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Abstract

The problem of influence maximization deals with choosing the optimal set of nodes in
a social network so as to maximize the resulting spread of a technology (opinion, product-
ownership, etc.), given a model of diffusion of influence in a network. A natural extension of
this would be to introduce a competitive setting, in which the goal is to maximize the spread
of our technology in the presence of one or more competitors. We suggest several natural
extensions to the well-studied linear-threshold model that was used in the single-technology
case, and show that the original greedy approach cannot be used. Furthermore, we show that
for a broad family of competitive influence models, it is NP-hard to achieve an approximation
that is better than a square root of the optimal solution. Also, we show that the same proof of
hardness of approximation can also be applied to give a negative result for a conjecture in [2]
about a general cascade model for competitive diffusion. Finally, we suggest a natural model
that is amenable to the greedy approach.

1 Introduction

The problem of influence maximization has long been the focus of study in social science (e.g. [5]).
It has been formally defined and addressed in [6] and [3] as follows: given a social-network as a
directed graph, and a prescribed number k, pick the k most “influential” nodes that will function as
early adopters of a particular influence, so as to maximize the final number number of infected, or
activated nodes (the two terms are used in this paper interchangeably), subject to a specified model
of influence diffusion. This problem begs the natural extension of a competitive version: given the
competitor’s choice of early adopters of technology B, maximize the spread of technology A by
choosing a set of early adopters such that the expected spread of technology A will be maximal.
Indeed, this problem has been the subject of interest in subsequent papers ([2],[7],[1]) which present
competitive extensions for the independent cascade model presented in [6]. In this paper we suggest
a few natural extensions to a well-studied model that was also given in [6] for the diffusion of social
influence in a social network — the linear threshold model. Formally, an instance of the problem
would be composed of a directed, edge-weighted graph G = (V,E), a set of technology B’s initial
adopters IB ⊆ V , and an integer k. The computational problem is how to choose a set IA ⊆ V −IB
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of k nodes such that the expected number of A-active nodes at the end of the process, σ(IA, IB),
is maximized, given the specific model for competitive diffusion of technologies (when IB is known
from context we omit it and simply write σ(IA)). It is important to note that all of the presented
models can be motivated by natural processes. Our models reduce to the original linear threshold
model formalized in [6] whenever IB is the empty set. For simplicity of notation, the models
presented are stated in terms of only two competing technologies. However, all of the models and
results can be easily extended for when there are several competing technologies.

A well-known greedy (1 − e−1)-approximation given in [4] is used extensively for problems of
maximizing set-functions, and in particular has been applied to both the original problem and
competitive extensions ([2], [1]). The approximation algorithm requires that the set function σ(·)
at hand, which assigns a real-value to subsets of a ground set U , uphold two basic properties1.

• Monotonicity: the value of the function increases as more items are added to the set:
σ(S) ≤ σ(T ) for any two sets S ⊆ T ;

• Submodularity: the impact of adding an element to a set decreases as the set is extended
(diminishing returns): σ(S ∪ {x}) − σ(S) ≥ σ(T ∪ {x}) − σ(T ), for any S ⊆ T ⊆ U and
x ∈ U − T ;

Except for the last model, described in section 6 — the OR model, all of the models do not
satisfy submodularity. In fact, one of them is not even monotone.

Outline The remainder of this document is organized as follows. Sections 2 and 3 describe two
competitive threshold models. Section 4 shows that even when applying a final step that A-activates
more nodes, the process remains non-submodular. Section 5 shows that the last two models are in
general hard to approximate, regardless of the final forcing step or any tie-breaking rules that are
used when a node is reached by more than one technology. On a more positive note, in section 6
we suggest a fairly natural and simple model for which the approximation algorithm given in [4]
is applicable. Finally, section 7 summarizes our main results along with a few open problems and
possible directions for future research.

2 The Weight-Proportional Competitive Linear Threshold Model

As in the non-competitive case, the process unfolds in discrete steps, during which new nodes
become “activated” for a single technology2 The infection of a node by a technology represents an
individual in the social network that has assumed the influence of that technology. The process
is progressive: a node that is infected by a technology remains infected by it. As in the non-
competitive case, every edge (u, v) is assigned a weight wu,v ∈ [0, 1] which roughly characterizes the
weight of influence that u has over v (i.e the impact that u’s infection will have over v’s likelihood to
be infected with the same technology as u). Also, the total weight of incoming edges to every node
is bounded: for every v ∈ V we have:

∑
uwu,v ∈ [0, 1]. Each node u initially chooses a threshold

1There are constant-factor approximations algorithms for cases when submodularity holds but monotonicity does
not hold

2The term “technology” stands for any concept or influence that spreads in the social-network (car ownership,
club membership, voting preference, etc.).
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θu which represents the minimum fraction of active neighbours necessary for u’s activation. As in
[6], in order to make up for our lack of knowledge about each node we assume that θu ∈R [0, 1]
(uniformly at random), or θu ∈R [a, a′] for 0 ≤ a ≤ a′ ≤ 1 to reflect partial knowledge about a
node.

In order to describe the process itself, we will use the following notation:

Definition 2.1. For a given step t in the process, let Φt denote the set of active nodes at the
beginning of step t. Furthermore, let Φt

A and Φt
B be the sets of A-active and B-active nodes in step

t, respectively.

Given the sets IA, IB of early technology adopters, the process unfolds as follows. First, each
node chooses its threshold value at step 0. Then, in each step t, every inactive node v checks the set
of edges incoming from its active neighbours. If their collective weight exceeds the threshold values
by having

∑
u∈Φt wu,v ≥ θv, the node becomes active. In that case, the node will adopt technology

A with probability equal to the ratio between the collective weight of edges outgoing from A-active
neighbours and the total collective weight of edges outgoing from all active neighbours; that is,

Pr[v ∈ Φt
A|v ∈ Φt\Φt−1] =

∑
u∈ΦtA

wu,v∑
u∈Φt wu,v

(1)

Otherwise, it will adopt technology B. Since this problem can be reduced to the single-
technology linear threshold model whenever IB is the empty set, we notice that this problem
is NP-hard — as proved in [6].

Intuitively, it appears that by adding a new node to the set of initial A-adopters, the spread
of technology A in the social network can only increase (or remain unchanged). However, this is
in fact not always the case, even for some binary rooted trees. We will formalize this somewhat
counter-intuitive behaviour.

Theorem 2.1. There exists an instance of the weight-proportional competitive linear threshold
problem for which monotonicity does not hold.

Also, it can be shown that submodularity fails to hold in some cases, as the following theorem
shows:

Theorem 2.2. There exists a graph G, for which the expected influence of technology A is not
submodular.

The proof of the above two theorems is given in appendix A.

3 The Separated-Threshold Model for Competing Technologies

In the previous model, the node activation step regarded active nodes as equal, so that a given node
is activated by its active neighbours regardless of their technologies. That is, the sum of generally
active nodes was used for activating a node. However, one could model the following notion of a
spread process. Each individual has separate criteria for becoming active for each technology. A
node can be activated by either its A-active or B-active neighbours whenever the sums of their
respective edge-weights exceed the required thresholds specified for their technologies.
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Formally, consider the following model. For a given network G = (V,E), every edge (u, v) ∈ E
is assigned a real-valued weight corresponding to each technology wAu,v, w

B
u,v ∈ [0, 1] such that∑

uw
A
u,v,

∑
uw

B
u,v ∈ [0, 1], which reflects node u’s impact on v. Two disjoint sets I0

A, I
0
B ⊆ V denote

the sets of initially A-active and B-active nodes, respectively. At step 0, each node v ∈ V picks two
threshold values θAv , θ

B
v ∈R [0, 1]. For step t, denote It−1

A , It−1
B as the sets of A-active and B-active

nodes. During every step t, an inactive node v will become A-active if
∑

u∈It−1
A

wAu,v ≥ θAv , and will

become B-active if
∑

u∈It−1
B

wBu,v ≥ θBv . If for the node v both thresholds are exceeded during the

same step t, then a technology would be picked uniformly at random (we can either use a simple
coin-flip or employ a more involved tie-breaking function).

In contrast to the previous model, this model is monotone. Its key property, which distinguishes
it from the previous model, is that the probability that technology B will propagate cannot increase
as a result of A-activating additional nodes. This stems from the definition of the model, in which
each set of technology specific neighbours relate to a separate threshold value.

Let us use the following notation:

Definition 3.1. Given the sets IA and IB, and a node x /∈ IB, define αtv, α̂
t
v as the probabilities

that a given node v will adopt technology A by step t for the initial sets of early adopters (IA, IB)
and (IA ∪ {x}, IB), respectively. Similarly, define similar probabilities βtv, β̂

t
v for technology B.

Theorem 3.1. For a given instance of the problem and a choice of early adopters: IA, IB and node
x, α̂tv ≥ αtv for any node v and for any step t ≥ 0.

The proof of theorem 3.1 is fairly straightforward, and is given in appendix B for completeness.
The process is not submodular in general.

Theorem 3.2. There exist instances of the competitive influence problem where the separated-
threshold competitive model is not submodular.

A corresponding counter-example along with the intuition behind it are given in appendix C.

4 Competitive Threshold Model with Forcing

We now introduce a modification which changes the concept of influence in a network: forcing.
Specifically, at the end of the previous model, each inactive node v will choose a technology randomly
(say, it will choose technology A with probability δ). This step is natural for cases where individuals
have to eventually decide which influence to adopt (e.g. voting when abstentions are not allowed).
For convenience we will assume that the “forcing” step occurs at step n (the spread can take up
to n− 1 steps), whether or not the spread took n− 1 steps. Clearly this does not have any effect
on the outcome of the process. We show that regardless of the forcing step, this variant does not
help us achieve submodularity. However, the process remains monotone as the following theorem
can be proven by extending lemma 3 (in appendix C) with a case analysis for the forcing step.

Theorem 4.1. For a given instance of the competitive influence with forcing problem, a choice of
early adopters IA, IB and node x, α̂tv ≥ αtv, β̂tv ≤ βtv for any node v and for any t.
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4.1 Submodularity

The following theorem shows that not only is the given model non-submodular, but also regard-
less of the tie-breaking rule and the forcing rule (if any is used), the model remains non-submodular.

Theorem 4.2. For any tie-breaking rule, and any forcing rule, the separated-threshold competitive
model is non-submodular.

A corresponding counter-example is given in appendix D.

5 Hardness of Approximation

We show that in any model with separate edge-weights and separate threshold values for each
technology the problem is hard to approximate.

Theorem 5.1. It is NP-hard to give an approximation with a ratio better than Ω(N
1
2
−ε), for all

ε > 0, for the Separated-Threshold Competitive Influence problem, where N is the number of nodes
in the graph.

The proof is supplied in appendix E.
It is important to note the proof of theorem can be applied to similar competitive cascade

models as well. Namely, in [2] it was conjectured that when allowing 2 sets of edge weights for each
edge — one for each technology, the process will remain monotone and submodular. The above
hardness of approximation result can be modified in order to apply for the separate edge-weights
case of the Wave Propagation model suggested by Carnes et al., thereby giving a negative answer
to their conjecture.

Theorem 5.2. It is NP-hard to give an approximation with a ratio better than Ω(N
1
2
−ε), for all

ε > 0, for the Wave Propagation Competitive Influence problem given by Carnes when edges are
allowed to have technology-specific probabilities.

6 The OR Model

We now introduce a different way of extending the original threshold model, in which each tech-
nology diffuses unhindered by the competing technology. Here, the tie-breaking stage will take
place after all technologies finish spreading. This model can be considered natural for cases in
which individuals have the liberty of being influenced separately and independently by different
technologies, but have to choose a single technology eventually.

We will define the OR model as follows. As before, an instance of the model is a graph
G = (V,E), a set of edge weights for each technology: WA = {wAu,v}(u,v)∈E ,WB = {wBu,v}(u,v)∈E
(with the same constraints as before), and initial adopters: IA, IB ⊆ V . Additionally, for each
node v ∈ V two “decision” functions fAv : 2V × 2V → [0, 1], fBv : 2V × 2V → [0, 1] are assigned.
Let each technology propagate separately throughout the graph w.r.t the original non-competitive
linear threshold propagation process, and let RA, RB ⊆ V be the sets of nodes reached by the
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technologies (independently). As a final step, a node v /∈ IA ∪ IB will assume technology A
with probability fAv (RA, RB), technology B with probability fBv (RA, RB), and no technology with
probability 1− fAv (RA, RB)− fBv (RA, RB), respectively (fAv (RA, RB) + fBv (RA, RB) ≤ 1). We only
require the functions fAv (·, ·), for every v ∈ V , to be monotone and submodular with respect to the
set of initial A nodes.

The following theorem shows that one can efficiently find an approximation for the set that
maximizes the spread of one’s own technology, given a competitor[s] choice of initial adopters:

Theorem 6.1. Given technology B’s early adopters IB, one can find an (1−e−1−ε)-approximation
for the competitive OR process in a polynomial number of steps, for any ε > 0.

The proof follows immediately from the following two lemmas which prove the properties re-
quired in [4]. We will show that this process is monotone and submodular whenever the function
fv(·, ·) is monotone and submodular w.r.t. technology A, for all v ∈ V .

Lemma 1. The OR model is monotone with respect to the number of nodes influenced by tech-
nology A.

Proof. Let rA(IA), rB(IB) denote an outcome for a run of the independent propagation processes
of the two technologies. Monotonicity w.r.t technology A is satisified if for any two sets S ⊆ T ⊆
V − IB:

E[fAv (rA(S), rB(IB))] ≤ E[fAv (rA(T ), rB(IB))] (2)

Since until the decision step the two technologies’ propagations are independent, we can fix the
outcome of technology B, and show that the expected propagation of technology A is monotone.
This is immediate since first, the propagation of technology A until the decision step is clearly
monotone (follows from the non-competitive threshold model in [6]). Second, the decision functions
fAv (·, ·) and fBv (·, ·) are monotone with respect to technologies A and B, which along with the
previous argument yields monotonicity.

Lemma 2. The OR model is submodular with respect to the number of nodes influenced by
technology A.

Proof. In order to prove this, we will use a technique given in [6] that suggests an alternative
and equivalent model for the propagation of a single technology. For each node v ∈ V , instead
of choosing a threshold in [0, 1], choose an incoming edge (u, v) with respective probability wu,v,
and no incoming edge with probability

∑
uwu,v. A node will become infected if and only if there

is a path from the initially infected nodes that consists strictly of such chosen edges. Originally,
this equivalent process was used for showing submodularity for the non-competitive case by simply
fixing an instantiation of chosen edges. We will do the same in our case. Fix an instantiation RB
of the outcome of the propagation of technology B (independent of the propagation of technology
A) and a set of chosen edges for the propagation process of technology A. For a set IA of initial A
nodes, as before, let RA(IA) denote the set of nodes reachable from IA in the sub-graph induced
by the set of chosen edges. In order to show that the process is submodular, we need to show that
for all S ⊆ T ⊆ V − IB:

fAv (RA(S ∪ {x}), RB)− fAv (RA(S), RB) ≥ fAv (RA(T ∪ {x}), RB)− fAv (RA(T ), RB), (3)
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for all v ∈ V . We will simply use the monotonicity property of the independent propagation process
and the submodularity of fAv (·, ·). Let RA(S ∪ {x}) = RA(S) ∪∆1, and similarly, RA(T ∪ {x}) =
RA(T )∪∆2. From the monotonicity and submodularity we get that RA(S) ⊆ RA(T ) and ∆2 ⊆ ∆1.
Therefore:

fAv (RA(S) ∪∆1, RB)− fAv (RA(S), RB)

≥ fAv (RA(T ) ∪∆1, RB)− fAv (RA(T ), RB)

≥ fAv (RA(T ) ∪∆2, RB)− fAv (RA(T ), RB) (4)

The first inequality and second inequality follow from the submodularity and the monotonicity of
fAv (·, ·), respectively. Taking all possible instantiations gives submodularity since a positive linear
combination of submodular functions is submodular.

Mossel et al. [8] show that if we generalize the propagation process by replacing the linear sum
(used to decide whether an uninfected node exceeds its threshold) with an arbitrary monotone
submodular function, then the resulting process (under any monotone submodular objective func-
tion) is again monotone and submodular. This result generalizes to the corresponding competitive
process, which we call the generalized OR process.

Theorem 6.2. Given technology B’s early adopters IB, one can find an (1−e−1−ε)-approximation
for the generalized competitive OR process in a polynomial number of steps, for any ε > 0.

Proof. Use the objective function ϕ(RA) = ERB
∑

v f
A
v (RA, RB) in the main result of [8]. The

function ϕ counts the expected number of A-adopters at the end of the process. It is monotone
and submodular because the fAv are.

6.1 Repeating OR processes

Finally, we give a natural extension of the OR model. There are cases in which the independent
propagation process will repeat several times (e.g. every day, for ` days). The process can be
thought of as being run iteratively, where during each iteration i the previous iteration’s turnouts
RA and RB are used as the initial adopters for each technology. At the end of the `’th iteration,
and only then, the decision step is invoked by using the functions fAv (·, ·) and fBv (·, ·), for all v ∈ V .
One may notice that this formulation simply defines a composition of ` OR processes (with a single
execution of the decision step at the end).

We can give a natural motivation for such a process: during the course of an election race, voters
will spread the word each day. However, once in while, an unaffected voter may change her mind
(her threshold value) and thus the process of “rumor spread” and social-based recommendation
will run again, infecting additional voters as a result.

With this in mind, the following general theorem follows from a simple generalization of the
proof in [8].

Theorem 6.3. A process based on the repetitive execution of the generalized OR process with a
single decision step at the end is monotone and submodular.

Note that theorem 6.3 holds even if the edge weights are modified between each iteration.
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7 Conclusions

We have presented a number of fairly natural and general approaches for modelling competitive
diffusion of influence in a social network, extending the known threshold model for the spread of
a single technology. However, most of our suggested approaches have been shown to be unfit for
the Nemhauser et al. [4] approximation technique. For some models, we can show NP-hardness
of approximation, while for others we only show that they are not submodular (and not even
monotone in one case), leaving open the question to whether an efficient approximation algorithm
can be found.

We emphasize that all of the suggested models in this paper have reasonable, natural moti-
vations, which implies that there is no single “true” model. Also, as suggested in [2], we believe
that these models can be used in a more game theoretic setting, where players are the competing
companies, who place bids on strategic nodes in hope for maximizing their outcome. We suggest
the following directions for future research:

• Can the hardness-of-approximation result be extended to other models?

• Are there any other natural competitive models which can be approximated in polynomial
time?

• Study some natural game-theoretic setting for the competitive models.

• Suggest models for cases where nodes may adopt more than one technology.
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A Counter Examples for The Weight-Proportional Competitive
Linear Threshold Model

In section 2 we gave two theorems concerning the monotonicity and submodularity of the model
described. These theorems will be proven in this appendix.

Theorem A.1. There exists an instance of the weight-proportional competitive linear threshold
problem for which monotonicity does not hold.

Proof. Consider the tree in figure A. We will explicitly calculate the values of αtv and α̂tv. First,
consider the case in which θr ≤ 0.5. Then r will be A-active if one of the following occurs:

1. v becomes A-active during step 2.

2. v does not become active (hence r will be A-activated in step 4).

Before adding x, the first case cannot happen, and the second case happens only when θv ∈
(0.9, 1]. Hence, α4

r |θr≤0.5 = 1
10 . After A-activating x, the first case may occur only when θv ∈ (0.9, 1],

and the second case cannot happen. Thus, α̂4
r |θr≤0.5 = 1

10 ·
1
10 = 1

100 .
Consider the case in which θr > 0.5. The r will be A-active if one of the following occurs:

1. v becomes B-active in step 1, but r becomes A-active in step 4.
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2. v becomes B-active in step 2, but r becomes A-active in step 4.

3. v becomes A-active in step 2.

Before A-activating node x, only the first case may occur, and only in cases where θv ∈ [0, 0.9]. So
α4
r |θr>0.5 = 9

10 ·
1
2 = 9

20 . After A-activating x, the first case may occur only when θv ∈ [0, 0.9], and
cases (2) and (3) may occur only when θv ∈ (0.9, 1]:

α̂4
r |θr>0.5 =

1

2
· 9

10
+

1

2
· 1

10
· 9

10
+

1

10
· 1

10
=

101

200
(5)

Putting the two cases together gives

α4
r =

1

2
· αrv|θr≤0.5 +

1

2
· α4

r |θr>0.5 =
1

2
· 1

10
+

1

2
· 9

20
=

11

40
(6)

α̂4
r =

1

2
· α̂4

r |θr≤0.5 +
1

2
· α̂4

r |θr>0.5 =
1

2
· 1

100
+

1

2
· 101

200
=

103

400
(7)

Essentially, this counter-example illustrates an interesting behaviour of the process. First,
notice the high ratio of the weight of the edge connecting the B-subtree to the weight of the
subtree containing x. Also, notice that the initially B-active node is located higher relatively to
initially A-active nodes (only x in the given simple example). These two properties increase the
probability that the parent node (v in our case) will adopt technology B, much more, and much
more quickly than the probability that it will adopt technology A. This in effect, contributes to the
decrease in the probability that the higher node (r in our case) will adopt A. Another point, is that
this example shows that in less pathological cases, a node’s probability of becoming A-active may
increase, but this increase may come at the expense of a much higher increase in the probability
of becoming B-active. In other words, by A-activating certain nodes, actually the competitor will
benefit the most.

Theorem A.2. There exists a graph G, for which the expected influence of technology A is not
submodular.

Proof. Consider the tree depicted in Figure A.
It can be easily shown that for S = {w}, T = {w, y} (the set of early adopters of technology

B is denoted in the diagram) submodularity does not hold as α4
r(S) = 3

10 , α̂
4
r(S) = 17

60 , α
4
r(T ) =

7
10 , α̂

4
r(T ) = 17

50 .

B Proof of The Monotonicity of The Separated Threshold Model

Theorem B.1. For a given instance of the problem and a choice of early adopters: IA, IB and
node x, α̂tv ≥ αtv for any node v and for any step t ≥ 0.

In order to prove the theorem, we will fix the set IB of early technology B adopters and consider
a set of early technology A adopters IA and a node x not in IB.

We prove the monotonicity by fixing an arbitrary instantiation of the thresholds vectors, ΘA ∈
[a1

1, a
2
1]×. . .×[a1

n, a
2
n],ΘB ∈R [b11, b

2
1]×. . .×[b1n, b

2
n], and by choosing for every node technology A with
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Figure 2: A counter-example for submodularity

probability 0.5 and choosing B otherwise. The outcomes of the tie-breaking fair coin flips will be
revealed in cases where the two thresholds chosen for a particular node are exceeded simultaneously.
Notice that this defines a deterministic instantiation of the process.

Denote by π1, π2 to be the deterministic processes using the same instantiations of the thresh-
old values and coin-flips, and using (IA, IB) and (IA ∪ {x}, IB), respectively. Furthermore, let
N t
A(π), N t

B(π) denote the set of A and B active nodes at step t in process π, respectively.
The following lemma implies theorem 3.1

Lemma 3. For a fixed instantiation of the thresholds values and the tie-breaking coin flips for each
node in advance, the following holds for each node v ∈ V and every step t ≥ 0

1. If v is not B-active at step t in π1, then v is not B-active at any step t′ ≤ t in π2.

2. If v is A-active at step t of π1, then v is activated in some step t′ ≤ t in π2.

Proof. We will prove the lemma by induction on t. For step t = 0, the lemma trivially holds since
IA ⊆ IA ∪ {x}. Assume that the lemma holds up to step t, we will prove the lemma for step t+ 1.
For proving the first part of the lemma, consider any node v that is not B-active at step t+1 in π1.
By the induction hypothesis, node v was not B-active at step t in π2. Moreover, by the induction
hypothesis, none of the neighbours of v that were not B-active at step t in π1 are B-active at step
t in π2. Therefore,

∑
u∈Nt

B(π1)w
B
u,v ≥

∑
Nt
B(π2)w

B
u,v, which implies the first part of the lemma. For

proving the second part of the lemma, let v be a node that is A-activated at step t + 1 in π1.
Consider the following cases:

1.
∑

u∈Nt
B(π1)w

B
u,v < θBv : then from the first part of the lemma∑

u∈Nt
B(π2)w

B
u,v < θBv as well. On the other hand, since

∑
u∈Nt

A(π1)w
A
u,v ≥ θAv , the induction

hypothesis implies that
∑

u∈Nt
A(π2)w

A
u,v ≥ θAv , which implies that v is A-active by step t+ 1.

2.
∑

u∈Nt
B(π1)w

B
u,v ≥ θBv : This implies that both thresholds were exceeded at step t+1. From part

1 of the lemma, θBv cannot be exceeded prior to step t+ 1 in π2. By the induction hypothesis
N t
A(π1) ⊆ N t

A(π2), which implies that
∑

u∈Nt
A(π2)w

A
u,v ≥ θAv . The above observations imply

11
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Figure 3: A counter-example for submodularity for the case of separated thresholds.

that whereas θBv may not be exceeded at, or before step t + 1 in π2, θAv is exceeded by step
t+ 1 of π2. Since the same instance of coin-flip is used for π1 and π2, v will be A-active even
in the case that θAv and θBv are exceeded in step t+ 1 of π2 simultaneously.

C Counter-Examples for The Separated Threshold Model

Theorem C.1. There exist instances of the competitive influence problem where the separated-
threshold competitive model is not submodular.

Proof. Adding a node x to a set of initial A adopters may directly increase the probability that a
node v will be A-activated. This can be seen in the alternative (equivalent) model case: it may
lie on the A-edge path ending in v, thereby shortening the existing shortest path or create a path
which didn’t exist prior to the addition of x. However, it may indirectly increase the probability
of A-activation by simply “eliminating” the competition as a result of blocking the propagation
of technology B. Consider the tree in Figure 3 (the first number in the edge annotation is the
A-weight, and the second one is the B weight).

Let the two sets of initial A-adopters be: S = {}, T = {v}. For this example we will consider
the original threshold model.

• Before adding x to S and T : r had zero probability of becoming A-active when using S, and
probability 0.5 when using T .

• After adding x to S and T : The probability that r will become A-active remains 0 when x is
added to S (though its probability of becoming B active decreased to 0). When using T on
the other hand, the probability is now 1, since by adding x technology B is blocked.

Note: The above counter-example also holds for a model in which the tie-breaking step is a
little different: for example if for a node v the two thresholds are exceeded simultaneously, the
technology with the highest sum of respective edge-weights is chosen. If all sums of edge-weights
are equal, a technology is picked uniformly at random.

D Counter-Examples for The Competitive Threshold Model with
Forcing

Theorem D.1. For any tie-breaking rule, and any forcing rule, the separated-threshold competitive
model is non-submodular.

12
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Figure 4: A Counter-example for submodularity when applying a forcing step

Proof. We will give a counter-example in which there are no ties, and the node in question does
not remain inactive. Consider the rooted tree in Figure 4. Let S = {u}, T = {u, y}. The initially
B-activated nodes are given in the diagram.

Notice that no ties are possible — any uninfected node may be infected by at most one node
at any given step. Also notice, that the forcing step at the end would not apply to the root since
if its left child remains uninfected or is B-infected, its right child would eventually infect it with
technology B. We get a “race condition” in which we have to block B’s propagation in the left
subtree of the root in order to get r A-infected.

When using S, α6
r(S) = α̂6

r(S) = 0 since r’s left child is infected with B first. On the other
hand, α6

r(T ) = 0 and α̂6
r(T ) = 1 since technology B’s propagation in r’s left child is completely

blocked, allowing technology A to propagate to r and infect it before B reaches it through r’s right
child. Therefore, the probability jumps from 0 to 1, contradicting submodularity.

E Proof of The Hardness of Approximation Result

Theorem E.1. It is NP-hard to give an approximation with a ratio better than Ω(N
1
2
−ε), for all

ε > 0, for the Separated-Threshold Competitive Influence problem, where N is the number of nodes
in the graph.

Proof. We are motivated by the counter-example in theorem 4.2. We construct a reduction from
vertex cover problem. Recall that in the vertex cover problem the problem is to find a minimal
set S of vertices in the graph G such that every edge in G has at least one endpoint in S. In
the separated-threshold competitive influence problem the task is to find a set S′ of k′ nodes that
maximizes σ(S′, IB) (expected number of A-infected nodes), given a prescribed number k′ and the
competitor’s set of nodes IB.
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Figure 5: The reduction. The diagram should be repeated once for each t ∈ {1, . . . , nα} (except
for the Ax vertices).

The reduction We are given an instance of the Vertex Cover problem, a graph G = (V,E)
and a number k. Let α, β be constants defined later. Let A0 be a special source node. For
every node v ∈ V create a corresponding node Av. For every edge e = (i, j) and t ∈ [1, nα]
create nodes Be,t

0 , Xe,t
0 , Xe,t

1 ,M e,t. Additionally, for every t ∈ [1, nα] we add nodes Bt
1, P

t
0, P

t
1.

Extra nodes are needed for creating paths as depicted in Figure E. We create several edge sets
E1 = {(Au, Xe,t

1 ), (Av, X
e,t
2 )|e = (u, v) ∈ E, t ∈ [1, nα]}, E2 = {(Xe,t

1 , Xe,t
2 )|e ∈ E, t ∈ [1, nα}. In

addition, for every t we create a set of edges as depicted in Figure E. The edge annotation is as
follows:

• Dotted edges have A-weight 1 and B-weight 0.

• Dashed edges have A-weight 0 and B-weight 1.

• Plain edges have both weights set to 1.

• Edges with a length annotation are paths of the annotated length; all edges are of the same
type.

Finally, let IB be composed of the set of nodes Be,t
0 and Bt

1 for every e ∈ E and t ∈ [1, nα].
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Claim 1. If there exists a k-cover for the original graph G there exists a set IA ⊆ V − IB of size
k + 1 that yields σ(IA) ≥ nα+β. Otherwise, for every IA ⊆ V − IB, σ(IA) = O(max{nα+3, nβ+1}).

Consider the first part of the claim. Assume that there is a k-cover S for G. Then simply let
IA = {Av|v ∈ S} ∪ {A0}. Since S is a vertex-cover, it implies that the spread of technology B
emanating from the vertices Bt

0 is completely blocked. Thus, every node on the path from A0 to
P t0, for all t ∈ [1, nα] will be A-infected. This in turn implies that for all t ∈ [1, nα], every node on
the path from P t0 to P t1 will be A-infected. Thus, we have at least nα+β A-active nodes, as required.

Now consider the second part of the claim. Let IA be the optimal set of k+ 1 initial A-adopters
that either does not contain A0 or IA ∩{Av}v∈V is not a vertex cover for G. Each vertex in IA can
contribute the most by either one of two optimal choices:

1. Choosing A0 may contribute at most (|E|+ 5)nα.

2. Choosing P t0 will contribute nβ A-nodes.

Therefore, the contribution of vertices of the first type is at most O(s · nα+2) = O(nα+3), and the
vertices of the second type contribute at most O(s · nβ) = O(nβ+1), which concludes the claim.

Set β = α + 2. The total number of vertices in the reduced graph is N = O(nα+β + |E| · nα) =
O(n2α+2). Thus we get that if there is a k-cover for G then the optimal IA yields σ(IA) = Ω(N),
whereas any IA that does not correspond to a k-cover yields σ(IA) = O(N (α+3)/(2α+2)). Hence,
any algorithm that gives an approximation ratio of o(N1−(α+3)/(2α+2)) can solve the NP-complete
vertex cover problem. Therefore we get that the approximation ratio of any poly-time algorithm is
Ω(N1/2−ε), for all ε > 0, unless P = NP .
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