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Abstract

We study mechanisms for utilitarian combinatorial alloca-

tion problems, where agents are not assumed to be single-

minded. This class of problems includes combinatorial auc-

tions, multi-unit auctions, unsplittable flow problems, and

others. We focus on the problem of designing mechanisms

that approximately optimize social welfare at every Bayes-

Nash equilibrium (BNE), which is the standard notion of

equilibrium in settings of incomplete information. For a

broad class of greedy approximation algorithms, we give

a general black-box reduction to deterministic mechanisms

with almost no loss to the approximation ratio at any BNE.

We also consider the special case of Nash equilibria in full-

information games, where we obtain tightened results. This

solution concept is closely related to the well-studied price of

anarchy. Furthermore, for a rich subclass of allocation prob-

lems, pure Nash equilibria are guaranteed to exist for our

mechanisms. For many problems, the approximation fac-

tors we obtain at equilibrium improve upon the best known

results for deterministic truthful mechanisms. In particu-

lar, we exhibit a simple deterministic mechanism for general

combinatorial auctions that obtains an O(
√

m) approxima-

tion at every BNE.

1 Introduction

The field of algorithmic mechanism design lies at the
intersection of game-theoretic and computational con-
cerns for interactive systems. The marriage of these two
settings has spawned a fruitful line of research aimed at
answering a primary question: can any computationally
efficient algorithm be converted into a computationally
efficient mechanism for selfish agents? For utilitarian
social choice functions, the celebrated Vickrey-Clarke-
Groves (VCG) mechanism addresses game-theoretic is-
sues in a strong sense: in the absense of collusion, it
induces full cooperation (ie. truthtelling) as a dominant
strategy. However, the VCG mechanism requires that
the underlying welfare-optimization problem be solved
exactly, and is therefore ill-suited to computationally
intractable problems. The standard computational an-
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swer to such issues is the development of approxima-
tion algorithms, but the VCG mechanism does not (in
general) retain its truthfulness when applied to approx-
imate solutions [26].

The incompatibility between approximations and
standard mechanism design techniques has motivated
the search for new, specially-tailored mechanisms for
computationally intractable problems. This search has
focused primarily on ex-post incentive compatible (IC)
alternatives to the VCG mechanism. While this venture
has been largely successful in settings where agent
preferences are single-dimensional [1, 7, 20, 24], general
settings have proven more difficult. Indeed, it has been
shown that the approximation ratios achieveable by
IC polytime deterministic algorithms and their non-IC
counterparts exhibit a large asymptotic gap for some
problems [29].

In this extended abstract we study mechanisms
that are not necessarily truthful, but rather yield good
approximations at any equilibrium of agent behaviour.
Such an equilibrium-based solution concept is standard
in economic game theory. Performance at equilibrium
has also been studied extensively in the algorithmic
game theory literature as the price of anarchy of a given
game: the ratio between the optimal outcome and the
worst-case outcome at any equilibrium. Our approach is
to apply these well-studied equilibrium notions directly
to the field of algorithmic mechanism design.

A common equilibrium concept is that of (pure
or mixed) Nash equilibrium (NE), whereby agents ap-
ply strategies (or distributions thereover) and no single
agent has incentive to unilaterally deviate. The Nash
equilibrium concept may be appropriate in some set-
tings, such as repeated auctions (eg. for search engine
advertising slots). However, in one-shot auctions, an
assumption that agents bid at a Nash equilibrium is de-
fensible only in full-information settings where all agent
types are public knowledge. Modelling an auction as a
full-information game seems unreasonable in most nat-
ural applications. We therefore consider an alternative
that is suited to games of partial information: Bayesian
Nash equilibrium (BNE). Bayesian equilibrium is the
standard equilibrium concept in economics for games of
incomplete information, proposed initially by Harsanyi
[13]. Under this model, we suppose that the types of the



agents are drawn from known (not necessarily identical)
distributions. After types are chosen, each agent applies
a strategy that maximizes his expected utility, given the
distribution of the strategies of the other agents. In a
BNE, no agent will have incentive to unilaterally devi-
ate from this equilibrium. Note that any NE is also a
BNE. We pose the question: can a given black-box ap-
proximation algorithm be converted into a mechanism
that preserves its approximation ratio (up to first-order
terms) at every BNE? We show that for a broad class
of non-IC greedy algorithms, the answer is yes.

A few points require clarification. The concept
of BNE requires that agents’ types are drawn from
commonly-known distributions. However, our mecha-
nisms will not depend on the actual distributions them-
selves: we will present a single mechanism that works
for every distribution. In economic terms, the mecha-
nisms we consider are detail-free.

We note that the full-information concept of Nash
equilibrium (NE) is a special case of BNE, so our
mechanisms will also preserve approximation ratios
at every (mixed or pure) Nash equilibria of a pure
information game. This is precisely the concept of price

of anarchy from the algorithmic game theory literature.
Following Christodoulou et al [8], we can extend this
notion to the Bayesian price of anarchy, which is
the worst-case approximation attained at any BNE of
the mechanism. Indeed, our motivating question can
be rephrased as asking whether every c-approximation
algorithm can be implemented as a mechanism with
(Bayesian) price of anarchy c(1 + o(1)).

Dominant strategy truthfulness of an approxima-
tion mechanism is conceptually stronger as a solution
concept than that of a mechanism that approximates
the optimal social welfare at every equilibrium. How-
ever, as noted elsewhere [8], the NE and BNE solution
concepts are not, strictly speaking, relaxations of domi-
nant strategy truthfulness. There exist truthful mecha-
nisms whose approximation ratios are not preserved at
all Nash equilibria, such as the famous Vickrey auction.

While our mechanisms will be implementable in
polynomial time (assuming an efficient implementation
of the given approximation algorithm), we do not argue
that a (Bayesian or non-Bayesian) equilibrium of the
underlying game can necessarily be found in polynomial
time. Analyzing how the participants in an auction
would arrive at equilibrium (eg. in a repeated-auction
setting) is left as an important open problem (which is
partially addressed in a companion paper [22]).

1.1 Our Results We restrict our attention to combi-
natorial allocation problems, where the goal is to assign
m objects to n agents in such a way that the overall

social welfare is maximized. We allow arbitrary fea-
sibility constraints to determine which allocations are
permitted, and we do not restrict agents to be single-
minded. This class includes the well-studied combina-
torial auction (CA) problem, as well as multi-unit CAs,
the unsplittable flow problem, and many others. We
then consider a broad class of “greedy algorithms” (ex-
plicitly described below) for approximately solving such
allocation problems. These algorithms are not gener-
ally incentive compatible [20]. Our first result is that if
a greedy algorithm is paired with a first-price payment
scheme (ie. each agent pays his declared value for the set
he receives), the resulting auction nearly preserves the
original algorithm’s approximation ratio at every BNE.

Theorem: Any greedy c-approximation algorithm for
a combinatorial allocation problem can be implemented
as a first-price mechanism that achieves a (c+O(log c))
approximation at every mixed Bayesian Nash equilib-
rium.

We also show that the approximation ratio we
obtain is tight (up to lower-order terms): there exist
examples in which the first-price mechanism can have a
(c + Ω(log c)) approximation at equilibrium.

Note that we prove our theorem for all mixed BNE,
meaning that the approximation ratio holds even if
agents can choose distributions over strategies. This
is somewhat non-standard, as Bayesian equilibria are
usually considered to include only pure strategies. Nev-
ertheless, our result is more general than a considera-
tion of only pure-strategy BNE, and also generalizes the
(standard) notion of mixed (non-Bayesian) Nash equi-
libria.

Are there implementations of a c-approximate
greedy algorithm for which the approximation ratio at
Bayesian equilibria is not c + θ(log c), but rather c?
As a step towards resolving this question, we consider
an alternative mechanism that charges so-called criti-

cal prices. In a critical-price payment scheme, a win-
ning agent pays the smallest amount he could have bid
on the set he receives and still won it. As has been
noted elsewhere [8, 21], mechanisms of this form can
suffer from unnatural problems at equilibrium: an agent
may have incentive to greatly over-represent his values,
hoping that no other agent makes large bids. Indeed,
we construct examples in which an agent might have
a strict preference for doing so in the presence of un-
certainty. This possibility of overbidding can result in
equilibria with poor social welfare. However, these bid-
ding strategies are inherently risky: depending on the
bids of other agents, an overbidding agent may end up
with negative utility. If we can assume that agents do
not participate in this risky behaviour, we can tighten



the approximation ratio we attain at equilibrium.

Theorem: Under the assumption that agents never
declare more than their true values on any set, any
greedy c-approximation algorithm for a combinatorial
allocation problem can be implemented as a critical
price mechanism that achieves a (c + 1) approximation
at every Bayesian Nash equilibrium.

We note that additional justifications for the “no-
overbidding” assumption have appeared in the litera-
ture. Christodoulou et al [8] assume that no agent will
bid in such a way that he might obtain negative util-
ity (in their terms, the agents are “ex-post individually
rational”), then define a mechanism so that an agent
may pay his bid for any given set with some vanishingly
small probability. Lerne and Tardos [21] justify a no-
overbidding assumption by supposing that a random bid
may appear in the input, again with vanishingly small
probability. These approaches can be viewed as making
assumptions about the risk-tolerance of bidders, then
applying trembling-hand considerations in order to con-
clude that agents do not overbid. We could apply these
trembling-hand techniques to our mechanisms as well,
adding a factor of (1 + γ) to our approximation ratios
where γ can be made arbitrarily small. With this in
mind, for the remainder of the paper we will simply
state assumptions that agents do not overbid with little
additional comment.

For certain algorithms, we can tighten our approx-
imation ratios to c. This includes algorithms that are
(c − 1)-approximate when agents are single-minded, as
well as algorithms that are symmetric with respect to
the agents and objects (ie. do not depend on agent or
object labels). We discuss these improvements in Ap-
pendix A.

We next turn our attention to pure Nash equilibria
in the full-information (ie. non-Bayesian) setting. We
show that the price of anarchy for the deterministic first-
price mechanism is improved when restricted to pure
equilibria, without any “no-overbidding” assumptions.

Theorem: Any greedy c-approximation algorithm for
a combinatorial allocation problem can be implemented
as a deterministic mechanism that achieves a (c + 1)
approximation at every pure Nash equilibrium.

The existence of an equilibrium in pure strategies
is not guaranteed in general. We consider two impor-
tant special cases for which we can guarantee the exis-
tence of pure equilibria (and retain our approximation
ratio). First, we show that the critical-price mecha-
nism for the standard greedy algorithm, which makes
assignments in order of their value, always has a pure
equilibrium. This particular algorithm is well-studied;

it is known to be k-approximate (respectively, (k + 1)-
approximate) for linear (resp. submodular) functions
on a k-independence system (eg. for matroids, k = 1).
Second, we present the class of blocking allocation prob-

lems, which essentially includes problems in which any
agent can be allocated any given pair of objects. We
show that a pure equilibrium is guaranteed to exist for
a broad class of greedy allocation rules (those that are
non-adaptive and continuous) for blocking allocation
problems, paired with a first-price payment scheme.1

Finally, we show how to extend our results for
greedy algorithms to a combination of a greedy allo-
cation rule with a rule that allocates all objects to a
single bidder. Such combinations are a useful tool for
constructing algorithms that can be implemented effi-
ciently, such as for the general combinatorial auction
problem [24].

1.2 Related Work The notion of Bayesian Nash
equilibrium was introduced by Harsanyi [13]. For an
overview of the development and impact of this theory
we recommend a review by Myerson [25]. This and
other equilibrium notions are common solution concepts
for mechanism design in the economic literature; see
Jackson [17] for a survey.

The inefficiency of equilibria is well-studied in
the computational game theory literature, wherein the
worst-case approximation ratio at equilibrium is re-
ferred to as the price of anarchy (introduced by Pa-
padimitriou [28]). Inefficiency of equilibria is most com-
monly studied in settings in which agents choose their
outcomes directly (eg. routing games [30]) rather than
through a mechanism. The literature includes many re-
finements of these concepts, such as convergence of po-
tential games and price of total anarchy. See chapters
17-21 of [27] and references therein.

The BNE solution concept has recently been applied
to submodular combinatorial auctions [8], where it was
shown that a randomized mechanism can attain a 2-
approximation at any mixed equilibrium assuming that
bidders are ex-post individually rational. Paes Leme
and Tardos [21] studied the performance of the gener-
alized second price auction for advertising slots at equi-
librium. Pure equilibria of first-price mechanisms have
also been studied for path procurement auctions [16].
The problem of designing auctions that maximize rev-
enue at Nash equilibrium has been extensively studied;
notably in work on Internet advertising slot auctions
[31, 11].

1We will make the common assumption that valuation space
is bounded and discretized by some arbitrarily small increment ǫ.
The space of allowable types is then finite and infinitesimal utility
improvements are precluded.



The most prominantly studied allocation problem
that falls into our framework is the combinatorial auc-
tion problem. Hastad’s [14] result shows that it is NP-

hard to approximate CAs to within Ω(m
1
2
−ǫ) for any

ǫ > 0, even for succinctly representable valuation func-
tions. The best known deterministic truthful mecha-
nism for CAs with general valuations attains an approx-
imation ratio of O( m√

log m
) [15]. A randomized O(

√
m)-

approximate mechanism that is truthful in expectation
was given by Lavi and Swamy [18]. Dobzinski, Nisan
and Schapira [10] then gave a universally truthful ran-
domized mechanism that attains an O(

√
m) approxima-

tion.
Many variations and restrictions on combinatorial

auctions have been considered in the literature. Bartal
et al [4] give a truthful O(Bm

1
B−2 ) mechanism for

multi-unit combinatorial auctions with B copies of
each object, for all B ≥ 3. Dobzinski and Nisan
[9] construct a truthful 2-approximate mechanism for
multi-unit auctions (ie. having many copies of just a
single object), and a truthful PTAS when additionally
each declaration can be represented as the maximum
of k single-minded desires. Many other problems have
truthful mechanisms ([7, 20, 24]) when bidders are
restricted to being single-minded.

Our results make crucial use of the nature of greedy
allocation algorithms. Properties of greedy algorithms
have been extensively studied. Borodin et al [6] intro-
duced the notion of priority algorithms as a model for
greedy algorithms, and studied their power in solving
various approximation problems. The priority frame-
work was extended to combinatorial auction problems
by Borodin and Lucier [5]. Monotone greedy algo-
rithms for combinatorial auctions were studied first by
Lehmann et al [20], then subsequently by Mu’alem and
Nisan [24] and Briest, Krysta, and Vocking [7], resulting
in the development of new incentive compatible algo-
rithms for single-minded bidders. Gonen and Lehmann
[12] gave lower bounds on the power of greedy mecha-
nisms to solve combinatorial auctions with general bid-
ders.

2 Model and Definitions

2.1 Feasible Allocation Problems We consider a
setting in which there are n agents and a set M of m
objects. An allocation to agent i is a subset Xi ⊆ M .
A valuation function v : 2M → R assigns a value to
each allocation. We assume that valuation functions are
monotone, meaning v(S) ≤ v(T ) for all S ⊆ T ⊆ M ,
and normalized so that v(∅) = 0. A valuation function
v is single-minded if there exists a set S ⊆ M and a
value x ≥ 0 such that for all T ⊆ M,v(T ) = x if S ⊆ T
and 0 otherwise. The zero valuation sets v(S) = 0 for

all S ⊆ M ; we will represent this special valuation by ∅.
A valuation profile v is a vector of n valuation

functions, one for each agent. In general we will use
boldface to represent vectors, subscript i to denote
the ith component, and subscript −i to denote all
components except i, so that v = (vi,v−i). An
allocation profile X is a vector of n allocations. A
combinatorial allocation problem is defined by a set
of feasible allocations, which is the set of permitted
allocation profiles. An allocation rule A assigns to each
valuation profile v a feasible outcome A(v); we write
Ai(v) for the allocation to agent i. We will tend to
write A for both an allocation rule and an algorithm
that implements it.

Each agent i ∈ [n] has a private valuation function
ti, his type, which defines the value he attributes
to each allocation. The social welfare obtained by
allocation profile X, given type profile t, is SW (X, t) =
∑

i ti(Xi). We write SWopt(t) for maxX{SW (X, t)}
and say that algorithm A is a c approximation algorithm
if SW (A(t), t) ≥ 1

cSWopt(t) for all t.
A payment rule P assigns a vector of n payments

to each valuation profile. A direct revelation mechanism

M is composed of an allocation rule A and a payment
rule P . The mechanism proceeds by eliciting a valuation
profile d from each of the agents, called the declaration

profile. It then applies the allocation and payment rules
to d to obtain an allocation and payment for each agent.
Crucially, the agents may not declare their true types;
that is, it may be that d 6= t. We will write SW (d) for
SW (A(d), t) when the allocation rule and type profile
are clear from context.

The utility of agent i in mechanism M = (A, P ),
given declaration profile d, is ui(d) = ti(Ai(d))−Pi(d).
Declaration profile d forms a pure Nash equilibrium if,
for all i ∈ [n] and all di

′, ui(di,d−i) ≥ ui(di
′,d−i). That

is, no one player can obtain a higher utility by deviating
from declaration d.

Given a sequence of probability distributions
ω1, . . . , ωn over declarations, and any function f
over the space of declaration profiles, we will write
Ed∼ω[f(d)] for the expected value of f over decla-
rations chosen according to the product distribution
ω = ω1 × . . . × ωn. Product distribution ω is a mixed

Nash equilibrium if, for all i ∈ [n] and distributions ωi
′,

(2.1) Ed∼ω[ui(d)] ≥ Ed∼(ωi
′,ω−i)[ui(d)].

That is, the distribution maximizes the expected utility
for each agent, given the distributions of the others. The
price of anarchy of M in mixed and pure strategies are
defined as

PoAmixed = sup
t,ω

SWopt(t)

Ed∼ω[SW (M(d), t)]



PoApure = sup
t,d

SWopt(t)

SW (M(d), t)

where the supremums are over all type profiles t and
all mixed Nash equilibria ω (respectively, all pure Nash
equilibria d) for t. Whenever a pure Nash exists, we
have PoApure ≤ PoAmixed.

2.2 Bayesian Types In a Bayesian setting, we sup-
pose that the true types of the agents are not fixed, but
are rather drawn from a known probability distribution
D over the set of valuation profiles. We assume that
D = D1 × . . . × Dn is the product of independent dis-
tributions, where Di(ti) is the probability that agent i
has type ti. We write SWopt(D) for Et∼D[SWopt(t)].

Given type ti for agent i, let dti

i denote a declaration
for agent i parameterized by ti. We think of dti

i as the
declaration that agent i will make if his true type is ti.
In a minor abuse of notation we will write dt for the
declaration profile (dt1

1 , . . . , dtn

n ). A set of declaration
profiles {dt} over all choices of t forms a Bayesian Nash

Equilibrium (BNE) if, for every i and every ti in the
support of Di, agent i maximizes his expected utility
by declaring di

ti whenever his type is ti. That is, for all
ti and all di

′,

Et−i∼D−i
[ui(di,d

t−i

−i )] ≥ Et−i∼D−i
[ui(di

′,d
t−i

−i )].

Assuming that the allocation rule is clear from context,
we write SW (D, {dt}) for Et∼D

[
∑

i ti(Ai(d
t))
]

, the
expected social welfare given types chosen from D and
strategies {dt}.

We can generalize the notion of BNE to allow
mixed types. Given type ti for agent i, let ωti

i be a
distribution of declarations for agent i, parameterized
by ti. We think of ωti

i as the (randomized) bidding
strategy employed by agent i given that his true type
is ti. We write ω

t = ωt1
1 × . . . × ωtn

n . The set of
distributions {ωt}, over all choices of t, forms a mixed

Bayesian Nash Equilibrium if, for every i ∈ [n] and
every ti in the support of Di, agent i maximizes his
expected utility by making a declaration drawn from
distribution ωti

i . That is, for each agent i, each possible
type ti, and every distribution ωi

′,

Et−i∼D−i,d∼ω
t [ui(d)] ≥ E

t−i∼D−i,d∼(ωi
′,ω

t
−i

−i
)
[ui(d)].

We will write SW (D, {ωt}) to mean
Et∼D,d∼ω

t [
∑

i ti(Ai(d))], the expected social wel-
fare given type distribution D and strategy profiles
ω

t.
The mixed and pure Bayesian price of anarchy of

mechanism M are defined as

BPoAmixed = sup
D,{ω

t}

SWopt(D)

SWM(D, {ωt})

BPoApure = sup
D,{dt}

SWopt(D)

SWM(D, {dt})
where the supremums are over all type distributions D

and mixed BNE {ωt} (respectively, pure BNE {dt}) for
D.

2.3 Greedy Allocation Rules We describe a spe-
cial type of allocation rule, which we will refer to as
a greedy allocation rule. These are motivated by the
monotone greedy algorithms of Mu’alem and Nisan [24],
extended to be adaptive. We begin with some defini-
tions. A partial allocation profile is a sequence of allo-
cations, one for each i in some subset N of [n]. A partial
allocation profile is feasible if there is some feasible allo-
cation profile that extends it. Given a partial allocation
profile for subset N , some i 6∈ N , and allocation Xi, we
say Xi is a feasible allocation for i given N if the partial
allocation remains feasible when Xi is added to it.

A monotone priority function is a function r :
[n]× 2M ×R → R. We think of r(i, S, v) as the priority
of allocating S ⊆ M to player i when vi(S) = v.
We require for r to be monotone non-decreasing in v
and monotone non-increasing in S with respect to set
inclusion. We consider two types of greedy allocation
rules. A non-adaptive greedy allocation rule is an
allocation algorithm of the following form:

1. Fix a monotone priority function r. Let N = [n].

2. Repeat until N = ∅:
3. Choose i ∈ N and S ⊆ M that maximizes

r(i, S, di(S)) over all feasible allocations S

4. Set Xi = S; remove player i from N

5. return X1, . . . ,Xn

We assume that ties in step 3 are broken in an ar-
bitrary but fixed manner. A non-adaptive algorithm
fixes a single priority function that is used throughout
its execution. By constrast, an adaptive greedy alloca-

tion rule can change its priority function on each itera-
tion, depending on the partial allocation formed on the
previous iterations. Note that our definition of greedy
allocation rules explicitly allows only a single allocation
to each agent. This is in contrast to a very different
type of “greedy-like” allocation rule, in which one iter-
ates over the objects and the allocation to each agent
is built up incrementally (eg. for submodular combina-
torial auctions [19]). Such incremental allocation rules
are not covered by our results; we leave open the BNE
analysis of their implementations.

To build some intuition for our priority framework,
we now mention a few examples of combinatorial allo-
cation problems and greedy allocation rules. (See also



section 7.) The general combinatorial auction problem
is defined by the feasibility constraint that no two allo-
cations can intersect. Lehmann et al [20] show that the
(non-adaptive) greedy allocation rule with r(i, S, v) =

v√
|S|

achieves an O(
√

m) approximation ratio for CAs.

The k-CA problem has the feasibility constraint that no
two allocations can intersect, and additionally no allo-
cated set can have size greater than k. The non-adaptive
standard greedy allocation rule defined by r(i, S, v) = v
attains a (k + 1) approximation. In the multi-unit CA
problem, we think of there being B copies of each object
for some B ≥ 1. This problem is defined in our frame-
work by the feasibility constraint that no more than B
allocated sets contain any given object. A greedy algo-

rithm attains an O(m
1

B+1 ) approximation when bidders
are assumed to be single-minded [7] 2.

In a unit-job profit-maximizing scheduling problem,
the objects are unit length intervals within some pre-
scribed release time and deadline. The standard greedy
allocation rule yields a 3-approximation for this prob-
lem [23]. In the unsplittable flow problem (UFP), we are
given an undirected graph with edge capacities. The ob-
jects are the edges, and each valuation function is such
that agent i has some value v(s, t) for being given a
path from s to t. Each agent additionally specifies a
fractional demand di ∈ [0, 1] corresponding to a desired
amount of flow to send along the given path. An alloca-
tion is feasible if the total allocated flow along each edge
is no more than its capacity. Let B be the minimum
edge capacity. A primal-dual algorithm, which is an
adaptive greedy allocation rule, obtains an O(m1/(B−1))
approximation for any B > 1 [7].

We note that many of the algorithms above are
known to be incentive compatible given that agents are
single-minded. However, it is known that for general
valuations and some problems (eg. CAs), no incentive
compatible greedy algorithms (of the form we consider)
can obtain non-trivial approximation ratios [5]. We do
not assume that agents are single-minded, and consider
the game-theoretic properties of these (non-incentive-
compatible) algorithms when each agent has a multitude
of preferences.

2.4 Payment Methods Given allocation rule A,
agent i, declaration profile d−i, and set S, the critical

price θi(S,d−i) for set S is the minimum amount that
agent i could bid on set S and win it, assuming that the

2We note that the associated algorithm for general bidders,
GREEDY-2 in the same paper [7], is not a greedy algorithm as

we define it, due to a correction step at its end. The same holds for

the truthful O(Bm
1

B−2 ) approximation algorithm due to Bartal
et al [4].

other agents bid according to d−i. That is,

θi(S,d−i) = inf{v : ∃di, di(S) = v,Ai(di,d−i) = S}.

The critical payment scheme sets Pi(d) =
θi(Ai(d),d−i), so each agent pays the critical price for
the set she receives. We discuss implementation issues
for this payment scheme in Section 6. By contrast,
the first-price payment scheme sets Pi(d) = di(Ai(d)),
so each agent pays her declared value for the set she
receives.

Given an allocation rule A, we will write M1(A) to
denote the direct revelation mechanism that applies al-
location rule A and the first-price payment scheme. We
call this the first-price mechanism for A. The critical-

price mechanism for A, Mcrit(A), instead applies the
critical price payment scheme.

3 Mixed Bayesian Nash Equilibria

In this section we demonstrate how to implement a
greedy allocation rule so that, at any Bayesian Nash
equilibrium of the resulting mechanism, the approxima-
tion ratio of the greedy rule is nearly preserved.

3.1 Properties of Greedy Algorithms In all of
the following, we assume that A is an adaptive greedy
algorithm for an arbitrary combinatorial allocation
problem. An important property of a greedy algorithm
is that the critical prices and allocation for a given bid-
der depend only on the sets won by the other players,
and their declared values for those sets.

Definition 3.1. An allocation rule A′ is loser-
independent if, whenever d−i and d′

−i satisfy

A′(∅,d−i) = A′(∅,d′
−i) and dj(A′

j(∅,d−i)) =
dj(A′

j(∅,d′
−i)) for all j 6= i, then A′(di,d−i) =

A′(di,d
′
−i) for all di.

In other words, if A′ is a loser-independent algo-
rithm, then agent i’s perception of the behaviour of A′

depends only on those agents who would win if agent
i did not participate, and on their declared values for
their winnings.

Lemma 3.1. A is loser-independent.

Proof. Choose i ∈ [n] and S ⊆ M , and let A be an
adaptive greedy allocation rule. Choose d−i and d′

−i

such that A(∅,d−i) = A(∅,d′
−i) and dj(Aj(∅,d−i)) =

dj(Aj(∅,d′
−i)) for all j 6= i.

Recall the definition of an adaptive greedy algo-
rithm, and consider the iterations of A on input (∅,d−i).
There is some k such that allocating S to i is feasible for
the first k iterations, and infeasible for all subsequent



iterations (note that we may have k = n). For each
iteration ℓ up to k, let vℓ be the minimal value such
that tuple (i, S, vℓ) would appear first in the ranking for
that iteration (assuming other agents declare according
to d−i), or ∞ if no such value exists. Let v = minℓ{vℓ}.
If agent i makes a single-minded declaration for S at
value v or more, he will be allocated set S. Further-
more, for any di with di(S) < v, Ai(di,d−i) 6= S. Thus
θi(S,d−i) = v. By the same argument we also have
θi(S,d′

−i) = v, since A allocates the same sets on in-
puts (∅,d−i) and (∅,d′

−i) (by assumption) and in the
same order (since dj(Aj(∅,d−i)) = dj(Aj(∅,d′

−i)) for
all j 6= i, so the relative ranking order for all allocated
sets is the same on every iteration). We conclude that
θi(S,d−i) = θi(S,d′

−i) for all S ⊆ M .
Choose some di and consider Ai(di,d−i), the set

allocated to agent i on declaration di. Of all sets S such
that di(S) ≥ θi(S,d−i), agent i will be allocated the one
which has highest ranking in the earliest iteration of A.
Next consider Ai(di,d

′
−i). We know that θi(S,d−i) =

θi(S,d′
−i) for all S, and the behaviour of A is identical

on inputs (di,d−i) and (di,d
′
−i) up until the point

at which an allocation to agent i is made. Thus the
allocation to agent i will be the same on declarations
(di,d−i) and (di,d

′
−i), as required.

If A is a c-approximate algorithm, then (on any
input) the sum of the declared values for its output
profile approximates the sum of the declared values
for the optimal allocation. We now show that it
also approximates the sum of the critical prices of the
optimal allocation profile.

Lemma 3.2. If A is a c-approximation, then for any

declaration profile d and optimal allocation profile A,
∑

i∈[n] di(Ai(d)) ≥ 1
c

∑

i∈[n] θi(Ai,d−i).

Proof. Choose any ǫ > 0. Let di
′ be the single-

minded declaration for set Ai at value θi(Ai,d−i) −
ǫ. Let di

∗ be the pointwise maximum of di
′ and

di. Since A is loser-independent (by Lemma 3.1),
the allocations of A on inputs d and d∗ are identi-
cal. Since A is a c-approximation, we conclude that
SW (A(d),d) = SW (A(d∗),d∗) ≥ 1

cSW (A,d∗) ≥
1
c

∑

i∈[n] θi(Ai,d−i) − nǫ. The result follows by taking
the limit as ǫ → 0.

3.2 Greedy First-Price Mechanisms We now
consider the performance of the first-price mechanism
M1(A) at equilibrium. We first note that the utility-
maximizing declaration of an agent never involves over-
bidding on a set that he may be allocated with positive
probability, given any distribution over the declarations
made by the other players.

Lemma 3.3. Suppose ω = (ω1, . . . , ωn) is a product

distribution over declarations. If di maximizes the

expected utility of agent i with respect to ω−i, and

Prd−i∼ω−i
[Ai(di,d−i) = S] > 0 for some S ⊆ M , then

di(S) ≤ ti(S).

Proof. Suppose for contradiction that there exists some
S such that di(S) > ti(S). Define di

′ by di
′(S) =

min{di(S), ti(S)} for all S ⊆ M . Note that di
′ satisfies

monotonicity.
Fix any d−i in the support of ω−i. We claim that

ui(di
′,d−i) ≥ ui(di,d−i). Let Si = Ai(di

′,d−i), Ti =
Ai(di,d−i). If di(Ti) ≤ ti(Ti) then ui(di,d−i) ≤ 0 ≤
ui(di

′,d−i) as claimed. If, on the other hand, di(Ti) >
ti(Ti), then di

′(Ti) = di(Ti) by definition. From the
definitions of Si and Ti, and of a priority algorithm, it
must be that (on some iteration of A) Si has a higher
priority that Ti under declaration di, but Ti has a higher
priority than Si under declaration di

′. Since di
′(Ti) =

di(Ti), di
′(Si) ≤ di(Si), and r is monotone, this can

occur only if Si = Ti.
3 Thus Ai(di

′,d−i) = Ai(di,d−i)
and hence ui(di,d−i)) = ui(di

′,d−i) as claimed.
We conclude that ui(di

′,d−i) ≥ ui(di,d−i) for
all d−i. Moreover, this inequality is strict when
Ai(di,d−i) = S, since di(S) < ti(S). Since this
event occurs with positive probability, we conclude
Ed−i∼ω−i

[ui(di,d−i)] < Ed−i∼ω−i
[ui(di

′,d−i)], contra-
dicting the maximiality of di.

3.2.1 Warmup: Pure Nash Equilibria We are
now ready to bound the price of anarchy of M1(A).
As a warmup, we will begin with a result for pure Nash
equilibria, rather than the fully general BNE case. Note
that the bound we obtain for pure equilibria is tighter
than the bound we will obtain for the general case in
Theorem 3.2.

Theorem 3.1. Suppose A is a greedy c-approximate

allocation rule for a combinatorial allocation problem.

Then every pure Nash equilibrium of M1(A) is a (c+1)-
approximation to the optimal social welfare.

Proof. Fix type profile t and suppose d is a pure Nash
equilibrium. Let A1, . . . , An be an optimal allocation.
Then
(3.2)
∑

i

ti(Ai(d)) ≥
∑

i

di(Ai(d)) ≥ 1

c

∑

i

θi(Ai,d−i)

where the first inequality follows from Lemma 3.3 and
the second is Lemma 3.2.

3It is here that we make use of the fact that ties in rank are
broken according to some arbitrary but fixed rule.



Choose arbitrarily small ǫ > 0 and let di
′ be

the single-minded declaration for set Ai at value
θi(Ai,d−i) + ǫ. Then Ai(di

′,d−i) = Ai and hence
ui(di

′,d−i) = ti(Ai)−θi(Ai,d−i)− ǫ. Since d is a Nash
equilibrium, it must be that

ti(Ai) − θi(Ai,d−i) − ǫ = ui(di
′,d−i)

≤ ui(di,d−i)

≤ ti(Ai(d)).

Summing over all i and applying (3.2) we have

∑

i

ti(Ai(d)) ≥ 1

c

∑

i

(ti(Ai) − ti(Ai(d)) − ǫ)

which, rearranging and taking ǫ → 0, implies

SWA(d) =
∑

i

ti(Ai(d))

≥ 1

c + 1

∑

i

ti(Ai)

=
1

c + 1
SWopt

as required.

3.2.2 Bayesian Nash Equilibria We are now ready
to prove our main result, which is a bound on the mixed
Bayesian price of anarchy for mechanism M1(A).

Theorem 3.2. The expected welfare at any mixed

Bayesian Nash equilibrium of M1(A) is a c + O(log c)
approximation to the optimal welfare.

Proof. Fix a distribution D over type profiles and let
{ωt} be a mixed Bayesian Nash equilibrium with re-
spect to D. Write τ for the distribution over declara-
tions that results when types t are chosen according to
D and declarations are then chosen according to ω

t.
That is, for all i and di,

τi(di) =
∑

ti

Di(ti)ω
ti

i (di).

For the remainder of the proof, unless otherwise speci-
fied, expectations over type profiles will be with respect
to D, and expectations over declaration profiles will be
with respect to τ .

Choose some t in the support of D. Let At =
At

1, . . . , A
t
n denote an optimal allocation for t. Following

the proof of Theorem 3.1, we would like to bound the
expected value of θi(A

t

i ,d−i) with respect to ti(A
t

i ) and
ti(Ai(d)) for each i. This will allow us to use Lemma
3.2 to obtain a relation between the expected welfare of
A and the expected optimal welfare. We encapsulate
this bound in Claim 3.1.

Claim 3.1. For all i, S ⊆ M and k > 1, if di is in the

support of ωti

i then

Ed−i
[θi(S,d−i)] ≥

(

1 − 1 + log k

k

)

ti(S)

− (1 + log k)Ed−i
[ti(Ai(d))].

Proof. For brevity, we will write θi = Ed−i
[θi(S,d−i)]

and ti = Ed−i
[ti(Ai(d))]. That is, θi is the expected

critical price of set S for agent i, and ti is the expected
welfare obtained by agent i when declaring di. Note
that since di is in the support of ωti

i , which is assumed
to be a strategy in equilibrium, di must maximize the
expected utility of agent i, which is at most ti.

Suppose that ti(S) ≤ ti. In this case the result is
trivially true, since

θi ≥ 0

≥
(

1 − 1 + log k

k

)

(ti(S) − ti)

>

(

1 − 1 + log k

k

)

ti(S) − (1 + log k)ti.

Next suppose that ti = 0. Then Ed−i
[ui(d)] = 0.

Suppose there exists some d−i in the support of τ−i

such that θi(S,d−i) < ti(S). Then agent i would obtain
positive expected utility by bidding single-mindedly for
set S at value 1

2 (θi(S,d−i) + ti(S)). This contradicts
the supposed optimality of di. It must therefore be that
θi(S,d−i) ≥ ti(S) for all d−i ∼ τ−i. We then have that

θi ≥ ti(S) ≥
(

1 − 1 + log k

k

)

ti(S) − (1 + log k)ti

as required.
Assume now that ti(S) > ti > 0. Let r =

ti(S)/ti; then r ∈ [1,∞). For all Z ≥ 0, let pZ =
Prd−i

[θi(S,d−i) < ti(S) − Zti]. Then we note that

(3.3) θi ≥ ti(S) −
(
∫ ∞

0

pZdZ

)

ti.

We claim that pZ ≤ 1/Z for all Z ∈ [1, r]. Otherwise,
if di

′ were the single-minded bid for set S at value
ti(S) − Zti, then we would have

Ed−i
[ui(di

′,d−i)] = (Zti)pZ > ti ≥ Ed−i
[ui(di,d−i)]

contradicting the optimality of di. We conclude that
pZ ≤ 1/Z for all Z ∈ [1, r]. Furthermore, pZ ≤ 1 for all
Z ≤ 1, trivially. Also, since we also know θi(S,d−i) ≥ 0
with probability 1, it must be that pZ = 0 for all Z > r.
Applying these bounds on pZ to (3.3), we conclude

θi ≥ ti(S) − (1 + log r)ti.



We now proceed by cases on the value of k.
Case 1: r ≤ k: then

θi ≥ ti(S) − (1 + log r)ti ≥ ti(S) − (1 + log k)ti.

Case 2: r ≥ k: then

θi ≥ ti(S) − (1 + log r)ti

>

(

1 − 1 + log r

r

)

ti(S)

≥
(

1 − 1 + log k

k

)

ti(S).

We conclude that, in all cases, either θi ≥ ti(S) −
(1 + log k)ti or θi ≥ (1 − 1+log k

k )ti(S). This completes
the proof of the claim.

Applying Claim 3.1 to set At

i , we conclude that for
all i ∈ [n], t, and k > 1,

Ed−i
[θi(A

t

i ,d−i)] ≥
(

1 − 1 + log k

k

)

ti(A
t

i )

− (1 + log k)Ed−i
[ti(Ai(d))].

Summing over i and taking expectation over all choices
of t and di, we have

Et,d

[

∑

i

θi(A
t

i ,d−i)

]

≥
(

1 − 1 + log k

k

)

Et

[

∑

i

ti(A
t
i)

]

− (1 + log k)
∑

i

E
t,d−i,di∼ω

ti

i

[ti(Ai(d))] .

(3.4)

Note that Et[
∑

i ti(A
t
i)] is precisely SWopt(D). Addi-

tionally,
∑

i

E
t,d−i,di∼ω

ti

i

[ti(Ai(d))] =
∑

i

Et,d∼ω
t [ti(Ai(d))]

=SW (D, {ωt})
Finally,

Et,d

[

∑

i

θi(A
t

i ,d−i)

]

≤ cEt,d

[

∑

i

di(Ai(d))

]

(Lemma 3.2)

= cEt,d∼ω
t

[

∑

i

di(Ai(d))

]

≤ cEt,d∼ω
t

[

∑

i

ti(Ai(d))

]

(Lemma 3.3)

= cSW (D, {ωt}).

We conclude from (3.4) that

cSW (D, {ωt}) ≥
(

1 − 1 + log k

k

)

SWopt(D)

− (1 + log k)SW (D, {ωt}).

Setting k = c and rearranging yields

SW (D, {ωt})

≥
(

1

c + 1 + log c

)(

c − 1 − log c

c

)

SWopt(D)

=
1

c + O(log c)
SWopt(D)

as required.

We next show by way of an example that the
analysis in Theorem 3.2 is tight.

Proposition 3.1. For any c ≥ 2, there is a combinato-

rial allocation problem P such that the standard greedy

algorithm A provides a c-approximation for P, and the

mixed price of anarchy for M1(A) is c + Ω(log c).

Proof. Our problem will be a combinatorial auction
under two feasibility restrictions: first, no bidder can be
allocated more than c objects. Second, certain agents
can be allocated at most one object; say N ⊆ [n] are
these “singleton” agents. Let A be the non-adaptive
greedy algorithm with priority function r(i, S, v) = v
for i 6∈ N and r(i, S, v) = cv for i ∈ N . We note that
this algorithm obtains a (c + 1)-approximation.

Consider the following instance of this problem.
There are 2c2 objects, which we label aij and bij for
i, j ∈ [c]. Let ǫ > 0 be arbitrarily small. There are
4c agents, labelled Ai, Bi, B

′
i, and Ci for i ∈ [c]. The

singleton agents are the agents {Ci}. The types of the
agents are as follows.

• For i ∈ [c], agent Ai desires {ai1, ai2, . . . , aic} for
value c and {bi1, bi2, . . . , bic} for value 1 + ǫ.

• For i ∈ [c], agent Bi and B′
i both desire set

{a11, a21, . . . , ai1} for value (c − i).

• For i ∈ [c], agent Ci desires {ai1} for value 1− i/c.

We can suppose that for any i, A would break a tie
between Ci, Bi, and B′

i in favour of Ci.
We now describe a mixed Nash equilibrium for this

problem instance. Each agent Ai makes a single-minded
bid of ǫ for set {bi1, . . . , bic}. Each agent Bi and B′

i

declares his valuation truthfully. Each agent Ci will
declare his valuation truthfully with some probability
pi, and will otherwise declare the zero valuation. We
choose pi = i

i+1 for i < c, and pc = 1.



We note that this distribution of declarations is
indeed a Nash equilibrium. With probability 1, no
agent Bi, B′

i, or Ci can obtain positive utility from
any declaration, so their distributions over declarations
that obtain 0 utility are necessarily optimal. Agent Ai

obtains utility 1; his only hope for obtaining more utility
is to declare a value less than c−1 for set {ai1, . . . , aic}.
However, if he declares some value c−Z with Z > 1, say
with X = ⌈Z⌉, then he can win the set only if bidders
C1, . . . , CX−1 all make single-minded bids, which occurs
with probability 1

2
2
3 · · · X−1

X = 1
X ≤ 1

Z . Thus, for any Z,
agent Ai can obtain utility Z with probability at most
1/Z, for an expected utility of at most 1. The given
declaration by agent Ai is therefore optimal.

The optimal obtainable welfare in this example is
c2, by allocating set {ai1, . . . , aic} to agent Ai for all
i. In the equilibrium we’ve described, only objects
{a11, a12, . . . , a1c} are allocated. For each i and j < i,
object a1i will be allocated to bidder Bj precisely if
bidders C1, . . . , Cj−1 make single-minded bids but Cj

does not, which occurs with probability 1
j(j+1) . Object

a1i will be allocated to Bi, B
′
i, or Ci with probability 1

i .
Noting that each of Bi, B′

i, and Ci has a per-item value
of 1 − i/c for their desired sets, we conclude that the
expected total value obtained is

∑

i∈[c](1− 1
c

∑

j≤i
1
j ) =

c − 1
c

∑

i∈[c] Hi, where Hi is the ith harmonic number.

Since Hi = θ(log i), we conclude that the expected
social welfare is c − θ(log c). The price of anarchy is

therefore at least c2

c−θ(log c) = c + θ(log c), and hence is

c + Ω(log c).

3.3 Greedy Critical-Price Mechanisms We have
shown that the price of anarchy for M1(A) is c +
θ(log c) when A is a c-approximation. Intuitively, the
extra logarithmic term is introduced because an agent
may not know how to bid in order to obtain some
set S and pay the minimum possible amount for it.
This uncertainty is inherent in the first-price payment
scheme. An alternative, the critical-price payment rule,
does not exhibit this problem: under critical pricing, an
agent that wins a set always pays the optimal price for
it. Unfortunately, Lemma 3.3, which plays a crucial part
in the proof of Theorem 3.2, fails to hold for the critical
payment rule: there is no guarantee that rational agents
will not overbid for mechanism Mcrit(A). Indeed, there
are settings in which an agent may be strictly better off
by overbidding, as the following example shows.

Example. Consider a combinatorial auction with 3 ob-
jects, {a, b, c}, and 3 bidders, under the feasibility re-
striction that each agent can be allocated at most one
object. Let A be the standard greedy algorithm for this
problem. Suppose the types of the players are as follows:

t1(b) = 2, t1(c) = 4, t2(c) = 3, t3(a) = 1, t3(b) = 6, and
all other values are 0. Consider the following bidding
strategies for agents 2 and 3: bidder 2 declares truth-
fully with probability 1, and bidder 3 either declares
single-mindedly for a with value 1, or single-mindedly
for b with value 6, each with equal probability.

How should agent 1 declare to maximize utility?
We can limit our analysis to pure strategies, by linearity
of expectation. Suppose agent 1 does not overbid and
declares at most 2 for object b. If he also declares at
least 3 for object c, then he wins c with probability 1 for
an expected utility of 1. If he doesn’t declare at least
3 for object c, then he wins b with probability 1/2 and
nothing otherwise, again for an expected utility of 1.
So agent 1 can gain a utility of at most 1 if he does not
overbid. If, however, he declares 5 for b and 4 for c, then
he wins b with probability 1/2 and wins c otherwise, for
an expected utility of 3/2. If agent 1 bids in this way,
the resulting combination of strategies forms a mixed
Nash equilibrium. Thus, in mixed equilibria, an agent
may strictly improve his utility by overbidding.

We get around the issue of overbidding by directly
assuming that agents do not overbid. Such an assump-
tion is most reasonable in settings where agents can be
presumed to be averse to risking negative utility. Given
that agents will not overbid, a simple modification of
Theorem 3.2 yields a sharpened result.

Theorem 3.3. Suppose A is a c-approximate greedy al-

location rule. Suppose also that bidders do not overbid.

Then the expected welfare at any mixed Bayesian Nash

equilibrium of Mcrit(A) is a (c + 1) approximation to

the optimal welfare.

Proof. For brevity and clarity we will limit the following
proof to mixed Nash equilibria (ie. non-Bayesian types).
The extension to Bayesian types is straightforward but
notationally cumbersome.

Fix a true type profile t, and let ω be a mixed Nash
equilibrium with respect to t. Let A1, . . . , An denote
an optimal allocation for t. Lemmas 3.3 and 3.2 imply
that, for all d ∼ ω,

∑

i

ti(Ai(d)) ≥ 1

c

∑

i

θi(Ai,d−i).

Taking expectation over declaration profiles with re-
spect to distribution ω, we have that

Ed∼ω

[

∑

i

ti(Ai(d))

]

≥ 1

c
Ed∼ω

[

∑

i

θi(Ai,d−i)

]

.

(3.5)



Let di
′ be the single-minded declaration for set Ai at

value ti(Ai). We have

Ed−i∼ω−i
[ui(di

′,d−i)]

≥
∑

d−i

ω−i(d−i)(ti(Ai) − θi(Ai,d−i))

= ti(Ai) − Ed−i∼ω−i
[θi(Ai,d−i)].

Since ωi maximizes the expected utility of agent i, we
must have that

ti(Ai) − Ed−i∼ω−i
[θi(Ai,d−i)] ≤ Ed∼ω[ui(d)]

≤ Ed∼ω[ti(Ai(d))].

Summing over all i and applying (3.5), we conclude

Ed∼ω

[

∑

i

ti(Ai(d))

]

≥ 1

c

(

∑

i

ti(Ai) − Ed∼ω

[

∑

i

ti(Ai(d))

])

which implies

Ed∼ω [SWA(d)] ≥ 1

c + 1
SWopt(t)

as required.

The bound in Theorem 3.3 can be sharpened further
to c in certain important special cases. This follows
directly from a corresponding improvement to Lemma
3.2, discussed in Appendix A.

4 Existence of Pure Nash Equilibria

In this section we discuss pure equilibria in the full-
information game for a mechanism with a greedy al-
location rule. Recall from Theorem 3.1 that the ap-
proximation factor from Theorem 3.2 is improved from
(c + O(log c)) to (c + 1) when we restrict our attention
to equilibria in pure strategies. However, the power of
Theorem 3.1 is marred by the fact that, for some prob-
lem instances, the mechanism M1(A) is not guaran-
teed to have a pure Nash equilibrium. This is true even
under the assumption that private valuations and pay-
ments are discretized, so that all values and payments
are multiples of some aribtrarily small ǫ > 0. A simple
example is given below.

Example. Consider an instance of the combinatorial
auction problem with have two objects, M = {a, b},
and three agents. Each agent can be assigned at most
one object, and moreover agent 2 cannot be allocated
object b, and agent 3 cannot be allocated object a. Let

A be the standard greedy algorithm. Suppose the true
types of the agents are as follows: t1(a) = 4, t1(b) = 2,
t2(a) = 3, t2(b) = 0, t3(a) = 0, and t3(b) = 3.

We now prove that no pure Nash equilibrium exists
for this example, even assuming that all private types
and payments are multiples of some ǫ > 0. Assume for
contradiction that there is a Nash equilibrium d for type
profile t and mechanism M1(A).

We know that agent 1 does not win item b with a
payment greater than 2, as this would cause him neg-
ative utility (and thus he would not be in equilibrium.
Thus it must be that A3(d) = {b}, since otherwise agent
3 could change his declaration to win {b} and increase
his utility. Thus, since agent 1 does not win item {b},
we conclude that A1(d) = {a}, since otherwise agent 1
could change his declaration to win {a} and increase his
utility.

Now note that if d1({a}) < 3, agent 2 could increase
his utility by making a winning declaration for {a}.
Thus d1({a}) ≥ 3, and hence u1(d) ≤ 4 − 3 = 1.
This also implies that d1({a}) > d1({b}), so agent 3
would win {b} regardless of his bid. Thus, since agent
3 maximizes his utility up to an additive ǫ, it must be
that d3({b}) ≤ ǫ. But then agent 1 could improve his
utility by changing his declaration and bidding 0 for {a}
and 2ǫ for {b}, obtaining utility 2 − 2ǫ > 1. Therefore
d is not an equilibrium, a contradiction.

4.1 Pure Equilibria for First-Price Mechanisms

Motivated by the example given above, we will consider
special cases in which we can guarantee the existence
of pure equilibria. We first consider a restriction on the
class of allocation problems. Such a restriction amounts
to an additional assumption on the space of feasible
allocations. This assumption guarantees that the space
is rich enough to allow agents to make conflicting bids.

Definition 4.1. (Blocking alloction problem)
We say that an allocation problem is a blocking alloca-
tion problem if, for all i, j ∈ [n], all partial allocations

that do not include i or j, and all S, T ⊆ M , if S and

T are feasible allocations to agent i, then there exists

some feasible allocation R ⊆ M to agent j such that

no feasible allocation profile assigns R to agent j and

either S or T to agent i.

For example, if we consider an allocation problem
such that all allocated sets must be disjoint, then any
auction that allows any player to obtain an arbitrary
pair of objects (given that he declares a large enough
value for them) is a blocking allocation problem. We will
additionally assume that valuation space is discretized
by some arbitrarily small increment ǫ > 0, so that
agents do not differentiate between outcomes whose



utilities are within an additive difference of ǫ. Note that
the price of anarchy bound from Theorem 3.1 holds in
such a discretized setting, within an additive error on
total social welfare that vanishes as ǫ tends to 0.

Finally, we make some assumptions on our greedy
allocation rule. We will assume that the greedy algo-
rithm is non-adaptive, and furthermore that it is con-

tinuous, meaning that its priority function r(i, S, v) is a
continuous function of v for all i and S.4 Many natu-
ral greedy algorithms are continuous; see Section 7 for
examples. We now show that M1(A) has a pure Nash
equilibrium for any blocking allocation problem, when
A is non-adaptive and continuous.

Theorem 4.1. Suppose A is a c-approximate non-

adaptive continuous greedy allocation rule for a block-

ing allocation problem. Then M1(A) has a pure Nash

equilibrium.

Proof. We will construct an equilibrium explicitly. The
intuition behind the construction is as follows. Each
agent i will bid truthfully for set Ai(t). Other agents
will then place “blocking bids” that conflict with both
Ai(t) and any other set that agent i might desire, with
rank slightly below the rank of the bid for Ai(t). These
blocking bids are not allocated by the algorithm, since
they conflict with the bid for Ai(t), but they guarantee
that agent i cannot increase his utility by abandoning
set Ai(t) and attempting to obtain a different set.

Define ri := r(i,Ai(t), ti(Ai(t)) for each agent i.
Let ℓ be the agent with minimal rℓ (breaking ties
arbitrarily), and let dℓ be the single-minded declaration
for set Aℓ(t) at value ǫ. For every other agent i 6= ℓ,
let di be the single-minded declaration for set Ai(t) at
value ti(Ai(t)).

For every pair of agents i, j such that ri > rj , and
every set S such that Ai(t) 6⊆ S and ti(S) ≥ θi(S,d−i),
find a set RijS such that RijS is a feasible allocation
to agent j given that each agent k with rk > ri is
allocated Ak(t), and additionally no outcome allocates
RijS to bidder j and either S or Ai(t) to bidder i. Such
an RijS must exist from the definition of a blocking
allocation problem, and moreover RijS 6⊆ Aj(t) (since
there does exist a feasible allocation that allocates
Aj(t) to agent j and Ai(t) to agent i, namely A(t)!).
Additionally choose value vijS so that r(i, S, ti(S) −
ǫ) ≤ r(j, R, vijS) < r(i, S, ti(S)). Such a value of
vijS must exist, since A is a continuous algorithm with
bounded approximation ratio. Let dijS be the single-
minded declaration for set RijS with value vijS . Note
then that r(j, RijS , vijS) < ri (since r(i, S, ti(S)) ≤

4Note that we do not require in this definition that v be a
multiple of ǫ.

r(i,Ai(t), ti(Ai(t)))), so vijS < θj(RijS ,d−j). Define
dj

′ to be the pointwise maximum of dj and dijS for all
i and S as described above.

We have finished the definition of d′. Note that
since all of the single-minded bids making up decla-
rations dijS fall below their critical prices, A(d′) =
A(d) = A(t) by the loser-independence of A. We claim
that no agent can improve his utility by ǫ with a devia-
tion from d′. First consider agent ℓ. Under declaration
profile d′, agent ℓ obtains set Aℓ(t) for a price of ǫ.
Since rℓ is minimal, θi(S,d′

−i) ≥ ti(S) for all S such
that Aℓ(t) 6⊆ S. Next consider any agent i 6= ℓ. For any
set S such that Ai(t) 6⊆ S, θi(S,d′

−i) ≥ ti(S)−ǫ, due to
the presence of a bid for set RijS by an agent j. Thus
no change in declaration from d′ can improve the util-
ity of agent i by more than ǫ, and thus cannot improve
utility of agent i under our discretization assumptions.
We conclude that d′ forms a pure Nash equilibrium, as
required.

4.2 Pure Equilibria for Critical-Price Mecha-

nisms Theorem 4.1 is restricted to the scope of block-
ing allocation problems. In this section we consider
an alternative pure equilibrium construction for arbi-
trary (blocking and non-blocking) allocation problems.
For this we will use the critical-price mechanism. The
critical-price mechanism always has a pure equilibrium
for any greedy algorithm and any combinatorial alloca-
tion problem: given any feasible allocation profile A, the
declaration profile in which each agent i bids very highly
and single-mindedly on set Ai is an equilibrium. How-
ever, this mechanism has unbounded price of anarchy.
We would like to guarantee the existence of such equi-
libria, but also retain the price of anarchy result from
Theorem 3.1. To do this, we will require the assump-
tion from Section 3.3 that agents do not overbid. We
note that this assumption is somewhat better motivated
in a pure equilibrium setting: as we show below, if an
agent knows the bids to be made by the other bidders,
that agent cannot gain from overbidding. Compare this
to the example in Section 3, where it was shown that
overbidding may be beneficial in settings of uncertainty.

Claim 4.1. For each i and d−i, there is a utility-

maximizing declaration di for mechanism Mcrit(A)
such that di(S) ≤ ti(S) for all S ⊆ M .

Proof. Choose any utility-maximizing di
′, say with

Ai(di
′,d−i) = T . Let di be the single-minded decla-

ration for set T with value ti(T ); then di(S) ≤ ti(S)
for all S by the monotonicity of ti. Since di

′ is utility-
maximizing, we know that

0 ≤ ui(di
′,d−i) = ti(Ai) − θi(Ai,d−i).



So ti(Ai) ≥ θi(Ai,d−i) and hence Ai(di,d−i) = T . We
therefore have ui(di

′,d−i) = ui(di,d−i), since Mcrit(A)
uses the critical pricing scheme. Thus, since di

′ is
utility-maximizing, di is as well.

We now show that if A is the standard greedy
algorithm, then there is a pure Nash equilibrium for
Mcrit(A). Moreover, if agents do not overbid, then the
mechanism achieves a (c+1) approximation at any pure
equilibrium.

Theorem 4.2. Suppose A is a c-approximate standard

greedy allocation rule. Then Mcrit(A) has a pure Nash

equilibrium in which no agent overbids. Moreover, if

agents do not overbid, then Mcrit(A) obtains a (c + 1)
approximation to the optimal social welfare at every

pure Nash equilibrium.

Proof. Define d by having di be the single-minded bid
for set Ai(t) at value ti(Ai(t)). Then the critical price
for each agent’s winning set is 0, so ui(d) = ti(Ai(t))
for each i. Consider any agent i and any set T . Since
A ranks by value, either ti(T ) ≤ ti(Ai(t)) or else
θi(T, t−i) > ti(T ). In either case, for any di such that
Ai(di, t−i) = T , it must be that ui(di, t−i) ≤ ui(t). We
conclude that t forms an equilibrium.

The price of anarchy result follows precisely the
proof of Theorem 3.1, applying the assumption that no
agent will overbid in place of Lemma 3.3.

5 Combining Mechanisms

A standard technique in the design of allocation rules is
to consider both a greedy rule that favours allocation
of small sets, and a simple rule that allocates all
objects to a single bidder, and apply whichever solution
obtains the better result [4, 7, 24]. When bidders
are single-minded, such a combination rule will be
incentive-compatible [24]. We would like to extend
our results to cover rules of this form, but the price
of anarchy for such a rule (with either the first-price
or critical-price payment scheme) may be much worse
than its combinatorial approximation ratio. Consider
the following example.

Example. Consider the combinatorial auction problem.
Suppose A is the non-adaptive greedy algorithm with
priority rule r(i, S, v) = v if |S| ≤ √

m, and r(i, S, v) = 0
otherwise. Let A′ be the non-adaptive greedy algorithm
with priority rule r(i, S, v) = v if S = M , and
r(i, S, v) = 0 otherwise. Then A′ simply allocates the
set of all objects to the player that declares the highest
value for it. Let Amax be the allocation rule that applies
whichever of A or A′ obtains the better result; that
is, on input d, Amax returns A(d) if SW (A(d),d) >

SW (A′(d),d), otherwise returns A′(d). It is known
that Amax is a O(

√
m) approximate algorithm [24].

Our instance of the CA problem is the following.
We have n = m ≥ 2, say with M = {a1, . . . , am}.
Choose ǫ > 0 arbitrarily small. For each i, the private
type of agent i, ti, is the pointwise maximum of two
single-minded valuation functions: one for set {ai} at
value 1, and the other for set M at value 1 + ǫ. An
optimal allocation profile for t would assign {ai} to each
agent i, for a total welfare of m.

We construct a declaration profile as follows. For
each i, di is the single-minded valuation function for set
M at value 1 + ǫ. On input d, Amax will assign M
to some agent, for a total welfare of 1 + ǫ. Also, d is
a pure Nash equilibrium for M1(Amax),Mcrit(Amax),
and Mµ(Amax) for any µ: all agents receive a utility
of 0, and there is no way for any single agent to
obtain positive utility by deviating from d. Taking
ǫ → 0, we conclude that the price of anarchy for any
of these mechanisms is Ω(m), which does not match the
combinatorial O(

√
m) approximation ratio of Amax.

In light of the above example, we consider a dif-
ferent way to combine two rules: we implement each
rule as a separate mechanism, then randomly choose be-
tween the two mechanisms with equal probability. For
many examples of interest (eg. combinatorial auctions,
see Section 7.1) the resulting randomized allocation rule
obtains (in expectation) the same worst-case combina-
torial approximation ratio as applying the better of the
two rules for each input. Moreover, the price of anarchy
results of this paper can be made to carry over to such
randomized mechanisms, as we now formalize.

Let A be any greedy allocation rule that never
allocates M to any agent, and let A′ be the allocation
rule that allocates M to the agent i that maximizes
di(M). The restriction on A is motivated by our
intuition that A favours allocations of small sets; it
is without loss of generality for many algorithms of
interest (eg. combinatorial auctions, again see Section
7.1). We write M1(A,A′) for the mechanism that flips
a fair coin, and if it lands heads it executes M1(A),
otherwise executes M1(A′). We define Mcrit(A,A′)
similarly. For these mechanisms, we will allow input

valuations to be non-monotone with respect to set M ;
that is, we allow declarations in which di(M) < di(S)
for S ⊆ M . Note then that our mechanism is not
technically a direct revelation mechanism, as an agent’s
input is not necessarily a monotone valuation function.

Theorem 5.1. Suppose that A,A′ are as described

above, and for every declaration profile d, SW (A,d) +
SW (A′,d) ≥ 1

cSWopt(d). Then M1(A,A′) obtains a

2(c + O(log c)) approximation at every mixed BNE.



Proof. Since the portions of agent declarations relevant
to M1(A) and M1(A′) are independent, an agent will
optimize his declaration for M1(A,A′) by optimizing
for M1(A) and M1(A′) separately. Theorem 3.2
then immediately implies the desired result, as an
equilibrium for M1(A,A′) must be a combination of an
equilibrium for M1(A) and an equilibrium for M1(A′).

6 Calculating Critical Prices

We note that some of our mechanisms require the
calculation of critical prices. For many allocation
algorithms, the calculation of critical prices is a simple
task, which can be performed in parallel with the
computation of an allocation profile. We leave the
development of such pricing methods to the creators of
the allocation algorithms to which our reduction may be
applied. However, even if a specially-tailored algorithm
for computing exact critical prices is not available, we
note that critical prices for a given black-box greedy
algorithm can be determined to within an additive ǫ
error in polynomial time via simple binary search. Thus,
assuming that valuation space is discretized, critical
prices can be determined efficiently.

We now describe the procedure for determining
critical prices in more detail. Fix greedy allocation
rule A, agent i, and declarations d. Write vmax for
maxi,S di(S). Suppose that Ai(di,d−i) = S. Assume
further that the space of possible values for sets is
discretized by increments of some ǫ > 0. We wish to
resolve the value of θi(S,d−i) to within an additive error
of ǫ. We perform the following binary search procedure
on parameter v ∈ R. Write di

v for the single-minded
declaration for set S at value v. Begin by setting v = ǫ
and checking whether Ai(di

v,d−i) = S. If not, double
v and repeat. The first time Ai(di

v,d−i) = S, stop
doubling v and switch to applying binary search: If
Ai(di

v,d−i) = S, decrease the value of v; otherwise
increase the value of v. This procedure resolves the
value of v to within ǫ in O(log vmax/ǫ) iterations. Thus,
for any given input to mechanism Mcrit(A), the critical
prices for all agents’ allocated sets can be found in
O(n log(vmax/ǫ)) invocations of algorithm A. Note
that it is not necessary for vmax to be known by the
mechanism, since the mechanism need only calculate
critical prices for sets that are actually allocated on
input d, and thus the maximum value declared in d

serves as an upper bound for critical prices.

7 Applications

We now describe some applications of our results to par-
ticular combinatorial allocation problems, resulting in
mechanisms whose prices of anarchy improve on the ap-
proximation ratios of the best known incentive compat-

ible algorithms. Recall that we do not restrict agents
to be single-minded, so known incentive compatible ap-
proximation algorithms for single-minded settings do
not apply.

7.1 Combinatorial Auctions The combinatorial
auction problem is a blocking allocation problem. There
is a greedy non-adaptive

√
2m approximation algorithm

for this problem [20]. By Theorem 3.2, the deter-
ministic first-price mechanism for this algorithm has a
(
√

2m + O(log m)) Bayesian price of anarchy. Since the
CA is a blocking allocation problem, this mechanism
also has pure Nash equilibria, and its price of anarchy
in pure strategies is (

√
2m + 1).

An alternative allocation rule, which can be imple-
mented with a polynomial number of demand queries,
was proposed by Mu’alem and Nisan [24]. This alloca-
tion rule combines a standard greedy algorithm with an
allocation of all objects to a single bidder. By Theorem
5.1, this algorithm can be implemented as a mechanism
with O(

√
m) Bayesian price of anarchy.

7.2 Cardinality-restricted Combinatorial Auc-

tions In the special case that players’ desires are re-
stricted to sets of size at most k, the standard greedy
algorithm is k-approximate assuming single-minded
agents. This translates to a (k + 1) approximate al-
gorithm for general agents, which can be implemented
as a mechanism with a (k + 1) price of anarchy assum-
ing that agents do not overbid (by Theorem 3.3 with
Lemma A.1), or as a mechanism with a k + O(log k)
Bayesian price of anarchy with no such assumption (by
Theorem 3.2). If k ≥ 2 then this is a blocking alloca-
tion problem, and the first-price mechanism has a pure
equilibrium and obtains a (k +1) approximation at any
pure equilibrium by Theorem 3.1.

7.3 Multiple-Demand Unsplittable Flow Prob-

lem Consider a variant of the unsplittable flow problem
in which each agent has multiple terminal pairs, each
with a different value, and wishes for one of them to
be satisfied. An adaptive greedy algorithm obtains an

O(Bm
1

B−1 ) approximation [7] for any B > 1, so Theo-
rem 3.2 implies that the first-price mechanism for this
algorithm yields a matching price of anarchy in mixed
strategies.

7.4 Convex Bundle Auctions In a convex bundle
auction, M is the plane R

2, and allocations must be
non-intersecting compact convex sets. We suppose that
agents declare valuation functions by making bids for
such sets. Given such a collection of bids, the aspect-
ratio, R, is defined to be the maximum diameter of a set



divided by the minimum width of a set. A non-adaptive
greedy allocation rule using a geometrically-motivated
priority function yields an O(R4/3) approximation [2].
Alternative greedy algorithms yield better approxima-
tion ratios for special cases, such as rectangles.

By Theorem 3.2, the deterministic first-price mech-
anism for this algorithm has a O(R4/3) Bayesian price
of anarchy. Since this auction is a blocking allocation
problem, this mechanism has pure Nash equilibria, and
its price of anarchy in pure strategies is also O(R4/3).

7.5 Max-profit Unit Job Scheduling In this
problem, each bidder has a job of unit time to sched-
ule on one of multiple machines. A bidder has vari-
ous windows of time of the form (release time, dead-
line, machine) in which his job could be scheduled, with
a potentially different profit resulting from each win-
dow. The profits and windows are private information
to each bidder. The goal of the mechanism is to sched-
ule the jobs to maximize the total profit. The stan-
dard greedy algorithm obtains a 3-approximation, and
a 2-approximation when bidders are single-minded [23],
and can thus be implemented as a mechanism that at-
tains a price of anarchy of 3 assuming that bidders do
not overbid. If we assume that agents will follow the
weakly dominant set of strategies in which they do not
overbid, Mcrit(A) will always have a pure equilibrium
and will have an price of anarchy of 3 in pure strategies.

Unlike the previous examples, an exact algorithm is
known for the case of single-minded bidders [3], which
uses dynamic programming and runs in time O(n7). We
believe that this algorithm may be extended to handle
k-minded bidders (ie. where each valuation function
is the maximum of at most k single-minded valuation
functions), with a runtime of O(n7k7). Since this
algorithm solves the problem optimally, it is incentive
compatible. However, the greedy mechanism with price
of anarchy 3 is still appealing since it is computationally
efficient (as it runs in linear time) and easy for agents
to understand and trust.

8 Conclusions and Open Problems

We have demonstrated that many greedy algorithms for
combinatorial allocation problems can be implemented
as deterministic mechanisms without much loss to their
approximation ratios at any Bayesian Nash equilibrium
or any mixed Nash equilibrium. This has a number
of applications, such as a combinatorial auction with
O(

√
m) price of anarchy. We extended this analysis

to pure equilibria for rich subclasses of problems and
algorithms.

There are a number of immediate questions left
open in our results. The first is to improve the price of

anarchy bound in Theorem 3.3; it would be interesting
to determine whether any greedy allocation rule can
be implemented deterministically so that there is no

loss in approximation ratio at any mixed equilibrium,
without assumptions on the agents. Another is to
relax the assumptions of Theorems 4.1 and 4.2, finding
other classes of problems for which pure equilibria are
guaranteed to exist.

More generally, the price of anarchy solution con-
cept can be applied to other mechanism design problems
and other types of algorithms. We ask: given a mech-
anism design problem, when can a black-box algorithm
for the underlying optimization problem be converted
into a mechanism that obtains (nearly) the same ap-
proximation ratio at every BNE? Even a partial resolu-
tion would be an important step in understanding the
relationship between computational issues and Bayesian
Nash implementability.

Finally, while we have studied performance at equi-
librium, we have not addressed the issue of how agents
should arrive at such an equilibrium. One desirable
property along these lines would be a mechanism with
only a single equilibrium, which can be easily computed.
Additionally, one might model bidder behaviour via re-
sponse dynamics, and ask whether agents are expected
to converge to an equilibrium in a repeated-auction
setting. This question is partially addressed in a re-
lated paper [22] that considers the design of mechanisms
tailored to account for bidder behaviour in repeated-
auction settings.
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A Tightening Results for Special Cases

In this section we show how to tighten the results
of Lemma 3.2 for certain special cases of allocation
problems and greedy algorithms. This allows us to
obtain sharper bounds in Theorems 3.3 and 3.1. We
say that a combinatorial allocation problem is player

symmetric if the feasibility constraints do not depend
on the labels of the players, and object symmetric if they
do not depend on the labels of the objects. We say that
a greedy algorithm is player symmetric if its ranking
function r does not depend on its first parameter,
and we say that it is object symmetric if its ranking
function r does not distinguish between sets of the same
cardinality in its second parameter.

Lemma A.1. If A is a player-symmetric greedy al-

gorithm and a c(n)-approximation whenever all dec-

larations are single-minded, then for any declaration

profile d and allocation profile A = A1, . . . , An,
∑

i∈[n] di(Ai(d)) ≥ 1
c(2n)

∑

i∈[n] θi(Ai,d−i)

Proof. We define d′ as in Lemma 3.2. We then define
d′′ by adding n additional bidders, 1′, . . . , n′, where
di′

′′ is the single-minded declaration for set Ai at
value θi(Ai,d−i) − ǫ. Player symmetry implies that
A(d′) = A(d′′) (meaning that each additional player
is allocated ∅). Since we have 2n players, we conclude
SW (A(d∗),d∗) ≥ 1

cSW (A,d∗), yielding the desired
result.

Applying Lemma A.1 in place of Lemma 3.2, we can
improve the statements of Theorems 3.3 and 3.1 so that



the resulting prices of anarchy are improved from c + 1
to c, whenever algorithm A is a c-approximation, but
a (c− 1)-approximation when agents are single-minded,
and c is independent of n. This is the case, for example,
in the standard greedy algorithm applied to cardinality-
restricted combinatorial auctions.

Lemma A.2. If A is player-symmetric, object-

symmetric, and a c(n,m)-approximation, then

for any declaration profile d and allocation profile

A = A1, . . . , An,

∑

i∈[n]

di(Ai(d)) ≥ 1

c(2n, 2m)

∑

i∈[n]

(θi(Ai,d−i)+di(Ai(d))).

Proof. Consider an auction with an additional copy
of each player and each object; write i′ for the copy
of agent i, and M ′ for the additional objects. The
feasibility constraints for the new objects and agents
are identical to those for the original objects and agents.
Then A is a c(2n, 2m) approximation algorithm for this
new problem instance.

Choose any ǫ > 0. We define d′ as in Lemma
3.2. We then define d′′ by setting di

′′ = di
′ and

di′
′′ to be the single-minded declaration for set Ai at

value θi(Ai,d−i)− ǫ. Finally, define d′′′ by additionally
adding a bid for the second copy of set Ai(d) by agent
i for value di(Ai(d))− ǫ. We then have A(d′′′) = A(d),
but an alternative allocation gives Ai to each player i′,
and the second copy of Ai(d) to agent i. The result
then follows since A is a c(2n, 2m) approximation.

Applying Lemma A.2 in place of Lemma 3.2, we can
improve the statements of Theorems 3.3 and 3.1 so that
the resulting price of anarchy is improved from c + 1 to
c whenever the conditions of the Lemma apply and c is
a constant.

We now give an example to show that these im-
proved bounds are tight, even for pure Nash equilibria,
for both M1(A) and Mcrit(A). That is, a pure Nash
equilibrium can have approximation ratio as high as c
for a c-approximate algorithm, where c is a constant,
even if the algorithm is (c − 1)-approximate when we
assume that all bidders are single-minded.

Example. Consider a combinatorial auction with the
additional requirement that each bidder can be given
at most 2 objects. The standard greedy algorithm that
allocates in order of value is a 3 approximation. This
algorithm and problem are player and object symmetric,
and furthermore this algorithm is a 2 approximation
when agents are single-minded.

Consider the following valuation profile. There are
3 bidders and 3 objects, say {a, b, c}. Choose arbitrarily

small ǫ > 0; the valuations of the players are as in the
following table.

player set value
1 {a, b} 1 + 3ǫ
1 {c} 1
2 {a} 1
2 {b, c} 1 + ǫ
3 {b} 1

The optimal solution gives each player their desired
singleton at a value of 1, for a total welfare of 3.
However, one pure nash equilibrium has each player bid
truthfully, except having player 1 reduce his declared
value for {a, b} to the smallest value at which he will
win it. This gives a total welfare of 1+3ǫ. So, for all of
M1(A), Mcrit(A), and Mµ(A), the price of anarchy is
at least 3 in both pure and mixed strategies.


