
Curvature Dependent Polygonization of Implicit Surfaces

Bruno Rodrigues de Araújo Joaquim Armando Pires Jorge
Department of Information Systems and Computer Engineering

INESC-ID/IST/Technical University of Lisbon
R. Alves Redol, 1000-29 Lisbon, PORTUGAL
brar@immi.inesc-id.pt,jorgej@acm.pt

Abstract

We present an algorithm for polygonizing closed im-
plicit surfaces, which produces meshes adapted to the lo-
cal curvature of the surface. Our method is similar to, but
NOT based on, Marching Triangles, in that we start from
a point on the surface and develop a mesh from that point
using a surface-tracking approach. In a marked depar-
ture from previous approaches, our meshes approximate
the surface through heuristics relying on curvature. Fur-
thermore, our method works completely on-the-fly, re-
solving cracks as it proceeds, without the need for any
post-remeshing step to correct failures. We have tested
the algorithm with three different representations of im-
plicit surfaces, Variational, analythical and MPU, using
non-trivial data sets, yielding results that illustrate the
flexibility and scalability of our technique. Performance
comparisons with variants of Marching Cubes show that
our approach is capable of good accuracy and meshing
quality without sacrificing computing resources.

1. Introduction

Polygonization of implicitly defined surfaces has
been the subject of considerable work in the past years.
This is because such surfaces are instrumental in rep-
resenting smooth objects in a number of fields ranging
from animation and computer aided design to medi-
cal imaging.Constructing a visual representation of the
surface involves obtaining the set of points that sat-
isfy the equation f(x, y, z) = 0 either by ray-tracing,
or by polygonizing the surface. While the most com-
mon polygonization approaches are based on volumet-
ric space decomposition, recent work has focused on
surface-based methods that can often both provide bet-
ter meshing approximations to the intended surface at
a lower computational cost and do so efficiently, i.e.
with a minimum of triangles.

In this document, we describe a fast, progressive al-
gorithm that generates adaptive meshes suitable for use
in interactive applications using Hessian and gradient
information. After surveying related work, we discuss
curvature measures in detail. Then we describe our al-
gorithm. Finally we present results from our work, com-
paring them to space-subdivision approaches and dis-
cuss performance vs. quality tradeoffs.

2. Previous Work

Since their introduction, implicit surfaces provide
a solution of choice for imaging medical information
or point sets arising from digitizing complex models
thanks to their flexibility in manipulating data. How-
ever precise and fast visualization of implicit surfaces
is difficult. Since the more obvious approaches based
on ray-tracing [9, 7, 25, 14] are computationally too
expensive for interactive applications even using so-
lutions for speeding intersection calculations such as
Kalra [15].fTherefore, subsequent research has focused
on approximating surfaces using polygon meshes, more
suitable for real-time visualization using commodity
hardware. Moreover, polygonal meshes enable us to ex-
plore trade-offs between fidelity of representation and
interactive performance. In what follows, we will sur-
vey the main approaches to surface visualization.

Cell partitioning techniques are the most popu-
lar methods for rendering implicit surfaces, by creat-
ing a polygonal mesh that fits the surface. The main
implementation of this method is the Marching Cubes
(MC) algorithm [18] and its variant Marching Tetrahe-
dra (MT) [6] that made it viable to use implicit sur-
faces for representing model data. MC and its many
variants, based on space subdivision provide a simple
and effective approach made popular by the availabil-
ity of source code. However, the resulting meshes are
not homogeneous and they exhibit poor quality.

Surface tracking denotes a family of polygoniza-

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

Figure 1. Different triangulations of Igea Head from a variational implicit surface defined by a 2002 point
dataset: (from left to right): 4492 triangles, 17806 triangles, 33924 triangles, and 47992 triangles

tion techniques including methods such as Marching
Triangles [3] and Hartmann’s algorithm [10]. These ap-
proaches can achieve good results by generating meshes
of evenly-sized and quasi-equilateral triangles. However
these are not adapted to local surface properties, re-
quiring large numbers of small triangles to approxi-
mate surfaces with large variations in curvature. Hy-
brid approaches such as shrink-wrap [29] combine sur-
face tracking with cell partitioning to partially over-
come this, applying a deformations from a sphere to
obtain a suitable approximation to the intended sur-
face.

Adaptive meshing techniques have been devel-
oped to achieve better quality approximations. One
such technique is mesh simplification [11] which, start-
ing from a high-quality mesh, applies edge split and col-
lapse operations to simplify and optimize it. Mesh qual-
ity is assessed in terms of reduced number of triangles,
homogeneous triangle sizes, minimizing distance to the
surface, curvature and normal direction errors among
others. Other algorithms [21, 30] rely on mesh subdivi-
sion. Starting from a topologically correct meshing they
apply subdivision steps, which obey the same crite-
ria and mesh simplification metrics. These approaches
can produce good quality results at the cost of a post-
processing step applied on top of a first approximation
either based on MC such as [26, 23] or MT.

Other techniques try to achieve similar results using
an adaptive triangulation obtained by growing an ini-
tial mesh and then filling cracks as a post–processing
step. One such method is the surface tracker from [4]
which uses a variant of Hilton’s Marching Triangle to
produce an adaptive mesh. Their main result relies on
constraining triangle edge lengths to local surface char-
acteristics using both a mid-point projection heuris-

tic and Delaunay triangulation properties. However,
this method does not use curvature estimation. Karka-
nis [16] developed a similar approach that relies on
heuristic curvature estimation using the minimum ra-
dius of several geodesics that cover a point. However,
this requires expensive computation due to repeated
evaluations of the implicit function for any given point
and it is not clear that this method yields higher accu-
racy than ours.

In the following sections, we introduce a new
method for polygonizing implicit surfaces based on
Hartmann’s [10] which focuses on points and front an-
gles to generate an adaptive triangulation in a sin-
gle step. Our method uses “true” curvature measures
based on differential geometry, to avoid expen-
sive estimation methods while providing good quality
meshes.

3. Curvature Measures for Implicit Sur-
faces

Curvature measures are widely used in Computer
Graphics both to encode shape characteristics and to
improve meshing of surfaces. Since implicit surfaces are
represented by mathematical models, they make it pos-
sible to derive mathematic notions of curvature using
differential geometry. As discussed in [8], methods to
obtain these measures are well defined for parametric
functions, however their application on implicit math-
ematical function is not trivial and not so well doc-
umented. Hugues [12] discusses differential geometry
applied to implicit surfaces, providing interesting clues
to retrieve shape characteristics from implicit function
mathematics. Our approach uses these notions to ex-
tract relevant information from implicit functions as

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

needed by our polygonization algorithm.
Given a point X ∈ R3 such that F (X) = 0 where F

is the implicit function that define our model. The gra-
dient vector �G and the normal unit vector �N are de-
fined at the point X using the first order partial deriva-
tive of F :

�G = �F =
[

∂F
∂x

∂F
∂y

∂F
∂z

]T

and �N = �G

‖�G‖
The curvature information of the function F in R3

at point X is held by the Hessian matrix H, which is
defined by second order partial derivatives of F :

H =

∂2F
∂x2

∂2F
∂xy

∂2F
∂xz

∂2F
∂yx

∂2F
∂y2

∂2F
∂yz

∂2F
∂zx

∂2F
∂zy

∂2F
∂z2

However, the Hessian matrix H represents the curva-
ture evolution of the scalar field F which supports the
implicit function, rather than the surface defined by
F = 0. Indeed, we need to study curvature values and
directions on the plane tangent to F = 0 at X. In or-
der to compute these, we need to use the matrix C
defined by the partial derivatives of the normal �N in-
stead of the Hessian:

C =

∂Nx

∂x
∂Nx

∂y
∂Nx

∂z
∂Ny

∂y
∂Ny

∂y
∂Ny

∂z
∂Nz

∂x
∂Nz

∂y
∂Nz

∂z

The matrix C can be defined using the Hessian ma-
trix S and the gradient vector �G as we can see from
the following equation:

Cij =
Hij ∗ ‖�G‖ − Gi∗dotj

‖�G‖
‖�G‖2

where dotj = �G.
[

Hj0 Hj1 Hj2

]T

Figure 2. Curvature measures for the Stanford
Bunny data set using the MPU implicit model.

Figure 3. Horse’s head showing Principal Direc-
tions of Curvature, kmax (left) and kmin (right)

Since C is defined in terms of the normalized gradi-
ent, one of its eigenvalues has zero value and the cor-
responding eigenvector is normal to the surface (and
thus collinear to �G). The other two eigenvalues k1 and
k2 are called the principal curvatures. Their respec-
tive eigenvectors are the principal directions defined to
lie in the plane tangent to the surface at X. Accord-
ing to [8] and [17], the following curvature measures
can be computed from k1 and k2:

• Gaussian Curvature = k1 ∗ k2

• Mean Curvature = k1+k2
2

• Maximum Absolute Curvature = max(|k1|, |k2|)
• Shape Index = − 2

π arctan kmax+kmin

kmax−kmin

Figure 2 depicts both the shape index (on the left
side) and maximum absolute curvature (on the right)
for a rendering of the Stanford Bunny represented using
the MPU implicit model proposed by [22]. The shape
index is a representation of curvature proposed by [17]
which depicts both the convexity and concavity fea-
tures in a scale-independent manner. Visual compari-
son with Masuda [19] curvature estimation shows that
curvature results are very similar, thus illustrating the
validity of our measures. Figure 3 shows the principal
directions obtained from the matrix C for the Horse
data set, also computed from an MPU representation.

Both the gaussian and mean curvature val-
ues are widely used by re-meshing algorithms and
several works [5, 20] present estimations of these as ap-
plied to meshes. However, our approach uses the
maximum absolute curvature (MAC) to estimate poly-
gon size for two main reasons. For one, we do not
need to distinguish between negative and positive cur-
vature values to compute edge length when creat-
ing polygons. Also, this value is guaranteed to be no
smaller than any curvature measures on the plane tan-
gent to F (X) = 0, regardless of direction. These

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

Figure 4. MPU Igea head polygonized using our
approach (left) and MAC measure (right)

arguments show that the MAC is a reliable mea-
sure of tessellation size at any point of F . We use
MAC to define the minimum radius rmin of curva-
ture as follows:

rmin =
1

max(|k1|, |k2|)

We then use rmin to compute heuristic edge length
for the triangles that constitute the mesh at point X.
However, we limit edge length to avoid creating overly
small or too large triangles. Figure 4 depicts the re-
sulting meshing of Igea Model [1] using our algorithm
and presents MAC values using a color scale. As we
can see in high-curvature areas, depicted in red, trian-
gle size tends to be small and triangles become large in
low-curvature areas, depicted in light blue.

Figure 5. a) Starting triangulation from a seed
point, b) 1st iteration, c) 2nd and 3rd iteration

Polygonization(implicit-surface)
1 pt0 ← Get-Seed-Point(implicit-surface)
2 f0 ← Create-Empty-Front()
3 S ← Create-Empty-Stack()
4 mesh ← Create-Empty-Mesh()
5 Initial-Triangulation(pt0, f0, mesh)
6 Push-Front(f0, S)
7 while Is-Not-Empty(S)
8 do
9 f0 ← Pop-Front(S)

10 while Front-Size(f0) > 3
11 do
12 Actualize-Angles(f0)
13 pt ← Get-Point-Minimal-Angle(f0)
14 ptI ← Self-Intersection(pt, f0)
15 if ptI = nil /* no intersection */
16 then f1 ← Front-Collision(pt, f0, S)
17 if f1 = nil /* no collision */
18 then expand(pt, f0, mesh)
19 else unify-front(f0, f1, S)
20 else split-front(f0, ptI, S)
21 Triangulate(f0, mesh)
22 Delete(f0)
23 return mesh

Figure 6. Algorithm pseudo-code

4. Our Adaptive Surface Tracking Algo-
rithm

Our algorithm works by point expansion along the
surface. We start from a seed point and find its projec-
tion on the surface using an iterative procedure known
as Newton Step. Then we expand that point generat-
ing an hexagon lying on the plane tangent to the sur-
face. Each new vertex is also projected on the surface.
The triangles joining those vertices are added to our
empty tessellation as shown in Figure 5 a). The vertices
of the initial hexagon define the starting front. This is
a closed polygon joining unexpanded points from the
polygonization boundary. Then the algorithm applies
a polygonization cycle as presents the pseudo-code of
the Figure 6. At each cycle, a point of the front is se-
lected to expand the triangulated mesh. Before pro-
ceeding with the expansion step, meshing overlap is
avoided checking two scenarios. The intra-collision in
the front which requires division creating new fronts as
depicts Figure 8. The inter-collision with other fronts
obtain by a possible previous subdivision of a front.
Figure 7 shows a situation where this test fails. In this
event both fronts must merge at the candidate point lo-
cation. Along the execution of the polygonization cy-
cle, fronts remain stored in a stack data structure and
the current front shrinks down to three points to form
a unique triangle. When the triangulation of the actual
front is finished, we proceed to expand another front
from the stack. The polygonization process ends when
there are no more fronts, yielding the resulting polyg-
onal mesh.

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

5. Expanding Triangles

The expansion process is applied at each candidate
point. This step generates new triangles to be added to
the mesh approximating the surface and creates new
points to expand the actual front. Before applying this
process, we verify that new triangles will not overlap
others in the mesh. The candidate point is selected as to
have minimal front angle θmin. We compute this front
angle using the adjacent points in the front and we gen-
erate both maximum curvature measure and a local co-
ordinate system definition (normal �n and two perpen-
dicular vectors �t1 and �t2, lying on the plane tangent to
the surface at that point).

We compute the edge length for each triangle gener-
ated by expansion using the heuristic multiple of the ra-
dius of curvature. This multiplying factor controls the
precision of our approximation. To achieve better re-
sults and more reliable edge length measure, we com-
pute the heuristic value at both neighbor points on the
front considering the smaller value as the effective edge
length for the expansion.

After computing edge length, we define the num-
ber n of triangles needed for the complete expansion
of the candidate point and its incident angle θi as fol-
lows trying to create quasi-equilateral triangles:

n = floor(3θmin

π) and θi = θmin

n
To correct extreme case due to truncated function,

we apply the adjustments proposed by Hartmann’s [10]
using our heuristic edge length for distance checking
with adjacent points to the candidate point. Finally,
we extend the mesh with triangles joining the new and
candidate points. The candidate point is then replaced
on the front by the new points.

6. Merging and Splitting Fronts

When we expand fronts, a common problem to all
surface tracking approaches is to avoid self intersec-
tions. We solve it by using heuristic edge length. First,

Figure 7. Merging different fronts(left) after col-
lision(right)

for each point in the front, we identify the set of visible
points threatened by expansion. For each visible point
relying on the same side of the surface, we check if the
distance between points is smaller than the heuristic
edge length. To cover the case where the expansion will
yield no new points, we perform an additional for over-
lap when closing a minimal front angle. This test is not
discussed in Hartmann’s algorithm but it is required
due the non constant edge length of our approach. If
the collision test fails, the expansion cannot proceed
and the actual front needs to be split. Then specific
triangle expansions are applied in order to avoid du-
plicate points between the two new fronts which are
stored in a global stack. While our approach is simi-
lar to Hartmann’s [10], we need to consider in the col-
lision test the neighbors of adjacent points. This is an-
other modification required by our adaptive approach.
To speed-up triangulation, when a new front contains
only tree points after the splitting step, we triangulate
them directly without creating an additional front.

On the other hand, we need to verify whether the ex-
pansion of a point will collide with all other fronts in
the stack, using the same rules as the intra-collision
test. When a collision is detected, we merge the ac-
tual front with the colliding one, instead of proceed-
ing with the expansion. This unifies both fronts at the
candidate point by connecting it to the nearest point
on the other front. After this step, the old front is re-
moved from the stack, replaced by the current one.

7. Discussion

Since we follow a surface tracking approach, our al-
gorithm, as depicted by Figure 9, avoids two problems
that often arise in spatial subdivision algorithms such
as MC [18] and MT [6]: topological inconsistencies cre-
ated by too large cells and useless triangles in a pattern
that respect the spatial subdivision, rather than local
features of the surface. Our approach solves both prob-

Figure 8. Splitting a single front(left) after colli-
sion(right)

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

Figure 9. MT Topology preservation (top row)
and triangulationpattern (bottomrow)problem:
MT meshes(left) and our meshes (right).

lems without requiring an expensive post-remeshing
step as is done by Treece [26] or Igarashi [13]. Other
iterative techniques such as Akkouche’s [4] based on
Marching Triangles can produce similar results. How-
ever our method uses curvature measures extracted
from implicit functions, we would like to make a for-
mal comparison of both measures, but it was not pos-
sible since the data set used by them are not available.

Unlike Marching Triangles and its variants, which
are directed by edges, our algorithm works by expand-
ing points. Both Akkouche’s [4] and Karkanis’s [16]
method are good examples of the former strategy.
These approaches are only able to generate one ex-
tra point for each edge considered which may require
a high number of steps in areas of rapid change. Our
point expansion guided by maximum absolute curva-
ture is better suited to such cases, since edge length
is recomputed at each point and generate up to three
triangles. The main advantage of our approach, com-
pared to both methods, is that we do not require any
post step to solving cracks since our front are able to
split and merge.

8. Comparison and Results

To present the modularity of our algorithm,
we use different models of varying complexity, us-
ing Turk’s variational implicit surfaces (VIS)[28]
and also MPU [22]. We chose VIS for their gen-
eral and flexible formulation. MPU allows creat-
ing implicit functions for large datasets, using a
very different approach. We used such model to cre-
ate Figures 4 and 3. For each implicit model, only
the following mathematical functions must be imple-

Figure 10. Stanford Bunny VIS reconstruction:
left (13422 tri.), right (34440 tri.)

mented: Get V alue(X), Get Gradient V ector(X),
Get Normal V ector(X), Get Hessian Matrix(X).
These functions are straightforward to code and only
depend on the surface representation. To speed some
calculations up we also implemented composite func-
tions such as Get V alue and Gradient() for the New-
ton Step and Get Gradient and Hessian() thus
avoiding extra work.

All times shown were measured on a P4 processor
at 1800MhZ, with 512Mb of RAM running windows
XP and examples are taken from well-known data sets
: Stanford Bunny [2] and the Igea head [1]. The cor-
responding VIS functions were computed using both
Turk’s and Yngve’s methods [27, 31]. Since VIS are a
global mathematical representation, the second deriva-
tive is algorithmically simple to compute, but the as-
sociated computational costs grow quadratically with
the number of constraints of the model. For this reason
we use two versions of the Stanford Bunny, one based
on 800 constraints and the other created from 2000
constraints (Figure 10) and larger data-sets use MPU
implicit functions. For comparison, the Igea Head im-
ages shown in Figure 1 are based on 4004 constraints.
Computational analysis: Since our algorithm uses a
surface tracking approach, it is difficult to measure its
complexity. The best criterion for performance compar-
isons is the time of polygonization. Table I compares
our method with MT [6] for the same models using
different precisions. The precision factor corresponds
to heuristic limits in our approach where a value of 1
means that we use the maximum radius of curvature di-
rectly, a value of 2 means to divide it by half and so on.
For MT, a value of 0 in this column indicates the min-
imum distance between two VIS constraint points was
used, a value of 1 indicates we multiplied this by 0.7, 2
by 0.6 and so on. We can verify that for the same sur-
face, our approach is faster in terms of triangles per
second. We can also see that the values obtained for

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

Bunny 800 Our Approach Marching Tetrahedral

Heuristic Factor 1 2 3 4 5 0 1 3 4 5

Time (ms) 1963 8492 17225 27860 39196 5888 13519 27309 42861 76310

Triangles 1518 6562 13422 21802 29696 3324 7000 14124 22204 39552

Triangles/s 773 773 779 783 758 565 518 517 518 518

Average Ratio L/s 1.477 1.332 1.291 1.278 1.267 4.655 5.403 5.273 5.792 5.475

Deviation 0.480 0.281 0.211 0.206 0.164 19.075 48.617 39.162 41.380 45.395

Average Depth error 0.533 0.205 0.091 0.059 0.037 0.320 0.168 0.082 0.057 0.033

Phong error 6.286 2.352 1.077 0.688 0.453 4.672 2.579 1.286 0.900 0.499

Phong StDev. 8.607 2.682 1.379 1.106 0.811 10.559 5.463 2.552 2.050 1.263

Table 1. Comparison between our approach and MT for the Stanford Bunny with 800 constraints

different precisions show a similar evolution. We con-
clude that using real curvature information does not
incur a penalty for variational implicit surfaces. More-
over, MT is a good reference since is considered the
fastest method for polygonizing implicit surfaces. Our
results show that the cost of computing eigenvalues of
the Hessian matrix does not introduce significant per-
formance costs.

Mesh quality analysis: Good meshes tend to have
twice as many points as triangles. Our approach tries
to respect other factors that characterize a good mesh-
ing. Meshes resulting from MT show patterns that arise
from the space subdivision approach. We can easily see
in Figure 9 that MT generates a poor mesh with tri-
angles of very different sizes. Looking at Table I, we
can see this by looking at the two rows that list aver-
age edge length and ratio of largest to smallest edge
lengths of each triangle. Average edge length for MT
meshes is almost twice the size of our meshes, while ra-
tios of larger to smaller edges of a triangle show very
high values with enormous standard deviations, which
are characteristic of the poor meshes produced by MT
which contain many ill-formed triangles. In contrast,
our approach produces triangles with edge ratios not
above 1.5 and with small standard deviations even for
coarse approximations. We verified also that approxi-
mately 50 percent of generated triangles by our algo-
rithm are equilateral. Table I shows that increasing the
heuristic accuracy factor yields more equilateral trian-
gles, which shows that our approach generates better
meshes. For each model, we present the standard devi-
ation to ascertain that this holds along the entire sur-
face.

Meshing accuracy analysis: To assess visual fi-
delity, we compare our mesh with ray-tracing which
is the more accurate method to visualize implicit sur-
faces. We analyze accuracy using two metrics. The first
is a depth error.This averages the distance error from
a computed ray-surface intersection to the ray-mesh

intersection obtained from the same ray and our re-
sulting mesh. The other measure is what we call the
Phong error, which is the average angular difference be-
tween the normal to the surface and our mesh, taken at
each ray intersection. We use the normal of the implicit
function at each surface-ray intersection and compare
that to the vector obtained by interpolating the nor-
mals of the vertices at the intersected triangle as done
by Phong shading. Table I shows this measure in de-
grees. As we can see, we achieve an average Phong error
smaller than half degree with a small standard devia-
tion. In comparison to Marching Tetrahedra, our ap-
proach achieves better results with smaller standard
deviation.

9. Conclusions and Future Work

In this paper we have presented a fast, progres-
sive algorithm that generates adaptive meshes suitable
for use in interactive applications. Our algorithm ac-
complishes this by using Hessian curvature informa-
tion unlike previous progressive approaches, which re-
sort to less-precise approximation schemes. Our exper-
imental shows that using “real” curvature features pro-
vides better results than traditional approaches based
on Marching Cubes without a performance penalty or
the need for a re-meshing step. The performance of
our algorithm depends solely on the implicit surface
topology and complexity. However, we are not able to
predict the time required for polygonizing a surface.
Also, our method currently does not support topologi-
cally disjoint features. Using topological studies based
on Morse Theory as presented in [24] might solve this
problem.

Acknowledgements

This work was supported in part by the
Portuguese Science Foundation through grant

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

POSI/34672/SRI/2000 and by European Com-
mission through grant # IST-2000-28169 (SmartS-
ketches).

References

[1] Sample model cyberware page.
http://www.cyberware.com/samples/index.html.

[2] Standford 3d scan repository. http://www-
graphics.stanford.edu/data/3Dscanrep/.

[3] J. I. A. Hilton, A. Stoddart and T. Windeatt. Marching
triangles: range image fusion for complex object mod-
eling. International Conference on Image Processing,
1996.

[4] S. Akkouche and E. Galin. Adaptive implicit surface
polygonization using marching triangles. Computer
Graphics Forum, 20(2):67–80, 2001.

[5] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and
M. Desbrun. Anisotropic polygonal remeshing. ACM
Transactions onGraphics. Special issue for SIGGRAPH
conference, pages 485–493, 2003.

[6] J. Bloomenthal. An implicit surface polygonizer. In
P. Heckbert, editor, Graphics Gems IV, pages 324–349.
Academic Press, Boston, 1994.

[7] J.-D. Gascuel. Implicit patches: An optimised and pow-
erful ray intersection algorithm. In Implicit Surfaces’95,
pages 143–160, Grenoble, France, Apr. 1995. Proc. of
the first international workshop on Implicit Surfaces.

[8] A. Gray. Modern Differential Geometry of Curves and
Surfaces. CRC Press, Boca Raton, 1997.

[9] J.C.Hart. Ray tracing implicit surfaces. InSIGGRAPH
93 Modeling, Visualizing, and Animating Implicit Sur-
faces course notes, pages 13–1 to 13–15. 1993.

[10] E. Hartmann. A marching method for the triangulation
of surfaces. The Visual Computer, 14(2):95–108, 1998.

[11] H. Hoppe. Progressive meshes. In Proc. of the 23rd an-
nual conference on Computer graphics and interactive
techniques, pages 99–108. ACM Press, 1996.

[12] J. F. Hughes. Differential geometry of implicit surfaces
in 3-space - a primer. In Technical Report CS-03-05.
Brown University, 2003.

[13] T. Igarashi and J. F. Hughes. Smooth meshes for sketch-
based freeform modeling. In Proc. of the 2003 sympo-
sium on Interactive 3D graphics, pages 139–142. ACM
Press, 2003.

[14] D. Jevans and B. Wyvill. Ray tracing implicit surfaces.
In Technical Report 88/292/04. University of Calgary,
1988.

[15] D. Kalra and A. H. Barr. Guaranteed ray intersections
with implicit surfaces. InProc. of the 16th annual confer-
ence on Computer graphics and interactive techniques,
pages 297–306. ACM Press, 1989.

[16] T.KarkanisandA.J.Stewart. Curvature-dependent tri-
angulation of implicit surfaces. IEEE Computer Graph-
ics and Applications, 22(2):60–69, March 2001.

[17] J. J. Koenderink. Solid Shape. Artificial Intelligence Se-
ries. MIT Press, Cambridge, MA, USA, 1990.

[18] W. Lorensen and H. Cline. Marching cubes: a high
resolution 3d surface construction algorithm. Com-
puter Graphics, 21(4):163–169, July 1987. Proc. of SIG-
GRAPH’87 (Anaheim, California, July 1987).

[19] T. Masuda. Surface curvature estimation from the
signed distance field. Proc. of the 4th International Con-
ference on 3-DDigital Imaging andModeling, pages361–
368, 2003.

[20] M.Meyer,M.Desbrun,P. Schröder, andA.H.Barr. Dis-
crete differential-geometry operators for triangulated 2-
manifolds. In H.-C. Hege and K. Polthier, editors, Vi-
sualization and Mathematics III, pages 35–57. Springer-
Verlag, Heidelberg, 2003.

[21] P. Neugebauer and K. Klein. Adaptive triangulation of
objects reconstructed frommultiple range images. IEEE
Visualization ’97, 1997.

[22] Y.Ohtake,A.Belyaev,M.Alexa,G.Turk, andH.-P. Sei-
del. Multi-level partition of unity implicits. ACMTrans.
Graph., 22(3):463–470, 2003.

[23] Y. Ohtake, A. Belyaev, and A. Pasko. Dynamic meshes
for accurate polygonization of implicit surfaces with
sharp features. InSMI2001 InternationalConference on
Shape Modeling and Applications, pages 74–81. IEEE,
2001.

[24] B. T. Stander and J. C. Hart. Guaranteeing the topol-
ogy of an implicit surface polygonization for interac-
tive modeling. In Proc. of the 24th annual conference
on Computer graphics and interactive techniques, pages
279–286. ACM Press/Addison-Wesley Publishing Co.,
1997.

[25] N. Stolte and R. Caubet. Fast high definition dis-
crete ray tracing implicit surfaces. In 5th DGCI - Dis-
crete Geome-try for Computer Imagery, pages 61–70,
Clermont-Ferrand, France, 1995.

[26] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised
marching tetrahedra: improved iso-surface extraction.
Computers and Graphics, 23(4):583–598, 1999.

[27] G. Turk, H. Q. Dinh, J. F. O’Brien, and G. Yngve. Im-
plicit surfaces that interpolate. Proc. of Shape Modelling
International, pages 62–73, 2001.

[28] G. Turk and J. F. O’Brien. Shape transformation us-
ing variational implicit functions. In Proc. of the 26th
annual conference onComputer graphics and interactive
techniques, pages335–342.ACMPress/Addison-Wesley
Publishing Co., 1999.

[29] van Overveld and B. Wyvill. Shrinkwrap: An adaptive
algorithm for polygonizing an implicit surface. In Tech-
nical Report 93/514/19. University of Calgary, 1993.

[30] B.Wyvill,P. Jepp,K. vanOverveld, andG.Wyvill. Sub-
division surfaces for fast approximate implicit polygo-
nization. University of Calgary, Dept. of Computer Sci-
ence, Research Report 2000-671-23, 2000.

[31] G. D. Yngve and G. Turk. Robust creation of implicit
surfaces from polygonal meshes. IEEE Transactions
on Visualization and Computer Graphics, 8(4):346–359,
2002.

Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’04)
1530-1834/04 $ 20.00 IEEE

	footer1:

