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Abstract

Submodular functions are well-studied in combinatorial optimization, game theory and economics.

The natural diminishing returns property makes them suitable for many applications. We study an

extension of monotone submodular functions, which we call weakly submodular functions. Our ex-

tension is somewhat unusual in that it includes some (mildly) supermodular functions. We show that

several natural functions belong to this class.

We consider the optimization problem of maximizing a weakly submodular function subject to

uniform and general matroid constraints. For a uniform matroid constraint, the “standard greedy

algorithm” achieves a constant approximation ratio where the constant (experimentally) converges

to 5.95 as the cardinality constraint increases. For a general matroid constraint, a simple local search

algorithm achieves a constant approximation ratio where the constant (analytically) converges to

10.22 as the rank of the matroid increases.

1 Introduction

There are many applications where the goal becomes a problem of maximizing a submodular function

subject to some constraint. In many applications the submodular function f is also monotone, non-

negative and normalized so that f (;) = 0. Such applications arise for example in the consideration of

influence in a stochastic social network as formalized in Kempe, Kleinberg and Tardos [9], diversified

search ranking as in Bansal, Jain, Kazeykina and Naor [3] and in document summarization as in Lin and

Bilmes [12]. In another application, following Gollapudi and Sharma [8], Borodin, Lee and Ye [5] consid-

ered the linear combination of a monotone submodular function that measures the “quality” of a set of

results combined with a diversity function given by the max-sum dispersion measure, a widely studied

measure of diversity. Their analysis suggested that although the max-sum dispersion measure is a su-

permodular function, it possessed similar properties to monotone submodular functions. In this paper

we develop this idea by introducing the class of weakly submodular functions and show that greedy and

local search algorithms can be used (respectively) to maximize such functions subject to a cardinality

(resp. matroid) constraint.

2 Preliminaries

Let f be a set function over a universe U satisfying the following properties:
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• f (;) = 0 ; i.e. f is normalized.

• f (S)≥ 0 for all S ⊆U ; i.e. f is non-negative

• f (S)≤ f (T ) for all S ⊆T ⊆U ; i.e. f is monotone

A function f (·) is submodular if for any two sets S and T , we have

f (S)+ f (T ) ≥ f (S ∪T )+ f (S ∩T ).

We define the following generalization. We call a function f (·) weakly submodular if for any two sets S

and T , we have

|T | f (S)+|S| f (T ) ≥ |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T ).

3 Examples of Weakly Submodular Functions

There are several natural examples of weakly submodular functions. Our examples of weakly submodu-

lar functions are all normalized, non-negative and monotone.

3.1 Submodular Functions

From the weakly submodular definition, it is not obvious that monotone submodular functions are a

subclass of weakly submodular functions. We will prove that this is indeed the case.

Proposition 3.1 Any monotone submodular function is weakly submodular. This, of course, implies that

every linear function is a weakly submodular.

Proof: Given a monotone submodular function f (·) and two subsets S and T , without loss of generality,

we assume |S| ≤ |T |, then

|T | f (S)+|S| f (T ) = |S|[ f (S)+ f (T )]+ (|T |− |S|) f (S).

By submodularity f (S)+ f (T ) ≥ f (T ∪S)+ f (T ∩S) and monotonicity f (S)≥ f (S ∩T ), we have

|T | f (S)+|S| f (T ) = |S|[ f (S)+ f (T )]+ (|T |− |S|) f (S)

≥ |S|[ f (S ∪T )+ f (S ∩T )]+ (|T |− |S|) f (S ∩T )

= |S| f (S ∪T )+|T | f (S ∩T )

= |S ∩T | f (S ∪T )+
[

(|S|− |S ∩T |) f (S ∪T )+|T | f (S ∩T )
]

.

And again by monotonicity f (S ∪T )≥ f (S ∩T ), we have

(|S|− |S ∩T |) f (S ∪T )+|T | f (S ∩T )≥ (|S|+ |T |− |S ∩T |) f (S ∩T )= |S ∪T | f (S ∩T ).

Therefore

|T | f (S)+|S| f (T ) ≥ |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T );

the proposition follows.
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We note that the proof of Proposition 3.1 did not require the function f (·) be normalized or non-

negative. But the proof did use the monotonicity of f (·). Non-monotone submodular functions (such a

Max-Cut and Max-Di-Cut) are also widely studied. In contrast to Proposition 3.1, if we extend the weakly

submodular definition to non-monotone functions, then it is no longer the case that a non-monotone

submodular function would necessarily be a non-monotone weakly submodular function.

Proposition 3.2 There is a non-monotone submodular function f (·) that is not weakly submodular. More

specifically, the Max-Cut function (for a particular graph G) is not weakly submodular.

Proof: Consider a graph G = (U ,E ) where V = R ∪ {s}∪ {t } and E = {(s,u), (u, t )|u ∈ R}. Letting S = R ∪ {s}

and T =R ∪ {t }, we have the following letting for |R | =n.

• f (S)= f (T )= n

• f (S ∪T )= f (U ) = 0

• f (S ∩T )= f (R)= 2n

We have

1. |T | f (S)+|S| f (T ) = (n +1)n + (n +1)n = 2n2 +2n

2. |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T )= n ·0+ (n +2) ·2n = 2n2 +4n

This contradicts the weakly submodular definition.

Hereafter, we will we restrict attention to monotone, non-negative and normailzed, functions.

3.2 Sum of Metric Distances of a Set

Let U be a metric space with a distance function d (·, ·). For any subset S, define d (S) to be the sum of

distances induced by S; i.e.,

d (S)=
∑

{u,v}⊆S

d (u, v)

where d (u, v) measures the distance between u and v . The problem of maximizing d (S) (subject to say

a cardinality or matroid constraint) is one of many dispersion problems studied in location theory.

We also extend the function to a pair of disjoint subsets S and T and define d (S,T ) to be the sum of

distances between S and T ; i.e.,

d (S,T )=
∑

u∈S,v∈T

d (u, v).

We have the following proposition.

Proposition 3.3 The sum of metric distances d (S) of a set is weakly submodular (and clearly monotone).

Proof: Given two subsets S and T of U , let A = S \T , B = T \S and C = S ∩T . Observe the fact that by the

triangle inequality, we have

|B |d (A,C )+|A|d (B ,C ) ≥ |C |d (A,B ).

3



Therefore,

|T |d (S)+|S|d (T )

= (|B |+ |C |)[d (A)+d (C )+d (A,C )]+ (|A|+ |C |)[d (B )+d (C )+d (B ,C )]

= |C |[d (A)+d (B )+d (C )+d (A,C )+d (B ,C )]+ (|A|+ |B |+ |C |)d (C )

+|B |d (A)+|A|d (B )+|B |d (A,C )+|A|d (B ,C )

≥ |C |[d (A)+d (B )+d (C )+d (A,C )+d (B ,C )]+|S ∪T |d (S ∩T )+|C |d (A,B )

= |C |[d (A)+d (B )+d (C )+d (A,C )+d (B ,C )+d (A,B )]+|S ∪T |d (S ∩T )

= |S ∩T |d (S ∪T )+|S ∪T |d (S ∩T ).

3.3 Average Non-Negative Segmentation Functions

Motivated by appliations in clustering and data mining, Kleinberg, Papadimitriou and Raghavan [10] in-

troduce the general class of segmentation functions. In their generality, segmentation functions need

not be submodular nor monotone. They show that every segmentation belongs to call they call meta-

submodular functions and consider the greedy algorithm for “weakly montone” meta-submodular func-

tions. We now consider another broad class of segmentation functions.

Given an m ×n matrix M and any subset S ⊆ [m], a segmentation function σ(S) is the sum of the

maximum elements of each column whose row indices appear in S; i.e.; σ(S) =
∑n

j=1 maxi∈S Mi j . A seg-

mentation function is average non-negative if for each row i , the sum of all entries of M is non-negative;

i.e.,
∑n

j=1
Mi j ≥ 0.

We can use columns to model individuals, and rows to model items, then each entry of Mi j repre-

sents how much the individual j likes the item i . The average non-negative property basically requires

that for each item i , on average people do not hate it. Next, we show that an average non-negative seg-

mentation function is weakly-submodular. We first prove the following two lemmas.

Lemma 3.4 An average non-negative segmentation function is monotone.

Proof: Let S be a proper subset of [m], and e be an element in [m] that is not in S. If S is empty, then by

the average non-negative property, we have σ({e}) =
∑n

j=1 Me j ≥ 0. Otherwise, by adding e to S we have

maxi∈S∪{e} Mi j ≥ maxi∈S Mi j for all 1 ≤ j ≤ n. Therefore σ(S ∪ {e})≥σ(S).

Lemma 3.5 For any non-disjoint set S and T and an average non-negative segmentation function σ(·),

we have

σ(S)+σ(T ) ≥σ(S ∪T )+σ(S ∩T ).

This is also referred as the meta-submodular property [11].

Proof: For any non-disjoint set S and T and an average non-negative segmentation function σ(·), we let

σ j (S)= maxi∈S Mi j . We show a stronger statement that for any j ∈ [n], we have

σ j (S)+σ j (T ) ≥σ j (S ∪T )+σ j (S ∩T ).

4



Let e be an element in S ∪T such that Me j is maximum. Without loss of generality, assume e ∈ S, then

σ j (S)=σ j (S ∪T ) = Me j . Since S ∩T ⊆ T , we have σ j (T ) ≥σ j (S ∩T ). Therefore,

σ j (S)+σ j (T ) ≥σ j (S ∪T )+σ j (S ∩T ).

Summing over all j ∈ [n], we have

σ(S)+σ(T ) ≥σ(S ∪T )+σ(S ∩T )

as desired.

Proposition 3.6 Any average non-negative segmentation function is weakly submodular.

Proof: For any two set S and T and an average non-negative segmentation function σ(·), if S and T are

non-disjoint then by Lemma 3.5, S and T satisfy the submodular property and hence they satisfy the

weakly submodular property by Proposition 3.1. If S and T are disjoint, then |S ∩T | = 0, and |S ∪T | =

|S| + |T |. By monotonicity property in Lemma 3.3, we also have σ(S) ≥ σ(S ∩T ) and σ(T ) ≥ σ(S ∩T ).

Therefore,

|S ∩T |σ(S ∪T )+|S ∪T |σ(S ∩T )≤ |T |σ(S ∩T )+|S|σ(S ∩T )≤ |T |σ(S)+|S|σ(T );

the weakly submodular property is also satisfied.

3.4 Small Powers of the Cardinality of a Set

Clearly, for any positive integer k , the functions f (S) = |S|k can be computed in time O(log k). However,

given Lemma 3.10 below, it is still useful to know what simple functions can be used in conjuction with

other submodular and weakly submodular functions.

It is immediate to see that the functions f (S)= |S|0 and f (S)= |S|1 are linear and hence submodular.

We will show that the square and the cube of the cardinality of a set are also weakly submodular.

Proposition 3.7 The square of cardinality of a set is weakly submodular.

Proof: Given two subsets S and T of U , let a = |S \ T |, b = |T \ S| and c = |S ∩T |.

|T | f (S)+|S| f (T )

= (b +c)(a +c)2
+ (a +c)(b +c)2

= (a +b +2c)(b +c)(a +c)

= (a +b +2c)(ab +ac +bc +c2)

≥ (a +b +2c)(ac +bc +c2)

= (a +b +2c)c(a +b +c)

= c(a +b +c)2
+ (a +b +c)c2

= |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T ).
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Proposition 3.8 The cube of cardinality of a set is weakly submodular.

Proof: Given two subsets S and T of U , let a = |S \ T |, b = |T \ S| and c = |S ∩T |.

|T | f (S)+|S| f (T )

= (b +c)(a +c)3
+ (a +c)(b +c)3

= (a2
+b2

+2c2
+2ac +2bc)(b +c)(a +c)

= [(a +b +c)2
+c2

−2ab][ab +c(a +b +c)]

= [(a +b +c)2
+c2][c(a +b +c)]+ab[(a +b +c)2

+c2]−2a2b2
−2abc(a +b +c)

= c(a +b +c)3
+c3(a +b +c)+ab[(a +b +c)2

+c2
−2ab −2c(a +b +c)]

= |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T )+ab(a2
+b2

+c2
+2ab +2ac +2bc +c2

−2ab −2ac −2bc −2c2)

= |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T )+ab(a2
+b2)

≥ |S ∩T | f (S ∪T )+|S ∪T | f (S ∩T ).

It is easy to see that the function is weakly submodular for f (S) = |S|0 and f (S) = |S|1. We now give an

example that shows f (S)= |S|4 is not weakly submodular.

3.4.1 Higher powers

Proposition 3.9 f (S)= |S|4 is not weakly submodular.

Proof: Given two subsets S and T of U , let a = |S \T |, b = |T \S| and c = |S∩T |. Suppose a = 4,b = 4,c = 1.

|T | f (S)+|S| f (T ) = (b +c)(a +c)4
+ (a +c)(b +c)4

= 6250

On the other hand, we have

|S ∩T | f (S ∪T )+|S ∪T | f (S ∩T )= c(a +b +c)4
+c4(a +b +c)= 94

+9 = 6570

Therefore, the function is not weakly submodular.

Similarly, one can see that f (S| = |S|k is not weakly submodular for all intergers k ≥ 4.

3.5 Linear combinations of weakly submodular functions

Next we show a basic but important property of weakly submodular functions.

Lemma 3.10 Non-negative linear combinations of weakly submodular functions are weakly submodular.

6



Proof: Consider weakly submodular functions f1, f2, . . . , fn and non-negative numbersα1,α2, . . . ,αn . Let

g (S)=
∑n

i=1αi fi (S), then for any two set S and T , we have

|T |g (S)+|S|g (T )

= |T |

n
∑

i=1

αi fi (S)+|S|
n
∑

i=1

αi fi (T )

=

n
∑

i=1

αi [|T | fi (S)+|S| fi (T )]

≥

n
∑

i=1

αi [|S ∩T | fi (S ∪T )+|S ∪T | fi (S ∩T )]

= |S ∩T |

n
∑

i=1

αi fi (S ∪T )+|S ∪T |

n
∑

i=1

αi fi (S ∩T )

= |S ∩T |g (S ∪T )+|S ∪T |g (S ∩T ).

Therefore, g (S) is weakly submodular.

We now show two more examples of weakly submodular function using Lemma 3.10.

3.6 The Objective Function of Max-Sum Diversification

Corollary 3.11 The objective function of the max-sum diversification problem is weakly submodular.

Proof: This follows immediate from Proposition 3.1 and 3.3 and Lemma 3.10.

3.7 Restricted Polynomial Function on the Cardinality of a Set

Corollary 3.12 For polynomial function on the cardinality of a set, if the degree is less than four and coef-

ficients are all non-negative, then the function is weakly submodular.

Proof: This follows immediate from Proposition 3.7 and 3.8 and Lemma 3.10.

4 Weakly Submodular Function Maximization Subject to a Cardinality Con-

straint

We emphasize again that we restrict attention to monotone, non-negative and normalized functions. In

this section, we discuss a greedy approximation algorithm for maximizing weakly submodular functions

subject to a uniform matroid (i.e cardinality constraint). In section 5 we consider an arbitrary matroid

constraint.

Given an underlying set U and a weakly submodular function f (·) defined on every subset of U , the

goal is to select a subset S maximizing f (S) subject to a cardinality constraint |S| ≤ p . We consider the

following standard greedy algorithm that achieves approximation ratio e
e−1 for monotone submodular

maximization by a classic result of Nemhauser, Fisher and Wolsey [13]. Furthermore, they showed that

this is the best approximationpossible in the value oracle model and Feige [7] showe the same inapprox-

imation holds for an explictly defined function subject to the conjecture that RP 6= N P .

GREEDY ALGORITHM FOR WEAKLY SUBMODULAR FUNCTION MAXIMIZATION
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1: S =;

2: while |S| < p do

3: Find u ∈U \ S maximizing f (S ∪ {u})− f (S)

4: S = S ∪ {u}

5: end while

6: return S

Theorem 4.1 The standard greedy algorithm achieves approximation ratio ≈ 5.95.

Before getting into the proof, we first prove two algebraic identities.

Lemma 4.2
n
∑

j=1

(
i +1

i
) j−1

= i (
i +1

i
)n

− i .

Proof: Note that the expression on the left-hand side is a geometric sum. Therefore, we have

n
∑

j=1

(
i +1

i
) j−1

=
( i+1

i )n −1

i+1
i −1

= i (
i +1

i
)n

− i .

Lemma 4.3
n
∑

j=1

j (
i +1

i
) j−1

= ni 2(
i +1

i
)n+1

− (n +1)i 2(
i +1

i
)n

+ i 2.

Proof: Consider the function f (x) =
∑n

j=1 x j with x 6= 1, its derivative f ′(x) =
∑n

j=1 j x j−1. Since f (x) is a

geometric sum and x 6= 1, we have

f (x) =
xn+1 −1

x −1
.

Taking derivatives on both sides we have

f ′(x) =
(n +1)xn(x −1)−xn+1 +1

(x −1)2
=

nxn+1 − (n +1)xn +1

(x −1)2
.

Therefore, we have
n
∑

j=1

j x j−1
=

nxn+1 − (n +1)xn +1

(x −1)2
.

Substituting x with i+1
i

, we have

n
∑

j=1

j (
i +1

i
) j−1

=
n( i+1

i )n+1 − (n +1)( i+1
i )n +1

( i+1
i −1)2

= ni 2(
i +1

i
)n+1

− (n +1)i 2(
i +1

i
)n

+ i 2.

Now we proceed to the proof to Theorem 4.1.
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Proof: Let Si be the greedy solution after the i th iteration; i.e., |Si | = i . Let O be an optimal solution, and

let Ci =O \ Si . Let mi = |Ci |, and Ci = {c1,c2, . . . ,cmi
}. By the weakly submodularity definition, we get the

following mi inequalities for each 0 < i < p :

(i +mi −1) f (Si ∪ {c1})+ (i +1) f (Si ∪ {c2, . . . ,cmi
}) ≥ (i ) f (Si ∪ {c1 . . . ,cmi

})+ (i +mi ) f (Si )

(i +mi −2) f (Si ∪ {c2})+ (i +1) f (Si ∪ {c3, . . . ,cmi
}) ≥ (i ) f (Si ∪ {c2 . . . ,cmi

})+ (i +mi −1) f (Si )

...

(i +1) f (Si ∪ {cmi−1})+ (i +1) f (Si ∪ {cmi
}) ≥ (i ) f (Si ∪ {cmi−1,cmi

})+ (i +2) f (Si )

(i ) f (Si ∪ {cmi
})+ (i +1) f (Si ) ≥ (i ) f (Si ∪ {cmi

})+ (i +1) f (Si ).

Multiplying the j th inequality by ( i+1
i

) j−1, and summing all of them up (noting that the second term

of the left hand side of the j t h inequality then cancels the first term of the j +1st inequality), we have

mi
∑

j=1

(i +mi − j )(
i +1

i
) j−1 f (Si ∪ {c j })+ (i +1)(

i +1

i
)mi−1 f (Si )

≥ (i ) f (Si ∪ {c1, . . . ,cmi
})+

mi
∑

j=1

(i +mi − j +1)(
i +1

i
) j−1 f (Si ).

By monotonicity, we have f (Si ∪ {c1, . . . ,cmi
}) ≥ f (O). Rearranging the inequality,

mi
∑

j=1

(i +mi − j )(
i +1

i
) j−1 f (Si ∪ {c j }) ≥ (i ) f (O)+

mi−1
∑

j=1

(i +mi − j +1)(
i +1

i
) j−1 f (Si ).

By the greedy selection rule, we know that f (Si+1) ≥ f (Si ∪ {c j }) for any 1≤ j ≤ mi , therefore we have

mi
∑

j=1

(i +mi − j )(
i +1

i
) j−1 f (Si+1) ≥ (i ) f (O)+

mi−1
∑

j=1

(i +mi − j +1)(
i +1

i
) j−1 f (Si ).

For the ease of notation, we let

ai =

mi
∑

j=1

(i +mi − j )(
i +1

i
) j−1 bi =

mi−1
∑

j=1

(i +mi − j +1)(
i +1

i
) j−1

so that we have ai f (Si+1)−bi f (Si ) ≥ (i ) f (O)

We first simplify ai and bi .

ai =

mi
∑

j=1

(i +mi − j )(
i +1

i
) j−1

=

mi
∑

j=1

(i +mi )(
i +1

i
) j−1

−

mi
∑

j=1

j (
i +1

i
) j−1.

By Lemma 4.2 and 4.3, we have

ai = (i +mi )[i (
i +1

i
)mi − i ]−mi i 2(

i +1

i
)mi+1

+ (mi +1)i 2(
i +1

i
)mi − i 2

= [i 2
+ i mi −mi (i 2

+ i )+ (mi +1)i 2](
i +1

i
)mi −2i 2

− i mi

= 2i 2(
i +1

i
)mi −2i 2

− i mi .
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Similarly, we have

bi =

mi−1
∑

j=1

(i +mi − j +1)(
i +1

i
) j−1

=

mi−1
∑

j=1

(i +mi +1)(
i +1

i
) j−1

−

mi−1
∑

j=1

j (
i +1

i
) j−1

= (i +mi +1)[i (
i +1

i
)mi−1

− i ]− (mi −1)i 2(
i +1

i
)mi +mi i 2(

i +1

i
)mi−1

− i 2

= [i 2
+ i mi + i − (mi −1)(i 2

+ i )+mi i 2](
i +1

i
)mi−1

−2i 2
− i mi − i

= 2i (i +1)(
i +1

i
)mi−1

−2i 2
− i mi − i

= 2i 2(
i +1

i
)mi −2i 2

− i mi − i .

Now let

a∗
i =

p
∑

j=1

(i +p − j )(
i +1

i
) j−1 b∗

i =

p−1
∑

j=1

(i +p − j +1)(
i +1

i
) j−1

The simplication of ai and bi makes it clear that ai −bi = i for any value of mi . Since a∗
i

(resp. b∗
i

) can

be thought of as ai (resp. bi ) with mi = p , we have

a∗
i −ai = b∗

i −bi ≥ 0

Therefore,

a∗
i f (Si+1)−b∗

i f (Si ) = ai f (Si+1)−bi f (Si )+ (a∗
i −ai )[ f (Si+1)− f (Si )].

Since f (·) is monotone, we have f (Si+1)− f (Si ) ≥ 0. Therefore,

a∗
i f (Si+1)−b∗

i f (Si ) ≥ ai f (Si+1)−bi f (Si )≥ i f (O).

Then we have the following set of inequalities:

a∗
1 f (S2) ≥ 1 f (O)+b∗

1 f (S1)

a∗
2 f (S3) ≥ 2 f (O)+b∗

2 f (S2)

...

a∗
p−2 f (Sp−1) ≥ (p −2) f (O)+b∗

p−2 f (Sp−2)

a∗
p−1 f (Sp ) ≥ (p −1) f (O)+b∗

p−1 f (Sp−1).

Multiplying the i th inequality by

∏i−1
j=1 a∗

j
∏i

j=2 b∗
j

, summing all of them up and ignoring the term b∗
1 f (S1),

∏p−1

j=1
a∗

j

∏p−1

j=2
b∗

j

f (Sp ) ≥
p−1
∑

i=1

i
∏i−1

j=1 a∗
j

∏i
j=2 b∗

j

f (O).

10



Therefore the approximation ratio

f (O)

f (Sp )
≤

∏p−1

j=1
a∗

j
∏p−1

j=2
b∗

j

∑p−1

i=1

i
∏i−1

j=1 a∗
j

∏i
j=2 b∗

j

=





p−1
∑

i=1

i
∏p−1

j=i+1
b∗

j

∏p−1

j=i
a∗

j





−1

=

(

p−1
∑

i=1

[

i

a∗
i

·

p−1
∏

j=i+1

b∗
j

a∗
j

])−1

.

Note that the approximation ratio is simply a function of p . In particular, the approximation ratio is

3.74 when p = 10 and approximation ratio is 5.62 when p = 100. Computer evaluations suggest that the

approximation ratio converges to 5.95 as p tends to ∞.

In terms of hardness of approximation, assuming P 6= N P , Feige [7] proved that the max cover-

age problem (an example of monotone submodular maximization subject to a cardinality constraint)

is known to be hard to approximate to a factor better than e
e−1 − ǫ. The problem of maximizing the sum

of metric distances subject to a cardinality constraint has been called the max-sum dispersion problem.

The max-sum dispersion problem is known to be NP-hard by an easy reduction from Max-Clique, and

as noted by Alon [1], there is evidence that the problem is hard to compute in polynomial time with

approximation 2−ǫ for any ǫ> 0 when p = nr for 1/3 ≤ r < 1. (See the discussion in Section 3 of [4].)

5 Weakly Submodular Function Maximization Subject to an Arbitrary Ma-

troid Constraint

It is natural to consider a general matroid constraint for the problem of weakly submodular function

maximization. For this more general problem, the greedy algorithm in the previous section no longer

achieves any constant approximation ratio. See the example presented in the Appendix of [4]. Following

the result for max-sum diversification subject to a matroid constraint in [5], we will analyze the following

oblivious local search algorithm:

WEAKLY SUBMODULAR FUNCTION MAXIMIZATION WITH A MATROID CONSTRAINT

1: Let S be a basis of M

2: while exists u ∈U \ S and v ∈ S such that S ∪ {u} \ {v} ∈F and f (S ∪ {u} \ {v}) > f (S) do

3: S = S ∪ {u} \ {v}

4: end while

5: return S

The following lemma on the exchange property of matroid bases was first stated in [6].

Lemma 5.1 (Brualdi [6]) For any two sets X ,Y ∈F with |X | = |Y |, there is a bijective mapping g : X → Y

such that X ∪ {g (x)} \ {x} ∈F for any x ∈ X .

Before we prove the theorem, we need to prove several lemmas. Let O be the optimal solution, and

S, the solution at the end of the local search algorithm. Let s be the size of a basis; let A = O ∩ S, B =

S \ A and C = O \ A. By Lemma 5.1, there is a bijective mapping g : B → C such that S ∪ {b} \ {g (b)} ∈

F for any b ∈ B . Let B = {b1,b2, . . . ,bt }, and let ci = g (bi ) for all i = 1, . . . , t . We reorder b1,b2, . . . ,bt

in different ways. Let b′
1,b′

2, . . . ,b′
t be an ordering such that the corresponding c ′1,c ′2, . . . ,c ′t maximizes

the sum
∑t

i=1(s − i )( s+1
s

)i−1 f (S ∪ {c ′
i
}); and let b′′

1 ,b′′
2 , . . . ,b′′

t be an ordering such that the corresponding

c ′′1 ,c ′′2 , . . . ,c ′′t minimizes the sum
t

∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i }).

11



Lemma 5.2 Given three non-increasing non-negative sequences:

α1 ≥α2 ≥ ·· · ≥αn ≥ 0,

β1 ≥β2 ≥ ·· · ≥βn ≥ 0,

x1 ≥ x2 ≥ ·· · ≥ xn ≥ 0.

Then we have
n
∑

i=1

αi xi

n
∑

i=1

βi ≥

n
∑

i=1

βi xn+1−i

n
∑

i=1

αi .

Proof: Consider the following:

n
n
∑

i=1

αi xi = nα1x1 +nα2x2 +·· ·+nαn xn

=

n
∑

i=1

αi x1 + (nα1 −

n
∑

i=1

αi )x1 +nα2x2 +·· ·+nαn xn

≥

n
∑

i=1

αi x1 + (nα1 +nα2 −

n
∑

i=1

αi )x2 +·· ·+nαn xn

=

n
∑

i=1

αi x1 +

n
∑

i=1

αi x2 + (nα1 +nα2 −2
n
∑

i=1

αi )x2 +·· ·+nαn xn

...

≥

n
∑

i=1

αi x1 +

n
∑

i=1

αi x2 +·· ·+

n
∑

i=1

αi xn + (nα1 +nα2 +·· ·+nαn −n
n
∑

i=1

αi )xn

=

n
∑

i=1

αi

n
∑

i=1

xi

Similarly, we have

n
n
∑

i=1

βi xn+1−i = nβ1xn +nβ2xn−1 +·· ·+nβn x1

=

n
∑

i=1

βi xn + (nβ1 −

n
∑

i=1

βi )xn +nβ2xn−1 +·· ·+nβn x1

≤

n
∑

i=1

βi xn + (nβ1 +nβ2 −

n
∑

i=1

βi )xn−1 +·· ·+nβn x1

=

n
∑

i=1

βi xn +

n
∑

i=1

βi xn−1 + (nβ1 +nβ2 −2
n
∑

i=1

βi )xn−1 +·· ·+nβn x1

...

≤

n
∑

i=1

βi xn +

n
∑

i=1

βi xn−1 +·· ·+

n
∑

i=1

βi x1 + (nα1 +nβ2 +·· ·+nβn −n
n
∑

i=1

βi )x1

=

n
∑

i=1

βi

n
∑

i=1

xi

Therefore the lemma follows.
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Lemma 5.3

t
∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i })

≤ s f (S)+
t

∑

i=1

(s +1− i )(
s +1

s
)i−1 f (S ∪ {c ′i } \ {b′

i })− (s +1)(
s +1

s
)t−1 f (S \ {b′

1, . . . ,b′
t }).

Proof: By the definition of weakly submodular, we have

s f (S)+ s f (S ∪ {c ′1} \ {b′
1}) ≥ (s −1) f (S ∪ {c ′1})+ (s +1) f (S \ {b′

1})

s f (S \ {b′
1})+ (s −1) f (S ∪ {c ′2} \ {b′

2}) ≥ (s −2) f (S ∪ {c ′2})+ (s +1) f (S \ {b′
1,b′

2})

...

s f (S \ {b′
1, . . . ,b′

t−1})+ (s − t +1) f (S ∪ {c ′t } \ {b′
t }) ≥ (s − t ) f (S ∪ {c ′t })+ (s +1) f (S \ {b′

1, . . . ,b′
t })

Multiplying the i th inequality by ( s+1
s )i−1, and summing all of them up to get

s f (S)+
t

∑

i=1

(s +1− i )(
s +1

s
)i−1 f (S ∪ {c ′i } \ {b′

i })

≥

t
∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i })+ (s +1)(

s +1

s
)t−1 f (S \ {b′

1, . . . ,b′
t }).

After rearranging the inequality, we get

t
∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i })

≤ s f (S)+
t

∑

i=1

(s +1− i )(
s +1

s
)i−1 f (S ∪ {c ′i } \ {b′

i })− (s +1)(
s +1

s
)t−1 f (S \ {b′

1, . . . ,b′
t }).

Lemma 5.4

t
∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i })−

t
∑

i=1

(s + t +1− i )(
s +1

s
)i−1 f (S)

≥ s f (S ∪ {c ′′1 , . . . ,c ′′t })− (s +1)(
s +1

s
)t−1 f (S)

Proof: By the definition of weakly submodular, we have

(s + t −1) f (S ∪ {c ′′1 })+ (s +1) f (S ∪ {c ′′2 , . . . ,c ′′mi
}) ≥ s f (S ∪ {c ′′1 , . . . ,c ′′mi

})+ (s + t ) f (S)

...

(s +1) f (S ∪ {c ′′t−1})+ (s +1) f (S ∪ {c ′′t }) ≥ s f (S ∪ {c ′′t−1,c ′′t })+ (s +2) f (S)

s f (S ∪ {c ′′t })+ (s +1) f (S)≥ s f (S ∪ {c ′′t })+ (s +1) f (S).
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Multiplying the i th inequality by ( s+1
s

)i−1, and summing all of them up, we have

t
∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i })+ (s +1)(

s +1

s
)t−1 f (S)

≥ s f (S ∪ {c ′′1 , . . . ,c ′′t })+
t

∑

i=1

(s + t +1− i )(
s +1

s
)i−1 f (S).

Therefore, we have

t
∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i })

≥ s f (S ∪ {c ′′1 , . . . ,c ′′t })+
t

∑

i=1

(s + t +1− i )(
s +1

s
)i−1 f (S)− (s +1)(

s +1

s
)t−1 f (S).

Let

W =

t
∑

i=1

(s − i )(
s +1

s
)i−1, X =

t
∑

i=1

(s +1− i )(
s +1

s
)i−1,

Y =

t
∑

i=1

(s + t − i )(
s +1

s
)i−1, Z =

t
∑

i=1

(s + t +1− i )(
s +1

s
)i−1.

Lemma 5.5

C
t

∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i }) ≥ A

t
∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i }).

Proof: This is immediate by Lemma 5.2

Theorem 5.6 Let s be the size of a basis, the local search algorithm achieves an approximation ratio

bounded by 14.5 for an arbitrary s, approximately 10.88 when s = 6. The ratio converges to 10.22 as s

tends to ∞.

Proof: Since S is a locally optimal solution, we have

f (S)≥ f (S ∪ {c ′i } \ {b′
i }).

Since f (S \ {b′
1, . . . ,b′

t }) ≥ 0, by Lemma 5.3, we have

t
∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i }) ≤ s f (S)+

t
∑

i=1

(s +1− i )(
s +1

s
)i−1 f (S).

Therefore,
t

∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i }) ≤ (s +X ) f (S).
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On the other hand, we have O ⊆ S ∪ {c ′′1 , . . . ,c ′′t }, by monotonicity, we have f (O) ≤ f (S ∪ {c ′′1 , . . . ,c ′′t }). By

Lemma 5.4, we have

t
∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i }) ≥ s f (O)+ [Z − (s +1)(

s +1

s
)t−1] f (S).

Lemma 5.2, we have

Y
t

∑

i=1

(s − i )(
s +1

s
)i−1 f (S ∪ {c ′i }) ≥W

t
∑

i=1

(s + t − i )(
s +1

s
)i−1 f (S ∪ {c ′′i }).

Therefore

Y (s +X ) f (S)≥W s f (O)+X [Z − (s +1)(
s +1

s
)t−1] f (S)

Hence the approximation ratio:

f (O)

f (S)
≤

Y X −W Z +Y s +W (s +1)( s+1
s )t−1

W s
=

Y X −W Z +Y s

W s
+ (

s +1

s
)t .

Simplifying the notation, we have

f (O)

f (S)
≤

∑t
i=1

(s2 + st + t i − si )( s+1
s

)i−1 +
∑2t−1

i=t+1
t (2t − i )( s+1

s
)i−1

∑t
i=1 s(s − i )( s+1

s )i−1
+ (

s +1

s
)t .

Using Lemma 4.2 and 4.3 to simply it further, we have

f (O)

f (S)
≤

2s( s+1
s )2t −2t ( s+1

s )t −2s

(2s − t )( s+1
s )t −2s

.

Let x = ( s+1
s )s and r =

t
s , we study the continuous version of the above function

g (x,r ) =
2x2r −2r xr −2

(2− r )xr −2
.

Since S is a local optimum with respect to the swapping of any single element and by the definition of

x, s and t , we have 2 ≤ t ≤ s and hence 2.25 ≤ x ≤ e and 0 < r ≤ 1. Our goal then is to establish an upper

bound on g (x,r ) for 2.25 ≤ x ≤ e and 0< r ≤ 1. We will think of g (x,r ) as implictly defining x as a function

of r at points where g (x,r ) can possibly take on a maximum value, namely when when
∂g (x,r )

∂x = 0 and at

the boundary points for x.

Note that since x ≥ 2.25,

x >

(

2

2− r

) 1
r

,

for all 0 < r ≤ 1. Therefore, we have (2− r )xr −2 > 0 for given x and r . It is easy to verify that function

g (x,r ) is continuous and differentiable. For any fixed r , the function has two boundary points at x = 2.25

and x = e , and taking partial derivative with respect to x, we have

∂g (x,r )

∂x
=

2r xr−1(xr −1)[(2− r )xr − (2+ r )]

[(2− r )xr −2]2
.
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Therefore the only point where the partial derivative equals to zero is

x∗
= (

2+ r

2− r
)

1
r .

Plugging this into the original expression for g (x,r ), we have

g (x∗,r ) =
2r 2 +8

(r −2)2
.

The function g (x∗,r ) is monotonically increasing with respect to r ∈ (0,1] and it has a maximum value of

10 when r = 1.

Now it only remains to check the two boundary points x = 2.25 and x = e . Note that these are fixed

values. We now fix x, and take partial derivative with respect to r :

∂g (x,r )

∂r
=

2xr (xr −1)[(2ln x − r ln x +1)xr − (2ln x + r ln x +1)]

[(2− r )xr −2]2
.

Since xr > 0, xr −1 > 0 and [(2− r )xr −2]2 > 0. If we can show that

(2ln x − r ln x +1)xr
− (2ln x + r ln x +1) > 0

then the function after fixing x is monotonically increasing with respect to r . We use the Taylor expansion

of xr at x = 0.

xr
> 1+ r ln x +

1

2
r 2 ln2 x.

Therefore,

(2ln x − r ln x +1)xr
− (2ln x + r ln x +1) > r ln x(2ln x + r ln2 x −

1

2
r 2 ln2 x −

1

2
r ln x −1).

Note that we only need to check for the case when x = e and x = 2.25.

1. Case x = e :

2 ln x + r ln2 x −
1

2
r 2 ln2 x −

1

2
r ln x −1 = 1+

1

2
r −

1

2
r 2

> 0.

2. Case x = 2.25:

2ln x + r ln2 x −
1

2
r 2 ln2 x −

1

2
r ln x −1 > 0.6+0.6r −0.5r −0.4r 2

> 0.

Therefore (2ln x−r ln x+1)xr −(2ln x+r ln x+1) > 0, and hence
∂g (x,r )

∂r > 0 for x = 2.25 and x = e . Therefore

the maximum is obtained when r = 1. Plug r = 1 into the original formula, we have

g (x,1) =
2x2 −2x −2

x −2
.

Evaluate it for x = e and x = 2.25, we have g (e,1) = 10.22 and g (2.25,1) = 14.5. This completes the proof.
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6 Conclusion and Open Problem

Motivated by the max-sum diversification problem we are led to study a generalization of monotone

submodular functions that we call weakly-submodular functions. This class includes the supermodular

max-sum dispersion problem.

There are several open problems that remain. First, similar to the result for an arbitrary matroid con-

straint, we would like to have a proof of the convergence of the approximation bound for the cardinality

constraint. Another immediate open problem is to close the gap between the upper and lower bounds

we know for approximating an arbitrary weakly submodular function subject to cardinality or matroid

constraints. It would also be of interest to consider an approximation for maximizing a weakly submod-

ular function subject to a knapsack constraint. In addition, we ask what other possible extensions of

submodular functions can be defined so as to include supermodular functions and yet be amenable to

simple approximation algorithms. Finally, we would like to know if there is an analogue of the marginal

decreasing property that characterizes submodular functions.
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