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Abstract. In this paper we propose a chaining method that can align a draft ge-
nomic sequence against a finished genome.  We introduce the use of an overlap 
tree to enhance the state information available to the chaining procedure in the 
context of sparse dynamic programming, and demonstrate that the resulting 
procedure more accurately penalizes the various biological rearrangements.  
The algorithm is tested on a whole genome alignment of seven yeast species.  
We also demonstrate a variation on the algorithm that can be used for co-
assembly of two genomes and show how it can improve the current assembly of 
the Ciona savignyi (sea squirt) genome.  

1   Introduction 

In bioinformatics, the development of novel biological techniques has created new 
computational challenges. This is perhaps best epitomized in the problem of sequence 
alignment, where the development of new sequencing techniques has led to the de-
mand for alignment algorithms capable of dealing with mega-base long regions while 
maintaining high sensitivity. While in the past it has been sufficient to use two general 
types of alignment methods, global (Needleman and Wunsch, 1970) and local (Smith 
and Waterman, 1982), both approaches have been shown recently to be insufficient 
for alignment of long genomic sequences that have undergone rearrangements 
(Brudno et al, 2003c).  Alignment of draft sequence, where one or both of the se-
quences being aligned is split into a set of unordered contigs creates similar problems. 
Global algorithms cannot handle draft sequence at all, while local algorithms just 
report all the similarity that they find and do not reproduce the syntenic regions that 
exist between genomes. For many of the genomes currently being sequenced, there 
are no plans to finish the sequence, and as the number of draft genomes grows, there 
will be an increasing need for algorithms that can effectively align such sequences. 

Unfortunately, the problem of ordering a set of DNA sequences based on another 
set of (possibly unordered) DNA sequences has been shown to be MAX-SNP hard 
(Veeramachaneni et al 2002), even in the simpler case of ordering a set of contigs 
against a finished chromosome. To our knowledge Avid (Bray et al. 2003) and 
MUMmer 2.0 (Delcher et al. 2002) were the first programs to order a draft sequence 
based on a second, “finished” sequence based on effective heuristics.  
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Recently, sparse dynamic programming based chaining techniques have come to 
the forefront as a successful approach for fast sequence alignment. Typically, a local 
aligner produces sections of homology, called fragments. Chaining involves selecting 
a high scoring subset of these based on some objective criteria. Since the original 
demonstration that fragment chaining could be achieved in O(nlgn) time by Epp-
stein and colleagues (Eppstein et al. 1992) the method has been used to speed up 
global alignment (Delcher et al 1999). Recently Abouelhoda and Ohlebusch (2003) 
and Brudno et al. (2003c), have used different variations of the sparse dynamic pro-
gramming algorithm to find rearrangements between genomes. Lippert and colleagues 
have used a variation on the Brudno et al. (2003c) algorithm to find the differences 
between two assemblies of a genome (Lippert et al. 2004).  

In this work we use a sparse dynamic programming chaining algorithm to align 
and co-assemble draft genomes. In particular, we make two important modifications 
to the chaining with rearrangements algorithm (Brudno et al. 2003c, Lippert et al. 
2004). An unrelated gap penalty is introduced, to chain fragments that are on different 
contigs of the draft sequence. This formulation allows setting a threshold for the 
minimal sequence similarity necessary to include a contig in the ordering. We also 
introduce a new model for sparse dynamic programming that allows us to efficiently 
make intelligent chaining decisions and enforce penalties based not only on the last 
local alignment in the chain, but also on previous fragments.  Though the solution is 
no longer optimal with respect to the fore defined objective criteria, this technique 
improves the chains formed in practice. 

We test our draft alignment algorithm on sequences of the seven yeast genomes 
(Kellis et al. 2003, Cliften et al. 2003). The finished Saccharomyces cerevisiae ge-
nome was compared to four other yeasts of the sensu-stricto group, one from sensu-
lato, and one petite-negative yeast. While we are able to align accurately the four 
genomes of sensu-stricto, the alignment of the two more distant genomes is less reli-
able, both indicating the necessity for future work, and suggesting the extent to which 
draft genomic sequence can be used to shed light on a distant relative. 

We have also applied our chaining technique to the problem of co-assembling a 
genome. In this problem one is given two different assemblies, in draft form, of the 
same genome, with each assembly organized into contigs (contiguous pieces of the 
DNA sequence), which are joined into scaffolds (orderings of contigs) by the assem-
bly program based on the paired-read information. When one is given two assemblies 
of the same data, it becomes possible to correct the potential errors in each assembly, 
fill the gaps between contigs and label contigs that are potentially misassembled. Here 
we present a practical method for sequence co-assembly and test it on 19 regions 
constituting 10% of the Ciona savignyi genome. Our method was able to identify 
more than 60 potential misassemblies with only one false positive, and in all but two 
cases correctly ordered the contigs to build an assembly with larger contigs and scaf-
folds. 

2   Draft Sequence Alignment  

The goal of the draft sequence alignment problem is to map the sections of the fin-
ished sequence (Sequence 1)  to sections of the draft contigs  (Sequence 2).  This 
synteny map is used to construct a reference alignment with respect to the finished 
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sequence. We present an algorithm to solve this problem based on the Sparse Dy-
namic Programming (DP) technique (Eppstein et al 1992) that builds chains of frag-
ments (local alignments).  

2.1   Fragment Chaining 

Representation of Fragments: For the purpose of this paper, each fragment is repre-
sented as a 7-tuple (Start1, End1, Start2, End2, Score, Strand, 
CName). The first four numbers represent substrings of Sequence 1 and Sequence 2 
respectively. Score is assigned to the fragment by the local alignment algorithm 
that produced it. Strand is either +/- , representing either a hit of the reference on 
the forward or reverse strand of sequence 2. Finally CName is an identifier indicating  
which contig of Sequence 2 the fragment belongs to.  
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Fig. 1. Draft v/s Finished Alignment: Local alignments are chained together, series of frag-
ments that belong to the same contig, and that are rearrangement free form a single syntenic 
block. 

Scoring: Our scoring scheme is based on SLAGAN (Brudno et al 2003c). We find 
the highest scoring 1-monotonic chain, which is a subset of fragments that increase 
monotonically in Sequence 1 coordinates, but there is no requirement for monotonic-
ity on the Sequence 2 axis. Relaxing this requirement allows us to capture rearrange-
ments. We now describe a scoring scheme that scores chains, when the both se-
quences under consideration are finished sequences. 

 
For a chain C, score(C) = i (Fi.score – gcase(fi-1,fi)). 
 
Here gcase is one of 8 penalty functions. The 8 functions correspond to 8 cases 

based on (Strandi-1,Strandi,Transposition). Transposition is a boolean 

value that is TRUE if a transposition has occurred between the two fragments.  Each 
of these functions is an affine expression on the L1 distance between the end of one 
fragment and the start of the next fragment, and the difference in the diagonals of the 
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fragments. For a comprehensive description of the scoring functions and the algo-
rithm to find the best such chain refer to (Brudno et al 2003c). The algorithm runs in 
O(nlgn), where n is the number of fragments. 

 
Handling Contigs: We arrange the contigs in arbitrary order on the Sequence 2 axis. 
See Figure 1. We introduce a new scoring function gunrelated, which is applied if the 
adjacent functions belong to different contigs. This function is a large constant pen-
alty, though one could also use an affine function of the sequence 1 distance between 
the two fragments to penalize long stretches of sequence with no alignment. 

We modify the original sparse DP algorithm to handle contigs on the Sequence 2 
axis and the unrelated penalty without change in the asymptotic space or time re-
quirements.  

 

 

Fig. 2. 2a shows an inversion event being over penalized, 2b shows a contig splice event being 
penalized twice. 2c shows the structure of the overlap tree for three fragments (1,2,3) across 
two contigs (A,B). 

2.2   Scoring Issues  

In practice, the scoring scheme described above suffers from a few problems. Frag-
ment chaining methods score transitions between adjacent fragments on a chain in-
stead of scoring rearrangement events. Here are two cases where it affects the quality 
of the map produced.  

 
CASE 1: We pay both an inversion penalty, and a translocated inversion penalty for a 
simple inversion (Figure 2a). 
CASE 2: For local alignments from one contig spliced between local alignments from 
another contig, we pay the unrelated penalty twice (Figure 2b). 

 
One possible model that does capture nested rearrangements explicitly is a stochas-

tic pair-CFG. This is a generalization of a stochastic CFG (Eddy,Durbin 1994) that 
generates two sequences simultaneously. Though it is possible to write down a set of 
productions that capture all nested rearrangements, the task of finding the optimal 
parse is computationally expensive (O(N6) for  two sequences of length  N each.). To 
our knowledge, this formulation has not been proposed previously. One possible heu-
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ristic is to work with fragments produced by a local aligner, rather than individual 
basepairs. We introduce a further heuristic that adds information to the chaining pro-
cedure, to make better chaining decisions. 

The chaining procedure works in a top down manner. The sparse DP works by 
maintaining a set of active fragments, to which other fragments yet to be considered 
can chain. For each such active fragment F, we maintain a CINFOF query structure.  

Such a structure maintains a reference to the last fragment on the chain ending at F, 
for each value for the tuple (CName, Strand), if such a fragment exists.  Here 
CName ∈ ContigNames (which is the set of identifiers of all the contigs), 
Strand ∈ {+,-}. 

 
The scoring proceeds as follows: Fragment fChild (CNameChild, StrandChild) 

chains to fParent(CNameParent , StrandParent), we apply a penalty correspond-
ing to the minimum of  the following quantities: 
 
1. gcase(fChild ,CINFOfParent(CNameChild,+))  

2. gcase(fChild ,CINFOfParent(CNameChild, -))  

3. gunrelated. 

 
The issues of the previous scoring scheme described in the section are resolved: the 

transition in CASE 1 is penalized as a normal transition instead of an inverted translo-
cation as the third fragment is penalized against the first instead of the second,  
though it is chained to the second. Similarly, the transition in the CASE 2 is penalized 
as a normal transition instead of a contig transition event. 

2.3   Application of OvBSTs to the Context Fragment Chaining 

The following observation allows us to implement the CINFO structure efficiently:  If 
fragments fChild chains to fParent, then the contents of CINFOChild differs from that 

of CINFOParent only in the fragment corresponding to (CNameChild, Strand-

Child).  All other queries would return the same answer. We use a Overlapping Bi-
nary Search Tree (OvBST) (Burton and Huntbach 1985) to efficiently maintain the 
CINFO structure.  An OvBST is a collection of binary search trees each with a dis-
tinct root, but share paths. 

 
Let C be the number of contigs, n be the number of fragments. 
 

DATA STRUCTURE:  Each node of the OvBST has: key:= (CName, Strand); 
data:=(Reference to Fragment)  

 
SETUP:  Create statically a balanced binary search tree, over the key space (Con-
tigNameNames,{+,-}).  The time taken for this step is O(ClgC). 
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QUERY:  A query to the CINFO structure of a fragment is a binary search starting at 
the root corresponding to the fragment. This operation is performed identically to a 
find key operation in a regular search tree. It takes time O(lgC). 

 
CREATE: To create a CINFO structure for a fragment, given the CINFO structure 
for the parent. Let X be the node corresponding to the child’s (CName, Strand) 
in the parent’s CINFO structure. A copy is made of all the nodes on the path between 
X and the root of the parent. Note that all the pointers are copied as well. The data 
field in the node corresponding to the child is changed to refer to the child fragment. 
The operation takes time proportional to the height of the tree, which is O(lgC), 
and at most O(lgC) nodes are copied to make a CINFO structure for the child frag-
ment.  

 
The overlap tree modification allows the sparse DP algorithm to run in time   

O(nlgnlgC),and space O(nlgC) making it practical for genome-sized datasets. 

3   Whole Genome Alignment and Results 

Using the draft fragment chaining algorithm described above we have generated a 
whole genome alignment between S. cerevisiae and each of S. paradoxus, S. mikatae, 
S. kudriavzevii, S. bayanus, S. castellii and S. kluyveri by repeating the following 
steps for each of the 16 chromosomes of S. cerevisiae (the finished sequence) and 
each of the other genomes (the draft contigs): 

1. Generation of local alignments between the sequences using CHAOS (Brudno and 
Morgenstern 2002). We used an exact matching 12-mer as a minimal seed, and each 
local alignment after extension had to have a score of at least 2500 (see the LAGAN 
toolkit manual available from http://lagan.stanford.edu for an explanation of these and 
all other parameters).  

2. Generation of the 1-monotonic conservation map using the standard SLAGAN 
penalties. We used an unrelated penalty of 15000 for the five yeast genomes, and a 
lower 7000 unrelated penalty for S. kluyveri, which is not only the most distant to S. 
cerevisiae but also has the poorest assembly. 

3. Extension and alignment of all consistent subsegments in the 1-monotonic conser-
vation map with the LAGAN aligner (Brudno et al. 2003b). 

4. Glueing together the global alignments from step 3 to form a single global align-
ment between the chromosome and the draft contigs. Note that the expansion step 
may cause an overlap in the first sequence. This overlap is resolved by clipping the 
generated alignments. The optimal clipping point is found by a linear pass over the 
overlapping region. See (Brudno et al 2003c) for further explanation. 

The results of the alignment are summarized in Tables 1 and 2. In constructing the 
statistics for each species we considered only the exons alignable by a protein-based 
local aligner: those that were covered more that 90% of their length by TBLASTX 
(Altschul et al 1997)  alignments with a protein-level identity >  50%. 
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Table 1. Nucleotide Coverage Statistics: Table number of times nucleotides of each species 
was aligned. The numbers are in percentages. 

� � � � � � ����� ������ ���
S-paradoxu �	�� 
�	�� �	
� �	� �	�� �	�� �	�� �	�� �	��
S-mikatae �	� 
�	�� �	
� �	� �	�� �	�� �	� �	�
 �	��
S-kudriavze �	�� 
�	
� �	�� �	�� �	�� �	� �	� �	�� �	��
S-bayanus �	� 
�	
� �	�� �	�� �	�� �	�� �	�� �	�� �	��
S-castellii ��	�� ��	� ��	�� �	� �	�� �	�� �	�� �	�� �	��
S-kluyveri �
	�� ��	 ��	�� �	�
 �	�� �	�� �	�
 �	�
 �	��  

Table 2. Exon Conservation Statistics: Table shows the percentage of exons that have a par-
ticular percent conservation rate. The second column denotes the size of the  TBLASTX-
pruned set of exons for each species, as explained above.  

��������������������������������������
# Exons ��� ����� ����� ����� ���� ��
� 
�����

S-paradoxus 13674 0.44 0.16 0.23 1.50 9.22 77.63 10.82
S-mik atae 12620 1.16 0.46 0.96 5.19 50.73 33.66 7.83
S-k udriavzevii 11446 0.96 0.67 1.65 10.76 57.60 20.33 8.04
S-bayanus 11694 0.84 0.62 2.25 14.80 60.32 13.77 7.41
S-castellii 5004 11.22 3.90 20.51 31.30 13.88 9.57 9.61
S-k luyveri 4606 16.44 6.56 20.16 24.09 13.07 10.63 9.09  

 
For all of the sensu-stricto sequences, more than 90% of the nucleotides of the as-

sembly were mapped to a single location in the yeast genome. An additional 5% was 
unmapped, while no more than 1.2% of any genome was mapped more than twice 
(see below for a discussion of the nucleotides mapped twice). These statistics attest to 
the specificity of the algorithm when comparing the more closely related sequence. 
Additionally, none of these four genomes had more than 2% of exons conserved at 
less than 55%, indicating that the resulting algorithm is sensitive enough to align the 
important coding elements. 

For the two more distant genomes our algorithm maintained a low false positive 
rate (~3% of the genome mapped to more than two places), but the exon conservation 
dropped significantly: 15% of the alignable S. cerevisiae exons were conserved less 
than 55% with S. castellii and 23% with S. kluyveri. These numbers reflect the lower 
biological conservation between S. cerevisiae and these genomes, and the difficulty in 
aligning a distant, highly fragmented genome (the S. kluyveri was the worst quality 
genome with the shortest contigs; S castelli, the third worst). 

It has recently been reported that the yeast genome has undergone whole genome 
duplication, followed by extensive loss of up to 90% of all genes through short dele-
tions (Kellis et al. 2004). This result correlates with the large number of nucleotides 
that we have found mapped twice from S. kluyveri and S. castellii to S. cerevisiae. 
Because the genes are lost over time, the most distant sequences are more likely to 
lose different genes, forcing the alignment of some contigs in two places, once for 
each of the two copies.  
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4   Draft Genome Co-assembly 

In this section we describe an algorithm to co-assemble two assemblies of the same 
genome, based on the sparse DP-chaining technique from above. The genome of 
Ciona savignyi has been sequenced to draft quality by a standard whole genome shot-
gun (WGS) strategy (http://www.broad.mit.edu/annotation/ciona/). WGS sequencing 
and assembly entails randomly breaking DNA from a genome into fixed-size pieces 
(inserts), and sequencing a ‘read’ from both ends of each insert (Fleischmann, Adams 
et al. 1995). Reads from opposite ends of a single insert are termed paired reads, and 
the distance between them on the sequence can be estimated by the size of the insert. 
An assembler program rebuilds the genomic sequence by combining reads with se-
quence overlaps into contigs. Contigs are organized into scaffolds by linking contigs 
using paired read information. 

Like most multi-cellular organisms, C. savignyi individuals carry exactly two cop-
ies of every chromosome in their genome, which are referred to as the two haplo-
types. One copy of each chromosome in an individual is inherited from each parent, 
and it is not possible to separate out individual chromosomes prior to WGS sequenc-
ing. Differences between copies of the same chromosome, called polymorphisms, can 
take the form of individual base pair substitutions or insertions and deletions that can 
range from a few base pairs to several thousand base pairs in length. It is these poly-
morphisms that make every individual within a species unique. 

 Polymorphism rates vary between species, and current WGS assembly programs 
(Arachne (Batzoglou et al. 2002, Jaffee et al. 2003), Phusion (Mullikin et al. 2003)) 
are not designed for highly polymorphic genomes: the polymorphism rate in the hu-
man genome is estimated to be only 0.1%. C. savignyi, on the other hand, has a very 
high rate of polymorphism, estimated to be more than 7%. When dealing with such a 
genome, the assembler (Arachne) places reads from the same position in the genome 
but from different haplotypes into separate contigs. The resultant assembly of C. savi-
gnyi thus contains two distinct copies of the genome, each of which is fractured. Ac-
cording to our observations, contigs and scaffolds contain several misassemblies be-
cause of the assembler’s handling of the varying rate of polymorphism across the 
genome.  

It is desirable to build a joint assembly of the two haplotype assemblies to each 
other for two primary reasons: (1) to identify regions of disagreement which highlight 
potential errors in the assembly, and (2) to provide a global alignment from which a 
C. savignyi single reference sequence can be built. Such a sequence can then be used 
to more accurately predict genes and other functional elements in the genome. 

4.1   Strategy for Draft – Draft Alignment 

Construction of a Bipartition: Initially the scaffolds are separated into two sets, 
each set corresponds to a single haplotype. Each scaffold is  represented as a node, 
and there is an edge between two contigs if there is significant local similarity be-
tween them. In the absence of large-scale duplications the resulting graph is bipartite, 
and all the nodes in each partition come from a single haplotype.  
 



334      Mukund Sundararajan et al. 

Genome Co-assembly: The underlying idea behind the co-assembly of two haplo-
types is that each haplotype can be used to establish an ordering of the contigs and 
scaffolds in the other haplotype. Each haplotype is now a set of contigs (contiguous 
stretches of DNA sequence). The contigs are ordered into scaffolds by assembly links. 
These assembly links are based on paired reads, and are less reliable than the contigs 
that they join. To order haplotype X we use all contigs of haplotype Y as the “chro-
mosomes” for the sparse DP-chaining algorithm described above. Because the two 
genomes being co-assembled are very similar (these genomes are from the same indi-
vidual), we use high thresholds for homology.  

 

 

Fig. 3. Dotted connections between contigs are assembly links and solid connections are align-
ment links. Contigs 1 & 2 are joined by both as the alignment link (through Contig A) con-
firmed the assembly link. Contigs 2 & 4 were joined by an alignment link, causing the rejection 
of the assembly links from contig 3 to both contigs 2 and 4. 

This step is summarized in Figure 3. Initially we set forward and backward links 
for each contig to its neighbors in the scaffold. Whenever two contigs 1 and 2 of X 
are aligned next to each other and against a single contig A of haplotype Y based on 
the chain from our sparse DP algorithm, 1 and 2 are said to be joined by an alignment 
link, and the forward and backward links of the two contigs are set to each other. Note 
that any contigs that lie between 1 and 2 can be separated out into a new scaffold: if 
the in-between contigs match any sequence, they will be aligned separately; if they do 
not match any sequence, we use the sequence from haplotype Y to fill the sequence 
gap (as between contigs 2 and 4 in Figure 3). If a contig has multiple forward or 
backward alignment links, it is labeled unreliable, as it could be a site of a mis-
assembly on the contig level (or a biological rearrangement). All links to unreliable 
contigs are removed. All connected components of the link graph are now joined into 
a contiguous sequence and the process is repeated in order to get a relative ordering of 
the connected components. During this step, only the reliable “scaffolds” of haplotype 
Y are used as a basis for ordering all of the “scaffolds” of haplotype X.  
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4.2   Co-assembly Results 

We applied the algorithm to nineteen genomic regions representing approximately 
10% of the C. savignyi genome. The nineteen regions contain a total of 38.8 Mbp of 
sequence, and are comprised of 3,283 contigs arranged into 211 scaffolds. The algo-
rithm above was used to order the contigs and scaffolds, and the results were analyzed 
manually for 1) incorrect ordering of scaffolds, 2) change of order between contigs 
within a scaffold, and 3) locations where one scaffold was inserted into another one. 

For some regions the algorithm ordered the scaffolds in two or three groups and 
did not order the groups; however, the overall ordering was correct in all cases. In 
nineteen cases the ordering of the contigs within a scaffold that was reported by our 
algorithm differed from the ordering given by the assembler (3 regions had 3 rear-
rangements, 3 regions had 2, and 5 had 1). Of these 19 rearrangements, 18 were 
judged to be true positives, with one false positive. In 16 of the 18 true rearrange-
ments the resulting sequence was correctly ordered with respect to the opposite haplo-
type, as determined by manual inspection of the resulting alignments. Additionally, in 
42 instances an entire scaffold was inserted into the middle of another scaffold, and 
all 42 of these cases were detected and ordered correctly. A full analysis of the co-
assembly of the genome of C. savignyi will be published separately (K. Small, A. 
Sidow, et al., manuscript in preparation). 

5   Conclusions 

One of the main requirements of sequence comparison algorithms is the ability to 
process megabase-long sequences in a reasonable amount of time. While there has 
been extensive work in developing effective local and global alignment algorithms, 
these methods have commonly been too inaccurate to align draft genomic sequences. 
Chaining is an attractive technique for alignment because it provides an O(nlgn)(n 
is the number of fragments) method for building larger alignments from short simi-
larities. The technique is also applicable for multiple alignment (Abouelhoda and 
Ohlebusch 2003), as each additional sequence only requires an additional factor of 
O(lgn), while in most other alignment methods the running time is exponential in 
the number of sequences. Recent work has shown chaining to be one of the most 
effective ways of speeding up global alignment and reducing the false positive rate of 
local alignment. Additionally sparse DP has been successfully used to detect and 
classify rearrangements and to compare genome assemblies. In the current work we 
apply chaining techniques to alignment of draft (incomplete) genomic sequence, and 
show that it can be used both to align draft contigs against a finished chromosome and 
to co-assemble two sets of draft contigs in order to build a more accurate assembly of 
a genome based on two independent assemblies.  

One shortcoming of chaining (and all other sparse DP) methods is that they are 
memoryless: the decision about the chaining of a particular fragment can only depend 
on the score of the chain leading up to it and not on the previous history. While it is 
possible to retrace the chain in order to find the relevant previous information (such as 
whether some piece of a sequence was already aligned) this would add an extra factor 
of O(n) to the run time, making the chaining approach much less practical. In this 
paper we introduce a method to add state to the sparse chaining methods while suffer-
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ing an O(lg C) runtime hit, where C is the number of “events” that is necessary to 
remember. This state information helps the fragment chaining algorithm to properly 
charge penalties for the various events that happen along the chain, and similar ap-
proaches can be useful in other algorithms that use sparse dynamic programming.  
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