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We study mechanisms for the combinatorial auction (CA) problem, in which m objects are sold to rational
agents and the goal is to maximize social welfare. Of particular interest is the special case of s-CAs, where
agents are interested in sets of size at most s, for which a simple greedy algorithm obtains an s + 1 approxi-
mation, but no polynomial time deterministic truthful mechanism is known to attain an approximation ratio
better than O(m/

√
log m). We view this not only as an extreme gap between the power of greedy auctions

and truthful greedy auctions, but also as exemplifying the gap between the known power of truthful and
non-truthful polynomial time deterministic algorithms. We associate the notion of greediness with a broad
class of algorithms, known as priority algorithms, which encapsulate many natural auction methods. This
motivates us to ask: how well can a truthful greedy algorithm approximate the optimal social welfare for
CA problems? We show that no truthful greedy priority algorithm can obtain an approximation to the CA
problem that is sublinear in m, even for s-CAs with s ≥ 2. Our inapproximations are independent of any time
constraints on the mechanism and are purely a consequence of the greedy-type restriction. We conclude that
any truthful combinatorial auction mechanism with a non-trivial approximation factor must fall outside the
scope of many natural auction methods.

CCS Concepts: ! Theory of computation → Algorithmic game theory and mechanism design; Al-
gorithmic mechanism design; Theory and algorithms for application domains;

Additional Key Words and Phrases: Greedy algorithms, combinatorial auctions, truthfulness

ACM Reference Format:
Allan Borodin and Brendan Lucier. 2016. On the limitations of greedy mechanism design for truthful com-
binatorial auctions. ACM Trans. Econ. Comput. 5, 1, Article 2 (October 2016), 23 pages.
DOI: http://dx.doi.org/10.1145/2956585

1. INTRODUCTION
As introduced in the seminal paper of Nisan and Ronen [2001], the field of algorithmic
mechanism design attempts to bridge the competing demands of agent selfishness and
computational constraints. The difficulty in such a setting is that agents may lie about
their inputs in order to obtain a more desirable outcome. It is often possible to circum-
vent this obstacle by using payments to elicit truthful responses. Indeed, if the goal of
the algorithm is to maximize the total welfare of all agents, the well-known Vickrey-
Clark-Groves (VCG) mechanism does precisely that: each agent maximizes his utility
by reporting truthfully. However, the VCG mechanism requires that the underlying
optimization problem be solved exactly, and is therefore ill-suited for computationally
intractable problems. Indeed, approximation algorithms do not, in general, result in
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2:2 A. Borodin and B. Lucier

truthful mechanisms when coupled with the VCG construction. Determining the power
of truthful approximation mechanisms to maximize social welfare is a fundamental
problem in algorithmic mechanism design.

The combinatorial auction (CA) problem holds a position at the center of this conflict
between truthfulness and approximability. In this problem, m different objects are to
be distributed among n bidders. Each bidder holds a private value for each possible
subset of the objects. The generality of this problem models situations in which the
objects for sale can exhibit complementarities and substitutes; for example, an agent’s
complementary value for a pair of shoes can be much greater than twice his value
for only a left shoe or a right shoe in isolation, and two left shoes could certainly be
worth less than twice the value of one left shoe. Combinatorial auctions have arisen in
practice for the sale of airport landing schedules [Rassenti et al. 1982], FCC spectrum
auctions [Cramton 2002], and others; see Cramton et al. [2005] for an overview. The
CA problem, also known as the welfare maximization problem, is to determine, given
the agents’ valuation functions (either explicitly or via oracle access), the allocation of
objects that maximizes the overall social welfare.

Without strategic considerations, one can obtain an O(min{n,
√

m}) approximation
for CAs with n bidders and m objects with a conceptually simple (albeit not obvious)
greedy algorithm [Lehmann et al. 2002], and this is the best possible under standard
complexity assumptions [Hastad 1999; Zuckerman 2007]. However, no deterministic
truthful mechanism is known to obtain an approximation ratio better than O( m√

log m
) for

the general problem [Holzman et al. 2004]. This is true even for the natural and broad
class of valuations where each bidder is interested only in sets of size at most some
constant s ≥ 2 (the s-CA problem)1, a natural and broad class of valuations for which
the standard greedy algorithm obtains an s + 1 approximation. Understanding when
these gaps are essential for the general CA problem, and for the CA problem when re-
stricted to natural classes of agent valuation functions, is a central open question that
has received significant attention over the past decade [Dobzinski and Sundararajan
2008; Lavi et al. 2003; Lehmann et al. 2002; Mu’alem and Nisan 2008; Papadimitriou
et al. 2008]. As we discuss further in Section 1.2, there have been some recent impossi-
bility results in this regard for important classes of valuations, including submodular
valuations [Dobzinski 2011; Dobzinski and Vondrák 2012]. Most recently, in a signifi-
cant development, Daniely et al. [2015] have shown that for every ϵ > 0, there exists
a class of valuations that can be mϵ (non-truthfully) approximated but for which no
truthful mechanism can provide an (1 − ϵ) approximation unless NP is a subset of the
non-uniform analogue of P (i.e., P/poly). Nevertheless, the fundamental problem still
remains open for many valuation classes of interest such as s-CAs.

The hope, when studying the combinatorial auction problem, would be to find a
natural and truthful approximation mechanism. This qualifier “natural” is highly sub-
jective, but nevertheless important; examples that come to mind are the well-known
socially optimal Vickrey auction for a single object, or item pricing for revenue maxi-
mization in the full information setting [Guruswami et al. 2005] and sequential posted
pricing in the Bayesian setting [Chawla et al. 2010]. It is crucial that agents un-
derstand any auction that they are participating in, even if it is truthful. Indeed,
the inscrutable nature of the VCG auction has been cited as one reason why it is
rarely used in practice, even in settings where optimal outcomes can be computed
efficiently; it is important that agents be able to quickly determine which bids would
“win” in a given auction instance [Ausubel and Milgrom 2002]. As Syrgkanis and Tardos
[Syrgkanis and Tardos 2013] state, “the Internet environment allows for running mil-
lions of auctions, which necessitates the use of very simple and intuitive auction

1For specific interest in such small bundle CAs, see, for example, Kesselheim et al. [2013].
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schemes.” We are therefore motivated to ask the following loosely-defined question:
can any “natural” auction, which proceeds by ranking bids in some manner and allo-
cating to the agents with the “best” bids, be simultaneously truthful and achieve a good
approximation to the social welfare? To this end, we will study the approximations that
can be achieved by truthful greedy algorithms.

Since the standard greedy algorithm for the combinatorial auction problem is not
truthful [Lehmann et al. 2002], one may be tempted to respond to this question neg-
atively. However, we would argue that this is not immediately clear. Indeed, many
different auction methods may fit the above description. For instance, a truthful auc-
tion due to Bartal et al. [2003] for the multi-unit combinatorial auction problem is a
primal-dual algorithm that proceeds by iteratively constructing a price vector. Their
algorithm can be viewed as resolving bids in a (specially-tailored and adaptive) greedy
manner. This approach is particularly appealing from a practical standpoint, as it
mirrors ascending price vector methods currently in use [Cramton et al. 2005]. One
might hope that such methodologies, extended further, could lead to similar greedy-like
truthful algorithms for common types of combinatorial auction problems.

Our goal in this work will be to develop lower bounds for truthful CA mechanisms
that satisfy our notion of a “natural” auction alluded to above. We ask: can any truthful
greedy algorithm obtain an approximation ratio better than O( m√

log(m)
) or even better

than O(m)? Our specific interest in greedy algorithms is motivated threefold. First, most
known examples of truthful, non-MIR (maximal in range) algorithms for combinatorial
auction problems apply greedy methods [Azar et al. 2010; Bartal et al. 2003; Briest et al.
2011; Chekuri and Gamzu 2009; Dütting et al. 2014; Krysta 2005; Lehmann et al. 2006,
2002; Mu’alem and Nisan 2008]; indeed, greedy algorithms embody the conceptual
monotonicity properties generally associated with truthfulness, and are, thus, natural
candidates for truthful mechanism construction. Second, greedy algorithms are known
to obtain asymptotically tight approximation bounds for many CA problems, despite
their simplicity. Finally, and perhaps most importantly, many auctions used in practice
apply greedy methods, despite the fact that they may not be incentive compatible
(e.g., the generalized second price auction for adwords [Edelman et al. 2005]). That is,
simple mechanisms (and, in particular, greedy mechanisms) seem to be good candidates
for auctions due to other considerations beyond truthfulness, such as ease of public
understanding, simplicity, perceived fairness, and computational efficiency.

Our article is organized as follows. The remaining subsections of Section 1 informally
state our results and provide further discussion of relevant work. Section 2 provides the
necessary definitions as well as a critical-price characterization of truthful mechanisms
due to Bartal et al. [2003] and a variation thereof. Section 3 contains our main results,
establishing the limitation of greedy algorithms (formalized as priority algorithms) for
the general CA and s-CA problems. Section 4 discusses greedy auctions for CAs with
submodular valuations, and we conclude with a discussion of some open problems in
Section 5.

1.1. Our Results
As stated, our focus is on greedy and “greedy-like” algorithms, and to that end, we
need to formulate precise definitions for the class of algorithms we will consider. We
use the term “greedy algorithm” to refer to any of a large class of algorithms known
as priority algorithms [Borodin et al. 2003]. The class of priority algorithms captures
a general notion of “myopic algorithm” behavior.2 We review the priority framework

2The term myopic algorithm precedes the more commonly used terminology of greedy algorithms. Specifically,
myopic algorithms do not presume that the decisions that need to be made (e.g., whether or not to accept
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2:4 A. Borodin and B. Lucier

in Section 2.3. In Section 3, we adapt and apply the priority model to the problem
of direct revelation mechanisms for combinatorial auctions. Informally speaking, in
our context, a priority algorithm proceeds by ranking bids according to some (possibly
adaptive) quality score; winning a certain bundle in some iteration requires that one’s
bid does not conflict with any previously allocated items and that this bid be ranked
higher than other competing bids.

Our main result demonstrates that if a truthful auction for a CA falls within the
priority framework, then it cannot, in general, perform much better than the naı̈ve
algorithm that allocates all objects to a single bidder. That is, its approximation ratio
will be "(min{n, m}), where n is the number of agents and m is the number of objects in
the auction. We note that this inapproximation result does not depend on computational
or communication complexity assumptions, and is incomparable with inapproximations
based on computational hardness. The gap described in our result is extreme for s-CAs:
for s = 2, the standard (but non-truthful) greedy algorithm is a 3-approximation for the
multi-minded s-CA problem,3 but no truthful greedy algorithm can obtain a sublinear
(in n and m) approximation bound.

We also consider the combinatorial auction problem for submodular bidders (SMCA),
a well-studied special case of the general CA problem. We study a class of greedy algo-
rithms that is especially well-suited to the SMCA problem. Such algorithms consider
the objects of the auction one at a time and greedily assign them to bidders to maxi-
mize marginal utilities. It was shown in Lehmann et al. [2006] that any such algorithm
attains a 2-approximation to the SMCA problem, but that not all are incentive com-
patible. We show that, in fact, no such algorithm can be incentive compatible.4

1.2. Related Work
It is known that there exist problems for which deterministic truthful mechanisms
must achieve significantly worse approximations to the social welfare than their non-
truthful counterparts. Indeed, a lower bound in this regard was first proven for the
related combinatorial public project problem [Papadimitriou et al. 2008]. They show
that there is a large asymptotic gap separating approximation by deterministic algo-
rithms and by deterministic truthful mechanisms in general allocation problems.

Significant work has focused on particular restricted cases of the combinatorial auc-
tion problem, such as submodular auctions [Dobzinski and Schapira 2006; Dobzinski
et al. 2010; Khot et al. 2008; Lehmann et al. 2006; Dobzinski 2011], and on alter-
native solution concepts such as randomized notions of truthfulness [Dhangwatnotai
et al. 2011; Lavi and Swamy 2011; Dobzinski and Dughmi 2013; Archer et al. 2003;
Dobzinski et al. 2012; Dobzinski 2007], truthfulness in Bayesian settings [Hartline
and Lucier 2010; Hartline et al. 2011; Bei and Huang 2011], and performance at (non-
truthful) equilibrium [Lucier and Borodin 2010; Lucier 2010; Syrgkanis and Tardos
2013; Caragiannis et al. 2015]. The relatively recent results of Dobzinski [2011] and
Dobzinski and Vondrák [2012] have established a large gap between non-truthful and

a bid) will be made greedily (e.g., that a bid, when considered, will be accepted if it does not conflict with
previous decisions).
3The standard greedy algorithm greedily selects non-conflicting bids in order of non-increasing value. The
underlying allocation problem is the s-set packing (respectively, s+1-set packing) problem for single-minded
(respectively, multi-minded) bidders. This problem is a special case of the maximum independent set prob-
lem in s + 1 (respectively, s + 2) claw-free graphs for which the standard greedy algorithm provides an
s-approximation (respectively, an s + 1-approximation). See Chandra and Halldórsson [2001].
4The degree of freedom in this class of algorithms is the order in which the objects are considered. We note
that our conference paper [Borodin and Lucier 2010] preceded the very strong computational-complexity-
based inapproximation results for truthful submodular CAs given in Dobzinski [2011] and Dobzinski and
Vondrák [2012], discussed in more detail in Section 1.2.

ACM Transactions on Economics and Computation, Vol. 5, No. 1, Article 2, Publication date: October 2016.



On the Limitations of Greedy Mechanism Design for Truthful Combinatorial Auctions 2:5

truthful mechanisms for the bidders with submodular valuations. Namely, assuming
NP = RP (respectively, NP is not contained in non-uniform polynomial time), truthful
deterministic algorithms cannot achieve an m

1
2 −ϵ approximation for any ϵ > 0 (respec-

tively, approximation nγ for some γ > 0). In contrast, without the game-theoretic
truthfulness requirement, there is a polynomial time e

e−1 approximation algorithm and
a 2-approximation greedy algorithm for the CA problem when agents all have submod-
ular valuation functions. Most recently, in a significant development, Daniely et al.
[2015] have shown that for every ϵ > 0, there exists a class of valuations that can be
mϵ (non-truthfully) approximated but for which no truthful mechanism can provide
an m1−ϵ approximation unless NP is a subset of the non-uniform analogue of P (i.e.,
P/poly). Nevertheless, beyond closing the gap between the m1−ϵ inapproximation and
the O( m√

log m
) truthful deterministic mechanism, the problem for specific classes of CAs

(such as S-CAs) still stands as a core demonstration of the limits of our understanding
of truthful approximation algorithms. A resolution would also be of practical interest,
as any new insights would likely contribute, even if only indirectly, to the growing
interest in robust combinatorial auction mechanisms with desirable game-theoretic
properties. Indeed, many mechanisms used in practice today are based upon iterative
price-determination methods which appear to work well empirically, but do not have
the theoretical soundness of single-item auction methods [Ausubel and Milgrom 2002].
This situation is due, at least in part, to the difficulty in resolving the computational
and game-theoretic issues in the CA problem from a purely theoretical perspective.

There have been many developments in the restricted case of CAs with single-minded
bidders. Following the Lehmann et al. [2002] truthful greedy mechanism for single-
minded CAs, Mu’alem and Nisan [2008] showed that any monotone greedy algorithm
for single-minded bidders is truthful and outlined various techniques for combining
approximation algorithms while retaining truthfulness. This led to the development
of many other truthful algorithms in single-minded settings [Babaioff and Blumrosen
2008; Briest et al. 2011] and additional construction techniques, such as the iterative
greedy packing method due to Chekuri and Gamzu [2009].

Less is known in the setting of general bidder valuations. The best-known truthful
deterministic mechanism for the general CA problem proceeds by dividing the objects
arbitrarily into O(log m) equal-sized indivisible bundles, then allocating those bundles
optimally; this achieves an approximation ratio of O(m/

√
log m) [Holzman et al. 2004].

For the special case of multi-unit CAs, when there are B ≥ 3 copies of each object,
Bartal et al. [2003] give a greedy algorithm that obtains an O(Bm

1
B−2 ) approximation.

Lavi and Swamy [2011] give a general method for constructing randomized mecha-
nisms that are truthful in expectation, meaning that agents maximize their expected
utility by declaring truthfully. Their construction generates a k-approximate mech-
anism from an LP for which there is an algorithm that verifies a k-integrality gap,
and, in particular, they obtain an O(

√
m) approximation for the general CA problem.

These verifiers take the form of greedy algorithms, which play a prominent role in the
final mechanisms. Dobzinski et al. [2010] construct a universally truthful randomized
O(

√
m)-approximate mechanism for the CA problem via sampling.

Prior to the inapproximation results of Dobzinski [2011] and Dobzinski and Vondrák
[2012], a substantial line of research gave lower bounds on the approximating power
of somewhat restricted classes of deterministic truthful algorithms for CAs. Lavi
et al. [2003] show that any truthful CA mechanism that uses a suitable bidding lan-
guage, is unanimity-respecting, and satisfies an independence of irrelevant alterna-
tives property (IIA), cannot attain a polynomial approximation ratio. It has also been
shown that, roughly speaking, any truthful polytime subadditive combinatorial auction
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2:6 A. Borodin and B. Lucier

mechanism with an approximation factor better than two cannot satisfy the natural
property of being stable5 [Dobzinski and Sundararajan 2008]. Dobzinski and Nisan
showed that no max-in-range algorithm can obtain an approximation ratio better than
"(

√
m) with polynomial communication between agents and the mechanism [Dobzinski

and Nisan 2011]. This was later extended to show that no max-in-range algorithm can
obtain an approximation ratio better than "(

√
m), even when agents have succinctly-

representable valuations (i.e., budget-constrained additive valuations) [Buchfuhrer
et al. 2010]. These lower bounds are incomparable to our own, as priority algorithms
need not be MIR, stable, unanimity-respecting, or satisfy IIA.6

There has been extensive work studying the power of truthful mechanisms for re-
stricted forms of combinatorial auctions, such as submodular auctions [Dobzinski and
Schapira 2006; Dobzinski et al. 2010; Khot et al. 2008; Lehmann et al. 2006; Dobzinski
2011; Dobzinski et al. 2012]. Of particular relevance to our work is the recent work of
Dobzinski [Dobzinski 2011] that establishes a large gap between the power of random-
ized algorithms and universally truthful randomized mechanisms for the submodular
CA problem, in the value oracle query model. Specifically, a universally truthful mecha-
nism requires exponentially many queries to obtain approximation ratio O(m

1
2 −ϵ); this

bound closely matches the O(m
1
2 ) approximation, attainable by a deterministic truthful

mechanism [Lehmann et al. 2006].
Another line of work gives lower bounds for greedy algorithms without truthfulness

restrictions. Gonen and Lehmann [2000] showed that no algorithm that greedily ac-
cepts bids for sets can guarantee an approximation better than

√
m for the general

CA problem. More generally, Krysta [2005] showed that no oblivious greedy algorithm
(in our terminology: fixed order greedy priority algorithm) obtains approximation ratio
better than

√
m. In contrast, we consider the more general class of priority algorithms

but restrict them to be incentive compatible.
The class of priority algorithms substantially generalizes the notion of online algo-

rithms. Mechanism design has been studied in a number of online settings, and lower
bounds are known for the performance of truthful algorithms in these settings [Lavi
and Nisan 2015; Mahdian and Saberi 2006]. The critical difference between these re-
sults and our lower bounds is that a priority algorithm has control over the order in
which input items are considered, whereas in an online setting, this order is chosen ad-
versarially. For example, the O(

√
m)-approximate greedy algorithm for the CA problem,

due to Lehmann et al. [2002], requires a specific ordering and cannot be achieved by
an online algorithm. The multi-unit auction, due to Bartal et al. [2003], can be applied
to online settings, though this requires that the mechanism have a priori bounds on
the possible valuations, and the resulting approximation depends on the ratio between
the minimum and maximum possible valuations.

In contrast to the negative results of this article, (non-truthful) greedy algorithms can
provide good approximations when rational agents are assumed to bid at Nash equilib-
rium. In particular, there is a greedy combinatorial auction for submodular agents that
obtains a 2-approximation at any Bayes-Nash equilibrium [Christodoulou et al. 2008],
and a similar auction method obtains a 2-approximation at Bayes-Nash equilibrium
for subadditive bidders [Bhawalkar and Roughgarden 2011; Feldman et al. 2013]. The
greedy GSP auction for internet advertising has also been shown to obtain a constant

5In a stable mechanism, no player can alter the outcome (i.e., by changing his declaration) without causing
his own allocated set to change.
6The notion of IIA has been associated with priority algorithms, but in a different context than in Lavi
et al. [2003]. In mechanism design, IIA is a property of the mapping between input valuations and output
allocations, whereas for priority algorithms, the term IIA describes restrictions on the order in which input
items can be considered.
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approximation to the optimal welfare at any Bayes-Nash equilibrium [Caragiannis
et al. 2015]. It is also known that c-approximate greedy algorithms for combinatorial
allocation problems can be converted into mechanisms whose Bayes-Nash equilibria
yield c(1+o(1)) approximations [Lucier and Borodin 2010; Syrgkanis and Tardos 2013].

2. DEFINITIONS AND PRELIMINARY RESULTS
2.1. Combinatorial Auctions
A combinatorial auction consists of n bidders and a set M of m objects.7 For notational
convenience, we will let k = min{m, n}. Each bidder i has a value for each subset of
objects S ⊆ M, described by a valuation function vi : 2M → R, which we call the type
of agent i. We assume each vi is monotone and normalized, so that vi(S) ≤ vi(T ) for all
S ⊆ T and vi(∅) = 0. We denote by Vi the space of all possible valuation functions for
agent i, and V = V1 × V2 × · · · × Vn. We write v for a profile of n valuation functions,
one per agent, and v−i = (v1, . . . , vi−1, vi+1, . . . , vn), so that v = (vi, v−i).

A valuation function v is single-minded if there exists a set S ⊆ M and a value x ≥ 0
such that for all T ⊆ M, v(T ) = x if S ⊆ T and 0 otherwise. A valuation function v
is ℓ-minded if it is the maximum of ℓ single-minded functions. That is, there exist ℓ
sets S1, . . . , Sℓ such that for all subsets T ⊆ M, we have v(T ) = max{v(Si)|Si ⊆ T }.
An additive valuation function v is specified by m values x1, . . . , xm ∈ R≥0, so that
v(T ) =

∑
ai∈T xi. A valuation function v is submodular if it satisfies v(T ) + v(S) ≥

v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ M. In the combinatorial auction problem, we are
interested in feasible allocations which satisfy the property that no object is allocated
to more than one bidder and each bidder is allocated at most one set. We sometimes
refer to a feasible allocation as a valid allocation. An s-CA is one in which the valuation
function of every agent satisfies v(T ) = maxS:|S|≤s val(S); that is, the agents only value
sets of size at most s (and by monotonicty of valuations, all extension of such sets).

A direct revelation mechanism (or just mechanism) M = (A, P) consists of an
allocation algorithm A and a payment algorithm P. We think of M as eliciting a
valuation profile from the agents and then determining an assignment of objects
and payments to be made. Crucially, the agents are assumed to be rational and may
misrepresent their valuations to the mechanism but only in order to maximize their
utilities. We therefore distinguish between the values reported to the mechanism from
the agents’ true values: we shall let d denote a profile of declared valuations and let
t denote a truthful valuation profile. Given declared valuation profile d, A(d) returns
an allocation of objects to bidders, and P(d) returns the payment extracted from each
agent. For each agent i, we write Ai(d) and Pi(d) for the set given to and payment
extracted from i. We will restrict payments to be non-negative.

The social welfare obtained by A on declaration d given truthful valuation t is
SWA(d, t) =

∑
i∈N ti(Ai(d)). The optimal social welfare, SWopt, is the maximum of∑

i∈N ti(Si) over all valid allocations (S1, . . . , Sn). Algorithm A is a c-approximation
if SWA(t, t) ≥ 1

c SWopt for all type profiles t.
Fixing mechanism M and type profile t, the utility of bidder i given declaration d is

ui(d, t) = ti(Ai(d))−Pi(d). When there is no confusion, we will often drop the dependence
on t and simply write ui(d). MechanismM is said to be incentive compatible (or truthful)
if, for every type profile t, agent i, and declaration profile d, ui(ti, d−i) ≥ ui(d). That is,
agent i maximizes his utility by declaring his type, regardless of the declarations of
the other agents. We say that A is truthful if there exists a payment function P such
that the mechanism (A, P) is truthful. We also say that M is individually rational if

7We are following the terminology for priority algorithms and reserve the word “item” to mean a basic unit
of input. We then use “objects” to denote the goods being sold.
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2:8 A. Borodin and B. Lucier

ui(ti, d−i) ≥ 0 for all ti and all d−i. That is, a rational agent does not strictly prefer to
exclude himself from the mechanism.

2.2. Minimal Prices
Following Bartal, Gonen, and Nisan [2003], we will use a multi-parameter analogy
of critical prices in order to characterize truthful mechanisms. Namely, an allocation
algorithm A defines minimal prices, pi(S, d−i), for any agent i and set S as follows. We
define pi(∅, d−i) = 0 for all d−i. For S ̸= ∅, the price pi(S, d−i) is the minimum amount
that agent i could bid on a set that contains S and win it, given that the other agents
bid according to d−i. That is,

pi(S, d−i) = inf
di :Ai (di ,d−i )⊇S

{di(Ai(di, d−i))}.

Note that pi(S, d−i) need not be finite. If pi(S, d−i) = ∞, this indicates that the mecha-
nism will simply not allocate S to bidder i for any reported valuation di, given that the
other agents declare according to d−i. Moreover, it follows from the definition that, for
all i, all d−i, and all S ⊆ T , pi(S, d−i) ≤ pi(T , d−i).

The following characterization of truthful mechanisms for combinatorial auctions
is due to Bartal et al. [2003]. As our notation and definitions are slightly different,
we restate it here for completeness. Roughly speaking, a mechanism is truthful if the
payment of an agent i is determined only by the declarations of the other agents and
the allocation to agent i, and moreover, agent i is assigned the utility-maximizing
allocation given these payments.

THEOREM 2.1 ([BARTAL ET AL. 2003]). A mechanism M = (A, P) is truthful if and only
if, for every bidder i, there is a function πi : 2M × V−i → R ∪ {∞} such that, for all d,

(1) Pi(d) = πi(Ai(d), d−i) and
(2) Ai(d) ∈ argmaxS{di(S) − πi(S, d−i)}.

One can strengthen Theorem 2.1 if one assumes some structure on the class of
valuations. Given a mechanism M = (A, P) and space of valuations V , we will write
Ri(A, V ) = {Ai(v) : v ∈ V } for the range of outcomes that can be allocated to agent i.
We will show that if the valuation space includes all single-minded declarations for
outcomes in the range of the mechanism, and if we also require individual rationality,
then, in fact, the function πi from Theorem 2.1 must be the minimal price function pi.
For example, this condition would be satisfied by any mechanism for the general CA
problem, as well as the s-CA problem (where each bidder can be allocated at most s
objects and has arbitrary valuation over sets of size at most s).

THEOREM 2.2. Fix a mechanism M = (A, P) and valuation class V such that, for each
i, Vi includes all single-minded declarations for sets in Ri(A, V ). Then mechanism M
is truthful and individually rational if and only if

(1) Pi(d) = pi(Ai(d), d−i) and
(2) Ai(d) ∈ argmaxS{di(S) − pi(S, d−i)}.

PROOF. That the conditions are sufficient for truthfulness follows immediately from
Theorem 2.1. The conditions are also sufficient for individual rationality because each
agent’s valuation class includes the zero function, and from the definition of pi, we
have pi(Ai(0, d−i), d−i) = 0 for every d−i. The second condition of the theorem therefore
implies that an agent’s utility cannot be negative.

To prove the conditions are necessary, we first show that Pi(d) = pi(Ai(d), d−i).
Suppose Pi(d) > pi(Ai(d), d−i) for some d. Then, from the definition of minimal prices,
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there exists some di
′ such that Ai(di

′, d−i) = Ai(d) and di
′(Ai(d)) < Pi(d). But then, if

player i has type di
′, we have ui(di

′, d−i) < 0, violating individual rationality.
Next, suppose Pi(d) < pi(Ai(d), d−i) for some d. Consider valuation di

∗ defined to
be a single-minded declaration for set Ai(d) at some value strictly between Pi(d) and
pi(Ai(d), d−i). Suppose that agent i has type di

∗. From the definition of minimal prices,
it must be that Ai(di

∗, d−i) ̸⊇ Ai(d), and hence, ui(di
∗, d−i) ≤ di

∗(Ai(di
∗, d−i)) = 0. On

the other hand, ui(di, d−i) = di
∗(Ai(d)) − Pi(d) > 0, so agent i can increase her utility

by (mis)reporting declaration di (instead of di
∗), violating incentive compatibility.

Finally, suppose there exist some d such that

Ai(d) ̸∈ argmaxS{di(S) − pi(S, d−i)}.
Then there is some S such that di(S) − pi(S, d−i) > di(Ai(d)) − pi(Ai(d), d−i). In par-
ticular, pi(S, d−i) < ∞, and hence, there exist some di

′ such that Ai(di
′, d−i) ⊇ S and

pi(Ai(di
′, d−i), d−i) = pi(S, d−i). We therefore conclude that

di(Ai(di
′, d−i)) − Pi(di

′, d−i) > di(Ai(di, d−i)) − Pi(di, d−i).

This implies that an agent with type di can increase her utility by (mis)reporting
declaration di

′, violating incentive compatibility.

2.3. Priority Algorithms
In this section, we review the priority algorithm framework [Borodin et al. 2003] and
discuss how it can be applied to the CA problem. We view an input instance to an
algorithm as a subset of input items from a known input space I. Note that I depends
on the problem being considered and is the set of all possible input items: an input
instance is a finite subset I of I. The problem definition may place restrictions on the
input: an input instance I ⊆ I is valid if it satisfies all such restrictions. For example,
in the CA problem, we would not allow having an agent who values a subset S′ ⊂ S
more than the set S. The output of the algorithm is a decision made for each input item
in the input instance. For example, these decisions may be of the form “accept/reject,”
allocate set S to agent i, and so on. The problem may place restrictions on the nature
of the decisions made by the algorithm; we say that the output of the algorithm is valid
if it satisfies all such restrictions. A priority algorithm is then any algorithm of the
following form:
ADAPTIVE PRIORITY
Input: A set I of items, I ⊆ I
while not empty(I)

Ordering: Choose, without looking at I, a total ordering T over I
next ← first item in I according to ordering T
Decision: make an irrevocable decision for item next
remove next from I; remove from I any items preceding next in T

end while

We emphasize the importance of the ordering step in this framework: an adaptive
priority algorithm is free to choose any ordering over the space of all possible input
items and can change this ordering adaptively after each input item is considered. Once
an item is processed, the algorithm is not permitted to modify its decision. On each
iteration, a priority algorithm learns what (higher-priority) items are not in the input.
A special case of (adaptive) priority algorithms are fixed order priority algorithms in
which one fixed ordering is chosen before the while loop (i.e., the “ordering” and “while”
statements are interchanged). Our inapproximation results for truthful CAs will hold
for the more general class of adaptive priority algorithms, although many greedy CA
algorithms are fixed order.
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Admittedly, the term “greedy” implies a more opportunistic type of behavior than is
apparent in the definition of priority algorithms. Indeed, we view priority algorithms
more generally as “greedy-like” or “myopic,” in that the decision being made for the cur-
rent input item being considered does not depend on input items not already processed.
A greedy priority algorithm satisfies an additional property: the choice made for each
input item must optimize the objective of the algorithm as though that item were the
last item in the input. For example, when the relevant decision is to either accept or
reject a bid, a greedy priority algorithm must always accept every feasible bid (and, if
there is flexibility in how to satisfy the bid, the allocation that maximizes social welfare
must be chosen). With respect to our technical results, we note the difference between
Theorems 3.1 and 4.1 which impose the greedy constraint and Theorems 3.5 and 3.6
which do not impose the greedy constraint. We note that many greedy CA algorithms
in the literature are fixed order greedy priority algorithms.

.

3. TRUTHFUL PRIORITY ALGORITHMS
Lehmann et al. [2002] show that a greedy O(

√
m)-approximation algorithm8 for combi-

natorial auctions can be made truthful (using critical pricing) for single-minded bidders
but is not incentive compatible for the more general CA problem. Our high-level goal is
to prove that this is a general phenomenon common to all priority algorithms. In order
to apply the concept of priority algorithms, we must define the set I of possible input
items and the nature of decisions to be made. We consider two natural input formu-
lations: sets as items and bidders as items. We assume that n, the number of bidders,
and m, the number of objects, are known to the mechanism and let k = min{m, n}.

3.1. Sets as Items
In our primary model, we view an input instance to the combinatorial auction problem
as a list of set-value pairs for each bidder. An item is a tuple (i, S, t), i ∈ N, S ⊆ M,
and t ∈ R≥0. A valid input instance I ⊂ I contains at most one tuple (i, S, vi(S)) for
each i ∈ N and S ⊆ M and for every pair of tuples (i, S, v) and (i′, S′, v′) in I such that
i = i′ and S ⊆ S′, it must be that v ≤ v′. We note that since a valid input instance may
contain an exponential number of items, this model applies most directly to algorithms
that use oracles to query input valuations, such as demand oracles,9 but it can also
apply to succinctly represented valuation functions.10

The decision to be made for item (i, S, t) is whether or not the objects in S should
be added to any objects already allocated to bidder i. For example, an algorithm may
consider item (i, S1, t1) and decide to allocate S1 to bidder i, then later consider another
item (i, S2, t2) (where S2 and S1 are not necessarily disjoint) and, if feasible, decide to
change bidder i’s allocation to S1 ∪ S2.

A greedy algorithm in the sets as items model must accept any feasible, profitable
item (i, S, t) it considers.11 Our main result is a lower bound on the approximation ratio,

8The Lehmann et al. [2002] algorithm will satisfy all models discussed in Section 3.
9It is tempting to assume that this model is equivalent to a value query model, where the mechanism
queries bidders for their values for given sets. The priority algorithm model is actually more general, as
the mechanism is free to choose an arbitrary ordering over the space of possible set/value combinations. In
particular, the mechanism could order the set/value pairs by the utility they would generate under a given
set of additive prices, simulating a demand query oracle.
10That is, by assigning priority only to those tuples appearing in a given representation.
11Assume bidder i has already been allocated some set S1. Then, when later considering a bid (i, S, t), a
greedy algorithm must allocate S to agent i if no objects in S have already been allocated to another bidder,
and di(S1 ∪ S) > di(S1). In our proof of Theorem 3.1, it will always be the case that S1 = ∅ (i.e., no items have
already been allocated to agent i), so that the greedy assumption is simplified as follows: when considering
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achievable by a truthful greedy algorithm in the sets as items model. Theorem 3.1
implies a severe separation between the power of greedy algorithms and the power
of truthful greedy algorithms. This separation holds even for the restricted case of
s-CAs (s ≥ 2), where bidders only desire sets having at most s objects. A simple greedy
algorithm obtains a 3-approximation for the 2-CA problem, yet no truthful greedy
priority algorithm (indeed, any algorithm that irrevocably satisfies bids based on a
notion of priority) can obtain even a sublinear approximation.

THEOREM 3.1. Suppose A is an incentive compatible and individually rational greedy
priority algorithm that uses sets as items. Then Acannot approximate the optimal social
welfare by a factor of (1−δ)k

2 for any δ > 0. This result also applies to the special case of
the 2-CA problem, in which each desired set has size at most 2.

Before beginning the proof, consider the following intuition as to why such an algo-
rithm A cannot exist. Suppose some bidder i has the same very large value for each of
two singletons. Our algorithm A would surely want to allocate one of these singletons
to this bidder. Since A is greedy, it must do so without first considering the (smaller)
values held by other bidders for sets containing those singletons. However, if A is truth-
ful, then by Theorem 2.2, it must also maximize utility for agent i. The algorithm must
therefore allocate the singleton which has the smaller minimal price. This implies that
the relationship between the prices for these singletons must be independent of their
value to other bidders! This allows us to show that algorithm A must have poor perfor-
mance, since a singleton desired at a high value by many players must have a higher
price than a singleton not desired by any other players, in order to guarantee a good
approximation ratio.

PROOF. Choose δ > 0 and suppose Aobtains a bounded approximation ratio. For each
i ∈ N, let V +

−i be the set of valuations with the property that vℓ(S) > 0 for all ℓ ̸= i and
all non-empty S ⊆ M. The heart of our proof is the following claim, which shows that
the relationship between minimal prices for singletons for one bidder is independent
of the valuations of other bidders. Recall that pi(S, d−i) is the minimal price for set S
for bidder i, given d−i.

CLAIM 3.2. For all i ∈ N, and for all a, b ∈ M, either pi({a}, d−i) ≥ pi({b}, d−i) for all
d−i ∈ V +

−i , or pi({a}, d−i) ≤ pi({b}, d−i) for all d−i ∈ V +
−i . This is true even when agents

desire sets of size at most 2.

PROOF. Choose i ∈ N, a, b ∈ M, and d−i, d−i
′ ∈ V +

−i. Suppose for contradiction that
pi({a}, d−i) > pi({b}, d−i), but pi({b}, d−i

′) > pi({a}, d−i
′). We will consider a number of

possible valuations to be declared by our bidders.
Let v∗ be the maximum value assigned to any set by any player in d−i or d−i

′. Then
note that the maximum social welfare that can be obtained is (k − 1)v∗ if bidder i does
not participate and other bidders declare values d−i or d−i

′. Let x = αv∗ for some
sufficiently large α that we will set later (it will turn out that α ≥ k2 will be sufficient).
We will define various different possible valuation functions for bidder i: f , h, and gc
for all c ∈ M and for sufficiently small ϵ > 0.

f (S) =
{x if a ∈ S

x if b ∈ S
0 otherwise.

gc(S) =

⎧
⎪⎨

⎪⎩

ϵ if a ∈ S, c ̸∈ S
ϵ if b ∈ S
x if {a, c} ⊆ S
0 otherwise.

a bid (i, S, t), a greedy algorithm must allocate S to agent i if t > 0 and no objects in S have already been
allocated to another bidder.
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h(S) =
{

ϵ if a ∈ S
ϵ if b ∈ S
0 otherwise.

Note that each of these valuation profiles can be interpreted as a profile in which
the agent desires sets of size at most 2. Note also that ga and gb are well defined: the
former assigns value x to any set containing a, and the latter assigns value x to any
set containing both a and b.

We are now ready to discuss the behavior of algorithm A. Consider the subset I1 ⊂ I
that contains the following input items: (i, S, f (S)) and (i, S, h(S)) for every S ⊆ M;
(i, S, gc(S)) for all c ∈ M and S ⊆ M; and ( j, S, dj(S)), ( j, S, dj

′(S)), ( j, S, ϵ), and ( j, S, v∗)
for all j ̸= i and S ⊆ M. In other words, I1 contains all of the input items consistent
with the valuation functions we defined above, plus input items ( j, S, ϵ) and ( j, S, v∗)
for each set S and each bidder j ̸= i.

We know that if A is a priority algorithm, then it must have some initial ordering
over I, and hence, over I1. Consider the first item in I1 under this ordering. We consider
different cases for the nature of this item.

Case 1: ( j, S, t), j ̸= i. Then t ∈ {dj(S), dj
′(S), ϵ, v∗}, and hence, t > 0. Choose any

c ∈ S. Let I1 be a valid input instance consisting of items from I1, such that ( j, S, t) ∈ I1
and I1 is consistent with agent i having valuation gc. Note that such an I1 always exists;
for example, if t = dj(S) we could set I1 to be consistent with each agent ℓ ̸= i having
valuation dℓ. Then I1 ⊆ I1 and ( j, S, t) ∈ I1, so item ( j, S, t) will be considered first by
algorithm A on input I1.

Since A is greedy, A will allocate set S to bidder j. Then it must be that, in the final
allocation, bidder i is not allocated any set containing c. Thus, from the definition of
gc, bidder i obtains a value of at most ϵ. Furthermore, all other bidders can obtain a
total welfare of at most (k − 1)v∗, for a total social welfare of at most (k − 1)v∗ + ϵ. On
the other hand, a total of at least x = αv∗ is possible by allocating {a, c} to bidder i.
Thus, as long as ϵ < v∗ and α ≥ k2, the approximation ratio obtained by A is at least k,
a contradiction.

The other cases for t are handled similarly.
Case 2: (i, S, x), a ∈ S or b ∈ S. By symmetry we can assume a ∈ S. Consider

the input instance I2 in which bidder i declares valuation f , and every other bidder
j ̸= i declares valuation dj . Then f (S) = x, so (i, S, x) ∈ I2 ⊆ I1, and therefore, A will
consider item (i, S, x) first on input I2. Since x > 0 and A is greedy, the algorithm will
assign set S to bidder i.

Suppose that in the final allocation, bidder i is allocated some set T ⊇ S. Then, since
a ∈ T , we know that pi(T , d−i) ≥ pi({a}, d−i) > pi({b}, d−i). But note f (T ) = f ({a}) = x,
so that f (T ) − pi(T , d−i) < f ({b}) − pi({b}, d−i). In other words, A does not maximize
the utility of player i. By Theorem 2.2, A is not incentive compatible, a contradiction.

Case 3: (i, S, ϵ), a ∈ S or b ∈ S. By symmetry, we can assume a ∈ S. Consider the
input instance I3 in which bidder i declares valuation h, and every other bidder j ̸= i
declares valuation dj . Then (i, S, ϵ) ∈ I3 ⊆ I1, so A will consider item (i, S, ϵ) first on
input I3. From this point, we obtain a contradiction in precisely the same way as in
Case 2.

Case 4: (i, S, t), a ̸∈ S and b ̸∈ S. Then, from the definitions of f , gc, and h, we
must have t = 0. Thus, when processing this item, A is free to allocate S to bidder
i or not. If A does not allocate S to i, then we will consider the next item considered
by the algorithm A and repeat our case analysis. The case analysis proceeds in the
same way, since no objects would have been allocated. This process must terminate, as
algorithm A must eventually consider some set S for agent i that contains either a or
b, or (reasoning as above) some set for agent j ̸= i.
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Suppose, on the other hand, that A does allocate S to i. Then consider the input
instance I4 in which bidder i declares valuation h and all other bidders declare the
following valuation fS:

fS(T ) =
{
v∗ if S ⊆ T
ϵ otherwise.

We note that valuation fS defines the value of any set to be either ϵ or v∗, so in particular
I4 ⊆ I1. Since (i, S, 0) ∈ I4, this item will be considered first by A on input I4, and S will
be allocated to player i. But then, in the final allocation, each other bidder can obtain
a welfare of at most ϵ, for a total welfare of at most kϵ. On the other hand, a welfare
of v∗ was possible by allocating S to any bidder other than bidder i. Thus, if we choose
ϵ < v∗/k2, we conclude that A has an approximation ratio of at least k, a contradiction.

We have shown that every case leads to a contradiction, completing the proof of
Claim 3.2.

We can think of Claim 3.2 as defining, for each i ∈ N, an ordering over the elements
of M. For each i ∈ N and a, b ∈ M, write a ≼i b to mean pi({a}, d−i) ≤ pi({b}, d−i) for all
d−i ∈ V +

−1. For all i ∈ N and a ∈ M, define Ti(a) = {aj : a ≼i aj}. That is, Ti(a) is the set
of objects that have prices no less than the price of a for agent i. Note that a ∈ Ti(a).
Our next claim shows a strong relationship between whether a is allocated to bidder i
and whether any object in Ti(a) is allocated to bidder i.

CLAIM 3.3. Choose a ∈ M, i ∈ N, and S ⊆ M, and suppose S ∩ Ti(a) ̸= ∅. Choose some
di ∈ Vi and suppose that di({a}) > di(S). Then, if d−i ∈ V +

−i , bidder i cannot be allocated
set S by algorithm A given input d.

PROOF. We know that pi(S, d−i) ≥ pi({aj}, d−i) for any aj ∈ S. Thus, regardless of the
choice of d−i,

pi(S, d−i) ≥ max
aj∈S∩Ti (a)

(pi({aj}, d−i)) ≥ pi({a}, d−i)

from the definition of Ti(a). Since di({a}) > di(S), this implies that di({a})− pi({a}, d−i) >
di(S)− pi(S, d−i), so by Theorem 2.2, bidder i cannot be allocated set S, as required.

Claim 3.3 is strongest when Ti(a) is large; that is, when a is “small” in the ordering
≼i. We therefore wish to find an object of M that is small according to many of these
orderings, simultaneously. Let R(a) = {i ∈ N : |Ti(a)| ≥ k/2}, so R(a) is the set of
players for which there are at least k/2 objects greater than a. The next claim follows
by a straightforward counting argument.

CLAIM 3.4. There exists a∗ ∈ M such that |R(a∗)| ≥ k/2.

PROOF. Note that for each i and any x ∈ [m], the number of objects a ∈ M for which
|Ti(a)| ≥ x is at least m − x + 1; this follows because ≼i defines an ordering over the
objects in M, and all but the top x − 1 in this ordering must satisfy |Ti(a)| ≥ x. This
implies

∑

i∈N

∑

a∈M
|Ti (a)|≥k/2

1 ≥
∑

i∈N

(m− k/2 + 1) > n(m− k/2).

Rearranging the order of summation, we also have
∑

i∈N

∑

a∈M
|Ti (a)|≥k/2

1 =
∑

a∈M

∑

i∈N
|Ti (a)|≥k/2

1 =
∑

a∈M

|R(a)|.
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We conclude that
∑

a∈M |R(a)| > n(m− k/2), so there must exist some a∗ ∈ M such that
|R(a∗)| ≥ n(m−k/2)

m . We know that either n ≥ m = k or m ≥ n = k; in either case, we obtain
|R(a∗)| ≥ n(m−k/2)

m ≥ k/2 as required.

We are now ready to proceed with the proof of Theorem 3.1. Let a∗ ∈ M be the object
from Claim 3.4. Let ϵ > 0 be a sufficiently small value to be defined later. We now define
a particular input instance to algorithm A. For each i ∈ R(a∗), bidder i will declare the
following valuation function, di:

di(S) =
{1 if a∗ ∈ S

1 − δ/2 if a∗ ̸∈ S and S ∩ (Ti(a∗)) ̸= ∅
ϵ otherwise.

Each bidder i ̸∈ R(a∗) will declare a value of ϵ for every set.
For each i ∈ R(a∗), di({aj}) ≥ 1 − δ/2 for every aj ∈ Ti(a∗). Since |R(a∗)| ≥ k/2 and

|Ti(a∗)| ≥ k/2, it is possible to obtain a social welfare of at least (1−δ/2)k
2 by allocating

singletons to bidders in R(a∗).
Consider the social welfare obtained by algorithm A. The algorithm can allocate

object a∗ to at most one bidder, say bidder i, who will obtain a social welfare of at most
1. For any bidder ℓ ∈ R(a∗), ℓ ̸= i, dℓ(S) = 1 − δ/2 < 1 for any S containing elements of
Tℓ(a∗) but not a∗. Thus, by Claim 3.3, no bidder in R(a∗) can be allocated any set S that
contains an element of Ti(a∗) but not a∗. Therefore, every bidder other than bidder i
can obtain a value of at most ϵ, for a total social welfare of at most 1 + kϵ.

We conclude that algorithm A has an approximation factor no better than k(1−δ/2)
2(1+kϵ) .

Choosing ϵ < δ
2(1−δ)k yields an approximation ratio greater than k(1−δ)

2 , completing the
proof of Theorem 3.1.

We believe that the greediness assumption of Theorem 3.1 can be removed. As partial
progress toward this goal, we show that this assumption can be removed if we restrict
our attention to the following alternative input model for priority algorithms, in which
an algorithm can only consider and allocate sets whose values are explicitly represented
(i.e., not implied by the value of a subset).

Elementary bids as items. Consider an auction setting in which agents do not
provide entire valuation functions, but rather each agent specifies a list of desired sets
S1, . . . , Sℓ and a value for each one. Moreover, each agent receives either a desired set or
the empty set. This can be thought of as an auction with a succinct representation for
valuation functions, in the spirit of the XOR bidding language [Nisan 2000]. We model
such an auction as a priority algorithm by considering items to be the bids for desired
sets. In such a setting, the specified set-value pairs are called elementary bids. We
say that the priority model uses elementary bids as items when only elementary bids
(i, S, v(S)) can be considered by the algorithm. For each item (i, S, v(S)), the decision
to be made is whether or not S will be the one and only one set allocated to agent i;
that is, whether or not the elementary bid for S will be “satisfied.” In particular, unlike
in the sets as items model, we do not permit the algorithm to build up an allocation
incrementally by accepting many elementary bids from a single agent. However, a
feasible bid by agent i can be rejected and then a later bid by agent i can be accepted.

We now show that the greediness assumption from Theorem 3.1 can be removed
when we consider priority algorithms in the elementary bids as items model.

THEOREM 3.5. Suppose A is an incentive compatible and individually rational pri-
ority algorithm for the CA problem that uses elementary bids as items. Then A cannot
approximate the optimal social welfare by a factor of (1 − δ)k for any δ > 0.
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PROOF. Suppose A is a truthful adaptive priority algorithm, where the items to be
considered are associated with sets. That is, an item is a tuple (i, S, t), where di(S) = t.
On processing each item, the algorithm must decide whether S will be the set allocated
to bidder i. Suppose for contradiction that A obtains an approximation ratio of (1 − δ)k
for some δ > 0.

We claim that, for any i, it must be that pi(S, d−i) = 0 for all S ⊆ M, whenever dj
is the 0 declaration for all j ̸= i (that is, only bidder i places non-zero bids). Indeed,
suppose there exists S such that pi(S, d−i) = v > 0. Let di be the single-minded
declaration for set S with value v/2. Then, for each T ⊇ S, di(T ) = v/2 < pi(S, d−i).
Since pi(S, d−i) is the infimum of winning bids for sets containing S, we conclude that
Ai(di, d−i) ̸⊇ S, and hence, di(Ai(di, d−i)) = 0. Thus, A obtains a social welfare of 0 on
input (di, d−i) when v/2 > 0 was possible, contradicting the supposed approximation
ratio of A.

Let I1 be an input instance containing items (i, M, 1 + δ) and (i, S, 1) for all S ̸= M,
for each 1 ≤ i ≤ n. That is, each bidder has a value of 1 for each singleton and 1 + δ
for the set of all objects. Then A must consider some input item first given input I1;
suppose the first item has corresponding bidder j. Now consider cases based on the
nature of the first item.

Case 1: ( j, M, 1 + δ). Consider the decision made by A for this item. If A allocates M
to j, then for input instance I1, A obtains a social welfare of 1 + δ, whereas the optimal
welfare is k. Thus, A has an approximation ratio no better than (1 + δ)−1k > (1 − δ)k,
a contradiction. Next, suppose A does not allocate M to j. Consider input instance
I2 ⊂ I1 that contains only item ( j, M, 1 + δ). Then A cannot distinguish between I1 and
I2 when considering item ( j, M, 1 + δ). Thus, A will not allocate M to bidder j on input
I2, yielding an unbounded approximation factor: A achieves social welfare 0, whereas
the optimal welfare is 1 + δ.

Case 2: ( j, T, 1), T ̸= M. Consider the decision made by A for this item. Suppose
A does not allocate T to bidder j. Let I3 ⊆ I1 be the input instance consisting only of
item ( j, T , 1); that is, player j has a single-minded valuation for set T . Since A cannot
distinguish between I1 and I3 when considering item ( j, T , 1), it must be that A does
not allocate T to bidder j on input I3. Thus, A obtains a social welfare of 0 when 1 was
possible, contradicting the supposed approximation ratio of A.

We conclude that A must allocate T to bidder j. Let I4 ⊆ I1 be the input instance
consisting of items ( j, T , 1) and ( j, M, 1 + δ). Then A will allocate T to bidder j in
instance I4. Recalling our earlier claim that pi(S, d−i) = 0 for all S ⊆ M whenever
bidder i is the only non-zero bidder, we note that dj(T ) − pj(T , d− j) = 1 < 1 + δ =
dj(M) − pj(M, d− j). This, therefore, contradicts Theorem 2.2, which requires that the
allocation to bidder j maximize the value of di(S) − pi(S, d−i) over all sets S.

We therefore arrive at a contradiction in all cases, as required.

3.2. Bidders as Items
Roughly speaking, the lower bounds in Theorems 3.1 and 3.5 follow from a priority
algorithm’s inability to determine which of many different mutually-exclusive desires
of an agent to consider first when constructing an allocation. One might guess that such
difficulties can be overcome by presenting an algorithm with more information about
an agent’s valuation function at each step. To this end, we consider an alternative model
of priority algorithms in which the agents themselves are the items, and the algorithm
is given complete access to an agent’s declared valuation function each round.

Under this model, I consists of all pairs (i, vi), where i ∈ N and vi ∈ Vi. A valid input
instance contains one item for each bidder. The decision to be made for item (i, vi) is a
set S ⊆ M to assign to bidder i. The truthful greedy CA mechanism for single-minded
bidders due to Lehmann et al. [2002] falls within this model, as does its (non-truthful)
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generalization to complex bidders [Lehmann et al. 2002], the primal-dual algorithm of
Briest et al. [2011], and the (first) algorithm of Bartal et al. [2003] for multi-unit CAs.
We now establish an inapproximation bound for truthful priority allocations that use
bidders as items.

THEOREM 3.6. Suppose Ais an incentive compatible and individually rational priority
algorithm for the (2-minded) CA problem that uses bidders as items. Then A cannot
approximate the optimal social welfare by a factor of (1−δ)k

2 for any δ > 0.

PROOF. Choose δ > 0 and suppose for contradiction that A is an incentive compatible
adaptive priority algorithm that achieves an approximation ratio of k(1 − δ)/2. Recall
that an item is a tuple (i, vi), where 1 ≤ i ≤ n is a bidder and vi : 2M → R is a valuation
function.

We will construct a set of input instances for which A is forced to make a particular
allocation, due to incentive compatibility and the iterative nature of priority algorithms.
We define two sets of valuation functions, {g1, . . . , gk} and { f1, . . . , fk}, that will be used
in these input instances. The gi will be defined so as to bound the minimal prices for
the entire set of objects M. The fi will be defined so as to force the algorithm into either
forgoing many small values or choosing to award the grand bundle M to some agent
who comes early in the iterative order adaptively chosen by the priority algorithm. The
functions g1, . . . , gk are straightforward: for each 1 ≤ i ≤ k, define valuation function
gi by

gi(S) =
{

1 if ai ∈ S
0 otherwise.

Then gi is a single-minded valuation function, where the desired set is {ai} with
value 1.

The definition of valuation functions f1, . . . , fk is more involved. Fix i ∈ N and define
V ′

−i := {g1, . . . , gk}n−1. Consider an instance d of the combinatorial auction problem in
which d−i ∈ V ′

−i. That is, each bidder j ̸= i is single-minded and desires a singleton
with value 1. By the minimal price property, there is a minimal price pi(M, d−i) for set
M given this d−i.

CLAIM 3.7. pi(M, d−i) ≤ kn.

PROOF. Suppose otherwise that pi(M, d−i) > kn. Suppose further that bidder i is
single-minded with desired set M and with di(M) = kn. Then di(M) − pi(M, d−i) <
0 = di(∅) − pi(∅, d−i). Therefore, by the minimal pricing property, A cannot allocate M
to bidder i, and hence, bidder i obtains a value of 0. Now consider the social welfare
obtained by A: it can be at most n − 1, since bidder i obtains a welfare of 0 and each
other bidder has value at most 1 for any set. The optimal social welfare is kn, obtained
by allocating M to bidder i. Hence, A obtains an approximation ratio of kn

n−1 > k(1−δ)
2 for

this input instance, which is a contradiction. This completes the proof of Claim 3.7.

We are now ready to define the valuations f1, . . . , fk. They are based on values
x, y ∈ R. Define x ∈ R as follows:

x := 1 + max
i∈N

max
v−i∈V ′

−i

{pi(M, v−i)}.

That is, x is a value greater than the maximum of the minimal price for M for bidder
i, over all choices of i and possible desires of singletons with value 1 by other bidders.
Set y := xδ−1.
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For each 1 ≤ i ≤ k, define valuation function fi as

fi(S) =
{y if {ai} ⊆ S ⊂ M

y + x if S = M
0 otherwise.

Then fi(S) is a 2-minded valuation function. We now consider the following subset
I ′ ⊆ I of possible input items: I ′ contains all bidder-valuation pairs of the form (i, vi),
where 1 ≤ i ≤ n and vi = f j , or vi = gj for some 1 ≤ j ≤ k. Note that I ′ is not a valid
input instance; we think of I ′ simply as a subset of I.

The following claim exploits the incentive compatibility of A.

CLAIM 3.8. Suppose I = {(1, d1), . . . , (n, dn)} is a valid input instance, in which there
exists i ∈ N such that di ∈ { f1, . . . , fk}, and for all j ̸= i, dj ∈ {g1, . . . , gk}. Then, on
input I, A must allocate M to bidder i and ∅ to all other bidders.

PROOF. For this input instance, we have that d−i ∈ V ′
−i. Then x > pi(M, d−i) from

the definition of x. But now, from the definition of fi,

di(M) − pi(M, d−i) > (y + x) − x = y ≥ di(S) ≥ di(S) − pi(S, d−i)

for all S ̸= M. Therefore, by the minimal pricing property (Theorem 2.2), A must
allocate M to bidder i, completing the proof of Claim 3.8.

Our next step is to construct an input instance I ⊆ I ′ on which A obtains a poor
approximation ratio. To do this, we will rely on the following claim which will be
proven by induction on i.

CLAIM 3.9. There exists a labeling of bidders and objects such that the following is
true for all 0 ≤ i < k/2. Define Ii := {( j, gj) | j ≤ i}. Then, for any valid input instance I
such that Ii ⊆ I ⊆ I ′, A will consider all the items in Ii before all other items in I, and
will choose to assign ∅ for each of the items in Ii.

PROOF. We proceed by induction on i. The base case holds by taking I0 = ∅. For general
i ≥ 1, suppose the claim is true for i − 1. Recall that Ii−1 = {(1, g1), . . . , (i − 1, gi−1)}.
Define Ii ⊆ I ′ as follows:

Ii := {( j, v j) | ( j, v j) ∈ I ′, j > i − 1}.

That is, Ii contains all of the items of I ′ that correspond to bidders not present in Ii−1.
Note that if I ⊆ I ′ is a valid input instance such that Ii−1 ⊆ I, then we must have
I ⊆ Ii−1 ∪ Ii.

Consider the execution of Aon any valid input instance I ⊆ Ii−1 ∪ Ii. By our induction
hypothesis, the algorithm will first consider the items of Ii−1 and allocate ∅ to each
bidder 1, . . . , i − 1. Once this is done, the algorithm will choose an ordering T over Ii
and examine the next item in I according to T .

Some item ( j, v j) ∈ Ii must come first under this ordering T . Without loss of gen-
erality (by relabeling indices) this item is (i, fi) or (i, gi). We consider these two cases
separately.

Case 1: The first item is (i, fi). In this case, we will choose I so that (i, fi) ∈ I.
Then A must consider this item next when processing input instance I, and A must
assign some set S to bidder i. If S = M, then we will choose I to contain ( j, f j) for all
j > i; note that I ⊆ Ii−1 ∪ Ii as required. Since A allocated M to bidder i, it obtains a
social welfare of x + y on input I. However, the optimum welfare is at least (k− i + 1)y,
since this can be attained by allocating {aj} to bidder j for all i ≤ j ≤ k. Thus, the
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approximation ratio obtained by A is at least

(k − i + 1)y
x + y

>
(k/2)y

y(1 + δ)
>

(1 − δ)k
2

,

a contradiction.
If, on the other hand, S ̸= M, we choose I to contain ( j, gj) for all j > i. Then I

satisfies the requirements of Claim 3.8, so A must allocate M to bidder i. This is a
contradiction. We conclude that this first case cannot occur.

Case 2: The first item is (i, gi). In this case, we will choose I so that (i, gi) ∈ I.
As in the previous case, A must consider this item next in I, and assign some set S to
bidder i. Suppose S ̸= ∅. Then we will choose I to contain (i + 1, fi+1), and also ( j, gj)
for all j > i + 1. Note that then I ∈ Ii−1 ∪ Ii as required. Also, in this instance of
a combinatorial auction, v−(i+1) contains only single-minded valuations for singletons
with value 1. Thus, by the same argument used in Case 1, it must be that bidder i + 1
is allocated M. However, this is not possible, since bidder i is assigned S ̸= ∅. This is a
contradiction. We conclude that in this case, bidder i must be assigned ∅.

This ends our case analysis. We conclude that item (i, gi) must occur first in Ii−1
in ordering T , and furthermore, if (i, gi) ∈ I, then A will consider (i, gi) next after
processing the items in Ii−1 and will assign ∅ to bidder i. We can therefore set Ii = Ii−1 ∪
{(i, gi)} to satisfy the requirements of the claim, completing the proof of Claim 3.9.

Now suppose Ik/2−1 is the set from Claim 3.9 with i = k/2 − 1. Define input instance
I by

I := Ik/2−1 ∪ {( j, gk/2) | k/2 ≤ j ≤ k}.
Note that I is a valid input instance and Ik/2−1 ⊆ I ⊆ I ′. Then, by Claim 3.9, algorithm
Amust assign ∅ to each of bidders 1, . . . , k/2−1. Therefore, Acan obtain a social welfare
of at most 1 by assigning {ak/2} to some bidder j ≥ k/2. However, the optimal social
welfare is k/2 by assigning {ai} to bidder i for all 1 ≤ i ≤ k/2. Hence, A obtains an
approximation no better than k/2, which is a contradiction. This completes the proof
of Theorem 3.6.

4. TRUTHFUL SUBMODULAR PRIORITY AUCTIONS
Lehmann et al. [2006] proposed a class of greedy algorithms that is well-suited to
auctions with submodular bidders; namely, objects are considered in any order and
incrementally assigned to greedily maximize marginal utility. (We assume any fixed
deterministic method to resolve ties among agents.) They showed that any ordering
of the objects leads to a 2-approximation of social welfare, but not every ordering of
objects leads to an incentive compatible algorithm. However, this does not preclude
the possibility of obtaining truthfulness using some adaptive method of ordering the
objects.

We consider a model of priority algorithms which uses the m objects as input items.
In this model, an item will be represented by an object x, plus the value vi(x|S) for all
i ∈ N and S ⊆ M (where vi(x|S) := vi(S ∪ {x}) − vi(S) is the marginal utility of bidder i
for item x, given set S). We note that the online greedy algorithm described above falls
into this model. We show that no greedy priority algorithm in this model is incentive
compatible.

THEOREM 4.1. Any greedy priority algorithm for the combinatorial auction problem
that uses objects as items is not incentive compatible. This holds even when there are
only two bidders and when the bidders have submodular valuations.
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PROOF. Suppose for contradiction that A is an incentive compatible truthful
greedy priority algorithm. Consider an instance of the combinatorial auction with
M = {a1, a2, a3}. Suppose that bidder 1 declares the following valuation function:
v1(S) = 9 + |S| for all S ̸= ∅. It is easy to verify that this is indeed submodular.
Then, by Theorem 2.1, this valuation defines a price π2(S) for each subset S ⊆ M, and
allocates to bidder 2 the utility-maximizing subset under these prices. Consider the
prices for all subsets of size 2 and suppose, without loss of generality, that {a1, a2} has
the smallest price. That is, π2({a1, a2}) ≤ π2({a2, a3}) and π2({a1, a2}) ≤ π2({a1, a3}).

We now define a valuation function v2 to be declared by bidder 2. The motivation for
v2 is that items a1 and a2 will have lower values than a3 when considered individually,
but will have a large value relative to a3 when taken together.

v2({a1}) = v2({a2}) = 9
v2({a3}) = 11

v2({a1, a2}) = 18
v2({a1, a3}) = v2({a2, a3}) = 17

v2({a1, a2, a3}) = 18.

It is easily verified that this valuation is submodular.
Given as input the valuations v1 and v2, algorithm A must consider each object in

turn and assign that object to the player who obtains the greatest marginal utility from
it. The algorithm is free to choose the order in which the items are considered. However,
regardless of the order, the only possible outcomes are that bidder 2 is allocated {a1, a3}
or bidder 2 is allocated {a2, a3}. This can be seen by examining each of the six possible
orderings of items, or by noticing that the first item considered will go to bidder 2 if
and only if it is a3, that bidder 1 will never be allocated the second object considered,
and that bidder 2 will never be allocated the third object considered.

We will assume, without loss of generality, that bidder 2 is allocated {a1, a3}. Then,
by Theorem 2.1,

v2({a1, a3}) − π2({a1, a3}) ≥ v2({a1, a2}) − π2({a1, a2}).
Since v2({a1, a3}) = 17 and v2({a1, a2}) = 18, this implies that

π2({a1, a2}) > π2({a1, a3})
which contradicts the minimality of π2({a1, a2}).

We have now proved the result for the case of exactly two bidders and three objects.
The result follows in the desired generality by noticing that we may add additional play-
ers who value all sets at 0 and additional items for which no players have any positive
marginal value, without affecting the above construction. Such items can be considered
at any time and can be allocated to any agent without changing the analysis.

5. FUTURE WORK
The goal of algorithmic mechanism design is the construction of algorithms in situa-
tions where inputs are controlled by selfish agents. We considered this fundamental
issue in the context of conceptually simple methods (independent of time bounds)
rather than in the context of time constrained algorithms. Our results concerning pri-
ority algorithms (as a model for greedy mechanisms) is a natural beginning to a more
general study of the power and limitations of conceptually simple mechanisms. Even
though the priority framework represents a restricted (albeit natural) algorithmic ap-
proach, there are still many unresolved questions, even for the most basic mechanism
design questions. In particular, we believe that the results of Section 3 can be unified to
show that the linear inapproximation bound holds for all priority algorithms for s-CA
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problems. It would also be of some interest to close the gap between our (1−δ)k
2 priority

inapproximations and the naı̈ve k = min{n, m} truthful approximation. The power of
greedy algorithms for unit-demand auctions (s-CAs with s = 1) is also not understood.
While there are polynomial time (i.e., edge weighted bipartite matching) algorithms, it
is not difficult to show that optimality cannot be achieved by priority algorithms. But
is it possible to obtain a truthful sublinear approximation bound for 1-CAs with greedy
methods?

An obvious direction of future work is to widen the scope of a systematic search for
truthful approximation algorithms; priority algorithms can be extended in many ways.
Perhaps the most immediate extension is to consider randomized priority algorithms
(as in Angelopoulos and Borodin [2010]) for the CA problem. The currently best known
randomized truthful (and truthful in expectation) mechanisms with sublinear approx-
imation ratios are not greedy algorithms. One might also consider priority algorithms
with a more esoteric input model, such as a hybrid of the sets as items and bidders
as items models. Priority algorithms can be extended to allow revocable acceptances
[Horn 2004] whereby a priority algorithm may “de-allocate” sets or objects that had
been previously allocated to make a subsequent allocation feasible. Somewhat related
is the priority stack model [Borodin et al. 2011] (as a formalization of local ratio/primal
dual algorithms with reverse delete [Bar-Noy et al. 2001]), where items (e.g., bidders
or bids) initially accepted are placed in a stack and then the stack is popped to ensure
feasibility. This is similar to algorithms that allow a priority allocation algorithm to
be followed by some simple “cleanup” stage [Krysta 2005]. Another possibility is to
consider allocations that are comprised of taking the best of two (or more) priority
algorithms. A special case that has been used in the design of efficient truthful com-
binatorial auction mechanisms [Bartal et al. 2003; Briest et al. 2011; Mu’alem and
Nisan 2008] is to optimize between a priority allocation and the naı̈ve allocation that
gives all objects to one bidder. Finally, one could study more general models for al-
gorithms that implement integrality gaps in LP formulations of packing problems; it
would be of particular interest if a deterministic truthful k-approximate mechanism
could be constructed from an arbitrary packing LP with integrality gap k, essentially
derandomizing the construction of Lavi and Swamy [2011].

The results in this article have thus far been restricted to combinatorial auctions, but
the basic question being asked applies to other algorithmic mechanism design problems
such as machine scheduling or more general integer programming problems. Namely,
when can a conceptually simple approximation to the underlying combinatorial opti-
mization problem be converted into an incentive compatible mechanism that achieves
(nearly) the same approximation? For example, one might consider the power of truth-
ful priority mechanisms for approximating unrelated machines scheduling or for more
general integer packing problems.
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