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Abstract. We study mechanisms for the combinatorial auction (CA)
problem, in which m objects are sold to rational agents and the goal is
to maximize social welfare. Of particular interest is the special case of
s-CAs, where agents are interested in sets of size at most s, for which a
simple greedy algorithm obtains an s + 1 approximation but no deter-
ministic truthful mechanism is known to attain an approximation ratio
better than O(m/

√
logm). We view this as an extreme gap not only

between the power of greedy auctions and truthful greedy auctions, but
also as an apparent gap between the known power of truthful and non-
truthful deterministic algorithms. We associate the notion of greediness
with a broad class of algorithms, known as priority algorithms, which
encapsulates many natural auction methods. This motivates us to ask:
how well can a truthful greedy algorithm approximate the optimal so-
cial welfare for CA problems? We show that no truthful greedy priority
algorithm can obtain an approximation to the CA problem that is sub-
linear in m, even for s-CAs with s ≥ 2. We conclude that any truthful
combinatorial auction mechanism with non-trivial approximation factor
must fall outside the scope of many natural auction methods.

1 Introduction

The field of algorithmic mechanism design attempts to bridge the competing de-
mands of agent selfishness and computational constraints. The difficulty in such
a setting is that agents may lie about their inputs in order to obtain a more desir-
able outcome. It is often possible to circumvent this obstacle by using payments
to elicit truthful responses. Indeed, if the goal of the algorithm is to maximize
the total welfare of all agents, the well-known VCG mechanism does precisely
that: each agent maximizes his utility by reporting truthfully. However, the VCG
mechanism requires that the underlying optimization problem be solved exactly,
and is therefore ill-suited for computationally intractable problems. Indeed, ap-
proximation algorithms do not, in general, result in truthful mechanisms when
coupled with the VCG construction. Determining the power of truthful approx-
imation mechanisms to maximize social welfare is a fundamental problem in
algorithmic mechanism design.

The combinatorial auction (CA) problem holds a position at the center of this
conflict between truthfulness and approximability. In this problem,m objects are



to be distributed among n bidders. Each bidder holds a private value for each
possible subset of the objects. The generality of this problem models situations in
which the objects for sale can exhibit complementarities; for example, an agent’s
value for a pair of shoes can be much greater than twice his value for only a left
shoe or a right shoe in isolation. Combinatorial auctions have arisen in pracitice
for the sale of airport landing schedules [48], FCC spectrum auctions [16], and
others; see [17] for an overview. The CA problem, also known as the winner
determination problem for CAs, is to determine, given the agents’ valuation
functions (either directly or via oracle access), the allocation of objects that
maximizes the overall social welfare.

Without strategic considerations, one can obtain an O(min{n,√m}) approx-
imation for CAs with n bidders and m objects with a conceptually simple (albeit
not obvious) greedy algorithm [40], and this is the best possible under standard
complexity assumptions [31, 49]. However, no deterministic truthful mechanism
is known to obtain an approximation ratio better than O( m√

logm
) for the general

problem [32]. This is true even for the special case where each bidder is interested
only in sets of size at most some constant s ≥ 2 (the s-CA problem), where the
standard greedy algorithm obtains an s+1 approximation. Whether these gaps
are essential for the CA problem, or whether there is some universal reduction
by which approximation algorithms for the CA problem can be made truthful
without heavy loss in performance, is a central open question that has received
significant attention over the past decade [26, 36, 40, 45, 47].

It is known that there do exist problems for which deterministic truthful
mechanisms must achieve significantly worse approximations to the social wel-
fare than their non-truthful counterparts. Indeed, a lower bound for the related
combinatorial public project problem [47] shows that there is a large asymptotic
gap separating approximation by deterministic algorithms and by deterministic
truthful mechanisms in general allocation problems. However, for the general
CA problem, the question of whether such an essential gap exists remains open.
Currently, the only lower bounds known for the general CA problem are limited
to max-in-range (MIR) algorithms [22, 13]. While many known truthful CA al-
gorithms are MIR, the possibility yet remains that non-MIR algorithms could
be used to bridge the gap between truthful and non-truthful CA design.

Significant work has focused on particular restricted cases of the combina-
torial auction problem, such as submodular auctions [25, 24, 34, 39, 20], and on
alternative solution concepts such as randomized notions of truthfulness [18,
38, 21, 2, 23, 19], truthfulness in Bayesian settings [30, 29, 8], and performance
at (non-truthful) equilibrium [43, 42, 41]. Nevertheless, the original problem yet
stands as a core demonstration of the limits of our understanding of truthful ap-
proximation algorithms. A resolution would also be of practical interest, as any
new insights would likely contribute, even if only indirectly, to the growing inter-
est in robust combinatorial auction mechanisms with desirable game-theoretic
properties. Indeed, many mechanisms used in practice today are based upon it-
erative price-determination methods which appear to work well empirically, but
do not have the theoretical soundness of single-item auction methods. This situ-



ation is due at least in part to the difficulty in resolving the computational and
game-theoretic issues in the CA problem from a purely theoretical perspective.

The hope, when studying the combinatorial auction problem, would be to
find a natural and truthful approximation mechanism, of the flavour of the well-
known Vickrey auction for a single object. This qualifier “natural” is highly
subjective, but nevertheless important; it is crucial that agents understand any
auction that they are participating in, even if it is truthful. Indeed, the in-
scrutable nature of the VCG auction has been cited as one reason why it is
rarely used in practice, even in settings where optimal outcomes can be com-
puted efficiently; it is important that agents be able to quickly determine which
bids would “win” in a given auction instance [3]. We are therefore motivated
to ask the following loosely-defined question: can any “natural” auction that
proceeds by ranking bids in some manner, and allocating to the agents with the
“best” bids, be simultaneously truthful and achieve a good approximation to the
social welfare?

One may be tempted to respond to this question negatively. However, we
would argue that this is not immediately clear. Indeed, many different auction
methods may fit the above description. For instance, a truthful auction due to
Bartal et al. [7] for the multi-unit combinatorial auction problem is a primal-
dual algorithm that proceeds by iteratively constructing a price vector, and
can be viewed as resolving bids in a (specially-tailored and adaptive) greedy
manner. This approach is particularly appealing from a practical standpoint,
as it mirrors ascending price vector methods currently in use. Is it possible that
such methodologies, extended further, might lead to a similar greedy-like truthful
algorithm for the more general combinatorial auction problem?

Our goal in this work will be to develop lower bounds for truthful CA mech-
anisms that satisfy our notion of a “natural” auction alluded to above. We ask:
can any truthful greedy algorithm obtain an approximation ratio better than
O( m√

log(m)
)? Our specific interest in greedy algorithms is motivated threefold.

First, most known examples of truthful, non-MIR algorithms for combinatorial
auction problems apply greedy methods [4, 7, 12, 14, 35, 39, 40, 45]; indeed, greedy
algorithms embody the conceptual monotonicity properties generally associated
with truthfulness, and are thus natural candidates for truthful mechanism con-
struction. Second, greedy algorithms are known to obtain asymptotically tight
approximation bounds for many CA problems despite their simplicity. Finally,
and perhaps most importantly, many auctions used in practice apply greedy
methods, despite the fact that they may not be incentive compatible (e.g. the
generalized second price auction for adwords [27]). That is, simple mechanisms
(and in particular greedy mechanisms) seem to be good candidates for auctions
due to other considerations beyond truthfulness, such as ease of public under-
standing and perceived fairness.

We use the term “greedy algorithm” to refer to any of a large class of al-
gorithms known as priority algorithms [11]. The class of priority algorithms
captures a general notion of greedy algorithm behaviour. Informally speaking, a
priority algorithm proceeds by ranking bids according to some (possibly adap-



tive) quality score; winning a certain bundle then requires that one’s bid be
superior (in terms of the ranking) to the conflicting bids with which it com-
petes. Priority algorithms include, for example, many well-known primal-dual
algorithms, as well as other greedy algorithms with adaptive and non-trivial se-
lection rules. Moreover, this class is independent of computational constraints
and also independent of the manner in which valuation functions are accessed.
In particular, our results apply to algorithms in the demand query model and
the general query model, as well as to auctions in which bids are explicitly
represented. Roughly speaking, a priority algorithm has some notion of what
constitutes the “best” bid in any given auction instance; the auction finds this
bid, satisfies it, then iteratively resolves the reduced auction problem with fewer
objects (possibly with an adaptive notion of the “best” bid). For example, the
previously mentioned truthful algorithm for multi-unit auctions due to Bartal et
al. [7] that updates a price vector while iteratively satisfying agent demands falls
into this framework. Our main result demonstrates that if a truthful auction for
an s-CA proceeds in this way, then it cannot perform much better than the naive
algorithm that allocates all objects to a single bidder. The gap described in our
result is extreme: for s = 2, the standard (but non-truthful) greedy algorithm is
a 3-approximation for the s-CA problem, but no truthful greedy algorithm can
obtain a sublinear approximation bound.

We also consider the combinatorial auction problem for submodular bidders
(SMCA), a very well-studied special case of the general CA problem. We study
a class of greedy algorithms that is especially well-suited to the SMCA problem.
Such algorithms consider the objects of the auction one at a time and greedily
assign them to bidders to maximize marginal utilities. It was shown in [39] that
any such algorithm3 attains a 2-approximation to the SMCA problem, but that
not all are incentive compatible. We show that, in fact, no such algorithm can
be incentive compatible.

1.1 Related Work

There have been many developments in the restricted case of CAs with single-
minded bidders. Following the Lehmann et al. [40] truthful greedy mechanism for
single-minded CAs, Mu’alem and Nisan [45] showed that any monotone greedy
algorithm for single-minded bidders is truthful, and outlined various techniques
for combining approximation algorithms while retaining truthfulness. This led to
the development of many other truthful algorithms in single-minded settings [5,
12] and additional construction techniques, such as the iterative greedy packing
of loser-independent algorithms due to Chekuri and Gamzu [14].

Less is known in the setting of general bidder valuations. The best-known
truthful deterministic mechanism for the general CA problem proceeds by divid-
ing the objects arbitrarily into O(logm) equal-sized indivisible bundles, then al-
locating those bundles optimally; this achieves an approximation ratio ofO(m/ logm)

3 The degree of freedom in this class of algorithms is the order in which the objects
are considered.



[32]. For the special case of multi-unit CAs, when there are B ≥ 3 copies of each

object, Bartal et al. [7] give a greedy algorithm that obtains an O(Bm
1

B−2 )
approximation. Lavi and Swamy [38] give a general method for constructing
randomized mechanisms that are truthful in expectation, meaning that agents
maximize their expected utility by declaring truthfully. Their construction gen-
erates a k-approximate mechanism from an LP for which there is an algorithm
that verifies a k-integrality gap, and in particular they obtain an O(

√
m) ap-

proximation for the general CA problem. In the applications they discuss, these
verifiers take the form of greedy algorithms, which play a prominant role in the
final mechanisms. Dobzinski, Nisan, and Schapira [24] construct a universally
truthful randomized O(

√
m)-approximate mechanism for the CA problem via

sampling.

A significant line of research aims to give lower bounds on the approximat-
ing power of deterministic truthful algorithms for CAs. Lehmann, Mu’alem, and
Nisan [36] show that any truthful CA mechanism that uses a suitable bidding
language, is unanimity-respecting, and satisfies an independence of irrelevant
alternatives property (IIA) cannot attain a polynomial approximation ratio. It
has also been shown that, roughly speaking, any truthful polytime subadditive
combinatorial auction mechanism with an approximation factor better than 2
cannot satisfy the natural property of being stable4 [26]. Dobzinski and Nisan
showed that no max-in-range algorithm can obtain an approximation ratio bet-
ter than Ω(

√
m) with polynomial communication between agents and the mech-

anism [22]. This was later extended to show that no max-in-range algorithm
can obtain an approximation ratio better than Ω(

√
m) even when agents have

succinctly-representable valuations (i.e., budget-constrained additive valuations)
[13]. These lower bounds are incomparable to our own, as priority algorithms
need not be MIR, stable, unanimity-respecting, or satisfy IIA5.

There has been extensive work studying the power of truthful mechanisms for
restricted forms of combinatorial auctions, such as submodular auctions [25, 24,
34, 39, 20, 23]. Of particular relevance to our work is the recent work of Dobzinski
[20] that establishes a large gap between the power of randomized algorithms and
universally truthful randomized mechanisms for the submodular CA problem,
in the value oracle query model. Specifically, a universally truthful mechanism
requires exponentially many queries to obtain approximation ratioO(m

1

2
−ǫ); this

bound closely matches the O(m
1

2 ) approximation attainable by a deterministic
truthful mechanism [39].

Another line of work gives lower bounds for greedy algorithms without truth-
fulness restrictions. Gonen and Lehmann [28] showed that no algorithm that
greedily accepts bids for sets can guarantee an approximation better than

√
m

4 In a stable mechanism, no player can alter the outcome (i.e. by changing his decla-
ration) without causing his own allocated set to change.

5 The notion of IIA has been associated with priority algorithms, but in a different
context than in [36]. In mechanism design, IIA is a property of the mapping between
input valuations and output allocations, whereas for priority algorithms the term
IIA describes restrictions on the order in which input items can be considered.



for the general CA problem. More generally, Krysta [35] showed that no oblivi-
ous greedy algorithm (in our terminology: fixed order greedy priority algorithm)
obtains approximation ratio better than

√
m. In contrast, we consider the even

more general class of all priority algorithms but restrict them to be incentive
compatible.

The class of priority algorithms is loosely related to the notion of online algo-
rithms. Mechanism design has been studied in a number of online settings, and
lower bounds are known for the performance of truthful algorithms in these set-
tings [37, 44]. The critical difference between these results and our lower bounds
is that a priority algorithm has control over the order in which input items are
considered, whereas in an online setting this order is chosen adversarily.

In contrast to the negative results of this paper, (non-truthful) greedy algo-
rithms can provide good approximations when rational agents are assumed to
bid at Nash equilibrium. In particular, there is a greedy combinatorial auction for
submodular agents that obtains a 2-approximation at any Bayes-Nash equilib-
rium [15], and a similar auction method obtains a 2-approximation at equilibrium
and a 2 logm-approximation at Bayes-Nash equilibrium for subadditive bidders
[9]. The greedy GSP auction for internet advertising has been shown to obtain
a 1.6-approximation at pure Nash equilibrium [41] and a 3.1-approximation at
Bayes-Nash equilibrium. It is also known that, in a wide variety of contexts,
c-approximate greedy algorithms for combinatorial allocation problems can be
converted into mechanisms whose Bayes-Nash equilibria yield c(1 + o(1)) ap-
proximations [43, 42].

2 Defintions and Preliminary Results

2.1 Combinatorial Auctions

A combinatorial auction consists of n bidders and a set M of m objects. Each
bidder i has a value for each subset of objects S ⊆M , described by a valuation
function vi : 2M → R which we call the type of agent i. We assume each vi
is monotone and normalized so that vi(∅) = 0. We denote by Vi the space
of all possible valuation functions for agent i, and V = V1 × V2 × · · · × Vn.
We write v for a profile of n valuation functions, one per agent, and v−i =
(v1, . . . , vi−1, vi+1, . . . , vn), so that v = (vi, v−i).

A valuation function v is single-minded if there exists a set S ⊆ M and a
value x ≥ 0 such that, for all T ⊆ M , v(T ) = x if S ⊆ T and 0 otherwise.
A valuation function v is k-minded if it is the maximum of k single-minded
functions. That is, there exist k sets S1, . . . , Sk such that for all subsets T ⊆M
we have v(T ) = max{v(Si)|Si ⊆ T}. An additive valuation function v is specified
by m values x1, . . . , xm ∈ R≥0 so that v(T ) =

∑

ai∈T xi. A valuation function v
is submodular if it satisfies v(T ) + v(S) ≥ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆M .

A direct revelation mechanism (or just mechanism) M = (G,P ) consists
of an allocation algorithm G and a payment algorithm P . We think of M as
eliciting a valuation profile from the agents, and then determining an assignment



of objects and payments to be made. Crucially, the agents are assumed to be
rational and may misrepresent their valuations to the mechanism but only in
order to maximize their utilities. We therefore distinguish between the values
reported to the mechanism from the agents’ true values: we shall let d denote a
profile of declared valuations and let t denote a truthful valuation profile. Given
declared valuation profile d, G(d) returns an allocation of objects to bidders,
and P (d) returns the payment extracted from each agent. For each agent i we
write Gi(d) and Pi(d) for the set given to and payment extracted from i.

The social welfare obtained by G on declaration d given truthful valuation
t is SWG(d, t) =

∑

i∈N ti(Gi(d)). The optimal social welfare, SWopt, is the
maximum of

∑

i∈N ti(Si) over all valid allocations (S1, . . . , Sn). Algorithm G is
a c-approximation if SWG(t, t) ≥ 1

cSWopt for all type profiles t.
Fixing mechanismM and type profile t, the utility of bidder i given decla-

ration d is ui(d) = ti(Gi(d)) − Pi(d). Mechanism M is said to be truthful in
dominant strategies (or just truthful) if, for every type profile t, agent i, and
declaration profile d, ui(ti,d−i) ≥ ui(d). That is, agent i maximizes his utility
by declaring his type, regardless of the declarations of the other agents. We say
that G is truthful (or incentive compatible) if there exists a payment function P
such that the mechanism (G,P ) is truthful.

2.2 Critical Prices

An allocation algorithm G defines critical prices, pi(S,v−i), for any agent i and
set S. The price pi(S,v−i) is the minimum amount that agent i could bid on set
S and still win S assuminng the other agents bid according to v−i. That is,

pi(S,v−i) = inf{v : ∃d such that di(S) = v and Gi(d) = S}.

From Bartal, Gonen and Nisan [7], we have the following characterization of
truthful mechanisms for combinatorial auctions, which we will use throughout.

Theorem 1. A mechanism M = (G,P ) is truthful if and only if, for every
bidder i and every vector of bids of the other bidders d−i,

1. Pi(d) = pi(Gi(d),d−i) and
2. Gi(d) ∈ argmaxS{di(S)− pi(S,d−i)}.

Theorem 1 states that a truthful mechanism must charge critical prices as
its payments, and must always allocate to each agent a set that maximizes his
utility subject to these prices.

Note that pi(S,d−i) need not be finite. If pi(S,d−i) =∞, then a mechanism
will simply not allocate S to bidder i for any reported valuation di. In addition,
as we now show, one can assume without loss of generality that critical prices
are monotone in the allocated set S.

Claim. Suppose that a mechanism satisfies the conditions of Theorem 1 (i.e. the
mechanism is truthful). Then one can assume without loss of generality that for
all i ∈ N , all d−j ∈ V−i, and all S ⊆ T ⊆M , pi(S,d−i) ≤ pi(T,d−i).



Proof. Suppose M = (G,P ) is an incentive compatible mechanism; then M
satisfies the critical pricing property, say with prices pi. We will construct a new
set of critical prices pi

′ that satisfies the conditions of Theorem 1 while also
satisfying the monotonicity conditions of our claim.

For all i ∈ N , d−i ∈ V−i, and S ⊆M , define pi
′(S,d−i) by

pi
′(S,d−i) = min{pi(T,d−i)|T ⊇ S}.

Notice that pi
′(S,d−i) ≤ pi

′(T,d−i) whenever S ⊆ T . Furthermore, pi
′(S,d−i) ≤

pi(S,d−i) for all S ⊆M .
We claim that pi

′ satisfies the conditions of Theorem 1 for the mechanismM.
Choose any i ∈ N and d ∈ V and suppose that Gi(d) = S̃. Then, by the critical
pricing property (for prices pi), di(S̃,d−i)− pi(S̃,d−i) ≥ di(T,d−i)− pi(T,d−i)
for all T ⊆ M , and furthermore Pi(d) = pi(S̃,d). We need to show that if the
mechanism sets Pi(d) = pi

′(S̃,d) then di(S̃,d−i) − pi
′(S̃,d−i) ≥ di(T,d−i) −

pi
′(T,d−i) for all T ⊆M . We derive the following for all T ⊆M :

di(T,d−i)− pi
′(T,d−i) = di(T,d−i)− pi(T

′,d−i) for some T ′ ⊇ T

≤ di(T
′,d−i)− pi(T

′,d−i) by monotonicty of declarations

≤ di(S̃,d−i)− pi(S̃,d−i) since the pi are critical prices

≤ di(S̃,d−i)− pi
′(S̃,d−i) by the definition of pi

′

We therefore have that the pi
′ are critical prices for the mechanism, as re-

quired. ⊓⊔

2.3 Priority Algorithms

In this section we review the priority algorithm framework [11] and discuss how
it can be applied to the CA problem. We view an input instance to an algorithm
as a subset of input items from a known input space I. Note that I depends on
the problem being considered, and is the set of all possible input items: an input
instance is a finite subset I of I. The problem definition may place restrictions
on the input: an input instance I ⊆ I is valid if it satisfies all such restrictions.
For example, in the CA problem, we would not allow having an agent who values
a subset S′ ⊂ S more than the set S. The output of the algorithm is a decision
made for each input item in the input instance. For example, these decisions
may be of the form “accept/reject”, allocate set S to agent i, etc. The problem
may place restrictions on the nature of the decisions made by the algorithm; we
say that the output of the algorithm is valid if it satisfies all such restrictions.
A priority algorithm is then any algorithm of the following form:

Adaptive Priority

Input: A set I of items, I ⊆ I
while not empty(I)
Ordering: Choose, without looking at I, a total ordering T over I



next ← first item in I according to ordering T
Decision: make an irrevocable decision for item next
remove next from I; remove from I any items preceding next in T

end while

We emphasize the importance of the ordering step in this framework: an
adaptive priority algorithm is free to choose any ordering over the space of pos-
sible input items, and can change this ordering adaptively after each input item is
considered. Once an item is processed, the algorithm is not permitted to modify
its decision. On each iteration a priority algorithm learns what (higher-priority)
items are not in the input. A special case of (adaptive) priority algorithms are
fixed order priority algorithms in which one fixed ordering is chosen before the
while loop (i.e. the “ordering” and “while” statements are interchanged). Our
inapproximation results for truthful CAs will hold for the more general class
of adaptive priority algorithms although many greedy CA algorithms are fixed
order.

Admittedly, the term “greedy” implies a more opportunistic aspect than is
apparent in the definition of priority algorithms. Indeed, we view priority algo-
rithms more generally as “greedy-like” or “myopic”. A greedy priority algorithm
satisfies an additional property: the choice made for each input item must opti-
mize the objective of the algorithm as though that item were the last item in the
input. We note that many greedy CA algorithms are fixed order greedy priority
algorithms.

3 Truthful Priority Algorithms

As noted above, Lehmann, O’Callahan and Shoham [40] show that a greedy
O(
√
m)-approximation algorithm 6 for combinatorial auctions can be made truth-

ful (using critical pricing) for single-minded bidders, but is not incentive com-
patible for the more general CA problem. Our high-level goal is to prove that
this is a general phenomenon common to all priority algorithms. In order to
apply the concept of priority algorithms we must define the set I of possible
input items and the nature of decisions to be made. We consider two natural
input formulations: sets as items, and bidders as items. We assume that n, the
number of bidders, and m, the number of objects, are known to the mechanism
and let k = min{m,n}.

3.1 Sets as Items

In our primary model, we view an input instance to the combinatorial auction
problem as a list of set-value pairs for each bidder. An item is a tuple (i, S, t),
i ∈ N , S ⊆ M , and t ∈ R≥0. A valid input instance I ⊂ I contains at most
one tuple (i, S, vi(S)) for each i ∈ N and S ⊆ M and for every pair of tuples
(i, S, v) and (i′, S′, v′) in I such that i = i′ and S ⊆ S′, it must be that v ≤ v′.

6 The Lehmann et al algorithm will satisfy all models discussed in section 3.



We note that since a valid input instance may contain an exponential number of
items, this model applies most directly to algorithms that use oracles to query
input valuations, such as demand oracles7, but it can also apply to succinctly
represented valuation functions.8

The decision to be made for item (i, S, t) is whether or not the objects in
S should be added to any objects already allocated to bidder i. For example,
an algorithm may consider item (i, S1, t1) and decide to allocate S1 to bidder i,
then later consider another item (i, S2, t2) (where S2 and S1 are not necessarily
disjoint) and, if feasible, decide to change bidder i’s allocation to S1 ∪ S2.

A greedy algorithm in the sets as items model must accept any feasible, prof-
itable item (i, S, t) it considers.9 Our main result is a lower bound on the ap-
proximation ratio achievable by a truthful greedy algorithm in the sets as items
model. Theorem 2 implies a severe separation between the power of greedy algo-
rithms and the power of truthful greedy algorithms. A simple greedy algorithm
obtains a 3-approximation for the 2-CA problem, yet no truthful greedy prior-
ity algorithm (indeed, any algorithm that irrevocably satisfies bids based on a
notion of priority) can obtain even a sublinear approximation.

Theorem 2. Suppose A is an incentive compatible greedy priority algorithm
that uses sets as items. Then A cannot approximate the optimal social welfare

by a factor of (1−δ)k
2 for any δ > 0. This result also applies to the special case

of the 2-CA problem, in which each desired set has size at most 2.

Before beginning the proof, consider the following intuition as to why such
an algorithm A cannot exist. Suppose some bidder i has a very large value for
each of two singletons. Our algorithm A would surely want to allocate one of
these singletons to this bidder. Since A is greedy, it must do so without first
considering the (smaller) values held by other bidders for sets containing those
singletons. However, if A is truthful, then by Theorem 1 it must also maximize
utility for agent i. The algorithm must therefore allocate the singleton which
has the smaller critical price. This implies that the relationship between the
prices for these singletons must be independent of their value to other bidders!
This allows us to show that algorithm A must have poor performance, since
a singleton desired at a high value by many players must have a higher price

7 It is tempting to assume that this model is equivalent to a value query model,
where the mechanism queries bidders for their values for given sets. The priority
algorithm model is actually more general, as the mechanism is free to choose an
arbitrary ordering over the space of possible set/value combinations. In particular,
the mechanism could order the set/value pairs by the utility they would generate
under a given set of additive prices, simulating a demand query oracle.

8 That is, by assigning priority only to those tuples appearing in a given representation.
9 That is, when considering a bid (i, S, t), a greedy algorithm must allocate S to agent
i if no objects in S have already been allocated to another bidder, and di(S1 ∪ S) >
di(S1). In our proof of Theorem 2, it will always be the case that S1 = ∅ (i.e. no items
have already been allocated to agent i), so that the greedy assumption is simplified
as follows: when considering a bid (i, S, t), a greedy algorithm must allocate S to
agent i if t > 0 and no objects in S have already been allocated to another bidder.



than a singleton not desired by any other players, in order to guarantee a good
approximation ratio.

Proof. Choose δ > 0 and suppose A obtains a bounded approximation ratio. For
each i ∈ N , let V +

−i be the set of valuations with the property that vℓ(S) > 0 for
all ℓ 6= i and all non-empty S ⊆M . The heart of our proof is the following claim,
which shows that the relationship between critical prices for singletons for one
bidder is independent of the valuations of other bidders. Recall that pi(S,d−i)
is the critical price for set S for bidder i, given d−i.

Lemma 1. For all i ∈ N , and for all a, b ∈M , either pi({a},d−i) ≥ pi({b},d−i)
for all d−i ∈ V +

−i, or pi({a},d−i) ≤ pi({b},d−i) for all d−i ∈ V +
−i. This is true

even when agents desire sets of size at most 2.

Proof. Choose i ∈ N , a, b ∈ M , and d−i,d−i
′ ∈ V +

−i. Suppose for contradic-
tion that pi({a},d−i) > pi({b},d−i) but pi({b},d−i

′) > pi({a},d−i
′). We will

consider a number of possible valuations to be declared by our bidders.
Let v∗ be the maximum value assigned to any set by any player in d−i or d−i

′.
Then note that the maximum social welfare that can be obtained is (k− 1)v∗ if
bidder i does not participate and other bidders declare values d−i or d−i

′. Let
x = k2v∗. We will define various different possible valuation functions for bidder
i: f , h, and gc for all c ∈M .

f(S) =











x if a ∈ S

x if b ∈ S

0 otherwise.

gc(S) =



















ǫ if a ∈ S, c 6∈ S

ǫ if b ∈ S

x if {a, c} ⊆ S

0 otherwise.

h(S) =











ǫ if a ∈ S

ǫ if b ∈ S

0 otherwise.

Note that each of these valuation profiles can be interpreted as a profile in
which the agent desires sets of size at most 2. Note also that ga and gb are
well-defined: the former assigns value x to any set containing a, and the latter
assigns value x to any set containing both a and b.

We are now ready to discuss the behaviour of algorithm A. Consider the
subset I1 ⊂ I that contains the following input items: (i, S, f(S)) and (i, S, h(S))
for every S ⊆ M ; (i, S, gc(S)) for all c ∈ M and S ⊆ M ; and (j, S, dj(S)),
(j, S, dj

′(S)), (j, S, ǫ), and (j, S, v∗) for all j 6= i and S ⊆ M . In other words,
I1 contains all of the input items consistent with the valuation functions we
defined above, plus input items (j, S, ǫ) and (j, S, v∗) for each set S and each
bidder j 6= i.

We know that if A is a priority algorithm, then it must have some initial
ordering over I, and hence over I1. Consider the first item in I1 under this
ordering. We consider different cases for the nature of this item.



Case 1: (j, S, t), j 6= i. Then t ∈ {dj(S), dj ′(S), ǫ, v∗} and hence t > 0.
Choose any c ∈ S. Let I1 be a valid input instance consisting of items from I1,
such that (j, S, t) ∈ I1 and I1 is consistent with agent i having valuation gc.
Note that such an I1 always exists; for example, if t = dj(S) we could set I1
to be consistent with each agent ℓ 6= i having valuation dℓ. Then I1 ⊆ I1 and
(j, S, t) ∈ I1, so item (j, S, t) will be considered first by algorithm A on input I1.

Since A is greedy, A will allocate set S to bidder j. Then it must be that,
in the final allocation, bidder i is not allocated any set containing c. Thus, from
the definition of gc, bidder i obtains a value of at most ǫ. Furthermore, all other
bidders can obtain a total welfare of at most (k− 1)v∗, for a total social welfare
of at most (k−1)v∗+ǫ. On the other hand, a total of at least x = k2v∗ is possible
by allocating {a, c} to bidder i. Then as long as ǫ < v∗ the approximation ratio
obtained by A is at least k, a contradiction.

The other cases for t are handled similarly.
Case 2: (i, S, x), a ∈ S or b ∈ S. By symmetry we can assume a ∈ S.

Consider the input instance I2 in which bidder i declares valuation f , and every
other bidder j 6= i declares valuation dj . Then f(S) = x, so (i, S, x) ∈ I2 ⊆ I1,
and therefore A will consider item (i, S, x) first on input I2. Since x > 0 and A
is greedy, the algorithm will assign set S to bidder i.

Suppose that in the final allocation, bidder i is allocated some set T ⊇ S.
Then since a ∈ T , we know that pi(T,d−i) ≥ pi({a},d−i) > pi({b},d−i). But
note f(T ) = f({a}) = x, so that f(T ) − pi(T,d−i) < f({b}) − pi({b},d−i). In
other words, A does not maximize the utility of player i. By Theorem 1, A is
not incentive compatible, a contradiction.

Case 3: (i, S, ǫ), a ∈ S or b ∈ S. By symmetry we can assume a ∈ S.
Consider the input instance I3 in which bidder i declares valuation h, and every
other bidder j 6= i declares valuation dj . Then (i, S, ǫ) ∈ I3 ⊆ I1, so A will
consider item (i, S, ǫ) first on input I3. From this point, we obtain a contradiction
in precisely the same way as in Case 2.

Case 4: (i, S, t), a 6∈ S and b 6∈ S. Then from the definitions of f , gc, and
h, we must have t = 0. Thus when processing this item, A is free to allocate
S to bidder i or not. If A does not allocate S to i, then we will consider the
next item considered by the algorithm A, and repeat our case analysis. The case
analysis proceeds in the same way, since no objects would have been allocated.
This process must terminate, as algorithm A must eventually consider some set
S for agent i that contains either a or b, or (reasoning as above) some set for
agent j 6= i.

Suppose, on the other hand, that A does allocate S to i. Then consider the
input instance I4 in which bidder i declares valuation h and all other bidders
declare the following valuation fS :

fS(T ) =

{

v∗ if S ⊆ T

ǫ otherwise.

We note that valuation fS defines the value of any set to be either ǫ or v∗, so in
particular I3 ⊆ I1. Since (i, S, 0) ∈ I3, this item will be considered first by A on



input I3, and S will be allocated to player i. But then in the final allocation each
other bidder can obtain a welfare of at most ǫ, for a total welfare of at most kǫ.
On the other hand, a welfare of v∗ was possible by allocating S to any bidder
other than bidder i. Thus, if we choose ǫ < v∗/k2 we conclude that A has an
approximation ratio of at least k, a contradiction.

We have shown that every case leads to a contradiction, completing the proof
of Lemma 1. ⊓⊔

We can think of Lemma 1 as defining, for each i ∈ N , an ordering over the
elements of M . For each i ∈ N and a, b ∈M , write a �i b to mean pi(a,d−i) ≤
pi(b,d−i) for all d−i ∈ V +

−1. For all i ∈ N and a ∈ M , define Ti(a) = {aj : a �i

aj}. That is, Ti(a) is the set of objects that have higher price than a for agent
i. Our next claim shows a strong relationship between whether a is allocated to
bidder i and whether any object in Ti(a) is allocated to bidder i.

Lemma 2. Choose a ∈ M , i ∈ N , and S ⊆ M , and suppose S ∩ Ti(a) 6= ∅.
Choose some di ∈ Vi and suppose that di({a}) > di(S). Then if d−i ∈ V +

−i,
bidder i cannot be allocated set S by algorithm A given input d.

Proof. We know that pi(S,d−i) ≥ pi({aj},d−i) for any aj ∈ S. Thus, regardless
of the choice of d−i,

pi(S,d−i) ≥ max
aj∈S∩Ti(a)

(pi({aj},d−i)) ≥ pi({a},d−i)

from the definition of Ti(a). Since di(a) > di(S), this implies that di(a) −
pi({a},d−i) > di(S) − pi(S,d−i), so by Theorem 1 bidder i cannot be allo-
cated set S, as required. ⊓⊔

Lemma 2 is strongest when Ti(a) is large; that is, when a is “small” in the
ordering �i. We therefore wish to find an object of M that is small according to
many of these orderings, simultaneously. Let R(a) = {i ∈ N : |Ti(a)| ≥ k/2}, so
R(a) is the set of players for which there are at least k/2 objects greater than a.
The next claim follows by a straightforward counting argument.

Lemma 3. There exists a∗ ∈M such that |R(a∗)| ≥ k/2.

Proof. We note that
∑

i∈N

∑

a∈M
|Ti(a)|≥k/2

1 =
∑

i∈N

(m− k/2) = n(m− k/2).

Rearranging order of summation, we also have
∑

i∈N

∑

a∈M
|Ti(a)|≥k/2

1 =
∑

a∈M

∑

i∈N
|Ti(a)|≥k/2

=
∑

a∈M

|S(a)|.

We conclude that
∑

a∈M |S(a)| = n(m− k/2), so there must exist some a∗ ∈M

such that |S(a∗)| ≥ n(m−k/2)
m . We know that either n ≥ m = k or m ≥ n = k;

in either case we obtain |S(a∗)| ≥ n(m−k/2)
m ≥ k/2 as required. ⊓⊔



We are now ready to proceed with the proof of Theorem 2. Let a∗ ∈M be the
object from Lemma 3. Let ǫ > 0 be a sufficiently small value to be defined later.
We now define a particular input instance to algorithm A. For each i ∈ R(a∗),
bidder i will declare the following valuation function, di:

di(S) =











1 if a∗ ∈ S

1− δ/2 if a∗ 6∈ S and S ∩ (Ti(a
∗)) 6= ∅

ǫ otherwise.

Each bidder i 6∈ R(a∗) will declare a value of ǫ for every set.

For each i ∈ R(a∗), di(aj) ≥ 1−δ/2 for every aj ∈ Ti(a
∗). Since |R(a∗)| ≥ k/2

and |Ti(a
∗)| ≥ k/2, it is possible to obtain a social welfare of at least (1−δ/2)k

2
by allocating singletons to bidders in R(a∗).

Consider the social welfare obtained by algorithm A. The algorithm can
allocate object a∗ to at most one bidder, say bidder i, who will obtain a social
welfare of at most 1. For any bidder ℓ ∈ R(a∗), ℓ 6= i, dℓ(S) = 1 − δ/2 < 1 for
any S containing elements of Tℓ(a

∗) but not a∗. Thus, by Lemma 2, no bidder
in R(a∗) can be allocated any set S that contains an element of Ti(a

∗) but not
a∗. Therefore every bidder other than bidder i can obtain a value of at most ǫ,
for a total social welfare of at most 1 + kǫ.

We conclude that algorithm A has an approximation factor no better than
k(1−δ/2)
2(1+kǫ) . Choosing ǫ <

δ
2(1−δ)k yields an approximation ratio greater than k(1−δ)

2 ,

completing the proof of Theorem 2. ⊓⊔

We believe that the greediness assumption of Theorem 2 can be removed. As
partial progress toward this goal, we show that this assumption can be removed
if we restrict our attention to the following alternative input model for priority
algorithms, in which an algorithm can only consider and allocate sets whose
values are explicitly represented (i.e. not implied by the value of a subset).

Elementary bids as items. Consider an auction setting in which agents
do not provide entire valuation functions, but rather each agent specifies a list
of desired sets S1, . . . , Sk and a value for each one. Moreover, each agent receives
either a desired set or the empty set. This can be thought of as an auction with a
succinct representation for valuation functions, in the spirit of the XOR bidding
language [46]. We model such an auction as a priority algorithm by considering
items to be the bids for desired sets. In such a setting, the specified set-value
pairs are called elementary bids. We say that the priority model uses elementary
bids as items when only elementary bids (i, S, v(S)) can be considered by the
algorithm. For each item (i, S, v(S)), the decision to be made is whether or not S
will be the one and only one set allocated to agent i; that is, whether or not the
elementary bid for S will be “satisfied.” In particular, unlike in the sets as items
model, we do not permit the algorithm to build up an allocation incrementally
by accepting many elementary bids from a single agent.

We now show that the greediness assumption from Theorem 2 can be removed
when we consider priority algorithms in the elementary bids as items model.



Theorem 3. Suppose A is an incentive compatible priority algorithm for the
CA problem that uses elementary bids as items. Then A cannot approximate the
optimal social welfare by a factor of (1− δ)k for any δ > 0.

Proof. Suppose A is a truthful adaptive priority algorithm, where the items to
be considered are associated with sets. That is, an item is a tuple (i, S, t) where
di(S) = t. On processing each item, the algorithm must decide whether S will
be the set allocated to bidder i. Suppose for contradiction that A obtains an
approximation ratio of (1− δ)k for some δ > 0.

We first note that if only bidder i places bids, then pi(M,d−i) = 0.
Let I1 be an input instance containing items (i,M, 1 + δ) and (i, S, 1) for

all S 6= M , for each 1 ≤ i ≤ N . That is, each bidder has a value of 1 for each
singleton and 1 + δ for the set of all objects. Then A must consider some input
item first given input I1; suppose the first item has corresponding bidder j. Now
consider cases based on the nature of the first item.

Case 1: (j,M, 1 + δ). Consider the decision made by A for this item. If A
allocates M to j, then for input instance I1 A obtains a social welfare of 1 + δ,
whereas the optimal welfare is k. Thus A has an approximation ratio no better
than (1+δ)−1k > (1−δ)k, a contradiction. Next suppose A does not allocate M
to j. Consider input instance I2 ⊂ I1 that contains only item (j,M, 1+ δ). Then
A cannot distinguish between I1 and I2 when considering item (j,M, 1 + δ).
Thus A will not allocate M to bidder j on input I2, which contradicts Theorem
1.

Case 2: (j, S, 1), S 6= M . Consider the decision made by A for this item.
Suppose A does not allocate S to bidder j. Let I3 ⊆ I1 be the input instance
consisting only of items (j, T, 1) for all T ⊇ S; that is, player j has a single-
minded valuation for set S. Since A cannot distinguish between I1 and I3 when
considering item (j, S, 1), it must be that A does not allocate S to bidder j on
input I3. Since A does not allocate any set T to player j other than set S (by
assumption), it must not allocate anything to player j. Thus A obtains a social
welfare of 0 when 1 was possible, contradicting the supposed approximation ratio
of A.

Thus A must allocate S to bidder j on input I3. Let I4 ⊆ I1 be the input
instance consisting of items (j, S, 1) and (j,M, 1 + ǫ). Then A will allocate S to
bidder j in instance I4, but this contradicts Theorem 1 (which requires that A
allocate M to bidder j).

We therefore arrive at a contradiction in all cases, as required. ⊓⊔

3.2 Bidders as Items

Roughly speaking, the lower bounds in Theorems 2 and 3 follow from a priority
algorithm’s inability to determine which of many different mutually-exclusive
desires of an agent to consider first when constructing an allocation. One might
guess that such difficulties can be overcome by presenting an algorithm with
more information about an agent’s valuation function at each step. To this end,
we consider an alternative model of priority algorithms in which the agents



themselves are the items, and the algorithm is given complete access to an agent’s
declared valuation function each round.

Under this model, I consists of all pairs (i, vi), where i ∈ N and vi ∈ Vi.
A valid input instance contains one item for each bidder. The decision to be
made for item (i, vi) is a set S ⊆ M to assign to bidder i. The truthful greedy
CA mechanism for single-minded bidders due to Lehmann et al. [40] falls within
this model, as does its (non-truthful) generalization to complex bidders [40], the
primal-dual algorithm of [12], and the (first) algorithm of [7] for multi-unit CAs.
We now establish an inapproximation bound for truthful priority allocations that
use bidders as items.

Theorem 4. Suppose A is an incentive compatible priority algorithm for the
(2-minded) CA problem that uses bidders as items. Than A cannot approximate

the optimal social welfare by a factor of (1−δ)k
2 for any δ > 0.

Proof. Choose δ > 0 and suppose for contradiction that A is an incentive
compatible adaptive priority algorithm that achieves an approximation ratio
of k(1− δ)/2. Recall that an item is a tuple (i, vi), where 1 ≤ i ≤ n is a bidder
and vi : 2

M → R is a valuation function.
We will construct a set of input instances for which A is forced to make

a particular allocation, due to incentive compatibility. We define two sets of
valuation functions, {g1, . . . , gk} and {f1, . . . , fk}, that will be used in these
input instances. The functions g1, . . . , gk are straightforward: for each 1 ≤ i ≤ k,
define valuation function gi by

gi(S) =

{

1 if ai ∈ S

0 otherwise.

Then gi is a single-minded valuation function, where the desired set is {ai} with
value 1.

The definition of valuation functions f1, . . . , fk is more involved. Fix i ∈ N
and define V ′

−i := {g1, . . . , gk}n−1. Consider an instance d of the combinatorial
auction problem in which d−i ∈ V ′

−i. That is, each bidder j 6= i is single-minded,
and desires a singleton with value 1. By the critical price property, there is a
critical price pi(M,d−i) for set M given this d−i.

Lemma 4. pi(M,d−i) ≤ kn.

Proof. Suppose otherwise that pi(M,d−i) > kn. Suppose further that bidder
i is single-minded with desired set M , and with di(M) = kn. Then di(M) −
pi(M,d−i) < 0 = di(∅) − pi(∅,d−i). Therefore, by the critical pricing property,
A cannot allocate M to bidder i, and hence bidder i obtains a value of 0. Now
consider the social welfare obtained by A: it can be at most n− 1, since bidder
i obtains a welfare of 0 and each other bidder has value at most 1 for any set.
The optimal social welfare is kn, obtained by allocating M to bidder i. Hence A

obtains an approximation ratio of kn
n−1 > k(1−δ)

2 for this input instance, which
is a contradiction. This completes the proof of Lemma 4.



We are now ready to define the valuations f1, . . . , fk. They are based on
values x, y ∈ R. Define x ∈ R as follows:

x := 1 + max
i∈N

max
v−i∈V ′

−i

{pi(M,v−i)}.

That is, x is a value greater than the maximum of the critical price for M for
bidder i, over all choices of i and possible desires of singletons with value 1 by
other bidders. Set y := xδ−1.

For each 1 ≤ i ≤ k, define valuation function fi as

fi(S) =











y if {ai} ⊆ S ⊂M

y + x if S = M

0 otherwise.

Then fi(S) is a 2-minded valuation function. We now consider the following
subset I ′ ⊆ I of possible input items: I ′ contains all bidder-valuation pairs of
the form (i, vi) where 1 ≤ i ≤ n and vi = fj or vi = gj for some 1 ≤ j ≤ k. Note
that I ′ is not a valid input instance; we think of I ′ simply as a subset of I.

The following claim exploits the incentive compatibility of A.

Lemma 5. Suppose I = {(1, d1), . . . , (n, dn)} is a valid input instance, in which
there exists i ∈ N such that di ∈ {f1, . . . , fk}, and for all j 6= i, dj ∈ {g1, . . . , gk}.
Then on input I, A must allocate M to bidder i and ∅ to all other bidders.

Proof. For this input instance we have that d−i ∈ V ′
−i. Then x > pi(M,v−i)

from the definition of x. But now, from the definition of fi,

di(M)− pi(M,v−i) > (y + x)− x = y ≥ di(S) ≥ di(S)− pi(S,d−i)

for all S 6= M . Therefore, by the critical pricing property (Theorem 1), A must
allocate M to bidder i, completing the proof of Lemma 5.

Our next step is to construct an input instance I ⊆ I ′ on which A obtains a
poor approximation ratio. To do this we will rely on the following claim which
will be proven by induction on i.

Lemma 6. There exists a labelling of bidders and objects such that the following
is true for all 0 ≤ i < k/2. Define Ii := {(j, gj) | j ≤ i}. Then for any valid
input instance I such that Ii ⊆ I ⊆ I ′, A will consider all the items in Ii before
all other items in I, and will choose to assign ∅ for each of the items in Ii.

Proof. We proceed by induction on i. The base case holds by taking I0 = ∅. For
general i ≥ 1, suppose the claim is true for i− 1. Then Ii−1 = {(1, g1), . . . , (i−
1, gi−1)}. Define Ii ⊆ I ′ as follows:

Ii := {(j, vj) | (j, vj) ∈ I ′, j ≥ i}.



That is, Ii contains items of I ′ corresponding to bidders that are not present
in Ii−1. Then note that if I is a valid input instance such that Ii−1 ⊆ I, then
I ⊆ Ii−1 ∪ Ii.

Consider the execution of A on any valid input instance I ⊆ Ii−1 ∪ Ii−1.
The algorithm will first consider the items of Ii−1 and allocate ∅ to each bidder
1, . . . , i − 1 (by assumption). Once this is done, the algorithm will choose an
ordering T over Ii and examine the next item in I according to T .

Some item (j, vj) ∈ Ii must come first under this ordering T . Without loss of
generality (by relabeling indices) this item is (i, fi) or (i, gi). We consider these
two cases separately.

Case 1: The first item is (i, fi). In this case we will choose I so that
(i, fi) ∈ I. Then A must consider this item next when processing input instance
I, and A must assign some set S to bidder i. If S = M , then we will choose I
to contain (j, fj) for all j > i; note that I ⊆ Ii−1 ∪ Ii−1 as required. Since A
allocated M to bidder i, it obtains a social welfare of x+ y on input I. However,
the optimum welfare is at least (k−i+1)y, since this can be attained by allocating
{aj} to bidder j for all i ≤ j ≤ k. Thus the approximation ratio obtained by A
is at least

(k − i+ 1)y

x+ y
>

(k/2)y

y(1 + δ)
>

(1− δ)k

2
,

a contradiction.
If, on the other hand, S 6= M , we choose I to contain (j, gj) for all j > i.

Then I satisfies the requirements of Lemma 5, so A must allocate M to bidder
i. This is a contradiction. We conclude that this first case cannot occur.

Case 2: The item is (i, gi). In this case we will choose I so that (i, gi) ∈ I.
As in the previous case, A must consider this item next in I, and assign some
set S to bidder i. Suppose S 6= ∅. Then we will choose I to contain (i+1, fi+1),
and also (j, gj) for all j > i+1. Note that then I ∈ Ii−1∪Ii−1 as required. Also,
in this instance of a combinatorial auction, v−(i+1) contains only single-minded
valuations for singletons with value 1. Thus, by the same argument used in Case
1, it must be that bidder i + 1 is allocated M . However, this is not possible,
since bidder i is assigned S 6= ∅. This is a contradiction. We conclude that in
this case, bidder i must be assigned ∅.

This ends our case analysis. We conclude that item (i, gi) must occur first in
Ii−1 in ordering T , and furthermore if (i, gi) ∈ I then A will consider (i, gi) next
after processing the items in Ii−1 and will assign ∅ to bidder i. We can therefore
set Ii = Ii−1 ∪ {(i, gi)} to satisfy the requirements of the Lemma 6.

Now suppose Ik/2−1 is the set from Lemma 6 with i = k/2− 1. Define input
instance I by

I := Ik/2−1 ∪ {(j, gk/2) | k/2 ≤ j ≤ k}.
Note that I is a valid input instance and Ik/2−1 ⊆ I ⊆ I ′. Then by Lemma
6, algorithm A must assign ∅ to each of bidders 1, . . . , k/2− 1. Therefore A can
obtain a social welfare of at most 1, by assigning {ak/2} to some bidder j ≥ k/2.
However, the optimal social welfare is k/2, by assigning {ai} to bidder i for all



1 ≤ i ≤ k/2. Hence A obtains an approximation no better than k/2, which is a
contradiction. This completes the proof of Theorem 4. ⊓⊔

4 Truthful Submodular Priority Auctions

Lehmann, Lehmann, and Nisan [39] proposed a class of greedy algorithms that is
well-suited to auctions with submodular bidders; namely, objects are considered
in any order and incrementally assigned to greedily maximize marginal utility.
They showed that any ordering of the objects leads to a 2-approximation of social
welfare, but not every ordering of objects leads to an incentive compatible algo-
rithm. However, this does not preclude the possibility of obtaining truthfulness
using some adaptive method of ordering the objects.

We consider a model of priority algorithms which uses the m objects as input
items. In this model, an item will be represented by an object x, plus the value
vi(x|S) for all i ∈ N and S ⊆ M (where vi(x|S) := vi(S ∪ {x}) − vi(S) is the
marginal utility of bidder i for item x, given set S). We note that the online
greedy algorithm described above falls into this model. We show that no greedy
priority algorithm in this model is incentive compatible.

Theorem 5. Any greedy priority algorithm for the combinatorial auction prob-
lem that uses objects as items is not incentive compatible. This holds even if the
bidders are assumed to be submodular.

Proof. Suppose for contradiction that A is an incentive compatible truthful
greedy priority algorithm. Consider an instance of the combinatorial auction
with M = {a1, a2, a3}. Suppose that bidder 1 declares the following valuation
function: v1(S) = 9 + |S| for all S 6= ∅. It is easy to verify that this is indeed
submodular. Then by Theorem 1 this valuation defines a critical price p2(S)
for each subset S ⊆ M . Consider the critical prices for all subsets of size 2
and suppose without loss of generality that {a1, a2} has the smallest. That is,
p2({a1, a2}) ≤ p2({a2, a3}) and p2({a1, a2}) ≤ p2({a1, a3}).

We now define a valuation function v2 to be declared by bidder 2. The mo-
tivation for v2 is that items a1 and a2 will have lower values than a3 when
considered individually, but will have a large value relative to a3 when taken
together.

v2({a1}) = v2({a2}) = 9

v2({a3}) = 11

v2({a1, a2}) = 18

v2({a1, a3}) = v2({a2, a3}) = 17

v2({a1, a2, a3}) = 18.

It is easily verified that this valuation is submodular.
Given as input the valuations v1 and v2, algorithm A must consider each

object in turn, and assign that object to the player who obtains the greatest



marginal utility from it. The algorithm is free to choose the order in which
the items are considered. However, regardless of the order, the only possible
outcomes are that bidder 2 is allocated {a1, a3} or bidder 2 is allocated {a2, a3}.
This can be seen by examining each of the 6 possible orderings of items, or by
noticing that the first item considered will go to bidder 2 if and only if it is
a3, that bidder 1 will never be allocated the second object considered, and that
bidder 2 will never be allocated the third object considered.

We will assume without loss of generality that bidder 2 is allocated {a1, a3}.
Then, by Theorem 1,

v2({a1, a3})− p2({a1, a3}) ≥ v2({a1, a2})− p2({a1, a2}).

Since v2({a1, a3}) = 17 and v2({a1, a2}) = 18, this implies that

p2({a1, a2}) > p2({a1, a3})

which contradicts the minimality of p2({a1, a2}).
We have now proved the result for the case of exactly two bidders and three

objects. The result follows in the desired generality by noticing that we may
add additional players who value all sets at 0, and additional items for which no
players have value, without affecting the above construction.

5 Future Work

The goal of algorithmic mechanism design is the construction of algorithms in
situations where inputs are controlled by selfish agents. We considered this fun-
damental issue in the context of conceptually simple methods (independent of
time bounds) rather than in the context of time constrained algorithms. Our
results concerning priority algorithms (as a model for greedy mechanisms) is a
natural beginning to a more general study of the power and limitations of con-
ceptually simple mechanisms. Even though the priority framework represents a
restricted (albeit natural) algorithmic approach, there are still many unresolved
questions even for the most basic mechanism design questions. In particular,
we believe that the results of Section 3 can be unified to show that the linear
inapproximation bound holds for all priority algorithms for s-CA problems. The
power of greedy algorithms for unit-demand auctions (s-CAs with s = 1) is
also not understood. While there are polynomial time (i.e. edge weighted bipar-
tite matching) algorithms, it is not difficult to show that optimality cannot be
achieved by priority algorithms. But is it possible to obtain a sublinear truthful
approximation bound for 1-CAs with greedy methods?

An obvious direction of future work is to widen the scope of a systematic
search for truthful approximation algorithms; priority algorithms can be ex-
tended in many ways. Perhaps the most immediate extension is to consider
randomized priority algorithms (as in [1]) for the CA problem. The currently
best known randomized truthful (and truthful in expectation) mechanisms with
sublinear approximation ratios are not greedy algorithms. One might also con-
sider priority algorithms with a more esoteric input model, such as a hybrid



of the sets as items and bidders as items models. Priority algorithms can be
extended to allow revocable acceptances [33] whereby a priority algorithm may
“de-allocate” sets or objects that had been previously allocated to make a sub-
sequent allocation feasible. Somewhat related is the priority stack model [10]
(as a formalization of local ratio/primal dual algorithms with reverse delete [6])
where items (e.g. bidders or bids) initially accepted are placed in a stack and
then the stack is popped to ensure feasibility. This is similar to algorithms that
allow a priority allocation algorithm to be followed by some simple “cleanup”
stage [35]. Another possibility is to consider allocations that are comprised of
taking the best of two (or more) priority algorithms. A special case that has been
used in the design of efficient truthful combinatorial auction mechanisms [7, 12,
45] is to optimize between a priority allocation and the näıve allocation that
gives all objects to one bidder. Finally, one could study more general models for
algorithms that implement integrality gaps in LP formulations of packing prob-
lems; it would be of particular interest if a deterministic truthful k-approximate
mechanism could be constructed from an arbitrary packing LP with integrality
gap k, essentially derandomizing the construction of Lavi and Swamy [38].

The results in this paper have thus far been restricted to combinatorial auc-
tions but the basic question being asked applies to other algorithmic mechanism
design problems such as machine scheduling or more general integer program-
ming problems. Namely, when can a conceptually simple approximation to the
underlying combinatorial optimization problem be converted into an incentive
compatible mechanism that achieves (nearly) the same approximation? For ex-
ample, one might consider the power of truthful priority mechanisms for ap-
proximating unrelated machines scheduling, or for more general integer packing
problems.
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