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Abstract 
We present BlobMaker, a program for modelling surfaces which uses variational implicit surfaces as a geomet-
rical representation to edit free form shapes. Our approach implements new modelling operations to support 
stroke (pen-based) input. To this end, we have built a complete modeller application. Users can create and ma-
nipulate shapes by sketching on a perspective or parallel view. The main operations are inflate, which creates 
3D forms from a 2D stroke, merge, which creates a 3D shape from two blobs and oversketch, which allows us-
ers to redefine shapes using a single stroke to change their boundaries or to modify surfaces by an implicit ex-
trusion. We compare these techniques with those of other published approaches. Finally, we describe their im-
plementation in BlobMaker.  We have provided additional features such as copying, picking and dragging to of-
fer a natural user interface suitable to free form modelling.  
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1. INTRODUCTION 
Modelling applications have become essential tools in the 
animation and manufacturing industries and now play a 
crucial role in the design workflow. However, CAD in-
terfaces have not evolved much past the WIMP (Win-
dows, Icons, Mouse and Pointing) paradigm to match the 
spectacular increase in modelling power of these sys-
tems. As a consequence, CAD systems have become very 
complex, requiring high technical knowledge and long 
learning periods to develop fluency. These problems 
make such systems difficult to use for traditional design-
ers. While WIMP interfaces represent a considerable 
improvement over command line applications, menu-
based interactions do not map naturally to pen-and-pencil 
drawing modes. Analysing the actual command usage in 
a representative commercial CAD application, we can 
verify that 75% of user time is spent in menu navigation, 
picking and selection instead of model input [Sanchis02]. 
While this approach may be acceptable for input via 
mouse and keyboard, the emergence of pen-based sys-
tems should motivate developers to devise input methods 
suited to exploiting the drawing capabilities enabled by 
styli. We propose the term calligraphc interfaces to de-
scribe a new generation of systems organized around 
drawing and sketching as the main structuring concepts. 
Although pen-based input devices are supported to some 
extent by many modern applications, they are not used as 
well that they can be for 3D modelling in contrast to 2D 
sketching programs. Indeed, the paper and pencil meta-
phor can leverage both ergonomic and human-learned 

skills, offering advantages both in drawing speed and 
rich expression enabled by pen movements and pressure. 
Applications such as Corel Painter [Corel] constitute a 
good example of this. However, conventional 3D model-
ling applications restrict pen-based input to entering 
point data. While programs such as 3D Studio 
Max [3DMax], Lighwave 3D [Ligthwave3D], Maya 
[Maya, SoftImage] and CAD systems such as Dassault 
Systems’ Catia [CATIA] allow some type of free form 
modelling, they require detailed knowledge about the 
underlying geometric representations such as 
NURBS [Farin99] and the intricacies of their mathemati-
cal formulations, which makes such applications difficult 
to use by traditional designers.        
In the next section, we survey previous research work in 
free-form modelling interfaces. Then we present a de-
scription of variational implicit surfaces. Sections four 
and five describe in detail modelling operations based in 
sketch input. Then we present an implementation of those 
techniques as embodied in BlobMaker. Finally, we draw 
conclusions and highlight possible improvements for 
future work. 

2. GESTURE-BASED MODELLING INTERFACES 
Ivan Sutherland’s SketchPad [Sutherland63] was the first 
graphical program to allow precise drawing using a calli-
graphic interface, modelling hierarchy and constraints. In 
the 1970’s, several research works followed up on these 
ideas through sketch-based recognition and tablet sys-
tems [Negroponte73, Herot76].  



 

 

In the early 1990’s, the first generation of pen computer 
fostered the emergence of new interfaces based on sketch 
input. SKETCH [Zeleznik96] and SKETCH-N-
MAKE [Bloomenthal98] systems, combined gesture and 
geometric recognition to allow creating and modifying 
3D models. These systems define a specific gesture 
grammar language to allow creating simple 3D primitives 
in an orthogonal view; for example, three concurrent 
lines define a rectangular prism. This gesture language 
allows users to specify CSG operations and to define 
quasi-free form shapes (such as ducts) through extrusion. 
Several works introduced gestures for constructing com-
plex 3D models using line reconstruction algorithms. For 
example, GIDES [Pereira00] allows users to sketch on an 
orthogonal view, which combines with a suggestive in-
terface to reduce the command set. The system provides 
a language similar to SKETCH to create complex mod-
els. It uses specific commands to allow constrained posi-
tioning between elements and construction lines to define 
specific locations, to constrain the output of the recog-
nizer and allow rigorous drawing with imprecise 
sketches. CHATEAU [Igarashi01] provides another good 
example of a suggestive interface. Like GIDES and 
SKETCH, COSMO [Michalik02] uses a gesture lan-
guage to specify extrusions. While these systems offer 
support for prismatic, extruded and revolution shapes, we 
need more elaborate functions to support “true” free form 
modelling.  
REFER[Contero01] and SKETCHUP [Sketchup3D] pro-
vide other examples of modelling using line drawings for 
architectural applications. Both systems feature recogni-
tion and reconstruction of models from straight lines. 
One serious problem with line drawings is the Necker 
ambiguity [Necker32] characteristic of 3D wire-frame 
models. The SKETCHUP system offers new operations 
for interaction through boundary editing, such as face 
and edge dragging that are much simpler than conven-
tional CSG methods. 
The different approaches presented here, offer good solu-
tions for assembling complex models but are limited to 
extrusions or CSG combinations, which offer a poor sub-
stitute for free form shapes. Most notably, they are un-
able to model “soft” forms such as a human head or bio-
logical shapes (animals) or surfaces on a car body. 

3.  SKETCH BASED FREE FORM MODELLING 
Brian Wyvill [Wyvill98] introduced the BlobTree, which 
is an implicit surface model based on skeleton primitives 
to describe soft objects. A prototype system described in 
that work uses sketches for defining skeleton primitives. 
Skeletons define blobs using a specific language, for ex-
ample, a line defines a cylinder and a point a sphere.  
Interestingly in BlobTree, combining implicit surfaces 
with CSG operations, presents a mixture between line-
based interaction and a “real” free form approach. How-
ever, this method is still too similar both in its virtues and 
limitations to the gesture-based systems described above.     

A more familiar approach for free form editing is to 
sketch in 2D the contours of 3D shapes. This is more 
natural than using extrusions. The first work using con-
tours for free form modelling was the Teddy system [Iga-
rashi99]. Teddy presents a very simple interface that 
combines extrusions with contour-based shape creation. 
The system offers several operations to modify the start-
ing shape, which is normally a blob created by inflating a 
2D contour. This system had a great impact in the Com-
puter Graphics community due to its simplicity. It pro-
vides simple primitives to extrude, bend, cut or smooth 
shapes. Geometric representations in Teddy use a trian-
gulated mesh that can be modified through stroke input. 
Sketches are projected on the mesh according to the cur-
rent view. However, Teddy is only able to construct one 
object at a time and does not support hierarchy.  
In recent years, several projects have followed the steps 
of Igarashi. One of the most interesting is Kar-
penko’s [Karpenko02], which was the first to adopt a 
mathematical implicit representation. Like Igarashi, Kar-
penko presents a simple interface for free form model-
ling. Notably, she models geometrical objects through 
variational implicit surfaces [Turk99] instead of polygo-
nal meshes. We present these in detail in the next section. 
This application organizes models in a tree hierarchy, 
allowing constrained move operations between tree 
nodes and creating distinct objects in the same scene. The 
main operations offered by the interface are merge, 
which allows combining two blobs and oversketch for 
redefining the boundary of a blob. Karpenko’s modeller 
presents simple navigation facilities to allow users to 
rotate and translate objects. Teddy did not support these 
features since it cannot handle multiple objects. Another 
interesting aspect is the use of guidance strokes to help in 
merging shapes. However, these guidance strokes are a 
symptom that the merging operation could be improved 
and further simplified towards a more natural interaction.  

4. VARIATIONAL IMPLICIT SURFACES 
Variational implicit surfaces (VIS) were introduced by 
Turk [Turk99, Turk01, Turk02]. VIS are smooth and 
respect a set of constraint points. VIS are always closed 
and can have arbitrary topology.  They are implicitly 
defined by a mathematical function f, where the surface 
is the set of 3D points which verify f(X)=0. Their main 
difference to other implicit models such as meta-balls 
[Nishimura85] and BlobTree, lies in that the surface has 
to obey constraint points specified by the user. VIS inter-
polated a cloud of points in a manner similar to thin-plate 
interpolation. This approach interpolates a cloud of 
points. To find the implicit function that respects all the 
constraint points with a minimum of curvature, f(x) is 
defined such as to minimize (1): 
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There are several approaches to solve this problem. Turk 
decomposes f(x) into a linear combination of radial basis 
functions φ centred on the constraints, using φ(X) =|X|3. 



 

 

The interpolated function, which satisfies the condition 
presented in (1) and defines the variational implicit sur-
face, is presented in (2): 
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Where cj are the locations of the constraints on the sur-
face, dj  are the weights on each constraint, P(X) is a one-
degree polynomial which can be omitted if the number of 
constraints is greater than eight [TURK01]. 
For the calculation of the weights dj, we know the value 
hj of the height field for each constraint such as f(cj)= hj. 
Based on Equation (2), the following linear system is 
defined in (3): 
   HDM =.    (3) 

 In (3), D= [dj] are the unknowns, H= [hj] are the height 
field values and M, a matrix defined as a function of φ, P 
and cj. While the linear system can be solved using LU 
decomposition in O (k3) steps where k is the number of 
constraints, iterative methods can solve large-scale sys-
tems in O (k2). 
To simplify creating VIS, Turk proposes a method based 
on four different types of constraints: 
• Boundary constraints cj, placed on the boundary of 
the surface such that  f(cj)=hj  with hj=0  
• Normal constraints cj, located outside the surface at a 
tiny distance to the boundary using the normal to the sur-
face. These constraints verify f(cj)= hj with  hj=1 
• Interior constraints cj, located arbitrarily inside the 
surface such that  f(cj)= hj with  hj<0  
• Exterior constraints cj, located arbitrary outside the 
surface such that  f(cj)= hj with  hj≥1 
It is possible to create variational implicit surfaces by 
specifying only boundary and normal constraints as 
shown in Figure 1. We can also use this principle for 
converting polygonal meshes into VIS [Yngve02].  
The flexibility of this representation allows defining 
complex and smooth models with arbitrary topology. We 
use it in our modeller, since it provides a compact and 
mathematically simple means of describing a surface 
using constraints, weights and a first order polynomial. It 
affords flexibility for computing normal and curvature 
information, while ensuring C2 continuity. 

5. FROM 2D TO 3D: INFLATION  
In this section, we propose our method for creating 3D 
VIS based on user 2D stroke input, using an inflation 
process similar to [Karpenko02]. We present an overview 
of the algorithm, followed by the description of the rele-
vant steps.  
The inflation process takes a set of 2D input points 
(stroke) and creates a 3D object matching the contour 
drawn by the user. The following list presents the differ-
ent steps of the process: 
• Filtering the 2D stroke : this step receives the input 
set of 2D points from the user and simplifies it 
• Verifying the filtered stroke : this step rejects incor-
rect parts of the stroke such as self-intersections 
• Skeletonizing the 2D stroke: this step analyzes the 
entire stroke and creates a 2D skeleton with all the rele-
vant topological information. The skeleton allows the 
reconstruction of the input stroke and the information 
about the thinness of the enclosed region in order to per-
form depth inflation 
• Mapping the 2D stroke into a 3D contour: this step 
transforms the 2D stroke and skeleton information to a 
3D virtual plane according to the actual definition of 
viewport and view parameters, computing both normal 
and depth information  
• Creating and visualizing the 3D implicit surface: this 
step creates a VIS to represent the blob, which matches 
the contour’s skeleton. The polygonization process cre-
ates a triangulated mesh together with surface normals at 
each vertex, which is suitable for rendering. 

5.1 Main contributions of our work 
Igarashi and Karpenko developed two different methods 
to create 3D surfaces from 2D strokes. Both approaches 
have advantages and limitations. In Teddy, the inflation 
process directly yields a triangulated mesh. This ap-
proach restricts the possible operations on objects to local 
mesh modifications, making it difficult to merge two 
meshes. Furthermore, triangular meshes pose problems in 
modelling arbitrarily smooth shapes. To overcome these, 
Igarashi introduced a smoothing operator which applies 
local subdivision to the mesh. Even though we use simi-
lar methods for skeletonization, Teddy takes a different 
approach to inflation. Also,both Igarashi and Karpenko 
follow the same approach for filtering and mapping the 
2D stroke, which is dependent on screen resolution. They 
reject consecutive 2D points closer than a specified num-
ber (15) of pixels. This can result in important details 
being dropped from the resulting surface. 
While our approach to inflation is similar to Karpenko’s, 
her method might present incorrect results due to her 
screen-dependent filtering method and incorrect tech-
nique for depth classification. Her approach only defines 
two constraints on the VIS to define shape thickness. 
This brings about several limitations. One of them is that 
the merging operator requires a re-sampling of the trian-
gulated mesh. This increases the number of constraints 

Figure 1: Example of boundary (o) and normal 
(+) constraints in variational implicit surfaces



 

 

on the VIS dramatically, thus incurring in additional 
computational costs for matrix solving. Another conse-
quence is that merging a big blob with a very small one 
will be impossible without loss of detail. In our approach, 
all modelling operators use only the mathematic repre-
sentation of surfaces and skeleton information. The next 
sections describe in more detail our inflation process. 

5.2 Filtering the input stroke  
Since sampling stroke points from an electronic digitizer 
depends of the interrupt processing capability of the op-
erating system, points on an input stroke tend not to be 
evenly spaced. For example, some points can be repeated 
or their number can be unnecessarily large depending on 
the speed at which the stroke was drawn. 
As discussed before, Igarashi and Karpenko follow an 
approach to stroke filtering which depends on screen 
resolution. Our approach, uses a greedy filtering algo-
rithm similar to Douglas-Peucker [Douglas73]. Figure 2 
presents an input stroke and the result (red points) of 
filtering; the input stroke on the left contains 2081 points 
which reduce to 92 points after filtering.  
Finally, we analyze the filtered stroke, rejecting self-
intersecting parts. This step is necessary because the 
boundary of a shape cannot be self-intersecting when the 
stroke will be projected in a 3D virtual plane. In our ap-
proach, the first non-intersecting loop found in the fil-
tered stroke remains and the remaining points are re-
jected. as shown in Figure 2.  

5.3 Skeletonization of 2D Strokes 
The skeletonization step transforms the filtered points to 
reveal all the information of the stroke, by means of a 
Chordal Axis Transform [Prasad97], which is normally 
used for 2D shape recognition. The skeletonization and 
applies a Constrained Delaunay Triangulation to the in-
put polygon, using the edges of the filtered stroke as con-
straints. We then generate three kinds of connectivity 
information for the triangulated polygon as illustrated in 
Figure 3, where triangles fall into one of three categories: 
•  Terminal Triangle: triangles with one neighbour 
adjacent in the polygon (small outside triangles shown in 
green) 

• Seed Triangles: two neighbours are adjacent to these 
triangles in the polygon (depicted in blue) 
• Joint Triangles: triangles with three neighbours in 
the polygon (painted in red) 
Then we transform the triangulated polygon into a skele-
ton where terminal triangles terminate limbs and joint 
triangles are connections in the hierarchy. Figure 4 pre-
sents an example skeleton of a stroke similar to a hand. 
We can verify that the skeleton respects the shape, be-
cause the red edges result from joint triangles. For each 
node in the skeleton, we save its distance to the border as 
depth information. This procedure may generate some 
irrelevant branches (these appear in yellow in the figure). 
Since they are meaningless for the topology of the shape, 
they are rejected by a post-processing step.  
Our process is similar to that followed by Igarashi except 
for the last step, where he derives a 3D mesh from the 2D 
triangulation, while we create a VIS from the skeleton 
information. 

5.4 Projecting 2D points onto 3D virtual plane 
At the end of the 2D analysis, the inflation proceeds with 
a mapping step, which transforms all 2D points into 3D 
scene coordinates. Since 3D Blobs are conceptually 
drawn on a 3D virtual plane, which is parallel to the pla-
nar drawing surface and their visualization uses a per-
spective projection, we need to apply the “inverse projec-
tion” defined by the virtual camera to each 2D point in 
the filtered stroke. The skeleton is also mapped onto the 
3D virtual plane using the view camera projection and 
depth information is updated accordingly.  
Figure 5 shows how we perform this mapping. As a re-
sult of this step, we obtain a 3D outline that defines the 

Figure 4: Example skeletonization of a 
stroke with depth information 

Figure 2: Example of filtering step, centre and 
right figures show self-intersecting strokes. 

Figure 3: Chordal Axis Transform for skeletoniza-
tion based on Constrained Delaunay Triangulation 



 

 

boundary of the blob and a mapped 3D skeleton in scene 
coordinates. This mapping step yields all information 
required for the implicit surface representation.  

5.5 Creating Variational Implicit Surfaces  
Our variational implicit surface model, which is based on 
boundary and normal constraints as presented by Turk, 
uses the 3D mapped stroke to provide boundary con-
straints. Other boundary constraints use depth informa-
tion from the skeleton as shown in Figure 6 to define 
additional points symmetrically placed to the left and to 
the right of the mapped stroke. The look-at vector of the 
3D virtual camera defines the left and right direction. For 
each boundary constraint, we create a normal constraint 
by displacing the boundary points by 0.05 along the nor-
mal direction. 
After defining all boundary and constraint points, we 
have a linear system as presented in section 3. This is 
then solved, using a matrix resolution method such as LU 
factorization, to obtain a complete definition of a VIS. At 
the end of the inflation process, the implicit function is 
polygonized for visualization as shown in Figure 6. The 
polygonization process uses an adaptive method de-
scribed elsewhere [Araújo2003]. 

6. MANIPULATION OF IMPLICIT SURFACES 
This section describes possible modification operators on 
implicit surfaces for modelling. First, we present an over-
view of possible operators and discuss limitations inher-
ent to implicit representations. The following sections 
describe solutions to implementing merging and over-
sketching operators in our demonstrator.  

6.1 Operations between Implicit Surfaces 
Our approach considers that the natural way of emulating 
paper and paper drawings is through oversketching. 
Similarly to Karpenko, we define two main operators, 
oversketching and merging. By analyzing the ways in 
which designers specify free-form surfaces, we verify 
that they modify surfaces by repeatedly sketching over 
the boundary of the shape until the desired form is ob-
tained. For this reason, our main modification operator is 
based on oversketching. 
The merge operator is an extended useful tool because it 
allows combining partial objects to form a unique 3D 
shape. While the merge operator seems superficially 
similar to the traditional Boolean union, it actually has 

different semantics, since it blends blobs. The resulting 
shape remains smooth, which guarantees C2 continuity. 
Of course, this approach brings about some limitations, 
since sharp edges and creases cannot be created through 
this method. This is unavoidable since the mathematical 
representation of implicit surfaces is defined to be C2 
continuous, which makes it impossible to represent non-
continuous features such as sharp edges. 
Mathematically, it is simple to define a model supporting 
Booleans operation using implicit surfaces. However, the 
C2 continuity of the VIS model invalidates this issue. 
Given F1 and F2 mathematical functions that define im-
plicit surfaces, the following list presents the most com-
mon Boolean operations using implicit surfaces: 
• Union  :F1 ∪  F2 = min  ( F1, F2 ) 
• Intersection  :F1  ∩ F2  = max  ( F1, F2 ) 
• Difference :F1  /  F2  = max ( F1 , -F2 ) 
We can verify that the major problem with this represen-
tation is using non-continuous mathematical functions, 
such as maximum and minimum. It is possible to support 
these operators with a hybrid representation such as Wy-
vill did with the BlobTree [Wyvill99, Galin99]. How-
ever, these operations are not familiar for traditional de-
signers that follow the paper and pencil metaphor. 

6.2 Using Skeleton Information  
The key feature of our approach lies in using skeleton 
information generated during the inflation process of a 
blob. We extend this to allow manipulating blobs. The 
main advantage is that we do not use mesh information to 
implement merge operators, which is one of the main 
shortcomings in [Karpenko02]. As seen in the previous 
section, the merge operator could be specified only 
mathematically. However, this solution requires complete 
knowledge of all mathematical information such as the 
location of the critical points of the function. This would 
require us to identify the local, global minimum, maxi-
mum or saddle points of the implicit function. 
[Stander97] presents an approach to do this. Using Morse 
Theory, he is able to extract all the topological informa-
tion of the shape from the mathematic definition. How-
ever, this is both very difficult to implement and costly in 
computational processing time to guarantee that all the 
information has been extracted. It is not clear how to 
make  this approach suitable for a real time modeller.  

Figure 6: A skeleton and its corresponding poly-
gonized implicit surface 

Figure 5: Projecting 2D stroke into 3D virtual 
plane based on virtual camera definition 



 

 

Karpenko presents a suitable solution to this problem, 
which combines the expressiveness of a mathematical 
formulation of surfaces with the flexibility of the triangu-
lated mesh for visualization. However, this solution is 
only suitable for few steps. Repeated application of 
merge or oversketching operations, adds many unneces-
sary constraint points due to resampling. This may easily 
result in thousands of spurious constraints after a few 
operations. Generating a VIS anew from such constraints 
becomes impractical with current hardware. Thus, this 
approach is not appropriate for interaction at real time 
rates. Another limitation is that resampling automatically 
erases all features of the merged shapes which are 
smaller than the sampling interval. 
To overcome the limitation identified above, we base our 
solution on the surface skeleton, its associated depth in-
formation and its VIS. Since skeletons can be merged or 
modified without using the mesh information and the 
VIS is recreated at each step, this guarantees that small 
features will be preserved by the modification operators 
without our needing to use the triangulated mesh. While 
the merge operator blends two skeletons, oversketching 
modifies or appends new data to the original skeleton. 
The interesting feature of this approach is that all strokes 
input for oversketching define a new skeleton, which we 
then merge to the original. After merging strokes, we 
drop all points that lie inside the merged stroke. The fol-
lowing sections present a detailed description of the algo-
rithms for merging and oversketching.  

6.3 Merging blobs 
For the merging operator, let us consider the two blobs 
selected to be merged; the variational implicit function 
FA and skeleton SA define the first blob and FB, SB the 
second one. Both implicit functions use constraint points 
inferred from their respective skeleton. These are enough 
to define all the characteristics of each shape. Then we 
perform a step, presented Figure 8, to know which con-
straints from both blobs will remain valid after the merg-
ing operation. 
After this step, we generate all the constraints for the new 
shape. Using inflation, we create a new blob. The skele-
tons of both the new and old blobs are merged. The re-
sulting skeleton is then attached to the result blob. Figure 

9 shows some examples of the merging operation pre-
senting in both shaded and wire frame views. 
While the results obtained by our implementation are 
visually similar to Karpenko’s, we can handle situations 
not supported by her method. Moreover, the resulting 
merged blob uses less constraint points. Thus, interactive 
performance is better for our modelling application since 
the cost of computation the VIS is smaller. The main 
problem with Karpenko’s approach lies in that it uses 
only two constraints to define depth during inflation. 
This requires sampling the triangular mesh to perform the 
merge, which limits the guarantee of fidelity of finer fea-
tures of both blobs in the resulting shape. Furthermore, 
her sampling method uses vertices resulting from a 
Marching Cubes polygonization [Lorensen87, Bloomen-
thal94], which depend on the characteristic edge size of 
the subdivision and yields too many constraints on the 
merged shape. Even though our approach uses more con-
straints to define the object in the inflation process, the 
merged blob will have fewer constraints. Figure 9 shows 
examples of applying the merge operation to groups of 
different blobs. The figure shows the shaded polygoniza-
tion, wireframe and skeleton views to illustrate the dif-
ferences, between our approach and Karpenko’s. 

Figure 7: Example of skeleton resulting 
from several merge operations 

Construction of constraint set for merging 
(FA, SA, FB, SB) { 
   Initialize the result set to empty 
 
   For each CA (boundary constraint) of FA { 
      if ( FB(CA)>= 0 ) 
      then CA and the respective normal is     
      inserted in the result set  
      else CA and the respective normal  
      constraints is rejected 
   } 
   For each CB (boundary constraint) of FB { 
      if ( FA(CB)>= 0 ) 
      then CB and the respective normal is 
      inserted in the result set  
      else CB and the respective normal  
      constraints is rejected 
   } 

return the result set 

Figure 8: Pseudo-code for the construction of the 
constraint set for the merging of two blobs 

 

Figure 9: Example of merging operations 
with resulting skeleton and meshes  



 

 

6.4 Oversketching blobs 
Oversketching enables two different operations on blobs. 
First, it allows users to redefine the boundary of shapes. 
This is similar both to Igarashi’s bend operator and Kar-
penko’s oversketching. Another possibility is to create 
extrusions. In Teddy, extrusion is the main modelling 
primitive. Two input strokes define the extrusion, the 
first defines the base area affected by the extrusion, while 
the second defines the profile of the extrusion. The im-
plementation of this solution exhibited some limitations 
in Teddy, corrected recently by [Wang03]. We will show 
that using the skeleton information for the profile stroke 
of the extrusion and its area for the base allows specify-
ing the extrusion in a single pass, by applying skeletoni-
zation to the oversketching stroke. The volume defined 
by the skeleton specifies the base of the extrusion. This 
information helps to distinguish a boundary redefinition 
from an extrusion. Oversketching involves six different 
steps. First, we apply stroke filtering, followed by 2D 
skeletonization as in the inflation process. Then we pro-
ject the stroke and its 2D skeleton on a plane cutting the 
surface perpendicularly to the look-at vector of the 3D 
virtual camera. Next, we identify and reject all con-
straints of the blob located inside the oversketching area. 
After, we insert the new constraints defined by the over-
sketching skeleton. Finally, we use the resulting skeleton 
to create the new blob. 

6.4.1 Projecting oversketch strokes 
After filtering the input stroke and creating its skeleton, 
2D input points need to be transformed to 3D coordi-
nates. This process is different from that used in the ini-
tial step of the inflation, since the stroke must be pro-
jected on the contour plane of the target surface, as 
shown in Figure 11. The 3D virtual plane is defined us-
ing the first and last points of the input stroke. Both 
points are projected using a function, which computes the 
intersection between a ray defined using the 2D endpoint 
coordinate and the position of the 3D virtual camera. The 
2D coordinates in the viewport represent the position of 
the stroke endpoint in the near plane of the camera. We 
calculate the 3D coordinates of the near plane of the 
camera according to the size of windows, the fov of the 
camera and the distance of the near plane to the camera 
position.  

The ray intersections yield the start and end points of the 
stroke as projected in the surface on the contour plane. 
We define the 3D contour plane by the middle point be-
tween these two and it is perpendicular to the camera 
look-at vector. We then project the points of the filtered 
stroke and its skeleton onto this plane. Another possibil-
ity is to define the 3D plane normal to the surface. We 
tried this and computed the normal plane, using a vector 
perpendicular to the ‘true’ normal to the surface at the 
middle point. This solution was used by [Wang03] as a 
correction to problems with profile calculations in Teddy. 
Still, this can lead to incorrect results as users conceptu-
ally draw on a plane perpendicular to the view direction.  

6.4.2 Constructing the oversketched blob 
To construct the new blob, we need to define the corre-
sponding set of constraints. First, we start by verifying 
each constraint of the original blob, by checking to see if 
it lies inside the bounding box of the projected skeleton 
and reject those that do. All others will be retained to 
define the resulting blob. This test is very simple to per-
form since we only need to verify whether a 3D point is 
inside an oriented bounding box.  
The skeleton of the oversketching stroke generates new 
constraints for the blob, following a different strategy 
depending on whether we are creating an extrusion or 
redefining the boundary of a shape. In case of boundary 
redefinition, the stroke does not generate any new depth 
constraints. Only boundary constraints are defined from 
the input stroke. The extrusion operation creates bound-
ary constraints from both the stroke and the original 
skeleton. For each boundary constraint, we create a nor-
mal constraint using the normal vector of the projected 
stroke in the 3D virtual plane. This is then combined with 
the real normal to the surface computed at the first and 
last point of stroke as projected over the surface. 
Figures 12 and 13 show two examples of oversketching; 
the first presents a boundary redefinition and the second 
an extrusion. We can verify that the skeleton associated 
the boundary redefinition does not generate any con-
straints in depth (red points near black branch of the 
skeleton in the figures). However, in the case of extru-
sion, we insert additional constraints to define the depth. 
The case for this distinction is simple to state. If the 
depth constraints for extrusion were to disappear, the 
depth of the blob in the oversketched volume would only 

Figure 10: Example of oversketching operation Figure 11: Mapping 2D stroke for oversketching 



 

 

be influenced by the depth constraints of the original 
blob. This would be incorrect, because the result of over-
sketching a shape boundary may yield different topology 
features, thus defining an implied extrusion as seen in 
Figure 13.  
We assess the need for additional constraints for extru-
sion by looking at input stroke characteristics. We meas-
ure the importance of the stroke by computing the ratio 
of the distance between its first and last points to the 
height of the volume it influences. In Figure 12, the base 
of the stroke is larger than the length of its skeleton; the 
resulting operation will be a boundary redefinition. On 
the other hand, in Figure 13, since the base is smaller 
than its length, the operation will be an extrusion. 
Finally, we define the constraints for the oversketched 
blob. Then we generate the new blob and attach the 
merged skeleton to it.   

7. BLOBMAKER 
BlobMaker is an application for free form modelling 
based on variational implicit surfaces. It allows the user 
to create 3D blobs using the inflation process described 
in section 5. The modeller allows the user to modify 
shapes using the merging and oversketching operators 
presented in section 6. Visualization and rendering of 
implicit surfaces are based on OpenGL API using trian-
gular meshes. 
 Our approach provides different tools to support creating 
and editing blobs. Users can translate, rotate and copy 
objects, with support for unlimited Undo and Redo. It is 
possible to save and retrieve Blobs to/from STL 
[3DSystems88] and VRML [VRML97] formats. Users 
can visualize Blobs in several different modes such as 
Wireframe, Polygonal with Gouraud shading using 
OpenGL, or more faithful rendering modes such as Ray 
Tracing and Phong Shading. Users can also control mesh 
quality either through our approach or through Marching 
Tetrahedra [Bloomenthal94]. 

7.1 Interface 
The BlobMaker interface divides the screen into two ar-
eas as shown in Figure 14. The first area, on the top of 
the window, is a toolbar that allows the user to select the 
following tools: drawing, merging, oversketching, trans-
lation, rotation, copy, undo/redo functionality and wire-
frame rendering mode. The second area represents the 
working space where the user can draw, manipulate and 

visualize the 3D free form shapes. The working space 
offers a perspective view of the modelling scene. The 
virtual camera defines the point of view of the user, 
which is centred in the zero-plane XY. To ease the depth 
perception and positioning relationship between blobs, 
the zero-plane XZ is drawn as the ground of the scene in 
a rose colour. This virtual camera is used for the projec-
tion of the 2D viewport based input inserted by the user.  

7.2 Stroke-based interaction 
Figure 15 presents the different kinds of user input possi-
ble during interaction with the modeller. All operations 
are selected using the toolbar area, which removes any 
ambiguity from stroke semantics; i.e. the distinction be-
tween a merging, inflation or oversketch stroke is made 
explicitly through menu selection. 
When the user selects the drawing operation, subsequent 
2D input will be interpreted as the boundary of a 3D 
shape. Of course, some strokes are invalid in this context, 
such as straight lines. Input strokes can be closed or 
open, however open curves must converge to a well-
defined closed boundary. To detect this feature, begin 
and end segments of an input stroke must define inter-
secting straight lines that “close” the stroke. For the 
merge operation, the user needs to draw an arbitrary 
curve, linking two distinct blobs. The system uses begin 
and end points to pick each blob. Similarly, we use end-
point to picking and select objects as targets for over-
sketching, translation, rotation and copy operations. 
Since points are specified on a planar viewport, depth 
positioning can be ambiguous. Our modeller solves this 
problem using the “ground” visualization. The user can 

Figure 12: Example of boundary redefini-
tion with oversketching 

Figure 14: BlobMaker interface

Figure 13: Example of implicit extrusion using over-
sketching 



 

 

select a blob by its shadow,which is the planar projection 
of the blob onto the ground. This feature makes it easy to 
do relative positioning of shapes and offers two different 
ways to select a blob: either by clicking on the rendered 
projection of the blob or on its shadow. 

7.3 Improving interaction using stroke analysis 
By using skeleton and stroke information, we can im-
prove interactions and avoid using the toolbar. We have 
found from experience that users prefer to draw, since 
this matches best the affordances of the stylus. Conse-
quently, they sometimes forget to select the “right” com-
mand beforehand. This is the most common source of 
errors when using the interface. We have implemented a 
second mode in the application where the toolbar only 
offers undo/redo functionality and switching between 
wireframe and shaded views.  
In this mode, some strokes are ambiguous, for example 
oversketching gestures can sometimes initiate inflation. 
To solve this, we use dynamic expectation lists as intro-
duced by [Pereira00] to present all possible interpreta-
tions of an ambiguous stroke to the user as exemplified 
by Figure 16. If the stroke is not ambiguous, the opera-
tion takes effect immediately. Thus, simple actions can 
yield different semantics. A click on a blob selects that 
object. Subsequent clicks create copies of the selected 
object. In addition, a straight line or an arc joining two 
blobs define a merge operation. A stroke whose end-
points lie on the same blob defines an oversketch opera-
tion on that blob. A closed stroke or a similar curve cre-
ates a new shape. In this manner, all the main interactions 
can be sketch-based. This mechanism can also avoid use-
less undo/redo commands due to erroneous use of but-
tons in the toolbar.  

8. CONCLUSIONS AND FUTURE WORK 
The proposed interface and operations are suitable for a 
complete free form modelling system. We feel that our 
sketch-based approach provides a natural interface for 
traditional designers not familiar with either geometrical 
constraints or the internal representation details of 
NURBS. In this work, variational implicit surfaces limit 
free forms to closed surfaces and smooth shapes. In the 
future, we would like to extend our system using hierar-

chical CSG combinations of VIS and support discontinu-
ous representations using cuts as in Teddy. Another in-
teresting development is to add primitives for NURBS 
creation and manipulation, since these are the more com-
monly used geometric representation in CAD and manu-
facturing. However, this is a non-trivial task, especially if 
we are to derive compact constrained representations 
from free form primitives. Following Igarashi, we would 
also like to add non-photorrealistic rendering of objects 
to better match the pencil-and-paper sketching metaphor. 
Work is already underway on this front. 
In this paper, we have presented a stroke based modeller 
application for 3D free form modelling using variational 
implicit surfaces. The different operations proposed for 
free form manipulation have shown oversketching to be a 
powerful and suitable tool for 3D modelling. Informal 
evaluations show great promise for this tool as being 
more adequate for traditional designers, who are familiar 
to the pencil and paper metaphor. This too, should be 
assessed by extensive usability evaluations in the future.  
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