

BlobMaker: Free form Modelling with
Variational Implicit Surfaces

Bruno Rodrigues de Araújo
IST/ IMMI INESC-ID

Rua Alves Redol, 1000-029 Lisboa
brar@immi.inesc.pt

Joaquim Armando Pires Jorge
Dep. Engª. Informática, IST

Av. Rovisco Pais, 1000 Lisboa
jorgej@acm.org

Abstract
We present BlobMaker, a program for modelling surfaces which uses variational implicit surfaces as a geomet-
rical representation to edit free form shapes. Our approach implements new modelling operations to support
stroke (pen-based) input. To this end, we have built a complete modeller application. Users can create and ma-
nipulate shapes by sketching on a perspective or parallel view. The main operations are inflate, which creates
3D forms from a 2D stroke, merge, which creates a 3D shape from two blobs and oversketch, which allows us-
ers to redefine shapes using a single stroke to change their boundaries or to modify surfaces by an implicit ex-
trusion. We compare these techniques with those of other published approaches. Finally, we describe their im-
plementation in BlobMaker. We have provided additional features such as copying, picking and dragging to of-
fer a natural user interface suitable to free form modelling.

Keywords
Stroke based modelling application, variational implicit surfaces

1. INTRODUCTION
Modelling applications have become essential tools in the
animation and manufacturing industries and now play a
crucial role in the design workflow. However, CAD in-
terfaces have not evolved much past the WIMP (Win-
dows, Icons, Mouse and Pointing) paradigm to match the
spectacular increase in modelling power of these sys-
tems. As a consequence, CAD systems have become very
complex, requiring high technical knowledge and long
learning periods to develop fluency. These problems
make such systems difficult to use for traditional design-
ers. While WIMP interfaces represent a considerable
improvement over command line applications, menu-
based interactions do not map naturally to pen-and-pencil
drawing modes. Analysing the actual command usage in
a representative commercial CAD application, we can
verify that 75% of user time is spent in menu navigation,
picking and selection instead of model input [Sanchis02].
While this approach may be acceptable for input via
mouse and keyboard, the emergence of pen-based sys-
tems should motivate developers to devise input methods
suited to exploiting the drawing capabilities enabled by
styli. We propose the term calligraphc interfaces to de-
scribe a new generation of systems organized around
drawing and sketching as the main structuring concepts.
Although pen-based input devices are supported to some
extent by many modern applications, they are not used as
well that they can be for 3D modelling in contrast to 2D
sketching programs. Indeed, the paper and pencil meta-
phor can leverage both ergonomic and human-learned

skills, offering advantages both in drawing speed and
rich expression enabled by pen movements and pressure.
Applications such as Corel Painter [Corel] constitute a
good example of this. However, conventional 3D model-
ling applications restrict pen-based input to entering
point data. While programs such as 3D Studio
Max [3DMax], Lighwave 3D [Ligthwave3D], Maya
[Maya, SoftImage] and CAD systems such as Dassault
Systems’ Catia [CATIA] allow some type of free form
modelling, they require detailed knowledge about the
underlying geometric representations such as
NURBS [Farin99] and the intricacies of their mathemati-
cal formulations, which makes such applications difficult
to use by traditional designers.
In the next section, we survey previous research work in
free-form modelling interfaces. Then we present a de-
scription of variational implicit surfaces. Sections four
and five describe in detail modelling operations based in
sketch input. Then we present an implementation of those
techniques as embodied in BlobMaker. Finally, we draw
conclusions and highlight possible improvements for
future work.

2. GESTURE-BASED MODELLING INTERFACES
Ivan Sutherland’s SketchPad [Sutherland63] was the first
graphical program to allow precise drawing using a calli-
graphic interface, modelling hierarchy and constraints. In
the 1970’s, several research works followed up on these
ideas through sketch-based recognition and tablet sys-
tems [Negroponte73, Herot76].

In the early 1990’s, the first generation of pen computer
fostered the emergence of new interfaces based on sketch
input. SKETCH [Zeleznik96] and SKETCH-N-
MAKE [Bloomenthal98] systems, combined gesture and
geometric recognition to allow creating and modifying
3D models. These systems define a specific gesture
grammar language to allow creating simple 3D primitives
in an orthogonal view; for example, three concurrent
lines define a rectangular prism. This gesture language
allows users to specify CSG operations and to define
quasi-free form shapes (such as ducts) through extrusion.
Several works introduced gestures for constructing com-
plex 3D models using line reconstruction algorithms. For
example, GIDES [Pereira00] allows users to sketch on an
orthogonal view, which combines with a suggestive in-
terface to reduce the command set. The system provides
a language similar to SKETCH to create complex mod-
els. It uses specific commands to allow constrained posi-
tioning between elements and construction lines to define
specific locations, to constrain the output of the recog-
nizer and allow rigorous drawing with imprecise
sketches. CHATEAU [Igarashi01] provides another good
example of a suggestive interface. Like GIDES and
SKETCH, COSMO [Michalik02] uses a gesture lan-
guage to specify extrusions. While these systems offer
support for prismatic, extruded and revolution shapes, we
need more elaborate functions to support “true” free form
modelling.
REFER[Contero01] and SKETCHUP [Sketchup3D] pro-
vide other examples of modelling using line drawings for
architectural applications. Both systems feature recogni-
tion and reconstruction of models from straight lines.
One serious problem with line drawings is the Necker
ambiguity [Necker32] characteristic of 3D wire-frame
models. The SKETCHUP system offers new operations
for interaction through boundary editing, such as face
and edge dragging that are much simpler than conven-
tional CSG methods.
The different approaches presented here, offer good solu-
tions for assembling complex models but are limited to
extrusions or CSG combinations, which offer a poor sub-
stitute for free form shapes. Most notably, they are un-
able to model “soft” forms such as a human head or bio-
logical shapes (animals) or surfaces on a car body.

3. SKETCH BASED FREE FORM MODELLING
Brian Wyvill [Wyvill98] introduced the BlobTree, which
is an implicit surface model based on skeleton primitives
to describe soft objects. A prototype system described in
that work uses sketches for defining skeleton primitives.
Skeletons define blobs using a specific language, for ex-
ample, a line defines a cylinder and a point a sphere.
Interestingly in BlobTree, combining implicit surfaces
with CSG operations, presents a mixture between line-
based interaction and a “real” free form approach. How-
ever, this method is still too similar both in its virtues and
limitations to the gesture-based systems described above.

A more familiar approach for free form editing is to
sketch in 2D the contours of 3D shapes. This is more
natural than using extrusions. The first work using con-
tours for free form modelling was the Teddy system [Iga-
rashi99]. Teddy presents a very simple interface that
combines extrusions with contour-based shape creation.
The system offers several operations to modify the start-
ing shape, which is normally a blob created by inflating a
2D contour. This system had a great impact in the Com-
puter Graphics community due to its simplicity. It pro-
vides simple primitives to extrude, bend, cut or smooth
shapes. Geometric representations in Teddy use a trian-
gulated mesh that can be modified through stroke input.
Sketches are projected on the mesh according to the cur-
rent view. However, Teddy is only able to construct one
object at a time and does not support hierarchy.
In recent years, several projects have followed the steps
of Igarashi. One of the most interesting is Kar-
penko’s [Karpenko02], which was the first to adopt a
mathematical implicit representation. Like Igarashi, Kar-
penko presents a simple interface for free form model-
ling. Notably, she models geometrical objects through
variational implicit surfaces [Turk99] instead of polygo-
nal meshes. We present these in detail in the next section.
This application organizes models in a tree hierarchy,
allowing constrained move operations between tree
nodes and creating distinct objects in the same scene. The
main operations offered by the interface are merge,
which allows combining two blobs and oversketch for
redefining the boundary of a blob. Karpenko’s modeller
presents simple navigation facilities to allow users to
rotate and translate objects. Teddy did not support these
features since it cannot handle multiple objects. Another
interesting aspect is the use of guidance strokes to help in
merging shapes. However, these guidance strokes are a
symptom that the merging operation could be improved
and further simplified towards a more natural interaction.

4. VARIATIONAL IMPLICIT SURFACES
Variational implicit surfaces (VIS) were introduced by
Turk [Turk99, Turk01, Turk02]. VIS are smooth and
respect a set of constraint points. VIS are always closed
and can have arbitrary topology. They are implicitly
defined by a mathematical function f, where the surface
is the set of 3D points which verify f(X)=0. Their main
difference to other implicit models such as meta-balls
[Nishimura85] and BlobTree, lies in that the surface has
to obey constraint points specified by the user. VIS inter-
polated a cloud of points in a manner similar to thin-plate
interpolation. This approach interpolates a cloud of
points. To find the implicit function that respects all the
constraint points with a minimum of curvature, f(x) is
defined such as to minimize (1):

 dXXfXfXfE yyxyxx∫
Ω

++=)()(2)(""" (1)

There are several approaches to solve this problem. Turk
decomposes f(x) into a linear combination of radial basis
functions φ centred on the constraints, using φ(X) =|X|3.

The interpolated function, which satisfies the condition
presented in (1) and defines the variational implicit sur-
face, is presented in (2):

)()()(
1

XPcXdXf j

n

j
j +−= ∑

=

φ (2)

Where cj are the locations of the constraints on the sur-
face, dj are the weights on each constraint, P(X) is a one-
degree polynomial which can be omitted if the number of
constraints is greater than eight [TURK01].
For the calculation of the weights dj, we know the value
hj of the height field for each constraint such as f(cj)= hj.
Based on Equation (2), the following linear system is
defined in (3):
 HDM =. (3)

 In (3), D= [dj] are the unknowns, H= [hj] are the height
field values and M, a matrix defined as a function of φ, P
and cj. While the linear system can be solved using LU
decomposition in O (k3) steps where k is the number of
constraints, iterative methods can solve large-scale sys-
tems in O (k2).
To simplify creating VIS, Turk proposes a method based
on four different types of constraints:
• Boundary constraints cj, placed on the boundary of
the surface such that f(cj)=hj with hj=0
• Normal constraints cj, located outside the surface at a
tiny distance to the boundary using the normal to the sur-
face. These constraints verify f(cj)= hj with hj=1
• Interior constraints cj, located arbitrarily inside the
surface such that f(cj)= hj with hj<0
• Exterior constraints cj, located arbitrary outside the
surface such that f(cj)= hj with hj≥1
It is possible to create variational implicit surfaces by
specifying only boundary and normal constraints as
shown in Figure 1. We can also use this principle for
converting polygonal meshes into VIS [Yngve02].
The flexibility of this representation allows defining
complex and smooth models with arbitrary topology. We
use it in our modeller, since it provides a compact and
mathematically simple means of describing a surface
using constraints, weights and a first order polynomial. It
affords flexibility for computing normal and curvature
information, while ensuring C2 continuity.

5. FROM 2D TO 3D: INFLATION
In this section, we propose our method for creating 3D
VIS based on user 2D stroke input, using an inflation
process similar to [Karpenko02]. We present an overview
of the algorithm, followed by the description of the rele-
vant steps.
The inflation process takes a set of 2D input points
(stroke) and creates a 3D object matching the contour
drawn by the user. The following list presents the differ-
ent steps of the process:
• Filtering the 2D stroke : this step receives the input
set of 2D points from the user and simplifies it
• Verifying the filtered stroke : this step rejects incor-
rect parts of the stroke such as self-intersections
• Skeletonizing the 2D stroke: this step analyzes the
entire stroke and creates a 2D skeleton with all the rele-
vant topological information. The skeleton allows the
reconstruction of the input stroke and the information
about the thinness of the enclosed region in order to per-
form depth inflation
• Mapping the 2D stroke into a 3D contour: this step
transforms the 2D stroke and skeleton information to a
3D virtual plane according to the actual definition of
viewport and view parameters, computing both normal
and depth information
• Creating and visualizing the 3D implicit surface: this
step creates a VIS to represent the blob, which matches
the contour’s skeleton. The polygonization process cre-
ates a triangulated mesh together with surface normals at
each vertex, which is suitable for rendering.

5.1 Main contributions of our work
Igarashi and Karpenko developed two different methods
to create 3D surfaces from 2D strokes. Both approaches
have advantages and limitations. In Teddy, the inflation
process directly yields a triangulated mesh. This ap-
proach restricts the possible operations on objects to local
mesh modifications, making it difficult to merge two
meshes. Furthermore, triangular meshes pose problems in
modelling arbitrarily smooth shapes. To overcome these,
Igarashi introduced a smoothing operator which applies
local subdivision to the mesh. Even though we use simi-
lar methods for skeletonization, Teddy takes a different
approach to inflation. Also,both Igarashi and Karpenko
follow the same approach for filtering and mapping the
2D stroke, which is dependent on screen resolution. They
reject consecutive 2D points closer than a specified num-
ber (15) of pixels. This can result in important details
being dropped from the resulting surface.
While our approach to inflation is similar to Karpenko’s,
her method might present incorrect results due to her
screen-dependent filtering method and incorrect tech-
nique for depth classification. Her approach only defines
two constraints on the VIS to define shape thickness.
This brings about several limitations. One of them is that
the merging operator requires a re-sampling of the trian-
gulated mesh. This increases the number of constraints

Figure 1: Example of boundary (o) and normal
(+) constraints in variational implicit surfaces

on the VIS dramatically, thus incurring in additional
computational costs for matrix solving. Another conse-
quence is that merging a big blob with a very small one
will be impossible without loss of detail. In our approach,
all modelling operators use only the mathematic repre-
sentation of surfaces and skeleton information. The next
sections describe in more detail our inflation process.

5.2 Filtering the input stroke
Since sampling stroke points from an electronic digitizer
depends of the interrupt processing capability of the op-
erating system, points on an input stroke tend not to be
evenly spaced. For example, some points can be repeated
or their number can be unnecessarily large depending on
the speed at which the stroke was drawn.
As discussed before, Igarashi and Karpenko follow an
approach to stroke filtering which depends on screen
resolution. Our approach, uses a greedy filtering algo-
rithm similar to Douglas-Peucker [Douglas73]. Figure 2
presents an input stroke and the result (red points) of
filtering; the input stroke on the left contains 2081 points
which reduce to 92 points after filtering.
Finally, we analyze the filtered stroke, rejecting self-
intersecting parts. This step is necessary because the
boundary of a shape cannot be self-intersecting when the
stroke will be projected in a 3D virtual plane. In our ap-
proach, the first non-intersecting loop found in the fil-
tered stroke remains and the remaining points are re-
jected. as shown in Figure 2.

5.3 Skeletonization of 2D Strokes
The skeletonization step transforms the filtered points to
reveal all the information of the stroke, by means of a
Chordal Axis Transform [Prasad97], which is normally
used for 2D shape recognition. The skeletonization and
applies a Constrained Delaunay Triangulation to the in-
put polygon, using the edges of the filtered stroke as con-
straints. We then generate three kinds of connectivity
information for the triangulated polygon as illustrated in
Figure 3, where triangles fall into one of three categories:
• Terminal Triangle: triangles with one neighbour
adjacent in the polygon (small outside triangles shown in
green)

• Seed Triangles: two neighbours are adjacent to these
triangles in the polygon (depicted in blue)
• Joint Triangles: triangles with three neighbours in
the polygon (painted in red)
Then we transform the triangulated polygon into a skele-
ton where terminal triangles terminate limbs and joint
triangles are connections in the hierarchy. Figure 4 pre-
sents an example skeleton of a stroke similar to a hand.
We can verify that the skeleton respects the shape, be-
cause the red edges result from joint triangles. For each
node in the skeleton, we save its distance to the border as
depth information. This procedure may generate some
irrelevant branches (these appear in yellow in the figure).
Since they are meaningless for the topology of the shape,
they are rejected by a post-processing step.
Our process is similar to that followed by Igarashi except
for the last step, where he derives a 3D mesh from the 2D
triangulation, while we create a VIS from the skeleton
information.

5.4 Projecting 2D points onto 3D virtual plane
At the end of the 2D analysis, the inflation proceeds with
a mapping step, which transforms all 2D points into 3D
scene coordinates. Since 3D Blobs are conceptually
drawn on a 3D virtual plane, which is parallel to the pla-
nar drawing surface and their visualization uses a per-
spective projection, we need to apply the “inverse projec-
tion” defined by the virtual camera to each 2D point in
the filtered stroke. The skeleton is also mapped onto the
3D virtual plane using the view camera projection and
depth information is updated accordingly.
Figure 5 shows how we perform this mapping. As a re-
sult of this step, we obtain a 3D outline that defines the

Figure 4: Example skeletonization of a
stroke with depth information

Figure 2: Example of filtering step, centre and
right figures show self-intersecting strokes.

Figure 3: Chordal Axis Transform for skeletoniza-
tion based on Constrained Delaunay Triangulation

boundary of the blob and a mapped 3D skeleton in scene
coordinates. This mapping step yields all information
required for the implicit surface representation.

5.5 Creating Variational Implicit Surfaces
Our variational implicit surface model, which is based on
boundary and normal constraints as presented by Turk,
uses the 3D mapped stroke to provide boundary con-
straints. Other boundary constraints use depth informa-
tion from the skeleton as shown in Figure 6 to define
additional points symmetrically placed to the left and to
the right of the mapped stroke. The look-at vector of the
3D virtual camera defines the left and right direction. For
each boundary constraint, we create a normal constraint
by displacing the boundary points by 0.05 along the nor-
mal direction.
After defining all boundary and constraint points, we
have a linear system as presented in section 3. This is
then solved, using a matrix resolution method such as LU
factorization, to obtain a complete definition of a VIS. At
the end of the inflation process, the implicit function is
polygonized for visualization as shown in Figure 6. The
polygonization process uses an adaptive method de-
scribed elsewhere [Araújo2003].

6. MANIPULATION OF IMPLICIT SURFACES
This section describes possible modification operators on
implicit surfaces for modelling. First, we present an over-
view of possible operators and discuss limitations inher-
ent to implicit representations. The following sections
describe solutions to implementing merging and over-
sketching operators in our demonstrator.

6.1 Operations between Implicit Surfaces
Our approach considers that the natural way of emulating
paper and paper drawings is through oversketching.
Similarly to Karpenko, we define two main operators,
oversketching and merging. By analyzing the ways in
which designers specify free-form surfaces, we verify
that they modify surfaces by repeatedly sketching over
the boundary of the shape until the desired form is ob-
tained. For this reason, our main modification operator is
based on oversketching.
The merge operator is an extended useful tool because it
allows combining partial objects to form a unique 3D
shape. While the merge operator seems superficially
similar to the traditional Boolean union, it actually has

different semantics, since it blends blobs. The resulting
shape remains smooth, which guarantees C2 continuity.
Of course, this approach brings about some limitations,
since sharp edges and creases cannot be created through
this method. This is unavoidable since the mathematical
representation of implicit surfaces is defined to be C2
continuous, which makes it impossible to represent non-
continuous features such as sharp edges.
Mathematically, it is simple to define a model supporting
Booleans operation using implicit surfaces. However, the
C2 continuity of the VIS model invalidates this issue.
Given F1 and F2 mathematical functions that define im-
plicit surfaces, the following list presents the most com-
mon Boolean operations using implicit surfaces:
• Union :F1 ∪ F2 = min (F1, F2)
• Intersection :F1 ∩ F2 = max (F1, F2)
• Difference :F1 / F2 = max (F1 , -F2)
We can verify that the major problem with this represen-
tation is using non-continuous mathematical functions,
such as maximum and minimum. It is possible to support
these operators with a hybrid representation such as Wy-
vill did with the BlobTree [Wyvill99, Galin99]. How-
ever, these operations are not familiar for traditional de-
signers that follow the paper and pencil metaphor.

6.2 Using Skeleton Information
The key feature of our approach lies in using skeleton
information generated during the inflation process of a
blob. We extend this to allow manipulating blobs. The
main advantage is that we do not use mesh information to
implement merge operators, which is one of the main
shortcomings in [Karpenko02]. As seen in the previous
section, the merge operator could be specified only
mathematically. However, this solution requires complete
knowledge of all mathematical information such as the
location of the critical points of the function. This would
require us to identify the local, global minimum, maxi-
mum or saddle points of the implicit function.
[Stander97] presents an approach to do this. Using Morse
Theory, he is able to extract all the topological informa-
tion of the shape from the mathematic definition. How-
ever, this is both very difficult to implement and costly in
computational processing time to guarantee that all the
information has been extracted. It is not clear how to
make this approach suitable for a real time modeller.

Figure 6: A skeleton and its corresponding poly-
gonized implicit surface

Figure 5: Projecting 2D stroke into 3D virtual
plane based on virtual camera definition

Karpenko presents a suitable solution to this problem,
which combines the expressiveness of a mathematical
formulation of surfaces with the flexibility of the triangu-
lated mesh for visualization. However, this solution is
only suitable for few steps. Repeated application of
merge or oversketching operations, adds many unneces-
sary constraint points due to resampling. This may easily
result in thousands of spurious constraints after a few
operations. Generating a VIS anew from such constraints
becomes impractical with current hardware. Thus, this
approach is not appropriate for interaction at real time
rates. Another limitation is that resampling automatically
erases all features of the merged shapes which are
smaller than the sampling interval.
To overcome the limitation identified above, we base our
solution on the surface skeleton, its associated depth in-
formation and its VIS. Since skeletons can be merged or
modified without using the mesh information and the
VIS is recreated at each step, this guarantees that small
features will be preserved by the modification operators
without our needing to use the triangulated mesh. While
the merge operator blends two skeletons, oversketching
modifies or appends new data to the original skeleton.
The interesting feature of this approach is that all strokes
input for oversketching define a new skeleton, which we
then merge to the original. After merging strokes, we
drop all points that lie inside the merged stroke. The fol-
lowing sections present a detailed description of the algo-
rithms for merging and oversketching.

6.3 Merging blobs
For the merging operator, let us consider the two blobs
selected to be merged; the variational implicit function
FA and skeleton SA define the first blob and FB, SB the
second one. Both implicit functions use constraint points
inferred from their respective skeleton. These are enough
to define all the characteristics of each shape. Then we
perform a step, presented Figure 8, to know which con-
straints from both blobs will remain valid after the merg-
ing operation.
After this step, we generate all the constraints for the new
shape. Using inflation, we create a new blob. The skele-
tons of both the new and old blobs are merged. The re-
sulting skeleton is then attached to the result blob. Figure

9 shows some examples of the merging operation pre-
senting in both shaded and wire frame views.
While the results obtained by our implementation are
visually similar to Karpenko’s, we can handle situations
not supported by her method. Moreover, the resulting
merged blob uses less constraint points. Thus, interactive
performance is better for our modelling application since
the cost of computation the VIS is smaller. The main
problem with Karpenko’s approach lies in that it uses
only two constraints to define depth during inflation.
This requires sampling the triangular mesh to perform the
merge, which limits the guarantee of fidelity of finer fea-
tures of both blobs in the resulting shape. Furthermore,
her sampling method uses vertices resulting from a
Marching Cubes polygonization [Lorensen87, Bloomen-
thal94], which depend on the characteristic edge size of
the subdivision and yields too many constraints on the
merged shape. Even though our approach uses more con-
straints to define the object in the inflation process, the
merged blob will have fewer constraints. Figure 9 shows
examples of applying the merge operation to groups of
different blobs. The figure shows the shaded polygoniza-
tion, wireframe and skeleton views to illustrate the dif-
ferences, between our approach and Karpenko’s.

Figure 7: Example of skeleton resulting
from several merge operations

Construction of constraint set for merging
(FA, SA, FB, SB) {
 Initialize the result set to empty

 For each CA (boundary constraint) of FA {
 if (FB(CA)>= 0)
 then CA and the respective normal is
 inserted in the result set
 else CA and the respective normal
 constraints is rejected
 }
 For each CB (boundary constraint) of FB {
 if (FA(CB)>= 0)
 then CB and the respective normal is
 inserted in the result set
 else CB and the respective normal
 constraints is rejected
 }

return the result set

Figure 8: Pseudo-code for the construction of the
constraint set for the merging of two blobs

Figure 9: Example of merging operations
with resulting skeleton and meshes

6.4 Oversketching blobs
Oversketching enables two different operations on blobs.
First, it allows users to redefine the boundary of shapes.
This is similar both to Igarashi’s bend operator and Kar-
penko’s oversketching. Another possibility is to create
extrusions. In Teddy, extrusion is the main modelling
primitive. Two input strokes define the extrusion, the
first defines the base area affected by the extrusion, while
the second defines the profile of the extrusion. The im-
plementation of this solution exhibited some limitations
in Teddy, corrected recently by [Wang03]. We will show
that using the skeleton information for the profile stroke
of the extrusion and its area for the base allows specify-
ing the extrusion in a single pass, by applying skeletoni-
zation to the oversketching stroke. The volume defined
by the skeleton specifies the base of the extrusion. This
information helps to distinguish a boundary redefinition
from an extrusion. Oversketching involves six different
steps. First, we apply stroke filtering, followed by 2D
skeletonization as in the inflation process. Then we pro-
ject the stroke and its 2D skeleton on a plane cutting the
surface perpendicularly to the look-at vector of the 3D
virtual camera. Next, we identify and reject all con-
straints of the blob located inside the oversketching area.
After, we insert the new constraints defined by the over-
sketching skeleton. Finally, we use the resulting skeleton
to create the new blob.

6.4.1 Projecting oversketch strokes
After filtering the input stroke and creating its skeleton,
2D input points need to be transformed to 3D coordi-
nates. This process is different from that used in the ini-
tial step of the inflation, since the stroke must be pro-
jected on the contour plane of the target surface, as
shown in Figure 11. The 3D virtual plane is defined us-
ing the first and last points of the input stroke. Both
points are projected using a function, which computes the
intersection between a ray defined using the 2D endpoint
coordinate and the position of the 3D virtual camera. The
2D coordinates in the viewport represent the position of
the stroke endpoint in the near plane of the camera. We
calculate the 3D coordinates of the near plane of the
camera according to the size of windows, the fov of the
camera and the distance of the near plane to the camera
position.

The ray intersections yield the start and end points of the
stroke as projected in the surface on the contour plane.
We define the 3D contour plane by the middle point be-
tween these two and it is perpendicular to the camera
look-at vector. We then project the points of the filtered
stroke and its skeleton onto this plane. Another possibil-
ity is to define the 3D plane normal to the surface. We
tried this and computed the normal plane, using a vector
perpendicular to the ‘true’ normal to the surface at the
middle point. This solution was used by [Wang03] as a
correction to problems with profile calculations in Teddy.
Still, this can lead to incorrect results as users conceptu-
ally draw on a plane perpendicular to the view direction.

6.4.2 Constructing the oversketched blob
To construct the new blob, we need to define the corre-
sponding set of constraints. First, we start by verifying
each constraint of the original blob, by checking to see if
it lies inside the bounding box of the projected skeleton
and reject those that do. All others will be retained to
define the resulting blob. This test is very simple to per-
form since we only need to verify whether a 3D point is
inside an oriented bounding box.
The skeleton of the oversketching stroke generates new
constraints for the blob, following a different strategy
depending on whether we are creating an extrusion or
redefining the boundary of a shape. In case of boundary
redefinition, the stroke does not generate any new depth
constraints. Only boundary constraints are defined from
the input stroke. The extrusion operation creates bound-
ary constraints from both the stroke and the original
skeleton. For each boundary constraint, we create a nor-
mal constraint using the normal vector of the projected
stroke in the 3D virtual plane. This is then combined with
the real normal to the surface computed at the first and
last point of stroke as projected over the surface.
Figures 12 and 13 show two examples of oversketching;
the first presents a boundary redefinition and the second
an extrusion. We can verify that the skeleton associated
the boundary redefinition does not generate any con-
straints in depth (red points near black branch of the
skeleton in the figures). However, in the case of extru-
sion, we insert additional constraints to define the depth.
The case for this distinction is simple to state. If the
depth constraints for extrusion were to disappear, the
depth of the blob in the oversketched volume would only

Figure 10: Example of oversketching operation Figure 11: Mapping 2D stroke for oversketching

be influenced by the depth constraints of the original
blob. This would be incorrect, because the result of over-
sketching a shape boundary may yield different topology
features, thus defining an implied extrusion as seen in
Figure 13.
We assess the need for additional constraints for extru-
sion by looking at input stroke characteristics. We meas-
ure the importance of the stroke by computing the ratio
of the distance between its first and last points to the
height of the volume it influences. In Figure 12, the base
of the stroke is larger than the length of its skeleton; the
resulting operation will be a boundary redefinition. On
the other hand, in Figure 13, since the base is smaller
than its length, the operation will be an extrusion.
Finally, we define the constraints for the oversketched
blob. Then we generate the new blob and attach the
merged skeleton to it.

7. BLOBMAKER
BlobMaker is an application for free form modelling
based on variational implicit surfaces. It allows the user
to create 3D blobs using the inflation process described
in section 5. The modeller allows the user to modify
shapes using the merging and oversketching operators
presented in section 6. Visualization and rendering of
implicit surfaces are based on OpenGL API using trian-
gular meshes.
 Our approach provides different tools to support creating
and editing blobs. Users can translate, rotate and copy
objects, with support for unlimited Undo and Redo. It is
possible to save and retrieve Blobs to/from STL
[3DSystems88] and VRML [VRML97] formats. Users
can visualize Blobs in several different modes such as
Wireframe, Polygonal with Gouraud shading using
OpenGL, or more faithful rendering modes such as Ray
Tracing and Phong Shading. Users can also control mesh
quality either through our approach or through Marching
Tetrahedra [Bloomenthal94].

7.1 Interface
The BlobMaker interface divides the screen into two ar-
eas as shown in Figure 14. The first area, on the top of
the window, is a toolbar that allows the user to select the
following tools: drawing, merging, oversketching, trans-
lation, rotation, copy, undo/redo functionality and wire-
frame rendering mode. The second area represents the
working space where the user can draw, manipulate and

visualize the 3D free form shapes. The working space
offers a perspective view of the modelling scene. The
virtual camera defines the point of view of the user,
which is centred in the zero-plane XY. To ease the depth
perception and positioning relationship between blobs,
the zero-plane XZ is drawn as the ground of the scene in
a rose colour. This virtual camera is used for the projec-
tion of the 2D viewport based input inserted by the user.

7.2 Stroke-based interaction
Figure 15 presents the different kinds of user input possi-
ble during interaction with the modeller. All operations
are selected using the toolbar area, which removes any
ambiguity from stroke semantics; i.e. the distinction be-
tween a merging, inflation or oversketch stroke is made
explicitly through menu selection.
When the user selects the drawing operation, subsequent
2D input will be interpreted as the boundary of a 3D
shape. Of course, some strokes are invalid in this context,
such as straight lines. Input strokes can be closed or
open, however open curves must converge to a well-
defined closed boundary. To detect this feature, begin
and end segments of an input stroke must define inter-
secting straight lines that “close” the stroke. For the
merge operation, the user needs to draw an arbitrary
curve, linking two distinct blobs. The system uses begin
and end points to pick each blob. Similarly, we use end-
point to picking and select objects as targets for over-
sketching, translation, rotation and copy operations.
Since points are specified on a planar viewport, depth
positioning can be ambiguous. Our modeller solves this
problem using the “ground” visualization. The user can

Figure 12: Example of boundary redefini-
tion with oversketching

Figure 14: BlobMaker interface

Figure 13: Example of implicit extrusion using over-
sketching

select a blob by its shadow,which is the planar projection
of the blob onto the ground. This feature makes it easy to
do relative positioning of shapes and offers two different
ways to select a blob: either by clicking on the rendered
projection of the blob or on its shadow.

7.3 Improving interaction using stroke analysis
By using skeleton and stroke information, we can im-
prove interactions and avoid using the toolbar. We have
found from experience that users prefer to draw, since
this matches best the affordances of the stylus. Conse-
quently, they sometimes forget to select the “right” com-
mand beforehand. This is the most common source of
errors when using the interface. We have implemented a
second mode in the application where the toolbar only
offers undo/redo functionality and switching between
wireframe and shaded views.
In this mode, some strokes are ambiguous, for example
oversketching gestures can sometimes initiate inflation.
To solve this, we use dynamic expectation lists as intro-
duced by [Pereira00] to present all possible interpreta-
tions of an ambiguous stroke to the user as exemplified
by Figure 16. If the stroke is not ambiguous, the opera-
tion takes effect immediately. Thus, simple actions can
yield different semantics. A click on a blob selects that
object. Subsequent clicks create copies of the selected
object. In addition, a straight line or an arc joining two
blobs define a merge operation. A stroke whose end-
points lie on the same blob defines an oversketch opera-
tion on that blob. A closed stroke or a similar curve cre-
ates a new shape. In this manner, all the main interactions
can be sketch-based. This mechanism can also avoid use-
less undo/redo commands due to erroneous use of but-
tons in the toolbar.

8. CONCLUSIONS AND FUTURE WORK
The proposed interface and operations are suitable for a
complete free form modelling system. We feel that our
sketch-based approach provides a natural interface for
traditional designers not familiar with either geometrical
constraints or the internal representation details of
NURBS. In this work, variational implicit surfaces limit
free forms to closed surfaces and smooth shapes. In the
future, we would like to extend our system using hierar-

chical CSG combinations of VIS and support discontinu-
ous representations using cuts as in Teddy. Another in-
teresting development is to add primitives for NURBS
creation and manipulation, since these are the more com-
monly used geometric representation in CAD and manu-
facturing. However, this is a non-trivial task, especially if
we are to derive compact constrained representations
from free form primitives. Following Igarashi, we would
also like to add non-photorrealistic rendering of objects
to better match the pencil-and-paper sketching metaphor.
Work is already underway on this front.
In this paper, we have presented a stroke based modeller
application for 3D free form modelling using variational
implicit surfaces. The different operations proposed for
free form manipulation have shown oversketching to be a
powerful and suitable tool for 3D modelling. Informal
evaluations show great promise for this tool as being
more adequate for traditional designers, who are familiar
to the pencil and paper metaphor. This too, should be
assessed by extensive usability evaluations in the future.

ACKNOWLEDGMENTS
This work was supported in part by European Commis-
sion through grant # IST-2000-28169 (SmartSketches)
and by the Portuguese Science Foundation under grant
POSI/34672/SRI/2000.

REFERENCES
[3DMax] Discreet 3D Animation and Modelling System,

web site available at www.discreet.com, May 2003.
[3DSystems88] Stereolithography Interface Specifica-

tion, 3D Systems Inc., 1988.
[Araújo03] Bruno Araújo and Joaquim Jorge, A Fast,

Adaptive Polygonization Technique for Implicit Sur-
faces, INESC-ID Technical Report December 2003.

[Bloomenthal94] J. Bloomenthal, An Implicit Surface
Polygonizer, Graphics Gems IV (P. Heckbert, ed.),
Academic Press, New York, 1994.

[Bloomenthal98] K. Bloomenthal, R.C. Zeleznik et al.:
SKETCH-N-MAKE: Automated machining of CAD
sketches. Proc. of ASME DETC'98, 1-11, 1998.

[CATIA] Dassault Systemes Catia CAD System, web site
available at www.catia.com, May 2003.

Figure 15: Stroke types in BlobMaker Figure 16: Expectation list for ambiguous stroke

[Contero01] M. Contero, F. Naya et al., Calligraphic In-
terfaces and Geometric Reconstruction, 12th ADM In-
ternational Conference on Design Tools, September
2001.

[Corel] Corel Draw drawing application available
through www.corel.com, May 2003.

[Douglas73] D. Douglas and T. Peucker. Algorithms for
the reduction of the number of points required to rep-
resent a digitized line or its caricature. Canadian Car-
tographer 10, 2, 112--122, 1973.

[Farin99] G. Farin, Curves and Surfaces for CAGD, A
Practical Guide, Academic Press, New York, 5th Edi-
tion p. 227,1999.

 [Galin99] E. Galin, A. Leclercq and S. Akkouche, Blob-
Tree Metamorphosis, Implicit Surfaces'99 Confer-
ence, 4: 9-16, Bordeaux, France, September 1999.

[Herot76] C. Herot, Graphical input through machine
recognition of sketches, ACM SIGGRAPH Computer
Graphics, vol. 10, n 2, 97-102, 1976.

[Igarashi01] T. Igarashi , J. F. Hughes ,3D drawing: A
suggestive interface for 3D drawing, Proc. of the 14th
annual ACM symposium on User interface software
and technology, Orlando, Florida, November 2001.

[Igarashi99] T. Igarashi, S. Matsuoka et. al. Teddy: A
sketching interface for 3D freeform design. Proc. of
SIGGRAPH 99, 409–416, August 1999,

[Karpenko02] O. Karpenko, J. F. Hughes, R. Raskar,
Free form sketching with variational implicit sur-
faces. Eurographics 2002.

[Ligthwave3D] LighWave drawing application, available
at www.newtek.com, May 2003

[Lorensen87] W. E. Lorensen and H. E. Cline. Marching
Cubes: A high resolution 3D surface construction al-
gorithm.Computer Graphics. 21, 4(1987) 163-
169,1987

[Maya] Maya modelling workpackage , available at
www.aliaswavefront.com, May 2003

[Michalik02] P. Michalik, D. Kim, B. Bruderlin: Sketch-
and Constraint-based Design of B-spline Surfaces. In
Proceedings of International Conference on Solid
Modelling 2002.

[Necker32] L. A. Necker , Observations on some Re-
markable Phenomena seen in Switzerland: and an Op-
tical Phenomenon which Occurs on Viewing of a
Crystal or Geometrical Solid, in Philosophical Maga-
zine, 3rd series; 1:329-343, 1832.

[Negroponte73] N. Negroponte, Recent advances in
sketch recognition, Proceedings of the AFIPS 1973,
National Computer Conference, 663-675, 1973.

[Nishimura85] H. Nishimura, M. Hirai et al. Object mod-
elling by distribution function and a method of image
generation, Trans. IEICEJ. , 68:718, 1985.

[Pereira00] J. P. Pereira, J. Jorge, V Branco and F. Nunes
Ferreira, Towards Calligraphic Interfaces: Sketching
3D Scenes with Gestures and Context Icons,
WSCG2000, Czech Republic, February 2000.

[Prasad97] L. Prasad. Morphological analysis of shapes.
CNLS Newsletter,n° 139, 1-18, July 1997.

[Sanchis02] F Naya Sanchis, J. A Jorge et al, Direct
Modelling: from Sketches to 3D Models”, 1st Ibero-
American Symposium on Computer Graphics, Gui-
marães (SIACG02), July 2002.

[Sketchup3D] SketchUp CAD system for architectural
design, www.sketchup.com , May 2003.

[SoftImage] SoftImage Animation System available at
www.softimage.com, May 2003.

[Stander97] B. Stander, J. C. Hart. Guaranteeing the to-
pology of an implicit surface polygonization, Proc.
SIGGRAPH97, 279-286, August 1997.

[Sutherland63] I.E. Sutherland, Sketchpad: a man-
machine graphical communication system, Proc.
Spring Join Computer Conference, AFIPS, 329-346,
1963.

[Turk99] G. Turk, J. O'Brien, Shape Transformation Us-
ing Variational Implicit Functions, SIGGRAPH 99,
335-342, August 1999.

 [Turk01]G. Turk, H. Quynh Dinh, J. O'Brien et al., Im-
plicit Surfaces that Interpolate, Shape Modelling In-
ternational 2001, Genova, Italy,62-71,May 2001.

[Turk02] G. Turk, J. F. O'Brien, Modelling with Implicit
Surfaces that Interpolate, ACM Transactions on
Graphics, Vol. 21, No. 4, 855-873, October 2002.

 [VRML97] The Virtual Reality Modeling Language,
International Standard ISO/IEC 14772-1:1997

[Wang03] C. C. L. Wang, M. M. F. Yuen, Freeform ex-
trusion by sketched input, Computers & Graphics,
vol. 27, no. 2, 255-263, April 2003.

[Wyvill98] B. Wyvill, A. Guy and E. Galin, The Blob-
Tree warping, blending and Boolean operations in an
implicit surface modelling system, Computer Science
Technical Reports,1998-618-09, March 1998.

[Wyvill99] B. Wyvill, A. Guy and E. Galin, Extending
the CSG Tree (Warping, Blending and Boolean Op-
erations in an Implicit Surface Modelling System),
Computer Graphics Forum, 18(2), 149-158, June
1999.

[Yngve02] G. Yngve, G. Turk, Robust Creation of Im-
plicit Surfaces from Polygonal Meshes, IEEE Trans-
actions on Vizualization and Computer Graphics, vol.
8, no. 4, 346-359,October-December 2002.

[Zeleznik96] R.C. Zeleznik, K. Herndon et. al. SKETCH:
An interface for sketching 3D scenes. SIGGRAPH 96
Conference Proceeding, 163-170, 1996

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

