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ABSTRACT. The structural complexity of programming languages, and therefore of programs
as well, can be measured by the subrecursive class of functions which characterize the language.
Using such a measure of struetural complexity, we examine the trade-off relationship between
structural and computational complexity.

Sinece measures of structural complexity directly related to high level languages interest us
most, we use abstract language models which approximate highly structured languages like
Algol.
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1. Inlroduction

It is widely accepled that the theory of computing can be organized on the basis of
conservation principles or trade-off relationships. Such relationships hold among
quaniities eharacterizing computation (such as logical complexity, structural com-
plexity, resource expenditure, ete). Some important exchange relationships are well
known. For instance, the universal machine invelves a trade-off of machine strue-
ture for size and computational complexity. Structural complexity in this example
is a quantity like the “state symbol product’ for Turing machines.

The structural complexity of programming languages, and therefore of programs
as well, ean be measured by the subreeursive class of Iunctions which characterize
the language. Using such a measure of structural complexity, we examine the trade-
off relationship between structural and computational complexity.

Sinee measures of structural complexity directly related to high level languages
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interest us most, we use abstract language models which approximate highly struec-
tured languages like Algol.

Our attention to programming language models 1s also motivated by concern for
a thesis (somewhat like Chureh’s or Turing’s thesis), implicitly known in the litera-
ture, that all functions actually used in computing are a subset of the primitive re-
cursive functions. This thesis implies that the subrecursive programming languages
considered here are adequate for actual computing. Furthermore, these languages
have advantages over universal (general recursive) languages; among them are: all
programs halt on all inputs, the run time of any program can be bounded above {rom
its syntax, and mathematical expressions can be uniformly assigned to programs in a
natural manner,

But are these advantages free? Not entirely. Blum [3] has shown that one cost is
economy of program size. The subrecursive languages will always be very uneconom-
ical in the sense that for every recursive function f( } there will be functions k()
whose shortest subrecursive programs, =, satisfies

FGrl) <=
where \ \ measures size and 7 is a general recursive program for k( ).

1t was conjectured that a price was paid for run time as well as for size, at least by
certain interesting subrecursive languages and formalisms, such as [19]. We show
that the conjeeture is false and that in faet these subrecursive run times are, given

the right basic operations, within a linear factor of gencral recursive run times.
The case for subreeursive languages is supported further by the observation in
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528 R. L. CONSTABLE AND ALLAN B. BORODIN

Constable [8] that the uneconomically long subrecursive programs known from Blum
must also be computationally very ecomplex (at least on a finite set).

The advanfages of these languages over gencral recursive languages should be
explored more carefully, especially in regard to such problems as equivalence and
correctness of programs and especially with attention to their exchange relationships
with other properties of programs.

In this paper we examine the exchange between structure and efficiency for specific
subrecursive languages for the primitive recursive funetions. The languages pre-
sented here are a1l based on existing languages. They are selected with several criteria
in mind. One is to point out their expressive power as support for the “implied
thesis.” Another is to facilitate definitions of structural complexity. A third is to
relate our languages to the most elegant examples in the literature. From each lan-
guage, onc acquires a better “feel’” for the primitive recursive functions and their
apparent ‘“naturalness,’’®

2. General Recursive Languages

Simple abstract models of numerical programming languages are now common in
the literature (see [9, 25, 26]). These models characterize the core of most high level
programming languages (like Algol, Fortran, and PL/I). We shall use modifications
of such models to study the relationship between program structure and computa-
tional complexity for the specific task of computing functions from &” into & =
0,1,2 - Jor &t ={1,2,3, --.}1.%

The languages we study can be described in terms of a set of statement types
(assignment, conditional, go to, and iterative) where the statements are eomposed of
arithmetic expressions (or terms) and relations. For simplicity, only binary and
unary terms and relations are used.

2.1. Terms anp RErvations. Using BNF we present the syatactic categories
used to form the programming languages,

(variable) :: = X | (varinble) X

(constant) 1= 0|12 ---

(argument) :: = (variable) | {constant}

(l-operator) ::= 0| O/ [ O | ---

(2-operator) 1= 0¢ | O | 07| - -

(terms) ::= (argument) | (l-operator) ((argument)}|
(2-operator) ({argument), {argument))

We will use customary abbreviations and let X; denote X - -+ X, thus X, = X,
1 times
X, = XX, -+ . We let v; denote variables, and also 0, v, » + 1, v = 1 abbreviate
Oo' (1), O (v), Os' (v), Os' (), respectively, and vy + vs, vy = v2, vy-v2, vy + D ab-
breviate Oy’ (01, 12}, O (v1, vs), OF (21, v2), O (v1, v2), respectively.

% Another implicit problem in the literature of recursive function theory and the theory of
computing is to explain the apparent naturalness of M!. Some authors interpret their results
82 denying naturalness [20], others go to lengths to affirm it (8],

& (Other numerical tasks such as computing over the rationals (or the reals) can be naturally
reduced to this one.
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Subrecursive Programming Languages 1: Efficiency and Program Structure 529

The interpretation is that the 0" arc n-argument functions. Thus 0, (z) = 0,
0l(z) =z, O'(z) = =z + 1,and

o if z = 0,
Os'(z) = {x — 1 otherwise

are the common mathematical expressions for the functions denoted by 0;. Among
the 0; the only infrequently seen definition is O {x, y) = = + y = greatest integer
less than or equal to 2/y i ¥ > 0 else O (also read {z/y] = floor of z/y).

A class of relations is defined by

{1relator) 1 = P¢ | Py

(2-relator) 11 = P | Py

(relation) :: = {l-relator) ({argument)) |
{2-relator) ({argument), {argument))

The common abbreviations are Py for = 0, Py for = 0, Pgq for =, and Py’ for #.

The interpretation is again standard: P;' (v) denotes a predicate on & Yand P} (i,
v) denotes a predicate on X7 The standard predicates are Pg' (z) iff = = 0, Py’ (x)
iff z 0, Pz, y)illz =y, Pf(x, y)iflf 2 > y. We could also add <, >, <, > in
the same manner.

Terms and relations are used in building statements. The statement types are
listed below with brief informal interpretations. They are so common that a formal
semantics would only be an exereise in formalism.

2.2, LaBers. Tor the purposcs of deseribing the relationship between statements,
these languages will use statement labels. (We ghall see that they are dispensable.)
The simplest labels are the positive integers, &', and the simplest labeling conven-
tion is that all statements are labeled, giving programs a linear structure,

(labely ::= 1]2{38] -

23. SraremENTs. Terms and relations are used to form the following statement
types.
(1) Assignments. The general assignment statement is
(i) (variable) < (term)
but we also consider the special assignments of the form
(it) v f.' (@)
(2) go to’s. The basic go to i3
(i) goto -+ (label) or
(ii) go to — (label)
In addition we consider the compuied go to’s:
(ci) go to -+ {variable)
(cii) go to — (variable)
The signs 4+, — indicate the direction in which the label must be; the plus sign
indicates that control goes forward in the program to a statement with a higher label
than the go to itself.? The minus sign indicates that the label is the same or lower

iWhen the program structure is sufficiently simple (i.e. it contains conditionals and &% as

lahels) ; then, go te ¢ can be interpreted as “go == ¢ statements from this one,’” i.e. either add
¢ or subtract ¢ from the label of the go to. Then adding 0 is noi allowed but subtracting it is.
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530 R. L. CONSTABLE AND ALLAN B. BORODIN

than the label of the go to itself. The signs are clearly dispensible. We only usc them
to emphasize the distinection.

In the computed go to, the content of the variable is the label. Here it is cssential
that labels be numbers; also if the computed label lies in the wrong dircetion from the
go to, the statement iz treated as a “no-op” (i.e. is not exeeuted ).

(3) Conditionals. The basic conditional is

(i) {conditional) :: = if {relation) then {go to) else (g0 to)
But, the more complex form, (i), is often useful.

(i) (nested-conditionaly :: = if (relation} then {program) else {program)
where the syntactic variable {program) is defined below.,

The interpretation of the conditional is completely standard, as in Algol. The
nested conditional can be interpreted by first redueing it to a simple conditional.

A common abbreviation is, if {relation) then Z(lahel}, for, if (relation) then go to
+(label} else go to “next statement.” We call this the “one branch conditional.”

(4) Input/output (I/0). The statements

(i) INw, -+ ,», and

(i) OUT wy, -+, wa
are the only I/0 commands. We will always use these commands in a simple man-
ner. Each will appear only onee in a program and it serves to indicate which vari-

ables are inputs and which are outputs. The command OUT wy, - -, w, will mean
that the program halts and the output is to be found in wy, - - - , w,. The command
IN vy, -+, v, means that variables v, - - -, v, are loaded with the input values.
(5) Tterative statements. The basic iterative is
i) DOw
T
END

where « is a program; in BNF we can write
(iterative) :: = DO(variable};{program);END

We also allow .
(i) DO WHILE P

m
END
where = is a program and P is a relation; in BNT:

{while iterative) :: = DO WHILE (relation};(program);END

The interpretation here is described simply in terms of the previous statement
types. Namely, occurring in a program 4,

DO » 18 ie—vp
T 1i 7= 0then 2
END T
ie—p =1
gotol
2
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Subrecursive Programming Languages 1: Efficiency and Program Structure 531

where # does not appear in « or # (7 is called the loop control variable). Also

[ o is [, .
[ DO WHILE P Pl if =P then 2
T ‘ T

END } | gotol

2

(Notice that for every relation, P, its negation, — P, is also a relation.)

(6) Function procedures. Certain programs can be selected which compute
functions f( ): " — & {or veetor functions, {f( }):N" — N” where (J( )) = (f(h,
v fC)preach f( ), H" — ). Briefly, these are programs with n input variables,
one output (p outputs). They will be defined more precisely below. I'unction pro-
cedures are wavs to introduce new operations by definition within the program. The
syntactic baggage required is the following,

{n-ary function variables) :: = fy" | fi"| - - -

(n-ary function) :: = {n-ary function variable) ((variable}, - - -, (variable))
The elass of {function definitions) is defined by cquations of the form

(i) (a)f" (o1, - -, 2n )} = (n-argument function computing program not involving
the function variable f").
These function definitions are used to expand the class of terms. Namely an {f-term)
8/ (ai, - -, a,) for a; an {argument). Then {/-assignments) are defined as

{(b) {variable) « {f-term)
The interpretation is that the program in (i) defines the funection letter £ (non”
recursively ) and w «— fi" (v, - - -, v,) I8 interpreted to be the code

Hf:‘"(vly Tt vzr)
we— %

where I a(vy, -+ -, ©,) is the program defining the f-term, fi* (1, -+, #,) with
t, *-, ¢y as input values and « as output (see Scetion 3 for details).

(ii) An important subclass of program funetion definitions is made up of those
which can be given explicitly in terms of compositions of other functions or substzfu-
tion of variables and constants for other variables, These operators are called the
operattons of substitution, abbreviated Os, and they are the most basie kinds of func-
tion definition. The class of functions explicitly definable from funetions fi( ), -- -,
Jo( ) is denoted [ (), -, fn(); Os].

When function definition is required to be explicit, we have a statement category
like the Fortran function stalemeni. The concept of explicit definition is basic for the
usual notion of recursion in mathematics. We briefly mention reeursion in program-
ming below.

(7) Recursive (function) procedures:

(i) When the condition that f* not appear on the rhs (right-hand side) of (i-a)
is removed in (6), then (6) delines the classes of (recursive function definition),
{recursive f-term}; and (recursive f-term assignments).
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532 R. I. CONSTABLE AND ALLAN B. BORODIN

The interpretation in this case is more difficult. One can use the mechanism of
Algol reeursive procedures. We shall not go into this in detail. We include (7) only
for completeness; it is not needed in what follows.

(i) When f;" can be explicitly defined by terms allowing 7, then we have the
definition of general recursion in mathematics (see Kleene [14]).

In Section 3 we shall extend these statement types to include subrecursion of
two kinds, (8-) a specialization of (7-1) to subrecursive programs, and (8-ii) a
specification of (7-ii) to certain types of recursion schemes, for example the primi-
tive recursion scheme.

We summarize the statement types using BNF:

(statement) :: = (assignment)|
(g0 o) | {computed go to)|
(conditional) | {nested conditional) |
{input} | {output) |
(iterative) | (while iterative) |
{function definition} | {recursive function definition) |
{f-assignment) | {recursive f-assignment)

2.4. ProGrams anp LaNeuaces. A program is a finite sequence of uniquely
labeled statemcnts. For definiteness, the labels 1 to # arc used in a program of n
statements) and any (go to) in the program refers to only labels 1 to n + 1, where
n -+ 1 is used to designate a halt. The following are specimens of programs.

Ezample 1. I INX

2 DOX

3 X—=X+1
END
ouT X

INX
DOX;X «— X -+ 1; END
ouT X

IN X, X,

if Xj > X, then if X, = 0 then go to 5 else go to 3 else go to 6
Y X+ X,

go to 8

DOXl,Xl(—‘X1+X2,END

Y‘—Xl

DOWHHEY #0; Xo— X, + 1; Y Y = 1; END
ouUTY

We also prohibit branching into the scope of a DO.

Various specific programming languages are defined by seleeting subsets of the
possible statement types and subsets of the operations and relations. We will
define (below) the following language types: Algol-R, GR, GRy, and G;. The
language is the ecollection of all programs whose statements come from the types
allowed in the language base.

For eonvenience in describing the multitude of possible languages, we adopt the
following abbreviations.

Ezample 2,

Example 3.

00 =1 O G W = W=
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arithmetic operations

unary +1, =10, ()@
binary +, =, -, +
relations
unary =0,#40
binary =, #
go to + {abel) 1
go to — (label) )
20 to + (variable) ()
go to — (variable) {T)
conditional 0]
nested eonditional ($)
one-branch conditional On
iterative DO
END
while iterative DOWH
END
function procedures E

explicit funetion statements By
recursive function procedures R
recursive explicit funetion
statement R,
(£ is also referred to as explicit recursive definition. )

Letting As = {41, —1,0, (), +, =, -, +} and Py = 0, =0, =, =}, the basic
languages are:

DO DOWH
(1) AlgO]'R: [AS: P"kr l’ Tr (l )y (T )1 (<>): END: ENDJ E) R]
DO DOWH
(2) GRu: (s, P, L, T, (1), (T), ¢1, ¢, END, END, F]
DO
(3) GR' [AS)P‘lyi-s T?(l)l(T)? <>13 O!END!E]

(4) G3: [+1) ;1: l: T: <>l]

Remark. 'The only difference between GR and GRyu is the DO WHILE state-
ment. This statement allows direct implementation of the least number operaior, y,
defined as

uylP (%, y)] = least y such that P(Z, y) forZ ¢ ¥, y € ¥
The direct implementation is

Y20

DO WHILE =P (X,, -+, X., T)

Ye—Y 41
END

® These unary operators appear only in special assignments, v <+ v + 1, v — ¢ = 1, except for
the identity operator, (), which appecars as # «— w.
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534 R. L. CONSTABLE AND ALLAN B. BORODIN

as long as — P ( ) is expressible. Normally predicates other than those in P, will be
represented by their characteristic function fP( ) such that

fP(ay, -+ ,2,) =if P(xy, -+ ,x,) then 1l elseQ
In this case the implementation is

Ye20

DO WHILE 8 = 1

S«—fPXy,  ,X,, F)

Y—Y +1

END

2.5. ComruraTtions, Funcrions, axp RUN Tives. Programs are intended to de-
fine computations. For a simple language like Gy it is easy to be precise about how,
For GR it is more difficult and for Algol-R still more difficult. We shall treat the
latter by reducing them to Gs.

Tt is not difficult to sce that Algol-R, and hence GRu and GR, can be translated
into Gz. In fact, the definition of cach of the seven instruetion types, except the
computed go to, included a reference to a Gy interpretation of it. All that remains for
a complete reduction of these types to Gy is a translation of the arithmetic operations
and a treatment of procedures, The former will be given below (Theorem 3.2), and
for the latter we have referred the reader to discussions of actual programming
languages (such as Wegner [27]). The translations

Ty: Algol-R — Gy
Ty: GRp— Gy
T.v. H GR — G3

will be used to define the semantics for these languages by the rule that the meaning
of II is the meaning of 7: (1), ¢ = 1, 2, 3.

The programs we interpret are those which compute functions. These can be
singled oul syntactically. A program ¢ is a funciton program iff the first statement ig
INw, -+, v, and the last is OUT wy, - - -, wp for ;, w; variables of ¢, and no other
1/0 statements oceur in ¢.

To describe the (partial) function, ¢( ), which ¢ computes we would define a
computation of ¢ and a terminating compulation of ¢. However, this matter is treated
extensively in the literature (e.g. [9, 25]), and we refer the reader to these sources
for precise definitions. Suffive it to say that a computaiion, as defined on a RASP
for example, is & sequence of stales, 8y, 81, -+, &, ---. Each state is a pair,
6; = {a;, M), where M, is a list of values of all of the variables of ¢ and a; is the
label of a statement (the statement in controf at that moment of the computation ).
The program ¢ takes one state into the next, §; = 841, iff the change in memory
from M, to M.y 18 the result of executing the statement labeled a;, and if @iy i3
the label of the next statement to be executed.

The sequence @y, @i, --- of labels is the flow of conirel and Mo, M, --- is the
sequence of memory configurations. A finite computation is said te be terminating
and we write 8, 8., - -+, 8, for n < w. If @, is a halt statement. (OUT »), then the

computation is normally lerminaiing and the program ¢; is said to halt, abbreviated

diler, -, za) .
A function program ¢ compules the pariial function ¢{ ): N — N iff when

Journal of the Assosiation for Computing Machinery, Vol. 19, No. 3, July 1072



Subrecursive Programming Languages I: Efficiency and Program Struciure 535

Ay, -+, X, are the input variables and ¥ the output variable, then when X starts
with value z;, and all other variables have value 0, the computation of ¢ terminates
iff 9(xe, ++ -+, 24) is defined, and if ¢ terminates then ¥ has the value ¢(zy , - - -, 2a). ™

The number of steps in a terminating computation of ¢ on inputs x,, -+, z,
is denoted ¢, (x1, -+ -, xa). The step counting function ¢¢;( ) can be syntactically
defined from ¢, in a simple manner, as follows: pick a variable .S not in ¢;; replace
OUT Y by OUT S; after the input instruction of ¢;, place 8 « 0; then after each
statement of ¢, insert 8 «— 8 4 1; change all labels, L, in conditionals to L’ (I’ is
a temporary new symbol not in the language) and for each label L’ put the pair of
statements

-

{L':S<—S+1
goto L

at the end of ¢ ; then relabel the new program in order and call the result f; . ®

2.6. CHARACTERIZING LaNGuaGEs. We can now speak precisely about the ex-
pressive power of programming languages. A programming language £ is capable of
compuling ¢: N" — N T there is a program = of £ which eomputes ¢. The program-
ming language is characterized by the class of partial number theoretic functions
which it is capable of computing.

We use the following notation for the funetion classes:

®.  all » argument partial funetions, a: ¥© — ¥,

®®R. all » argument partial recursive functions, ¢, : " — ¥,
T all » argument total funetions, f: ¥* — ¥,

@,  all » argument total recursive functions.

When used without the subseript, the letters designate the union over all »,
thus ¥ = USow,.

When discussing functions we follow Rogers [24] and let lower-case Greek letters
¢, 8, ¥ denote partial funetions and lower-case Latin letters f, g, » denote total funec-
tious. We frequently usc the notation ¢( ), () to distinguish the function (as a
sel of ordered pairs} from the rule ¢, f deseribing the function,

Now we can state a well-known charaeterization.

(1) Gs is characterized by ®®. This fact is established in Minsky [21] and in
Shepherdson and Sturgis [26].

From the translation in Subsection 2.5 we know that

(2) Algol-R, GRu, and GR are characterized by ®®. A language characterized
by @& is ealled universal or general recursive. A language characterized by a subset
of ® is ealled subrecursive. We shall see some of them in Section 3.

2.7. IxDEXING UNTVERSAL LANGUAGES AND ABSTRACT COMPUTATIONAL COMPLEX-
1TY.  Some of the results in Section 3 can be treated very abstractly in terms of re-
eursive function theory. In order to pursue that viewpoint we will present very
bricfly the formal apparatus needed. We emphasize that the following definitions

% One can drop this assumption on the other variables if he selcets syntactically those pro-
grams in which all noninput variables (work variables) are initialized before use. This is per-
haps more realistic but technically more tedious.

& Of course, the instruetions 8 «— 0 and “go to L are translated into their G; equivalents, and
relabeling involves adjustment of the labels in their conditionals.
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536 R. L. CONSTABLE AND ALLAN B. BORODIN

and theorems are included for reference only, with the understanding that the
reader interested in this viewpoint is already familiar with them from sources such as
(1, 13, 24],

We begin with a list (indexing) of all function computing programs of the lan-
guage (in general of the formalism for expressing algorithms). Therefore, let ¢, ¢,
¢:, - - - be an effective enumeration of all function computing programs. ™ The basic
theorems needed about the list are the “universal machine theorem” and the “S-m-n”
theorem (so called for Kleene’s original formulation). We state these theorems for
the simple case of one argument functions.

TaEOoREM 2.1 (Universal machine for one argument functions). There is a
¢’ such that ¢.0 G, x) = ¢:(x) for all § and all z.°

THEOREM 2.2. There is a function o ( ) such that ¢;(i, z) = ¢si.0 (@) Jor oll x, 7.

1t turns out that these two simple theorems serve to characterize any list, {¢;( )},
of ®® which arises from any formalism which can be recursively translated to Gs,
and to which G; can be recursively translated. Such indexings of ®® arc called
acceplable, i.e. & mapping ¢, ¢: & — ®®, is acceptable iff it satisfics Theorems 2.1
and 2.2 (generalized to # argument functions). See Rogers [24] for an account of
these indexings.

The time measure of computational complexity, T = {i$:( )}, is conveniently
thought of as the list {#$:( )}. Two critical properties of the list are the following,.

THEOREM 2.3. ¢,(x) | (is defined) iff tb: () | (ds defined).

TuronEM 24. There is a recursive predicate M, ( ) such that

A{t(ir &, y) ’lﬁt¢1(£€) =

These two theorems are left to the reader, The first one is trivial and the second
says that to tell whether i, (x) = y we need only use the universal program known
from Theorem 2.1, ¢,°, to run ¢; for y steps and determine whether the computation
has halted.

It turns out that these two theorems serve (o characterize the notion of computa-
tional complexity in a very fruitful manner. We call a list {me;( }} an abstract {or
Blum) compulational complexily measure iff

Al ¢i(z) | it mei(z) |,

A2, There is a recursive predicate M, ( ) such that M. (3, z, y) iff me,(x) = y.

See Blum [1], Borodinu [4], and Hartmanis and Hopcrolt [13] for an acecount of thig
theory.

3. Bubrecursive Programming Languages

3.1. LanguackE DerinrrioNn. We consider three subrecursive languages, Al-
gol-R¢', SR, and Loop. For the first language, we need the mechanism of primitive
recursion. Given functions () € .2 and g( ) € F. and T € ", then f() is

" We think of lists as including funetions of any finite number of inputs, but we usually want
only the one argument functions, (i.e. the ¢; have only one input variable specified, usually z}.
Therefore, we think of the list as containing n-argument functions for all n from which the sub-
list of n argument functions for fixed n can be effectively cxiracted, and we use the same nota-
tion for both lists unless this will be confusing, in which case we write ¢,* indicating n argument.
¢ i(x) = ¢2(, v) means ¢:(z) | iff ¢, ) | and if ¢:(x) | then ¢:(x) = ¢.(;, 2).
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defined from g ( ), 2( ) by the schema of primzfeve recursion, Ry, iff

JIZ, 0 =) )
VX, n + 1) = &, n J(X, n))

or, written as a conditional cxpression,

fIX, n) = (ifn = 0then g(X’) clse h(X,n = 1, [(X, n = 1))

Ry

This schema Ry is but one of the infinitely many possible ways (o write an ex-
plieit recursive definition which is guarantced to define a total function if A{ ) and
¢( ) are total. It is, however, general enough to permit nearly all forms of recursion
which arise naturally in mathematics.

We now define the subrecursive languages.

DO
(1) Algol-Re's  [d5,Py, |, (] ),($),END,E,RY]
DO
(2) SR [AE,P4: ~L 7(‘1 ): Olro:ENDyE]
DO
(3) Loop: (+1,0,( ),END]
DO
4) Loopmin : [+1,0,END]

The semantics for these languages is again given by regarding each statement
type as an abbreviation for the equivalent G; program. These abbreviations were
supplied in defining the statement types in Subsection 2.3.

The Loop languages are due independently to Ritchie [19] (Loop)} and Minsky
[21] (LoOpmin). They are based on ideas developed by the logician Robinson [23].
It is easy Lo prove that the Loop languages are characterized by the primitive
recursive functions, &'

@' = [+1,0, US"; Os, Ryl

where U (z1, -+, Zn) = 2¢. For more on &' see [11, 14, or 23].

Taeoreym 3.1, Loop and Loopps, are characterized by ®'.

Proor.  Sec [19 or 21]. We shall sketch a proof of this in Section 4.

Both SR and Algol—Ro1 are also characterized by ', We show the “hard part”
of this (Theorem 3.2) and leave the other as an exercise. It would be interesting to
formulate a natural version of subreeursive Algol which allowed full recursive pro-
cedures, rather than explicit reecursive procedures, and which was still characterized
by &

3.2. TraNsLATING INTO LooP

TeEOREM 3.2. SR is characterized by &'

Inscussion oF Proor.  The idea is to show that SR can be translated into Loop
in the sense that for every SR program = there is a Loop program, p;, and

*:Tr(xl, --',In) = pi(wh ---,:cﬂ)

forall 2;, - -, z, . Since the meaning of the statement types in both SR and Loop
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are given in terms of Gy, the precise verification of » can be done in G; where the
semantics are manageable (and standard in the literature, especially [9 or 21]). We
shall often leave to the reader the final detail of verifying this G; level equivalence.

The proof is given in threc parts. First the operations and predicates of SR are
reduced. The reduced language has the form:

DO
(+1,0,0,=0, l )(wl' ))OhO:END:E]

Next the conditional & is reduced to ¢, computed go to’s are reduced to go to’s
and proccdures are eliminated. This leaves the language

DO
[+1,0,0,=0, | ,$LEND]

The final, and hardest, phase is the elimination of all go to’s and conditionals. This

DO
iz done using the END statement as a switch to “shut-off” statements under appro-
priate conditions.
We absorb a proof of correctness of the translation into the construction itself,
This is done at the end of each phase.

ProorFs.

DO
Phase I. 'We define all operations, Ag, in [4+1,0,END]

(1) First X <Y becomes X « 0
DOY
X—X+1
END

(2) Then Z+—Y -1 becomes S0
Z+—0
DOY
Z— 8
S—8-4+1
END

(3) So Z+— X+4+Y becomes Z—X
DOY
LZ—Z4+1
END

4) And Z <+ Y -~ X becomes Z« Y
DO X
Z—7 =1
END

{5) Then Z— XY becomes Z — 0
DOY
Z«—7Z+ X
END
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6) And Z+- X + Y becomes S+ X
Z—0
DO X
S§«—8=7
B+ 0
DO S
DOY
B0
B—B+1
END
END
DO B
Z—Z+1
END
END

(where B = 1iff § > 0s0 B is simply a “‘switeh” which allows Z to increase only
while ¥ can still be subtracted from 8, thus Z counts the number of times ¥ ean
be subtracted from 8 as long as ¥ > 0).

The reader can verify that these Loop programs are equivalent to the usual inter-
pretation of the operations (given in Subsection 2.3).

We next show that the relations # = % and v # w can be replaced by relations
=0, u 70

Notice, X = Yiff X -~ ¥Y)+ (¥ = X) =0sowhenever X = Yor X = Y
oceurs compute:

7) SeX=VY
Soe—Y = X
S — 8+ 8

and test § = 0 or 8 = 0 respectively.

The replacements described in phase I are used in translation as follows. Given
7 € B8R, lind variables S, 51, 82, 8 not in = and replace each assignment statement
of 7 by the Loup code. Before each conditional which tests v = w (¢ # w) place the
Loop code (7) and move the label of the conditional to the first statement of (7),
and change the relation to 8 = 0 (S = Q).

Phase II. Whenever, if p then s else s;, is encountered it can be replaced by

(1) if p then s
82

So, the new program obtained this way is equivalent to the original.

A computed go to, go to +X, can be replaced by a sieve of go to’s. First notice
that only finitely many of the values of X can make sense, say 1, - - -, m. Therefore, go
to +X can be replaced by

(2) f X = 1then +1
if X = 2then +2

{fX = m then +m

where X = 1 ig provided for by setting a certain number of variables to constants
at the beginning of the program, e.g. set N = m by
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ATm — 0 .
Npe— Np + 1
: m times
Npe—No+1

Function procedures are treated as “macros.’”” That iz, whenever an f-assignment
statcment, ¢ «— f(y1, -+, ), 13 encountered in a program ¢ is replaced by the se-
quence of statements

3) 1
V—
By

The code TI; is obtained from the function definition of £, f(xz, -+, z.) = I,
as follows. Delete the 1/0 eommands. If wy, ---, w, are the variables of 1,
with IN w;, -+, wi,, and #;, ---, v, are the arguments of f in the f-assignment
statement (in ¢ ), then put the » statement wy, <—v;, § = 1, -+ -, , at the beginning
of II;, and make all other variables of IT; disjoint from those of ¢. Let w be the out-
put variable of I, . Move the label of v «— f(z,, -+, va) in ¢ to the first statement
Of ﬁ_f .

Sinee we are assuming that all work variables of function programs are initialized
to zero from outside the program (see Footnote 4), we must restore the work vari--
ables of II; before we leave it. That is what the Instructions of B, do.

Now when control reaches v «— f{v1, - - -, v,) in ¢, the computation I (u1, - - -, v5)
occurs and its value is placed in ». No other variables of ¢ are changed. In the new
program, when control reaches the first statement of I1, it causes the computation
of TI; . This computation does not affect any values of ¢ other than » and before any
statement of ¢ can cause a return to fI,, all work variables are initialized so that
Oy, -, @n) = Oela, +--,xp) forallz, -, 2.

This argument can be made precise by appealing to formal semantics for G;
and proceeding as in Elgot and Robinson [9]. However, we feel that this informal
treatment does not omit the essential ideas.

Phase III. Cur goal is to remove all go to’s and conditionals. It is by no means
obvious how this can be done, but we can simplify the matter by concentrating on
one type, conditionals. Notice that by using a variable like &, (recall Ny = 1) we
can replace go to +c¢ by “if Ny # 0 then + ¢” (abbreviate this by {>,4); further-
more, we can restrict consideration to conditionals with the predieate v = 0. Simply
replace

!l ifv = 0 then +c¢ by {if v # 0 then 4-d
go to +¢

where -+d refers to the statement after go to +e.
DO
We arc now coneerned with showing that Loop™ = [++1,0, {41, ENDJis cquiva-
DO
lent to [+1, 0, END] = Loopumi.. Given 11 in Loop™, suppose there are m con-
ditionals. For each of them pick a variable, H, , not in I, We form a switch, SW (i},
te put around certain statements of II. The switch around statement s,

Journal of the Asspeiation for Computing Machinery, Vol. 189, No. 8, July 1972



Subrecursive Programming Languages I: Efficiency and Program Structure 541

SW(H)
[

3
is defined by

S0
DOH
S—0
S—8+1
END
DO S

5

END

The operation of the switeh is simple; if 7 = 0, then s is not executed because
Sis0. If H > 0 then 8 = 1 and s is executed exactly once.
The conditionals of II are removed in steps. Let their arder of occurrence in I1 be

L:if o &£ O then + ¢
I; :if #3 # 0 then + ¢

Z.,',, :if v, # 0 then + cn
Replace {; by

DO th
Hi—0
END

Il statement % is at location -+ ¢, then replace & by the pair H, — H, + 1; §,
and move the label of § to Hy — H, + 1.

Now put the switch SW (H,) around every statement of II and cvery statement
in the scope of all DO-loops in II except the two just modified. Move labels of state-
ments to first statement of SW (H,). Call the resulting program II; .

Now treat IT; as IT and repeat the proeess for I;. Call the resulting program 115 .
Notice that all original statements of II except [; and § have around them a double
switch,

SW (H,)
[SW (Hy)
[
The statements & and DO », ; H, «— 0; END only have the single switch SW{H,).
Continue in this manner producing Iy, Iz, - -+, II,. Now prefix to each I; 2m

gtatements which Initialize the switches:
He0, Hi—H,+1;, Hy~0;--- ;H,«— H, + 1.

Still call the resulting programs II; . Notice that IL, belongs to Loop. We claim that
the TI; are all equivalent. The intuition behind the equivalence is that when a
conditional causes control to “branch” or “jump,” the switches are all turned off
{set to 0) and no statement of IT is executed until they are turned on again. This
happens only at the location to which control branched. It is important that this
location be aceessible from the conditional without the use of further branches
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because they are all turned off. Because the branch point lics below the conditional,
it is s0 accessible.

Notice that the theorem eannot be true for the language GR which differs from
SR only by the inclusion of backwards branches, T and (7). We see from the
above intuitive argument why this translation would fail for GR, namely there is
no way to reach the location which turns the switches back on again,

We now offer a more precise proof that Phase 1T is correct, We prove for all »
that II, is equivalent to IT,,;. Let “if v 3 0 then +¢” be the first conditional of 1T,
{if therc is none, then IT, = II,.; and we are finished ). Call it s. Let 5 be the staie-
ment referred to by 4+ ¢.

The two statements, s and §, can be separated by 0 or m > 0 END statements
not matched with DO’s (m indiecates the depth from which ! is branching ). We prove
the result by induction on m.

For m = 0 the program II,, has the form

R

B

t4

where A, B, C are blocks of statements and where the box around s, # indicates the
outer boundary of any loops containing them (this description is not vital to the
proof, but hopelully it is helpful).

The program II,.; has the form

SW(H) ..
- enlargement of
U_ switch portion
o He—H+1

\_ R
]

where 4, B, € are the blocks 4, B, C with the switch, SW (I7), installed.

Before control in II, reaches s, the programs I, and 1, bchave identically
since H > 0 and the switches have no effect. When II, reaches s, if the branch is not
taken, ithen H remains 1 and the programs operate identically. Tf the branch is taken,
then IL, jumps to § skipping over B. Control in 11,4 proceeds through B downward
to f «— H 4+ 1. But no statcments of B are executed since they are all protected by
switches which are set to 0. Once H « II + 1 is executed, the switches are restored
and ¥ is executed. So IL, and IT.4: arc operating identiecally again and the result of
each computation on the variables of II,, between s and 3 is the same. Thus the com-
putations produce identical results on outputs {on all variables of IT,.), and the case
m = (0 I8 proved.

Assume the theorem is true up to m. We prove it for m + 1. We actually assume
the stronger statement that the computation is identical on the (explicit) variables
of IT, (but not necessarily on the loop control variables of 11,.).
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The ecritical piece of IT, has the form

and II. 1 has the form

Asin them = 0 case, as long as // > 0 the ecomputations run identically. Suppose
the branch is taken at s. Then in II,,, control skips to § leaving all the loop eontrol
variables and explicit variables of II, unchanged. In .1, # Is set to 0 but control
continues in the loops until it eventually exits to the ovutermost loop whose END-
statement separates s and §. At this point, the variables of II, and II.4: have the
same values (by the induction assumption).

When control reaches DO v, (the test, if &, = 0 then —__ in the implementation of
the DO-loop ), no statements in the scope of the DO ¢, are executed because they
are all protected by the switeh, SW {(H ). Thus after at most #; iterations control
passes to A and then to H <« H -+ 1 without changing any (explicit) variables of
II. . At location 8 the H is restored to 1 and the programs II, and I, have had the
same effect on the variables of II,. The only difference is that all loop control
variables of 11,4 in the scope of DO » are at zero but those of I, have positive
values.

Thig difference ecan have no effect because if control cver returns to DO v, in
either 11, or IL..1, all loop control variables in its scope will be reinitialized to values
of the {(explicit) variables of II, . Il control does not return to DO »;, then those
loop control variables eannot affect the (explicit) variables. Hence, in either case,
the (explicit) variables of I, and I,y remain identical throughout the computa-
tion. Henee, I, and I, are equivalent. QD

This coneludes the prool that Phase III ig correct. The entire translation of
I ¢ SR to 7'(I1) € Loop has been broken down into phases;

T() = T:(To(T1(11))), SR 3 I — 71 (1) — T=(I) — T:(11) € Loop,

and each phase has been shown to preserve equivalence.
Thus M {xy, -+ ,2.) = T (&1, -+, 2,) forall z;. Q.E.D. (Theorem 3.2)
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4.  Preleminary Theory

In this section we prove a set of theorems which leads to a decper understanding of
the main results on efficiency in Section 5. The ideas and proof techniques used here
are essential in Section 5, and the main purpose of this section is to present those
ideas systematically. The fnal subsection, Subsection 4.5, connects our resulls to
well-known facts about subrecursive hierarchies,

Central to the pertinent set of results is a simulation theorem. It has the flavor of
those theorems which locate small universal Turing machines in the sense that it
describes a simple structure for universality. The theorem is due to Meyer and
Ritehie [19].

4.1. DrzptHoF NESTING IN LooP Proarams.  Let L, be the elass of Loop programs
having DO-loops nested to a depth of at most #. Moare preeisely, Iy has no DO-
loops and for Il € T.oop, IT € T, iff 1II € L, or the only programs in the seope of
iteratives are programs in T, .

Thus if 1I represents a program of Tg, B, a program of T, and 4, a program of
T, we see that any program in L, has the form 4, ; - - - ; A, where A, is of the form
DO v; By, -+, B,,; END or of the form B; or I, and B; has the form DO »; IT;
END or the form II.

The same rules can be used to define the classes SR, and GR,, .

The class of functions computed by programs in L, is denoted by £, .

4.2 SivvnaTioN. If a; is an Algol-R program, then we know that it has an
equivalent (i3 image under translation, say ¢ . Therefore the simulation theorem
we state is applicable to Algol-R (henece GR) as well as G;.

Trrorev 4.1. If ¢, € Gy, then thereis a o.F ¢ L, such that do) as defined by (the
translation of the GRp program.)

H«—1

DO WHILE H # Q
¢

END

7s equavalent to ¢, i.6. D () = by ().

Discussion oF THE Proor. Qur proof is based on the ideas of Theorem 3.2.
Because of the DO WHILE loop, the backward conditionals can be eliminated in
the same manner as the forward eonditionals. The variable H remains 1 until ¢:
halts (if ever), so essentially the DO WHILE loop “runs a simulation of ¢; until it
halts.”

The only technical details are showing that all of the steps of Theorem 3.2 can be
done with only one level of nesting. The switches and subtraction are the only steps
that necd to be modified from the approach of Section 3.

Proor. Reeall that the program ¢; halts by executing an output statement (or
by branching to a nonexistent statement immediately after executing an output
statement ). Replace OUT w by the pair of statements I < 0; QUT w and move the
label of OUT w to IT « 0 (then relabel the entire program to keep it in standard
form}.

Now apply the Phasc IIT translation of Theorem 3.2 to the modified ¢; and call the
result ¢:". Observe that I — 1; DO WHILE H # 0; ¢;"; END is equivalent to ¢:
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for the reasens given in the correetness proof for Phase T11. In partieular, for the
case of a backward conditional, if v # 0 then —¢, after setting the switeh correspond-
ing to this conditional, control will proceed downward to the END statement and
then will return to the beginning of ¢, and flow down to the label ¢ without changing
the explicit variables of ¢; nor .

To put ¢t into I, we need to modify the use of switches. The nested switehes

SW(H,)
SW (H.)

SW(H,)
!

can be replaced by the single switeh,

SW(H,, -, Hy)
E

defined by

P V(Hl,Hz, "',Hﬂ)
S«—20

Da P

S0

S—8+1

END

DO S

&
END

where V(Hy, ---, Hy) 18 0 if any H, is 0, and is positive otherwise. The code for
one such funetion is:

P<—H1
DOP
P« H,
END

DO P
P—H,
END

Thus the whole multiple switch, SW (H., -- -, H,), belongs to L. If the state-
ment sis¢ < v 4 1, then SW(H,, -+, H,)isin In. Butifitiso «» = lorif
v # 0 then ¢, then the previously given Loop replacements cannot be used with this
switch mechanism. Instead use the following, For

Sw (le "':Hn)
Y X =1

Journal of the Association for Computing Machinery, Vol, 19, No. 3, July 1972



546 R. L. CONSTABLE AND ALLAN B. BORODIN

X0
[S_W(Hl, o H)
X— X

Z—0

DOX

X—2Z
Z—Z-+1
END

and for

SW(HJ) "'nHﬂ)
| h = if X # 0 thenc

notice that it would, zecording to Theorem 3.2, become

l]l SW(H],"',HH)
DO X
H1<—-'0
END
It now becomes
11 H X-‘—— 0
[S‘V(HI; e 1Hn)
XX
DO X
H—D0
END

These are easily seen to have the same effect, and they are in L;. Let ¢;,* be the
program ¢:" with the above replacements. Then, since ¢:." and ¢ are equivalent,
the result follows. Q.E.D.

An interesting corollary follows from this theorem. Suppose {¢;(zr, -, @) <
flx, - a2, for f € L,, where n 2 2. Then the DO WHILE iterative in Theorem
4.1 can be replaced by a simple DO S8, where § is larger than the time needed for
&;* to simulate ;. This simulation time is no more than the maximum of the input
variables times a multiple of the length of ¢, , denoted | ¢; |, plus a constant.” Thus
for d = a-{ ¢:| + b, the time to simulate is bounded by d-max{z;, ---, Za}
flay, -+, x.) whichis bounded by b (21, « -+, &) = d- Jora Zi-f (@, - -+, Ta). If
f()isin L, then sois 6 ( ). Suppese it is computed by By € L, .

The idea now is to use a program like

B,
S—~F
He1
DO S
o
END

" The length of ¢: is simply the number of statements in ¢, .
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to simulate ¢; . The only difficulty is that 8 is only an upper bound on #¢; (zy, - - - , s )
and ¢;* may “run too long and damage the simulation.”” We correct this problem by
setting a switch based on . Then when H = 0, no statements of ¢;* will be executed.

So let ¢! * be ¢, with H as part of all switches, i.e. replace SW (H;, ---, H,) by
SW(H, H,, ---, H,). By the same reasoning as given in detail before, the following
program is equivalent to ¢ .

B,
S~F
H«1
DO S
o
END

But also the program belongs to L, if » 2 2 because the maximum nesting occurs in

computing f(z1, - -, 2a). Thus the following result.
CoroLLary 4.1. Theredsa p( ) € Re such that if ¢; € Gaand lp; (21, -+ , &) <
$;(x1, -+, 20) and @; € L, for n = 2, then there is a program ¢u.p i Ln which is

equivalent fo ¢; .

This corollary was first proved by Meyer and Ritchie [19]. For the language SR,
the bound can be made tighter because the switches and the simulation of =1 are
unnecessary. Thus by the same reasoning as above.

THEOREM 4.2. There is a p( ) € ®Ro such that if ¢; € Gy and tgi(x1, -+, Xa) <
6;(T1, -+, 2a) and ¢; € SRy for n 2 1, then ¢pii. ;) € SEeand ¢pii () = ¢:( ).

Proor. We describe the construction of a function ¢; ™ € SR, for which

INX

He1

DO WHILE H # 0
o

END

ouUT vV

is equivalent to ¢;. From the construction and the arguments of the previous
theorem, it will be clear how to prove this equivalenee and complete the theorem.
We now give the construction of ;™.

(i} Place at the beginning of ¢; a computed go to, go to + G, where G is not in
¢: . This will be used in executing backwards go to’s of ¢ .

() Assume Y is an output variable of ¢; and that OUT Y is the last statement
of ¢:, and | ¢; | = [, then replace OUT Y by the pair, H «— 0; G < ! + 2. These
statements have labels { + 1,1 4+ 2. The statement ¢ «+— I 4 2 forces all subsequent
executions of “go to -+ (7 to branch back to <+ I + 2, thus setting up a loop
whieh bypasses ¢ .

(i) Replace every backwards go to, say “go to — C,” by the pair G « m;
goto + (I 4+ 3), where m is the value needed to jump from go to + G to the state-
ment —C' (and { + 3 refers to the location beyond the last statement of the pro-
gram ¢ modified by (i) and {ii)}.
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This is the best possible n for a result of this type because we ean easily find ¢;
for which f¢; is bounded in SRy, but there is no equivalent SRy program.

43. StrreTural CoMmPLEXITY CrassEs, The relationship between ™ Theorems
4.1 and 4.2 is explained by the faet that S8R, and L, compute the same class of
funetions. We say that two languages, £, £, are equivalent, £ = E, whenever they
compute the same class functions. Thus we prove SR, = Loy .

THEOREM 4.3. SR, = Lnja.

Discussion oF THE ProoF. This result depends on two critical bounding
lemmas which estimate the growth rates of functions in terms of their depth of
nesting and length, We shall state these lemmas here and prove them in the Ap-
pendix. To state them we need two recursive sequences of programs.t?

(1) LetfybeX ¢~ X + 1land fo;:be DO X;f, ; END.

(2) LetgobeX «— X -X and gny; be DO X; g, ; END.

Let fa{ ), g-( ) be the functions computed by f» and g. respectively. Natice that
fol2) =&+ 1, filz) = 22, fo(x) = 2%z and go(z) = 2°, 1(a) = 2% The standard
mathematical definition of these functions is in terms of #eration. Namely, for any
() € &y define A%(z) = x, ™ (z) = A(A™(2)). Then notice that fu () =

P(z) und gasa(z) = ¢57(x). (The notion of iteration is extended to vector valued
functions in the Appendix.)

Also notice that ¢1( ) and f£( ) have the same order of growth (this will be
made precise below). This is the essential reason that SRy = L, . Likewise ga( )
and f$%4( ) for some p have the same order of growth.

Furthermore, f, € L, and g € SR, . The following additional facts about f, and
g~ are needed and are easily established by routine inductive arguments. They
simply say that f. , gn aTe monotone when © > 2.

LeMMma 4.1

(a) falx) 2 x, gnlz) 2 2 foralln, all 2.
(0) fa(x) > x, galx) > zforalln,oll z 2 2,
{c) fa(x) € fulz) foralln < myallz > 1,
gu(x) < gulz) foratln < m,allz > 1.
(d) folz) < fm(x) Joralln < m,ellzc > 2,
gala) < gu(x) foralln < m,allxc = 2.
(&) fu(x) < fulz + 1) for all n, all z,
ga{x) < golz -+ 1) for ail »n, all z.

We now state the critical bounding lemmas.

Lrmma 4.2 (Bounding for Loop). If¢i € L and ¢:( ): N — N°, then for all
j =1 :P7¢i(5§)i an(\'hl) (maz Zi) ’Lfmaxfé 2 2,
where T € N”, and max T = maz (&1, -+, Za}-

Lemva 4.3 (Bounding for SR). If ¢; € SR, and ¢:( ): N" — N7, then for all
J=1, -, p¢(E); < g " (max T) if maz £ > 2.
These lemmas simply state the fairly obvious fact that f. and g, are the fastest
growing programs in L, and SR, for thetr size. The details, like using vector valued
funetions and requiring max > 2, fall out of the proof technique. The first is a

1 Such sequences are examples of spines and are important in subrecursive hierarchy theory.
They are discussed in [8].
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convenience, the second is because when # = 0 the “loops do not work,” and when
=1 z-x =z

One more lemma is required before we can prove Theorem 4.3. We must point
out that the classes 1., and SR, are “closed under the step counting operations.”
More precisely, given ¢; € L, we must show that ip; € L, . As presently defined,
1¢; does not have this property, so we modify the definition for ¢; € Loop.

If ¢ € Loop, then define ig; as follows:

(i) Pick a variable S not it ¢; and place S « 0 before ¢, .

(i) Place S«— S + 2(8 < 8+ 1;: 8+~ 8 + 1) after S « 0 {this counts
the steps needed to define the work variable of G; programs used to translate go
to’s).

(iii) After each assignment of ¢;, place § — 8§ + 1.

(iv) Before each DO v, place S — S + 1 (to count the loop control variable
initialization, # «— v).

(v) After each DO v, place 8 «— S 4+ 1 (to count the conditional, f & #= 0
then }.

(vi} Before each END, add 8 — 8 + 1 (to cover # — ¢ = 1 and the go to).

(vii) After each END, add 8 «— S + 1 (to cover the conditional branch, if
v # 0 then , when exiting the loop}.
(viii) Replace OUT w by OUT 8 (thus S, the number of steps, is the outuput).

Call the resulting program t¢; . To be precisc we should prove that the new
definition of fg; agrees with the old, but this should be clear from the construction
and we accept it as proven.

Lemma 4.4, If¢, € L, then tp; € L, .

Proor. None of the steps (i)—(viii) increases the depth of nesting.

An easier construction can be given to define tg; for ¢; € SR such that

Lemma 4.5, If ¢; € SR, then ip; € SR, .

Proor. For the rcader.

We are now ready to prove that SR, = L.y .

Proor or TueoreM 4.3 ForR 2 = 1. We prove the result in detail only for
SR; = L.. The genceral case follows by similar argument (slightly more complex
treatment of fropa( ) < gu( ) and goir( ) < FE()).

(1) SR, € L. According to Corollary 4.1 we need only show that ¢; € SR,
implies t;(x) < f(Z) for f € 1.. But ¢; € SR, implies t¢; € SR, by Lemma 4.5
and (%) < ¢i"*" (max F).

But notice that g1(2) = 2™ < 2°°%9". 2 = f,%(x) if £ > 2. Thus

to(F) < L5 (max F 4+ 2) < L 4 -+ o+ 2),
The program for £, (&, + -+ + . + 2) is simply

| X=X+ + X+ 2
e

i D02 g

L

where X «- X; 4+ -+ + X. + 2 is implemented by
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X0
DO X,
X—X+1
END
DO X,
XeX+1
END

DO X.
X—X+1
END
X«—X+1
X—X+1

Sofi?(zi 4 -+ + %» + 2) can be done in Ly .

{(2) L; € 8Ri. We argue in an exactly parallel manner ag for (1). In brief
é: € L, implies l¢; € L, implies ¢:(Z) < fi"**Y (max & 4+ 2) but fu(z) < @u(x)
forallz > 2. 8o

toi(%) < gi* (@ + - + 2+ 2),

and the rhg is clearly in SR;. Q.E.D.

This theorem suggests that the eclass of functions computed by SR; and L. might
be fundamental. The clags turns out to be one which is important in logic and which
has been extensively studied, namely the clementary functions, &.

44 Tue EuemENTaARY Funcrions, & This class is defined algebraically as
follows. Introduce the operators for Z € N

(1) 2°: partial summation: 8(Z, ) = 2ieaf(4, ).

(2) [I: partial product: p(F, y) = |4 f(4, T).

(8) u<: bounded least number: bz, y) = {uz < y[flz, ) = 0),
! 0 if no such z exigts.

The functions s( ), p( ), b( ) are said to be obtained from 7( ) by 2, II, u<
respectively.

Let zx+y denote z¥ and then in the notatien of Subsection 2.3, item (6), define
& = [+ 1,;1301_‘_’;:':+’**;03)MS]-

It is proved in Grzegorezyk [11] that:

TueorEM 4.4. & = [+1,~1,0,+,~,+;0s, 2,11}

We can easily show:

TeEOREM 4.5. & C 86, .

Proor. The base functions except for *x are in 86 since there is a basic S8R,
instruction for each. Yor Z « XxsY use Z «— 1; DO V; Z « Z.X; END. The
closure under Os is contained in $®; because the operations of substitution corre-
spond to composition of programs. The only remaining task is showing closure of
86 under u<. This cannot be done directly by simulating, p<, with a DO-loop,
because the loops cannot be nested. The strategy is to write Gs-programs for p<
and show that the run time can be estimated by gi” (z + ¢) for some p, ¢. Then ap-
ply the simulation theorem, Theorem 4.3.

Suppose for induction on the number of applications of u< that ¢,( } computes
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() and tg;(x) < gi”(x + @) for all . Let ¢:(Z, y) = wz < ylf(F, z) = 0]. Let
¢; have inputs xy , - - - , Tw Z and output W, then let ¢; be the G, program for

INX;, -, X,,7Y
2«0
DOY +1
b
if W =0thenl
Z—Z+1
END
Z—0
1 Y2
ouTY

The run time, #¢,( }, is bounded by 2 4 sa-t¢,(%, i) + b, thus by
teo a-gi” (max {Z,4)) + b < (y + 1)-ag” (max {7, 9}) + b.
Now (¥ + 1)-a < ¢ (max {%, ¥1), so clearly there exist 7', ¢' such that
(v + 1)-a-gf” (max {2, 1)) + b < of?” (max {7, 9} + o).

Thus by induection, the run time of any ¢; computing a function in § is bounded
in 83, ; 20 (‘,’)I( ) € 8RR, . QED.

The inverse inclugion, 8&;, < &, can easily be proved from a general principle
well known in the literature. We summarize in the next scetion the treatment of
these prineiples given in [8], which is a synthedis of Kleene [14], Cobham [6], and
Ritchie [22], from the viewpoint of functionals (or relative subrecursion).

1.5, ELEMENTARY INDExINGS AND MEeasures, The programming languages
considered here can all be relativized to an arbitrary function j{ ) € ¥ We aumply
allow J 25 a new basic eperation and interpret the assignment w «— floy, -+ -, va)
as: w receives the value of f( ) applied to the values of v1, -+, v, . This simple
mechanism for relative computability is one of the salient advantages of the lan-
guage approach to computability.™

The concept of an acceptable indexing directly generalizes to relative com-
putability, and the time measure, {f;( )}, generalizes directly by counting the
assignment as a single step. We denote the relative indexing of a measure by
{¢/( )} and {6/ )}. General relativized {m¢,’( )} = & measures are defined by
requiring a relativized measure function, M ('}, in the axioms of Subsection 271

We will now outline the approach to elementary measures given in [8]. First we
define the (relativized) computation predicate, T ). This is also known as the
Kleene T-predicate (see [14]).

(1) Thys (4, %, y) iff y is the number of a terminating computation of program
¢/ with £ € &™® as inputs. Also write comp’ (i, 2) = neT(4, %, 2), called the compu-
lation function.

1 Notice that relative computability is of interest even in a constructive theory if one is not
willing to accept Church’s thesis. In the construetive setting, Church'’s thesis has the character
of a reduction axiom.

2 There is a good deal of interesting work to be done in generalizing the notion [me( )}
correctly.
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(2) Define &(f()) = [+1,=-1,0,4+,~, % ++f( );0s,u<], the functions
elementary in J( ) (or elementary relative to f( ). A predicate P( ) is elementary in
F( ) iff its characteristic function ch,(z) = if P(z) then 1 else 0, belongs to £(f( )).
(3) The Kleene normal form theorem asserts that AU( ) € & and Tha() €
&(f( )) such that ¢/(Z) = U{uyTh2(4, %, ¥)).
(4) An acceptable relativized indexing will be called elemeniary iff (3) holds
for ¢ ( ). A measure, [me;’( )}, is elementary iff
(a) Fr() € 8(f()) such that comp’ (i,z) < h{me(x)) and
(b) ¢/(} € 8(()) implies mgp’( ) € 8(f()).

(A third condition which is natural but unnecessary here is
(¢) M’(), the measure function, belongs to &(f( )).)

It is now easy to verify the following eritical principle. By way of abbreviation
we use ¢ ) < () iff ¢(z) < Y(x) for all z; and if @ & F then write¢( ) < C
iff Ig( ) € cando( ) < g( ).

TaeoreM 4.6 (Ritchie-Cobham). If {¢/( )} and {me/( )} are elementary,
then

me () < E(J()) if &) € &(fON).

Proor. For simplicity, consider only ¢:( ) € ®®; . The “if condition” is imme-
diate from the definition. For the “only if” part, note that from (3): ¢/ (2) =
U(uyT’ (4, 2, ¥)), and since {¢:/( )} is elementary, U( ), T() € &(f()). Since
{me: ( )} is clementary, the y above satisfies y < h(me(x)) for A( ) € 8(f( )).
Define h(z) = 2.5oh(s) + 1; then A( ) < A() and A( ) is increasing. Also,
R() € 8(f()) (reeall Theorem 4.4). Since me’( ) < &(f()), Fg{ ) € &(f())
such that mg,/ () < g(z) for all 2. 80 y < h(me(x)) < h(me:’ () < h(g(z)) and
R(g( ) € 8(f()). Define (4, z, ¥} = U (uz < yT'(4, 2, 2)); then s( ) € 8(f())
and s(—, —, A(g( ))) € &(f( ). Since ¢/ (z) = s(4, 2, h(g(x))), &’ ) € &(F( ).
Q.E.D.

Remark. A class @ satisfying the condition that m¢/( ) < @implies ¢;/( ) ¢ €
is called full wrt &. If also ¢./( ) € @ implies 3p;/() = &/ Yand m¢;/() < €,
then € is called closed wrt .

The statement of Theorem 4.6 is now that “the classes &(f( )) are full and
closed wrt to any elementary measure &', It is an interesting open problem to
find the least closed and full class wrt {6/ ( )}.

It is well known that all reasonable or natural formulations of abstract machine
and language models (c.g. Turing machines, G;-programs, etc.) are elementary as
are the usual measures of computational complexity (time and tape, for instance)
on them. Cobham [6] argucs this explicitly for a subset € of &. & are called the
primary funclions.

The reason for this is that the elementary functions allow most all functions and
predicates which are used in combinatorial description. Furthermore, machine and
language models are intentionally constructed by simple means from simple bases.
We summarize this information as

TarorEM 4.7.  The relativized Gy indexing and time measure, (¢ ( )} and {16 )},
are elemeniary.

13 The historical origins of this theorem can be found in Kleene's treatment of primitive recur-
give functions. N. A. Routledge called the theorem ‘“Kleene’s principle.”’ The exact version
given here was first due to Ritchie [22] and later explicitly discussed by Cobham [6].
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Proor. See Minsky [21] or Shepherdson and Sturgis [26].

This fact means that all the specific languages and measures considered here are
elementary. From this we can easily prove:

THEOREM 4.8. & = 8®;.

ProoF. Again consider only ane argument functions for simplicity. By Theorem
4.5 we need only show that 8®& C &. But if ¢:( ) € $®,, then t¢;( ) € 8&, and in
fact 1:(x) < i"* (& + ¢). But g1 ) is defined in & by the exprossion z#s(2«+xz)
(i.e.z” ), which is clearly elementary. Thus we have shown ¢; € $® implies tg:( ) <
8. 80 by Theorems 4.6 and 4.7, ¢:( ) € 8§ Q.E.D.

It is most natural to inquire about generalizing the equalities & = 8®; = £ to
e(f( ), $8u(F()) and £:(f( )). The classes are all well defined. Unfortunately the
classes are not equal. This poiuts up a deficiency in the I, and 8R; definitions of &.
They do not provide a definition of the relativized classes.

The classes $&;(f( )) and £:(f( )) are not as interesting mathematically as
&(f( )) because they are not as stable; they are not functionally closed, i.e. if
g{ ) € 8®,, 1t is not necessarily the case that 8®:(g( )) C 8®R;.

We now verify the class inequalities.

Facr 4.1, £(7( ) = 8(J()) = &(f()) forallf( ) € Fu.

Take f( ) = f( ), then fi( ) € L:(fo( ) but fu( ) § &(f2( 1), ful ) & 8Gu(fe( ).
Also fs( ) € 8®u(fo( )) but f2( ) € &(f2( )). These observations all follow directly
from the bounding theorems for I, and SR and from the fact that &§(fo( ) =
& = 8% = L. The same observations yield:

TueoreM 4.9. (Grzegorezyk hierarchy).

(1) &(fu( )) T 8(fasa( ) Jorall m = 2,

(i) Uno8(fn()) = s& = &

It can also be shown by arguments similar to those in Theorem 4.3 that:

TaeoreM 4.10. Foralln > 1, 8(fon1()) = 8RR = Loyp1.

5. Compuiational Efficiency and Program Structure

5.1. Reramve Errrciexcy. We know from the work of Blum that the avail-
ability of the “negative go to” allows a programmer to “compress his code,” That
is, GR programs can bec much shorter than the shortest SR programs for some ®!
functions. How does the “negative go to” cffect computational efficiency measured
in terms of running time?

The best result previously known (Meyer and Ritchie [19]) is that if ¢; denote
Gj programs and B; denote Loop programs, then if t;( ) < f5¥( ) thereisa8:( ) =
¢ ) and t8:( ) < fiP( ).

There is, however, considerable latitude among run times bounded by fﬁ.”)( ),
and the previous best result leaves open the possibility that for every (increasing)
primitive recursive funetion, £( ) ¢ &', there exists some ¢:i( ) € &' such that
every Loop program 8; for ¢,( ) satisfics h(te:(2)) < t3;(x) for all # > m for
some 7. That is, some Gy programs may be arbitrarily more efficient than the best
Loop programs for the same function, beeause there might be arbitrarily large
primitive recursive gaps between Gy and Loop run times for the same function. The
main result of Theorem 5.1 shows that there are no such gaps.

To facilitate stating the results of this seetion, let {a;( )} be an indexing of SR
and {8:( )} be an indexing of Loop, and {¢:( )} an indexing of G; . As before, a;,
8; will actually be the Gy images of SR and Loop programs, so {a:( )} and {8:( )}
are sublists of {¢.( )}.
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Yor simplicity, we state the main theorem only for one argument functions.
The extension to multiple arguments is straightforward from the principles of the
Loop and SR bounding theorems (Lemmas 4.2 and 4.3).

Tueorem 5.1 (Relative efficiency). If ¢ € Gy and ¢( ) € ®' and p:(x) = =z,
then there exist ee;, € SR, B:, € Loop and constants c:, , ¢, such that

(a) toe,-l(:c) _<_ c,-l-tqb.-(x) and

a;, (x) = ¢i(x) for all z,

(b) 18:,(2) < ey (:(2))” and

Bi,(x) = ¢:(z) for all z.

The «;, and B;, can be found effectively. More precisely, there exist p;( ) and ¢;( },
7= 1,2 such that if t:(z) < f(x) for all x, then

(@) tagymm(2) € @ld, n,m) -(z) and

cp a2y = ¢:(2) forall = and
Qg (i n,m) € SR“ 1,:f n 2 2.
(b’) tB:Pz(i.?l.M)(x) < 92(2‘) 7, m) "4’!(93) and
Baotin,miz) = ¢i(z) forall z and
Bpatimm € Lnga.
Cororuary 5.1.  The list {a;{ )} can also be taken to be an indexing of (41, 1,0,
DO
(), EXD] and the results (a) and (a’) hold with @p, (i n,my hOving deplh of nesting
n =+ 1.

Discussion orF THE TurorREM. The results say that restrictions on program
structures in going from G; to SR cost only a multiplicative efficiency factor, and
in going from G; to Loop the restrictions cost at most a square. Corollary 5.1 says
that the nonlinearity results only from the eost of simulating subtraction.

Discussion oF T™E ProoF. The idea of the proof is simple. We will use &
Loop program,

DO 8
ot
END

or an SR program,

DO S
¢
END

(just as in Section 4), to simulate ¢; .

The key factor in controlling the efficiency of the simulation is caleulation of the
bound S “in parallel” with the simulation. That is, we construct a ‘“clocklike
mechanism?; the clock will run for exactly f () steps unless it is shut off." The
simulation continues as long as the clock is running. If the simulation finishes
before the elock, then it sends a signal to stop the clock. In the Loop language the
clock cannot stop immediately, there is an overrun factor. Estimation of this
factor is a eritical step in the proof ( Lemmas 5.3 and 5.4).

14 The fact that there is a elock for f#( ) depends on the “honesty’ of the function f.(), ie.
its values are close to its run times.
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The “clock-simulation’ argument used here is typical of a certain class of di-
agonalization arguments in complexity theory (called downward diagonalization in
[7] and diseussed at length in [13]), but it is used for a different purpose here.

Proor. In the first part of the proof we construet one part of the parallel pro-
eedure, the simulation of ¢:( ), and show that it works correctly. In the second part
we build the elock mechanism into the simulation and show why it works correctly.

Part 1:

(1) Given ¢;, construct ¢;* € T, just as in Corollary 4.1 of Subsection 4.2.
Again assume that H does not appear in ¢; . The correctness of ¢; * will follow from
the arguments of Subsection 4.2. This finishes the simulation part for Loop.

(2) Construct an SRy program, ¢;”, to simulate ¢; just as in Theorem 4.2, Sub-
section 4.2 (assume ¢ does not oceur in ¢;). The correctness of ¢;* will follow from
the arguments of Subsection 4.2.

Notice ;" ¢ SRyand ¢7* € L. Now let ¢, denote either ¢, or ¢ *. Then

IN X

H«1

DO WHILE H # 0
&

END

ouTr Y

ig equivalent to ¢; . Our task in the next part is to simulate the DO WHILE itera-
tive by a clocklike mechanism.

If ¢: € Gy and ¢:( ) € R, then for purposes of the theorem we can assume that
there exist n; , p; such that ig;{zx) < fﬁ,‘f")(-x) for all . This is because there must be
some ¢; which computes ¢;( ),1.e. a;(x) = ¢:{x) for all z, and the G; program, ¢,
which simulates the execution of «; and ¢; in parallel and stops as soon as one of
them stops, has a run time which is less than c¢-min(i¢.(z), ta;(z)) for some
constant ¢. So toe(z) < c-t¢:(z) and I, , p; th(z) < F2 ().

Part 11:

(1) Suppose now that i¢:;(z) < ffl’:")(a:) for all z. The goal of this step is to
describe a way to compute the clock in parallel with ¢; and shut it off (without
much “overrun”) when ¢; halts.”” The asterisk: will indicate the critical statement
needed.

* ifH#0then X «— Zelse X «- 0
In SR, * becomes

lif H 5 0then 4 (I + 3) so we get lif H = 0then + (I + 3)

I+1 X0 I+1 X0
I+2 goto+ (I+4) I4+2 goto+ I+ 4)

I+3 X2 1+3 X2

In Loop * becomes

X —0
DO H
X—Z
END

' We need not make the concept of a clock precise here. It is done in (13] and [8].
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Now form a program &;, (if §; = ¢:) or s, (if ¢ = ¢1 ") or 6 for short.
DO X

. N
DOX

DO X
DO X

&
Z—Z+1

END
*
END

*

END _
* T

END
Looking at the innermost loops we see the mechanism in more detail.

DO X,

DOX

&

Z—Z+1

END

if H=#0thenX — ZelzeX—0
END

Observe that as long as H £ ( this program will compute f,.(x) in variable Z, since
the program iz essentially

DO X

y

s

. n; times
DO X
DO X |
Z—Z+1
END
X—2Z
END

i tlines
X—2Z
END

J
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Turthermore, while # > 0 the program js simulating at least one-hall step of
é; every time Z «— Z + 1 is executed. Thus while H # 0 the value of Z indicates

a lewer bound on the number of steps of ¢: which ¢; has “simulated.”
Pi times

f 3
To compute the final result, ¢; (x), form IN X; H < 1;8; %;8;%; --- 1 §;0UT Y.
The result is either «;, or 8;, depending ou 5.
(p;

Now Z will potentially have the value of f% (z). Its actual value will depend
on the value it has when H becomes zero, i.e. when é; shuts off, i.e. when ¢;(z)
halts. In the nex{ step we determine how long a., or 8;, will run compared to ig;.

(2) To caleulate ta;, (x), {8:, (x), four facts are needed about o, and @;, . Let
Dy, -+, Dy, be the loop control registers in § (listed in order with the innermost
loop first). The following hold for all inputs .

LemMa 5.1, Ajfler execuling the tnnermost DQ, al every step of the compulation,
Z2Difori =1, - ,n,;.

LeMMmaA 5.2, Afler the first execulion of the innermost loop, Dy < Z < number
of times instructions of ¢; have been execuled. Also, C-Z < number of steps of ¢
already simulated, for some constant C.

LemMa 5.8, IfH = 0, then al most 3-(Dy + Dz + -+ + Dn,) + n; + Dy
steps can be execuled before & halts.

Lemma 54, Ui H = 0, then the maxvmum value of X s Z.

Using these lemmas, conditions {(a’) and (b’) of the theorem are easily es-
tablished as follows.

(a) Tirst consider ¢;,*. When ¢, halts (ie. I = 0), &7 has been executed
no more than C-fp,{x) steps (“on the average” ¢;" is probably executing nearly
one for one)."’ Thus, when ¢;* halts, H = 0,and D, < X € Z < C-igi(z), by
Lemmas 5.1, 5.2, and 5.4. The total number of steps taken outside ¢;7 is no more
than (4n;)-Z, thus no more than 4.n;-C-tp:(z). When ¢; halts, control is in
some § and will not go into another 8. By Lemma 5.3, § can execute at
most 4-2,’-’:",- D; + »; more steps. So that by Lemmas 5.1 and 5.2, at most
47 4+ n; £ 4-(C-tpi(z) 4 n;) more steps. Therefore to complete the program
we add at most 2.p; more steps in slipping over unused 3's to complete oy, ¢in; 0.
Hence at least

ta.'l(:c) S (40) '(ni + 1)'t¢,‘(27),

where 2 = p1 (4, i, pi).

(b) Now consider the case of ¢f*. Several steps must be executed for each
step of ¢; because the switches must be computed (at a maximum cost of Cy-p
statements for SW(H,, --- , H,)), and subtraction must be gimulated (at a maxi-
mum cost of Cs-v steps where v is the values of the variable being decremented).
In the worst case this added cost is g{z) = | ¢:|-C:- {maximum value of variables
in ¢;in input x) as a multiplicative factor. Clearly the maximum value of variables
ing; onzisx + ig;(x). Thus g(x) < Cy-|¢:|-(x + tp:i(x)). Recall lo:(z) > =
for all z, thus g(z) < Cy-Up:(x).

Now by the same reasoning as in case (a) above, we can conclude

Bi(z) < (4 (ns + 1) -Co-toi(z))  tgi(x),
80 1B, (2) < C- (tb(x))?, where & = po(4, 0, pa).

18 Jf we could count assignments of the type w «— = as = single step, then the simulation is
close to 2-&p:(x).
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To complete each of (a) and (b} we need only prove the lemmas.

(3) The proofs of the lemmus are as follows.

Proor orF LEMMA 5.1.

(1) After the first time through innermost loop, Z = X and no D; has been
increased.

(2) Assume the result true after m steps, to prove that it is true after m 4 1
steps. At each step only three instruction types cun change values, They are

) Di—X
(i) Z—Z+1
(i) DieD;— 1
(iv) X2

Therefore, if I}; < Z at m, then (i) can at worst bring some D; = X which by
(iv) is < Z. The other two instructions can only cause D; < Z. for some j.
Q.E.D.

ProoFr or LEmma 5.2.

(1) Z cannot be increased unless an instruction of &, is exeeuted. Thercfore
Z < number of steps taken in ¢; .

(2) Every step of ¢;" either directly carries out a step of ¢, or else carries out
the step of ¢; after one loop and C extra steps, thus after increasing Z. Thus C-Z <
number of steps of ¢; already simulated.

(3) The argument for oi” is similar to 2. Q.E.D.

Proor or LeMma 5.3.

(1) If I = 0 then by the * statement, the only value that can be assigned
to D;is 0. Also when D; = 0 then the only statements execuied in the Dy loop
are “Dhyy e« Dy~ 17, “go to " and “if D; # 0 then " so that after
3-Dyy steps, Dy = 0.

{(2) After Dy =0,then3D: + 1+ 3D, + 1 4+ --- + 3D. steps are executed.
Dy may execute 4D, steps before being set to 0 (the “go to G is also executed).
Q.E.D.

Proor oF LEmya 5.4. Trivial by examining *. Q.E.D. (Theorem 5.1)

Diseussion.  The estimate produced in the proof is very crude. There are two
basie factors influencing the cost of o, , 8iy:

(A) simulation time, the cost of

DOV
é:
END

and (B) clock time. The clock time, (B), has two subcosts: (i) eomputation time
while the cloek is still needed, and (il) overrun time, the time the clock keeps
running after it is no longer needed (after ¢, halts). The cost of (i) is inescapable
but is minimized by computing it in paraliel. This cost is reflected in the factor
4n,-Z, the time spent outside of ¢;. Notice that the (B) ecost depends on n,, an
index reflceting the complexity of the clock. The cost (i1) can he eliminated in
the ease of SR and it will allow us to reduce the value of the constant C; in (a).
This is done by placing “if H = 0 then + d” immediately after “H < 0" in
¢, where +d refers to the cutput statement which is outside of all loops.
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The simulation cost {A) depends on the “structural complexity” of ¢; measured
in terms of the number and distribution of negative go to’s. The value of Z, which
determines the nondireet simulation cost as well as the clock cost, actually measures
the number of times that negative go to’s are executed. Thus if there are few
negative go to’s, then t¢;7( ) and {¢;( ) may be very close. The topic of structural
complexity and efficiency will be discussed further in Subseetion 5.3.

In comparing the structure restrictions on «;, and 8;, we see that 8, has a larger
nesting complexity than a;, . Furthermore, if t,(z) < £,'”(z) for all z and n > 2,
we know that there is a 8; € T., for ¢.( ). How does thc efficiency of 8; ¢compare
with that of f;, 7 We can say the following.

TaroreM 5.2. If ¢ ) € ® and tp(x) < P (2) for all x and for n = 2, then
38; € L such that 8;( ) = ¢.( ) and

1B;(x) < s(max{z, tp:(2)}) for all z,

where s(x) = 2% .
Proor. Replace the two lnnermost nested loops of the program 8; of Theorem
5.1 with

DO X

*
DO Z
4Z—2+1
END
Iy
‘ *

' END

The resulting program has nesting n as desired, and 1ts run time behaves as claimed
for reasons similar to those detailed in Theorem 5.1. Q.E.D.

This theorem illustrates another aspect of the trade-off between structural and
computational complexity. In summary, the theorems of this section have de-
termined the cost of putting programs into certain normal forms or restrieted forms.

5.2, Minimum Growth Rates. The main theorem was proved with the restriction
that {¢i(x) = x for all x. This restriction is necessary because Loop programs con-
structed as in the proof eannot run in less than z steps. For GR functions, running
times below x are possible if the base functions, Ag, are all ussigned a cost of one
step. However, all languages mentioned, G; , GR, 3R, Algol—Rol, and Loop, have a
strong minimum growth rate in the following sense: there is a recursive monotonic
inereasing funetion A( ) such that if lims.. inf ¢.(x) = =, then tg;(x) = A(z) for
all 2 except possibly those in a finite set I¥ (write e.f.s. for except on a finite set). That
is, if the run times grow, they must grow at least at the rateof A( ). Given a strong
min growth rate A( ) for the general recursive language GR and the time measure,
we know:

CoroLLARY 5.2. There is a recursive function At such thai Jor all ¢,( ) € @'
there 45 an a;( ) = @i ) such that ta;(z) < X' (maz|z, P(2)}) for all z.

TuroreM 5.3. (IR and (5 have strong minimum growth rates.

Proor. We prove first that Gs has a strong min growth rate A;( ) and then show
that growth rate in GR can be bounded in terms of X; .
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(1) The strong minimum growth rate for G; is A;(z) = z. To prove this, con-
gider any one argument G; program ¢; (suppose input is X, output is ¥). To de-
termine the minimum growth rate we ask how few steps ¢, ean take on input = and
still have a growing run time. This can be estimated by working backward; given a
run time value, #p:(z) = k, how large ean = be?

If i¢«(x) = k, then we can write down a finite tree of all possible paths of exceu-
tion of length k (if there are no conditionals, then the tree has only one branch).

On the edges after each decision node, the condition en the variable being tested
is written down. Since we are estimating x, we need to record only the condition on
z. These are always of the form X — n = 0 or X — n > 0O since the conditional is, if
X # Othen . We now consider two possible types of terminating branches in the
execution tree (the branch is terminating if it causes QUT ¥ as the last node).

(A) The last decision on this path was X — n = 0. In this case n < k because
at most k operations can be performed on X. Therefore, the maximum value of X is
k and we conclude that r < k; so the growth rate is #.(%) > k, and the growth fune-
tion is A(x) = z.

(B) The last decision on the path wag X — » > 0. In this case, for all 2 > # the
program terminates in k steps. Therefore lim inf #¢,(#) < e which violates the
hypothesis. So no such path exists.

Since only ¢ase A can hold, the growth rate is A, (z) = =.

(2) To establish a growth rate for GR, notice that since GR can be translated
uniformly into G;, there is for each GR arithmetic function (say = y} a cost
s:(x, ¥) in terms of Gy . If ip;(x) = y, then the simulation eost using Gy can be de-
termined. Let S(z, y) = Zf=1 s:(x, y) for p the number of arithmetic instructions
of GR. Then S( ) bounds the cost of simulating any GR arithmetic operation. Thus
since S(z, y) is monotone in z, y, the simulation cost will be at most S, ») +
Slwe,u) + -+ 4+ S{», #,), where v; is the maximum value in any variable at
step 7.

This maximum value »; can be determined as a funetion of #¢ , the maximum initial
value, and y the number of steps. The time measure {#¢:( )} has a speed limat, sl, that
is, in ¥ steps a program with maximum initial value vo cannot produce a value larger
than sli(vs, ). Thus after y steps, v, < sl{vp, ¥). Since S ) is monotone the value
y-S(sl(v, y), sl(va,¥)) = t(vo, y) will be the maximum number of simulation steps
required. The funetion £ ) is inercasing in v and y, and because of the e.f.s. condi-
tions on min growth rate we need only consider T(y) = t(y, ). Since T is increas-
ing, T is defincd.

The minimum growth rate in GR, say A, must satisfy AMz) > T ((2)) eds.

QED.

The idea of a speed limit which appears in this proof will be of interest to us in
Section 6, on abstract subreecursive complexity measures.

To finizh this scetion we note that Theorem 5.1 is not constructive in the sense
that given ¢; we cannot determine n; and p; effectively.

TrrEoREM 5.4. (a) There vs no algorithm {o determine for any GR program ¢,
whether ¢;( ) € ®RLIf s ) € &', then there is an n such that 3p and » p(x) < F37(z)
for all x. (b) However, given the information that ¢,{ ) € ®', there is no algorithm to
determine an n satisfying *. (¢) Moreover, given the information thal ¢:( ) € &£, , there
is no algorithm to find the least p salisfying *.

Proor. Case (a): This is a well-known fact. 1t is proved by embedding the
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halting problem in the decision. Namely design ¢.¢ ) such that on input z it runs
d.(n) for z steps. If this halts, it then computes a nonprimitive recursive function.
If it docs not halt, it computes the successor function X «— X + 1. Knowing whether
dotim € ®'is cquivalent to knowing whether ¢.(n) } .

Cases (b) and (e) are similar.

53. Speed-Up Theorem for &', One of the most interesting theorems in the theory
of computational complexity is Blum’s “speed-up” theorem.

TeEOREM 5.5. Forallvr( },a( ) in R thereisun f( ) € R such thal

(7)) f{z) 2 a(x) efs,

(40) for all ¢:,( ) = f( ), there s @ ¢, () = f( ) such that r(z, i, (2)) >
ii;(x) e.f.s.

This theorem is proved in Blum [1] and Hartmanis and Hoperoft [13].

This says that there are peculiar functions whose computation time can be “sped
up” by an arbitrary amount r( ) almost everywhere. However, Blum has shown
that the speed-up cannot be effective in the following sense.

THEOREM 5.8. Let v ) € ® be any sufficiently large function. Let f( } € ®; then
there does not exist a program = such that if ¢:( ) = f( ), then =(2) halis
and 7(x, 9. () < toi(x) efs.and g ) = F( ).

In the case of GR programs and the time measure, {{¢,;( )}, “sufficiently large r”’
means #{x, y) > 1" e.f.s. Thas there is no way to go effectively from ¢;; to ¢,;,, for
all n.

The noneffectiveness of the speed-up mcans that it is impossible to exhibit ex-
amples of square speed-up in GR. For the purpose of illustrating the speed-up
theorem, this is disappointing. (In fact from a constructive point of view, the result
iz a “non-speed-up” theorem.) One might thus ask whether square speed-ups eould
be illustrated in the Loop language or some subrecursive language where the strue-
ture is simple. This question has oecurred to several people. The first step in answer-
ing it is to prove an ®'-speed-up theorem using a simple language like Loop. One
would aim to prove:

TueoreM 5.7. Forallv(),a() € ®' there isan f( ) € &' such that f( ) > a( )
efs., and for all a; () = f() there is an ay;,,( ) = f () such that r(x, ta;; ., (2)) <
ta; () e.f.s.

This thcorem cannot be proved hy carrying out the Blum [1] proof directly to
®'. It can, however, be proved using different methods, for example, those in [12]
and [17]. However, it has not been shown that this ®'-speed-up is noncffective.

From Theorem 5.1 it is possible to casily prove the above Theorem 5.7 and to
prove direetly that for sufficiently large r the speed-up cannot be effective. Namely,
the proof is to apply Blum’s proof for a given »( } £ &' to yield an f{ ) € ®' fune-
tion with #{ ) speed-up in GR. Then by Theorem 5.1 the SR programs also have r
speed-up for vz, y) > ¢ c.f.s Finally the speed-up cannot be effective in SR be-
cause it would lead to an effeetive GR speed-up by the following argument.

In more detail, suppose = speeds up SR programs in the sense that if e;( ) = f( );
then #(4) halts and »(z, ta,,(2)) < tez) ed.s. Then define a program # in GR
which uses a fixed SR way to compute f{ ), say oy . Given ¢, , # assumes that ¢.( ) =
f( ) and that t.(x) < ta;(x) ef.s. Therefore, using a bound f\”” such that ta;{z) <

P (2) for all x, it produces the image program ¢, and the simulation program
%, tin,m according to the method of Theorem 5.1. Now if ¢:( ) = f( ), and ¢: is
reasonably fast, Le. tp.(z) < fu” (%), then (=, fortimon(®)) S fatp,¢mm(®)
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e.f.s. To handle the case when ¢.{ ) = f( ) but ¢:( ) is slow (large), we modify
Cpytimgy S0 that if time fi7 is exceeded, then ¢y (x) is computed. Call the new
image o0, - Now the program a, is an r speed-up of any ¢:( ) = f{ ).

The same arguments will work for pure Loop, but now the “sufficiently large r”
must be inereased to compensate for the simulation of # = 1.

*

1
.
00— 0

i

diagram commutes
The situation is summarized by the above diagram. The map & is the translation
into 8RR given by Theorem 5.1. The downward maps, =, # represent the hypothetical
“acccleration funetions” (i.e. funetions which produce speed-up).

5.4. RerLEvanck To THE “Go To” CoxTROVERSY. We have studied certain
facets of program structure found in high-level languages like Fortran, Algol, and
PL/I. The use of the more sophistieated languages like Algol and PL/I has caused
a certain controversy over the need for “go to’s.” The motivation for the contro-
versial discussions is the fact that the use of “go to’s” in Algol destroys the logical
simplicity of programs and makes deseription of the computation difficult. There-
fore, 1t is desirable to minimize their use. The question arises of whether they
can be eliminated entirely without unbearable saerifice [15].

The answer to the simple question of whether they can be eliminated at all is a
trivial yes. Using the Kleene normal form we can oxpress every number theoretic
computation ¢; 8s ¢y =

INT, X

DO WHILE 8 =0
Y<—¥V+4+1
S—TUIX,7Y)
END

Z — U(Y)

oUT Z

where T'( ) is the computation predicate. The T-predicate can be computed in Loop,
and we know that Loop does not need any conditionals. But this answer is unin-
teresting.

We can offer more enlightening comments on the situation. Consider the follow-
ing “go-to-free” languages

General recursive:

DO DOWH
(1) [4s, Py, (), END, END, E, R Algol-gf
DOWH
(2) [+1, =1, #0, (O), END] Gs-gf
Subrecursive:
’ DO
(3) [AS: P4 ) (O), END: E] SR-gf
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, DO

(4) [+1, =1, #0, (), END] Loops-gf
DO

(5) [+11 01 ( )) #07 (O)’ END] LOOp‘gf

To study the effects of the go to on efliciency, one might investigate the relative
efficiency of these languages and their counterparts with go to’s.

For example, we can immediately see that using the Kleene normal form, a pro-
gram in Gy-gf can mimic a G, program within a fixed cost, C, in size and 2 () in
efficiency.

An interesting question is whether a more reasonable simulation works in this
context to give a small efficiency factor A( ), like A(z) = 2z orlog (x) 4 =,

To prevent simple answers to the simulation problem, such as we have given
here in Section 5 (by using only the Loop part of the language and appealing to
Theorem 5.1), one eould investigate the efhiciency of the program which wses a minz-
mal number of DO-Ioops. This will force use of the nested conditional as much as
possible.

For the subrecursive languages, the comparison between go to and go-to-free ver-
sions is deeisive. Using the methods of Section 5 we ean simulate forward go to’s with
nested conditionals without decreasing efficiency by more than a constant factor.
The cost in terms of size between SR and SR-gf is at most (f + 5-1)/2 wherel =
| @ |. The method of translation, in brief informal terms, is as follows. Move all go to’s
from inside loops by using a statement like * in Theorem 5.1 to get control outside
the loop. Then put the eonditional after the END of the loop. Now given the eon-
ditional, “if © #£ 0 then 4+, followed by statement s, where +C refers to state-
ment 3, replace the eonditional by, “if » # 0 then [Send] else [s,end]”, where
[tend] refers to the segment from statement ¢ to the end of the program.
Such a translation doesnot inereasc the number of loops, only the length of the pro-
gram and the number of conditionals (their number at most doubles).

This result is not at all practieal, but it allows us to roughly quantify the value of
go to statements in a subrecursive language.

6. Conclusion

Although many of the results here are interesting or difficult only because of the
special nature of the languages involved, e.g. Theorem 5.1 for Loop, the general
principles (relative efficieney, simulation, parallelism, clock mechanisms, ete.) apply
to a wide class of computing systems (machines and/or languages).

A more abstract theory of subreeursive computing systems would not only elarify
the extent of this generality, it would render the whole approach to subrecursive
phenomena more palatable. It would also help isolate the critical features of the
proofs and constructions.

For these and numergus other reasons, we would propose an abstract treatment
of certain aspects of concrete subrecursive complexity theory. This is a difficult
matter to handle, and we hope eventually to contributc to an adequate treatment.
For the moment we speculate on one approach to the arca and suggest some prob-
lems. These comments should also shed a more general light on Scetions 2-5.

" Let £ be the subrecursive class of functions which we intend to characterize, say
£18 an r.e. subset of ®. We might begin with an indexing
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a: N — £ C 8 obtained from ¢: N — @R,

obtained by selecting a subset of {¢.( )} by a function of 7. Thus @, = a(n) =
¢(r(n)) = ¢y, 50 a: N — 8. Let mas(x) = mepiy(z) for all 2. This defines a
measure A = {ma.{ )}.

There are certain obvious restrictions that must be placed on {ma;} for it to
qualify as a subrecursive measure. Among the desirable attributes would be

(a) Am() € £ such that ma; = a@me; . Thus the measure is syntactically de-
Jinable within the class £.

(b) M,z yM(r(0),z,y) ¢ £ The measure function restricted to ¢ belongs to
L.
(¢) T s() € £such that a(z) < s (mai(zx)) for all z. Thus the measure has a
speed limit in £.

(d) Jh() € £ such that manm{z) < hima:{z), z) for all z. Thus the com-
plexity functions are A( ) honest for some A( ) in £.

These properties are analogues of the Blum axioms. Blum’s Axiom 1 forces the
measure to have arbitrarily large complexity functions, e.g. it prevents ®,(x}) = 0
for all x from being a measure. This is accomplished here by (e¢).

Among the consequences desired for the subrecursive measures are those theorews
of the general theory which hold in the class £. For example, when £ = &' we want

(1) speed-up theorem,

(2) compression theorem {upward diagonalization theorem or jump theorem
when stated in terms of classes),

(3} gap theorem,

(4) Thonesty theorem,

(8) union theorem.

Many important abstract properties ean be established using the recursive rela-
tionship [1, Th. 2] in the following manner. Prove the result for 7' a specific meas-
urc like time, then show that the result is measure independent, and finally use the
recursive relationship to carry over the result to any other measure, i.e. speed-up
theorem [2 and 13].

Using the same technique with abstract subrecursive measures requires an £-re-
cursive relationship. £-recursive relationships are defined as follows: f A = {mad
and B = {mp;} are £-measures, then there is an r in £ such that

(1) maes) < r{mBi(x), x) efas,
(1) mB:;(x) < r{imey(x), 2) els.

This attribute does not follow from (a)-(c) because it involves two formalisms
while the others arc all “internal” or “coordinate-free” properties. In the Blum
case, recursive relationship holds because the indexings are acceptuble. The sutis-
fying fact is that aceeptable indexings are given an intrinsic or coordinate-free
definition. A satisfactory dcfinition of £-acceptable indexing would presumably
lead to the L-relationship among measures.

Some interesting observations can already be made about (a), (b), and (c) as
possible axioms. First, they are independent but insufficient to guarantee either the
compressicn theorem or a recursive relationship between measures. Even (a), (b),
and (¢) plus compression do not guarantee a recursive rclationship. However, if £
is closed under p< and iteration, then {a) implies the gap theorem. In [16] Lewis
shows that (a), (b), and (c¢) allow non-r.e. complexity classes.
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Results like Theorem 3.1 would follow from the existence of the funetion 7',(7, z, y)
of Section 4 in £ and from a parallel cost axiom of the form

(dy dp € £VIV), malfa;) < p(mei( ), me;( }).

The funetion p( ) represents the cost of parallelism in the formalism. For general
recursive formalisms and measures suech as {{8.( )}, p( ) always exists beeause of a
recursive relationship with models like multitape Turing machines. However, there
are subrecursive formalisms without that property (at first sight Loop might appear
to be one).

Appendiz

Here we prove the bounding lemma for Loop. The bounding lemma for SR follows
the same plan, so it is omitted.

Bouxping Levma For Toop. If 8:(): H" — NT, 8, € L., then Bz, -,
o)y < fP0 (max (21, o, @) + 2).

Proor. We prove the theorem by double induetion, on depth, n, and within
depth on length, | 8, |.

(1) Assume that depth is D, 8; € T,.

(a) Let | 8;| = 1. Then 8;is either X «— X + 1, ¥« X, or X « 0. Clearly
the maximum valueis g.(z) = 2 + Land 8:(z) < folx) = x4+ 1for all z.

(b) Assumetheresultfor |8:]| = n,toproveitfor | 8, | = n + 1.Since 8y € L,
it hasthe form s ;s ; - - 5 8n ; 8u41, where each s; is an assignment. By induction, the
maximum value in any register in s ; -+ 8, s f6™(max {z, -, 2} + 2). If
3»41 does not increase any output variables, say 3., then clearly the result holds. If
not, then $.41is ¥s «— ¥: + 1. So ¥.is bounded by fo(/§” (max {z1, -+, @} + 2)).
Q.E.D. (step (1))

(2) Assume the result for 8. £ L, . To show it for 8, € Ly :

(a) Suppose Bi € Ly and |B:] = 2(n + 1) + 1 (this is the minimum

possible length for depth » 4+ 1). Then 8, has the form

DO X,

B

END
where B is a program in L, . Hence by assumption,

B < 0% (max {z, -+, 2} + 2).
The program B computes a vector valued function, say
<B(ZI: "')Zk)le(Zly ) Zk)?: Ty B(er Tty Zk)ﬂ) = <Y1’ Ty Yll)

Ouly the outputs among Y7, ---, ¥, which are also inputs (i.e. oecur among
Zy, -+, Zi, call them feedback variables) can effect the output of 3, as a function of

X . If there are no such outputs, then

‘DOX
B
iEND

is equivalent to B and the result follows immediately.
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Thus assume some Y, are also Z/s. By ineluding all input variables among the
outputs, it is easy to describe the type of iteration speeified by DO X, ; B; END.
To that end, form a new veclor valued function B having the same inputs as B bat
including all Z, and Y ; among its outputs. Say B is

(B(Zly o ')Zk)ly o "B(Zl » '!Zk):u) = (?15 T ?11:)

where p > k, p = ¢. For simplicity, assume that Z; = Y, fori = 1, - -, k. Then
B is obtained from B by selecting a subset of outputs and permuting them, Clearly
DO X;; B; END is no smaller than DO X, ; B; END in the sense that for every ¥;
there is a ¥; such that ¥, = ¥;.

We now present a suceinct notation for DO X, ; B; END, This is notation for
vector iteration of a simple type.

(1) B(O)(Zl:"'azp)i=zi) 'i=1:"':p’

(ii)
(B(n-H)(Zl y Ty ZP).) =

(B(B(n)(zli Ty Zp)l y 1T E(ﬂ)(zl) R Zr)p)l » T
BB™(Za, -+, Zahay -, BV (20, -, Z0)5)),

Now we know by definition of the iterative that

DO X,
B
END

is (BYY(Zy, -, Z))
By the induction hypothesis,

Bz, Z) 2P (max {Zy, -, Zo) £+ 2) 2 h(y),
where h(y) = fJ*(y) and y = max {Z;, -+, Z,} + 2. 80
BNy, -, Zy) S AMV(y).
But
B () = [0 ()
and notice

FEE ) < faay) i oy 2 X B

Also

Sy SRR G i oy 2 X,
but indeed ¥ = max {@, .-+, 2} + 2 = x; for any z; and the loop variable X,
has the value z; for some ¢ = 1, - - -, p. Hence

B{XI)(ZI y T Zp) < fg}fll)(max {221 PR xn; + 2)

because ¥y < max {51, -+, 2.} + 2. So the resalt for |8, | = 2(n + 1) + 1 holds
with room to spare (| B | is much larger than necessary).

(b) Assume the result for | 8;| < m. To show it for | 5: | = m + 1: Either
8 has the form 4; Bfor |A| > 0, [B| > 0, 4, B € L.y, or it has the form
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DO X;; B; END for B € L, . The latter case proceeds exactly as case (a). So we
assume f; has the form 4 ; B. Then by the induction hypothesis on length we know

A<, B,

where 1, ¥ are the maxima of the inputs plus 2; s0 y» < max {21, -+, Za} + 2,
1 = 1, 2. Notiee, 4; B is bounded by

P () < AT ()
So the result holds. Q.E.D.
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