: Assign scores

 Step 3: Trace back

The optimal path is traced beginning from the lower right-hand corner

Result:
This analysis yielded the following alignment:

ACTG-ATTCA
|| | || ||
AC-GCAT-CA

The alignment score is equal to the value in the lower right-hand corner of
the matrix (8).

Score = (AA) + (CC) + (T-) + (GG) + (-C) +
 (AA) + (TT) + (T-) + (CC) + (AA)

 = 2+2–2+2–2+2+2-2+2+2
 = 8

2. Hirschberg’s Algorithm
While the Needleman-Wunsch algorithm works well for sequence alignment, its space
complexity (O(mn)) limits the size of sequences it can align. Hirschberg’s algorithm uses
a divide and conquer strategy to decrease the space requirement. Specifically, for two
sequences (m and n) the first string is cut (m1 and m2) and the second string is cut in a
corresponding place (into n1 and n2). The alignment is then solved recursively on m1
and n1, and m2 and n2. It is important to note that the two sub-strings (i.e. n1 and n2)
need not have the same length.

Example 1:

With respect to sequence alignment, the objective is to take the sum at given
intervals and use the value corresponding to the alignment score as the dividing
point.

In this figure
the sum up to
the dividing
line (37 + 5) adds
up to the alignment
score.

http://www.nist.gov/dads/HTML/divideAndConquer.html

Example 2:
What is the sequence of recursive calls on the following sequence
alignment when using Hirschberg’s algorithm:

 ACTG
 ACTT

The alignment is:

 s1: ACTG
 |||
 s2: ACTT

 Solution:

s1[0..3] : s2[0..3]
 s1[0..1] : s2[0..1]
 s1[0..0] : s2[0..0]
 s1[1..1] : s2[1..1]
 s1[2..3] : s2[2..3]
 s1[2..2] : s2[2..2]
 s1[3..3] : s2[3..3]

3. Relating Local Alignments to Global Alignments
When aligning two very large sequences, it is often useful to determine the locations of
high similarity regions. Now that we know how to calculate the global alignments, how
can we find all local high-scoring hits, or local alignments above a given threshold for
two large sequences? The answer is related to a programming “pearl”, the ‘Maximum
Contiguous Subsequence Sum’ (MSS).

Problem:

Given integers A1, A2, ..., AN find (and identify the sequence corresponding to)
the maximum value of:

∑
k=1

j

Ak

Solution:
Can be solved in time complexity of ‘n’.

mss(A) {
 max = 0;
 sum = 0;
 for (i=1; i ≤ n; i+1) {
 sum = sum + A[i];
 if (sum > max)
 max = sum;
 if (sum < 0)
 sum = 0;
 }
 return max;
}

Analysis:

When a subsequence occurs which has a negative sum, the subsequence which
will be examined next can begin after the first subsequence (the one that produced
the negative sum). Basically, the entire first subsequence is regarded as not
having a starting point which will generate a positive sum. For example, consider
this set of numbers:

4, 6, -2, 2, -14, 9

Some sums are positive (4, 4+6, 4+6+(-2), 4+6+(-2)+2) but the sum of the first 5
terms (4+6+(-2)+2-14) is negative. Therefore it follows logically that any
sequence starting between the 4 and -14 and ending with the -14 will have a
negative sum.

The maximum contiguous subsequence sum searches exactly for the highest scoring local
area. We now generalize this approach for sequence alignment.

4. Smith-Waterman (Local Alignment)
Over a decade after the initial publication of the Needleman-Wunsch algorithm, a
modification was made to allow for local alignments (Smith and Waterman, 1981).
Today, the Smith-Waterman alignment algorithm is the one used by the Basic Local
Alignment Search Tool (BLAST) which is the most cited resource in biomedical
literature. In this adaptation, the alignment path does not need to reach the edges of the
search graph, but may begin and end internally. In order to accomplish this, 0 was added
as a term in the score calculation described by Needleman and Wunsch.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7265238&query_hl=2&itool=pubmed_docsum

Recall that for global alignments the value at any point is:
M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj)

Mi-1,j + gap
Mi,j-1 + gap)

However for local alignments the score calculation becomes:

M(I,j) = MAX(Mi-1,j-1 + S(Ai, Bj)
Mi-1,j + gap
Mi,j-1 + gap

0)
The implication of this is that there are no values below zero in a local alignment scoring
matrix, and the reason for the zero is exactly the same as in the MSS problem above.

Example:
 Find the best local alignment between these two sequences:

ATGCATCCCATGAC
TCTATATCCGT

Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a
match.

Solution:
 Traceback begins at the highest value (which is also the alignment score).

 Which yields the alignment:

ATCC
||||
ATCC

 With an alignment score of 8.

 Score = (AA) + (TT) + (CC) + (CC)
 = 2 + 2 + 2 + 2
 = 8

Local alignments are performed everywhere possible along two sequences.

When trying to find the best local alignments corresponding to a global alignment, a sub-
matrix is created with the highest positive score for all alignments above a given
threshold. Therefore, the same thing that the MSS was doing on a linear matrix, the
Smith-Waterman alignment does on a rectangular matrix.

