
Subrecursive Programming Languages, Part h Efficiency
and Program Structure

R O B E R T L. C O N S T A B L E

Cornell University, Ithaca, New York

AND

A L L A N B. B O R O D I N

University of Toronto, Toronto, Ontario, Canada

ABSTRACT. The structural complexity of programming languages, and therefore of programs
as well, can be measured by the subrecursive class of functions which characterize the language.
Using such a measure of structural complexity, we examine the trade-off relationship between
structural and computational complexity.

Since measures of structural complexity directly related to high level languages interest us
most, we use abstract language models which approximate highly structured languages like
Algol.

KEY WORDS AND PHRASES: programming languages, universal machine, computational com-
plexity, complexity class, subrecursive hierarchy, program size, pr imit ive recursive functions,
elementary functions, Loop language, Grzegorczyk hierarchy, speed-up theorem

CR CATEGORIES: 4.20, 4.22, 5.22, 5.24

1. Introduction

It is widely accepted that the theory of computing can be organized on the basis of
conservation principles or trade-off relationships. Such relationships hold among
quantities characterizing computation (such as logical complexity, structural com-
plexity, resource expenditure, etc). Some important exchange relationships are well
known. For instance, the universal machine involves a trade-off of machine struc-
ture for size and computational complexity. Structural complexity in this example
is a quantity like the "sta/e symbol product" for Turing machines.

The structural complexity of programming languages, and therefore of programs
as well, can be measured by the subrecursive class of functions which characterize
the language. Using such a measure of structural complexity, we examine the trade-
off relationship between structural and computational complexity.

Since measures of structural complexity directly related to high level languages

Copyright © 1972, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part of this material is granted,
provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.

Authors ' addresses: R. L. Constable, Computer Science Department , Upson Hall, Cornell
Universi ty, Ithaca, NY 14850; A. Borodin, Depar tment of Computer Science, U. of Toronto,
Toronto 181, Ont., Canada.

Journal of the Association for Computing Machinery. Vol. 19, No. 3. July 1972, pp. 526-568.

Subrecursive Programming Languages I: E~ciency and Program Structure 527

CONTENTS

I. Introduction
2. General Recursive Languages

2.1. Terms and Relations
2.2. Labels
2.3. Statements
2.4. Programs and Languages
2.5. Computations, Functions, and Run Times
2.6. Characterizing Languages
2.7. Indexing Universal Languages and Abstract

Computational Complexity
3. Subrecursive Programming Languages

3.1. Language Definition
3.2. Translating into Loop

4. Preliminary Theory
4.1. Depth of Nesting in Loop Programs
4.2. Simulation
4.3. Structural Complexity Classes
4.4. The Elementary Functions, 8
4.5. Elementary Indexings and Measures

5. Computational Efficiency and Program Structure
5.1. Relative Efficiency
5.2. Minimum Growth Rates
5.3. Speed-Up Theorem for (W
5.4. Relevance to the " G o To" Controversy

6. Conclusion
Appendix
References

interest us most, we use abstract language models which approximate highly struc-
tured languages like Algol.

Our at tention to programming language models is also motivated by concern for
a thesis (somewhat like Church's or Turing's thesis), implicitly known in the litera-
ture, that all functions actually used in computing are a subset of the primitive re-
cursive functions. This thesis implies that the subrecursive programming languages
considered here are adequate for actual computing. Furthermore, these languages
have advantages over universal (general reeursive) languages; among them are: all
programs halt on all inputs, the run time of any program can be bounded above from
its syntax, and mathematical expressions can be uniformly assigned to programs in a
natural manner.

But are these advantages free? Not entirely. Blum [3] has shown that one cost is
economy of program size. The subrecursive languages will always be very uneconom-
ical in the sense that for every recursive function f() there will be functions k()
whose shortest subrecursive programs, 7r, satisfies

f(trl) <1-1
where I I measures size and r is a general reeursive program for k () .

It was conjectured that a price was paid for run time as well as for size, at least by
certain interesting subreeursive languages and formalisms, such as [19]. We show
that the conjecture is false and that in fact these subreeursive run times are, given
the right basie operations, within a linear factor of general reeursive run times.

The ease for subreeursive languages is supported further by the observation in

Journal of the Assoeiation for Computing Machinery, VoL 19, No. 3, July 1972

528 R. L. CONSTABLE AND ALLAN B. BORODIN

Constable [8] that the uneconomically long subrecursive programs known from Blum
must also be computationally very complex (at least on a finite set).

The advantages of these languages over general recursive languages should be
explored more carefully, especially in regard to such problems as equivalence and
correctness of programs and especially with attention to their exchange relationships
with other properties of programs.

In this paper we examine the exchange between structure and efficiency for specific
subrecursive languages for the primitive recursive functions. The languages pre-
sented here are nail based on existing languages. They are selected with several criteria
in mind. One is to point out their expressive power as support for the "implied
thesis." Another is to facilitate definitions of structural complexity. A third is to
relate our languages to the most elegant examples in the literature. From each lan-
guage, one acquires a better "feel" for the primitive recursive functions and their
apparent "naturalness. ''(1)

2. General Recursive Languages

Simple abstract models of numerical programming languages are now common in
the literature (see [9, 25, 26]). These models characterize the core of most high level
programming languages (like Algol, Fortran, and P L / I) . We shall use modifications
of such models to study the relationship between program structure and computa-
tional complexity for the specific task of computing functions from H n into N =
{0, 1, 2, . . .} or •+ = {1, 2, 3, . . . } . (2)

The languages we s tudy can be described in terms of a set of statement types
(assignment, conditional, go to, and iterative) where the statements are composed of

arithmetic expressions (or terms) and relations. For simplicity, only binary and
unary terms and relations are used.

2.1. TERMS ~ND RELATIONS. Using B N F we present the syntactic categories
used to form the programming languages.

(variable} :: = ~]l (variable} X
(constant} :: 1[2 I . . .
(argument} : : = (variable} (constant}
(1-operator} :: = 0o 1' 0111 021 .--
(2-operator} :: = 002 012 022 . . .

(terms} :: = (argument} I (1-operator} ((argument}) I
(2-operator} ((argument}, (argument})

We will use customary abbreviations and let X~ denote X. - . . X, thus X1 = X,
i times

X2 = X X , We let vi denote variables, and also 0, v, v -Jr 1, v ~ 1 abbreviate
001 (v), 011 (v), 021 (v), 031 (v), respectively, and vl + v2, vl -" v2, vl .v2, Vl + v2 ab-
breviate 002 (Vl, v2), 012(Vl, v2), 022 (vl, v2), 032(vl, v2), respectively.

(1) Ano the r implici t problem in the l i t e ra tu re of recursive funct ion theory and the theory of
comput ing is to explain the appa ren t na tura lness of (R 1. Some authors in te rp re t the i r results
as denying na tura lness [20], others go to lengths to affirm it [8].
(2) Other numerical tasks such as comput ing over the ra t ionals (or the reals) can be na tura l ly
reduced to this one.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 529

The interpretation is that the O~ ~ are n-argument functions. Thus 0o I (x) = 0,
01 l(x) = x, 02 l(x) = x + 1, and

{0 x i f x = 0,
03 l(x) = - 1 otherwise

are the common mathematical expressions for the functions denoted by 0 i . Among
the Oi the only infrequently seen definition is O32(x, y) = x + y = greatest integer
less than or equal to x/y if y > 0 else 0 (also read ix~y] = floor of x/y).

A class of relations is defined by

(1-relator} :: = P01 IF2'[" '"
(2-relator) :: = P02 I P12[- "
(relation} :: = (1-relator} ((argument>) [

<2-relator} (<argument>, (argument>)

The common abbreviations are P01 for = 0, P11 for ~ 0, P0 2 for = , and P12 for ~ .
The interpretation is again standard: Pi 1 (v) denotes a predicate on N 1 and Pi 2 (Vl,

v2) denotes a predicate on N 2. The standard predicates are P01 (x) iff x = 0, P11 (x)
i f f x ¢ 0 , P0 2(x,y) i f fx = y, P l ~ (x , y) i f f x ~ y . We could also add < , _> , < , > i n
the same manner.

Terms and relations are used in building statements. The statement types are
listed below with brief informal interpretations. They are so common that a formal
semantics would only be an exercise in formalism.

2.2. LABELS. For the purposes of describing the relationship between statements,
these languages will use statement labels. (We shall see that they are dispensable.)
The simplest labels are the positive integers, ~r*, and the simplest labeling conven-
tion is that all statements are labeled, giving programs a linear structure.

<label> :: = 1[2 I 3 I . . -

2.3. STATEMENTS. Terms and relations are used to form the following statement
types.

(1) Assignments. The general assignment statement is
(i) <variable) ~-- (term>

but we also consider the special assignments of the form
(ii) v ~- f l (v)

(2) go to's. The basic go to is
(i) go to + (label) or
(ii) go to - (label)

In addition we consider the computed go to's:
(ci) go to + (variable)
(cii) go to - (variable)

The signs + , -- indicate the direction in which the label must be; the plus sign
indicates tha t control goes forward in the program to a statement with a higher label
than the go to itself. 3 The minus sign indicates that the label is the same or lower

~When the p r o g r a m s t r u c t u r e is suff icient ly s imple (i.e. i t con ta ins cond i t iona l s and H + as
labels) ; t hen , go to =t:c can be i n t e r p r e t e d as " g o ± c s t a t e m e n t s f rom this o n e , " i.e. e i the r add
c or s u b t r a c t c f rom the label of t he go to. T h e n add ing 0 is no t a l lowed b u t s u b t r a c t i n g i t is.

Journal of the Association for Computing Machinery, Vol. 10, No. 3, July 1072

530 1~. L. C O N S T A B L E A N D A L L A N B. B O R O D I N

t han the label of the go to itself. T h e signs are clearly dispensible. We only use them
to emphasize the distinction.

In the compu ted go to, the conten t of the var iable is the label. Here it is essential
t h a t labels be numbers ; also if the compu ted label lies in the wrong direction f rom the
go to, the s t a t e m e n t is t r ea ted as a " n o - o p " (i.e. is not executed) .

(3) Condit ionals. The basic condit ional is
(i) (conditional} :: = if (relation} then (go to} else (go to}

But , the more complex form, (ii), is of ten useful.
(ii) (nested-conditional} :: = if (relation} then (program} else (program)

where the syntac t ic var iable (program} is defined below.
The in te rpre ta t ion of the condit ional is comple te ly s tandard , as in Algol. The

nested condit ional can be in te rpre ted by first reducing it to a s imple conditional.
A c o m m o n abbrev ia t ion is, if (relation) then ±(label}, for, if (relation} then go to

±(label} else go to "next s t a t e m e n t . " We call this the "one branch condit ional ."
(4) I n p u t / o u t p u t (I / O) . T h e s t a t emen t s

(i) I N v l , . - . , v, and
(ii) O U T wl, . . . ,Wm

are the only I / O commands . We will a lways use these commands in a s imple man-
ner. Each will appea r only once in a p r o g r a m and it serves to indicate which vari-
ables are inputs and which are outputs . The c o m m a n d O U T wl, • • • , w~ will mean
t h a t the p r o g r a m hal ts and the ou tpu t is to be found in wl, • • • , wp. The command
I N v~, • • • , v, means t h a t var iables v~, • • • , v, are loaded with the input values.

(5) I t e r a t i v e s ta tements . The basic i t e ra t ive is
(i) D O v

E N D
where ~r is a p rog ram; in B N F we can wri te

(i terat ive) :: = DO(variable} ;(program} ; E N D

We also allow
(ii) D O W H I L E P

7r

E N D
where ~- is a p r o g r a m and P is a relat ion; in B N F :

(while i terat ive} :: = DO W H I L E (relation} ;(program} ; E N D

The in te rp re ta t ion here is described s imply in t e rms of the previous s t a t emen t
types . Namely , occurr ing in a p r o g r a m ~,

DO v
lr

E N D

is ~e--y

1 i f ~ = 0 t h e n 2

~ - - ~ --" 1
go to 1

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure

where ~ does not appear in ~- or ~- (~ is called the loop control variable). Also

is
DO W H I L E P 1 if --~P then 2

END go to 1

531

(Notice that for every relation, P, its negation, -nP, is also a relation.)
(6) Function procedures. Certain programs can be selected which compute

functions f (): N~ ~ ~V (or vector functions, (f ()) : N " ~. iV p where (f ()) = (f () 1 ,
• .. , f ()p) each f ()i: H n ~ 2~). Briefly, these are programs with n input variables,
one output (p outputs). They will be defined more precisely below. Function pro-
cedures are ways to introduce new operations by definition within the program. The
syntactic baggage required is the following.

(n-ary function variables) :: = f0 n If1 ~ I " '"
(n-ary function) :: = (n-ary function variable) ((v a r i a b l e) , . . . , (variable))

The class of (function definitions) is defined by equations of the form

(i) (a) fi" (xl, •. • , x~) = (n-argument function computing program no t involving
the function variable fi").

These function definitions are used to expand the class of terms. Namely an (f-term)
is f f (al, . . . , a~) for ai an (argument). Then (f-assignments) are defined as

(b) (variable) ~- (f-term)

The interpretation is that the program in (i) defines the function letter f~" (non"
recursively) and w ~ fi ~ (vl, • • • , v~) is interpreted to be the code

u~,~(vl, . . . , v~)
W ~ - - - U

where ~ I f i n (V l , ' ' " , Vp) is the program defining the f-term, f~'~(vl, " . . , vp) with
vl, . . . , vp as input values and u as output (see Section 3 for details).

(ii) An important subclass of program function definitions is made up of those
which can be given explicitly in terms of compositions of other functions or substitu-
tion of variables and constants for other variables. These operators are called the
operations of substitution, abbreviated Os, and they are the most basic kinds of func-
tion definition. The class of functions explicitly definable from functions fl () , " " ,
f~ () is denoted [fl () , " '" , f~ (); Os].

When function definition is required to be explicit, we have a statement category
like the Fortran function statement. The concept of explicit definition is basic for the
usual notion of recursion in mathematics. We briefly mention reeursion in program-
ming below.

(7) Recursive (function) procedures:
(i) When the condition that f n not appear on the rhs (right-hand side) of (i-a)

is removed in (6), then (6) defines the classes of (recursive function definition),
(recursive f-term}; and (recursive f- term assignments).

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

532 R. L. C O N S T A B L E AND A L L A N B. BORODIN

The interpretation in this case is more difficult. One can use the mechanism of
Algol recursive procedures. We shall not go into this in detail. We include (7) only
for completeness; it is not needed in what follows.

(ii) When f~ can be explicitly defined by terms allowing fi n, then we have the
definition of general recursion in mathematics (see Kleene [14]).

In Section 3 we shall extend these statement types to include subrecursion of
two kinds, (8-i) a specialization of (7-i) to subreeursive programs, and (8-ii) a
specification of (7-ii) to certain types of recursion schemes, for example the primi-
tive recursion scheme.

We summarize the statement types using BNF:

(statement} :: = (assigument) l
(go to) [(computed go to) l
(conditional) I (nested conditional)]
(input) [(output) I
(iterative} [(while iterative)]
(function definition)[(recursive function definition) I
(f-assignment) [(recursive f-assignment)

2.4. PROGRAMS AND LANGUAGES. A program is a finite sequence of uniquely
labeled statements. For definiteness, the labels 1 to n are used in a program of n
statements} and any (go to) in the program refers to only labels 1 to n + 1, where
n +'5 1 is used to designate a halt. The following are specimens of programs.

Example 1. 1 IN X
2 D O X
3 X ~ - - - X + 1

END
4 OUT X

Example 2. 1 IN X
2 DO X; X ~-- X "5 1; END
3 OUT X

Example 3. 1 IN X1, X2
2 if X1 ~ X2 then if X1 ~ 0 then go to 5 else go to 3 else go to 6
3 Y~--X1 + X2
4 go to 8
5 D O X 1 ; X i ~ - - X i + X 2 ; E N D
6 Y~-- X1
7 DO W H I L E Y ~ 0; X2~--X2 + 1; Y~-- Y-" 1 ;END
8 OUT Y

We also prohibit branching into the scope of a DO.
Various specific programming languages are defined by selecting subsets of the

possible statement types and subsets of the operations and relations. We will
define (below) the following language types: Algol-R, GR, GRt~, and G3. The
language is the collection of all programs whose statements come from the types
allowed in the language base.

For convenience in describing the multitude of possible languages, we adopt the
following abbreviations.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

Subrecursive Programming Languages I: Ei~ciency and Program Structure 533

arithmetic operations
unary +1, -" 1, 0, () (4)
binary + , " - , . , +

relations
unary = 0, ~ 0
binary =,

go to -~- (label)
go to - (label) 1"
go to + (variable) (,L)
go to - (variable) (T)
conditional
nested conditional (~)
one-branch conditional ~ 1
iterative DO

END
while iterative DOWH

END
function procedures E
explicit function statements E0
recursive function procedures R
recursive explicit function

statement R0
(R0 is also referred to as explicit recursive definition.)

LettingA8 = {--k 1 , - 1 , 0 , () , + , - ' , , +} a n d P 4 { = 0 , ~ 0 , =
languages are:

(1) Algol-R:

(2) GRu:

, ~ }, the basic

DO DOWH
[As,P4, .L, 1", (~) , (T) , (~) , E N D , END, E,R]

DO DOWH
[As, P4, l , T, (l) , (1"), ~1, ~ , END, END, E]

DO
[As, P4, l , T, (.~), (1"), ~1, {}, END, E] (3) GR:

(4) Gj: [+1, "-1, .~, T, ~1]

Remark. The only difference between GR and GRu is the DO WHILE state-
ment. This statement allows direct implementation of the least number operator, t~,
defined as

t~Y[P(~, Y)] = least y such that P(~, y) for 5 6 2~ ~, y E N

The direct implementation is

Y ~ 0
DO WHILE ~ P (X 1 , . . . , X,,, Y)
Y ~ - - Y + i
END

(4) These u n a r y o p e r a t o r s a p p e a r o n l y i n s p e c i a l a s s i g n m e n t s , v ~ - v + 1, v ~-- v - ' 1, e x c e p t f o r
the i d e n t i t y o p e r a t o r , () , w h i c h a p p e a r s as v ~-- w.

Journal of the Association for Computing Machinery, "Vol. 19, No. 3, July 1972

534 R. L. CONSTABLE AND ALLAN B. BORODIN

as long as ~ P () is expressible. Normal ly predicates other t han those in P4 will be
represented by their characterist ic funct ion f P () such tha t

f P (Xl, • • • , x :) = if P (xl, • • • , x .) then 1 else 0

I n this case the implementa t ion is

Y ~ - - 0
DO W H I L E S ~ 1
S ": - fP(X1, ' ' ' , Xn , Y)
Y ~ - - - Y A - 1
E N D

2.5. COMPUTATIONS, FUNCTIONS, AND RUN TIMES. Programs are intended to de-
fine computat ions . For a simple language like Ga it is easy to be precise about how.
For G R it is more difficult and for Algol-R still more difficult. We shall t reat the
la t ter by reducing t h e m to G3.

I t is not difficult to see tha t Algol-R, and hence GR~ and GR, can be translated
into G3. I n fact, the definition of each of the seven instruct ion types, except the
computed go to, included a reference to a G3 interpreta t ion of it. All t ha t remains for
a complete reduct ion of these types to G~ is a t ranslat ion of the ari thmetic operations
and a t r ea tmen t of procedures. The former will be given below (Theorem 3.2), and
for the lat ter we have referred the reader to discussions of actual programming
languages (such as Wegner [27]). The t ranslat ions

T1 : Algol-R --~ G3
T2: GR~ --~ G3
T3: G R --~ G~

will be used to define the semantics for these languages by the rule t h a t the meaning
of II is the meaning of T~(H), i = 1, 2, 3.

The programs we interpret are those which compute functions. These can be
singled out syntactically. A program ~ is a function program iff the first s ta tement is
I N vl, • • • , vn and the last is O U T Wl, • • • , wp for vi, wj variables of 4~, and no other
I / O s ta tements occur in ~b.

To describe the (partial) function, 4~(), which ~b computes we would define a
computa t ion of ¢ and a terminating computation of ¢. However , this mat te r is treated
extensively in the l i terature (e.g. [9, 25]), and we refer the reader to these sources
for precise definitions. Suffice it to say t h a t a computation, as defined on a RASP
for example, is a sequence of states, ~0, ~1, " " , ~ , " ' " Each state is a pair,
~ = (ai, M~}, where Mi is a list of values of all of the variables of ~ and ai is the
label of a s ta tement (the s t a t ement in control at t h a t momen t of the computat ion) .
The p rogram 4~ takes one state into the next, ~i ~ ~i+1, iff the change in memory

f rom Mi to Mi+l is the result of executing the s ta tement labeled al, and if ai+l is
the label of the next s ta tement to be executed.

The sequence a0, a l , • • • of labels is the flow of control and M0, M1, • - • is the
sequence of memory configurations. A finite computa t ion is said to be terminating
and we write ~0, ~ , • • • , ~n for n < oo. I f a~ is a halt s ta tement (OUT v), then the
computa t ion is nominally terminating and the p rogram ~i is said to halt, abbreviated
~(Xl, " " , x~) ~.

A funct ion p rogram ~b computes the partial function ch () : N = --~ H iff when

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 535

X1, • •. , Xn are the input variables and Y the output variable, then when Xi starts
with value xl , and all other variables have value 0, the computation of O terminates
iff O(xl, • • • , xn) is defined, and if 4~ terminates then Y has the value ~b(xl, • • • , x~). ~5)

The number of steps in a terminating computat ion of 4~ on inputs xl , " ' , xn
is denoted tOi (x~, • • • , xn). The step counting function tOi () can be syntactically
defined from 4~ in a simple manner, as follows: pick a variable S not in 0~ ; replace
OUT Y by OUT S; after the input instruction of ~ , place S ~ 0; then after each
statement of Oi insert S ~ S + 1; change all labels, L, in conditionals to L' (L' is
a temporary new symbol not in the language) and for each label L ' put the pair of
statements

{ L ' : S ~ - - - S + 1
go to L

at the end of q~ ; then relabel the new program in order and call the result t ~ . (6)

2.6. CHARACTERIZING LANGUAGES. We can now speak precisely about the ex-
pressive power of programming languages. A programming language 2 is capable of
computi~g 4~: ~V n ~ ' N iff there is a program ~r of 2 which computes ~. The program-
ming language is characterized by the class of partial number theoretic functions
which it is capable of computing.

We use the following notation for the function classes:

(Pn all n argument partial functions, a: .N ~ ---~ 2V,
• GL, all n argument partial recursive functions, Oi : ~ --~ ~ ,
ff~ all n argument total functions, f : N ~ --~ 2V,
~ all n argument total recursive functions.

When used without the subscript, the letters designate the union over all n,
thusS: = U:=05:, .

When discussing functions we follow Rogers [24] and let lower-case Greek letters
a, ~, v denote partial functions and lower-case Latin letters f, g, h denote total func-
tions. We frequently use the notation ¢ () , f () to distinguish the function (as a
set of ordered pairs) from the rule 4~, f describing the function.

Now we can state a well-known characterization.
(1) G3 is characterized by (PGt. This fact is established in Minsky [21] and in

Shepherdson and Sturgis [26].
From the translation in Subsection 2.5 we know tha t
(2) Algol-R, GRg, and G R are characterized by ~PGt. A language characterized

by (P(R is called universal or general recursive. A language characterized by a subset
of 6t is called subrecursive. We shall see some of them in Section 3.

2.7. INDEXING UNIVERSAL LANGUAGES AND ABSTRACT COMPUTATIONAL COMPLEX-

ITY. Some of the results in Section 3 can be treated very abstractly in terms of re-
cursive function theory. In order to pursue tha t viewpoint we will present very
briefly the formal apparatus needed. We emphasize tha t the following definitions

(~/One can drop this assumption on the other variables if he selects syntact ical ly those pro-
grams in which all noninput variables (work variables) are initialized before use. This is per-
haps more realistic but technically more tedious.
(~) Of course, the instructions S ~- 0 and "go to L" are t ranslated into their Ga equivalents, and
relabeling involves adjus tment of the labels in their conditionals.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

536 R. L. C O N S T A B L E A N D A L L A N B. B O R O D I N

and theorems are included for reference only, with the unders tanding t h a t the
reader interested in this v iewpoin t is a l ready famil iar wi th t h e m f rom sources such as
[1, 13, 24].

We begin wi th a list (indexing) of all funct ion comput ing p rograms of the lan-
guage (in general of the formal ism for expressing a lgor i thms) . Therefore , let ~0, ~1,
~ , • • • be an effective enumera t ion of all funct ion comput ing programs. 7 T h e basic
theorems needed abou t the list are the "universa l machine t h e o r e m " and the "S-m-n"
t h eo rem (so called for Kleene ' s original fo rmula t ion) . We s ta te these theorems for
the simple case of one a rgumen t functions.

THEOREM 2.1 (Universal machine for one a r g u m e n t funct ions) . There is a
~ 2 such that ~ 2 (i, x) = ¢i (x) for all i and all x. s

THEOREM 2.2. There is a function ~ () such that 4~ (i, x) = O0,(j.i) (x) for all x, i.
I t tu rns out t h a t these two simple theorems serve to character ize any list, {4~ ()},

of (P(R which arises f rom any formal i sm which can be recursively t rans la ted to G3,
and to which G3 can be recursively t rans la ted . Such indexings of (P~ are called
acceptable, i.e. a m a p p i n g 4), ~: H --~ (P(R, is acceptable iff it satisfies Theorems 2.1
and 2.2 (generalized to n a r g u m e n t funct ions) . See Rogers [24] for an account of
these indexings.

The t ime measure of computa t iona l complexi ty , T = {t~; ()}, is convenient ly
t hough t of as the list { t~ ()}. Two critical proper t ies of the list are the following.

THEOREM 2.3. O~(X) ~ (is defined) iff tOi(x) ~ (is defined).
THEORE~I 2.4. There is a recursive predicate Mt () such that

Mr(i , x, y) iff t4~(x) = y.

These two theorems are left to the reader. T h e first one is t r ivial and the second
says t h a t to tell whe the r t~i (x) = y we need only use the universal p r o g r a m known
f rom T h e o r e m 2.1, ~2, to run ~b~ for y s teps and de te rmine whe the r the computa t ion
has hal ted.

I t turns out t h a t these two theorems serve to character ize the not ion of computa -
t ional complexi ty in a ve ry fruitful manner . We call a list {m~i ()} an abstract (or
Blum) computational complexity measure iff

A1. ~b~(x) ~ iff mO~(x) ~,
A2. There is a recursive predica te Mm () such t h a t Mm (i, x, y) iff m¢~i (x) = y.
See B l u m [1], Borodin [4], and H a r t m a n i s and Hopcro f t [13] for an account of this

theory.

3. Subrecursive Programming Languages

3.1. LANGUAGE DEFINITION. We consider three subrecursive languages, Al-
gol-R01, SR, and Loop. For the first language, we need the mechan ism of primit ive
recursion. Given funct ions h () C 5:n+~ and g () C 5:~ and ~ C N ~, then f () is

7 We think of lists as including functions of any finite number of inputs, but we usually want
only the one argument functions, (i.e. the ¢i have only one input variable specified, usually x).
Therefore, we think of the list as containing n-argument functions for all n from which the sub-
list of n argument functions for fixed n can be effectively extracted, and we use the same nota-
tion for both lists unless this will be confusing, in which case we write ~ indicating n argument.
8 ~i(x) = 4,~3(i, x) means ¢,i(x) ,L iff 4~2(i, x) ~ and if 4~(x) JL then ¢,i(x) = ~ (i , x).

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

Subrecursive Programming Languages I: Efficiency and Program Structure 537

defined from g () , h () by the schema of primitive recursion, Ro 1, iff

R0' (f (X , 0) - -
(f (X, n ~ ~(~)= h(.X, n, f (X , n))

or, written as a conditional expression,

f (X , n) = (i fn = Otheng(.X) else h (.X, n --" 1, f (X , n "-- 1))

This schema R01 is but one of the infinitely many possible ways to write an ex-
plicit reeursive definition which is guaranteed to define a total function if h () and
g () are total. I t is, however, general enough to permit nearly all forms of reeursion
which arise naturally in mathematics.

We now define the subreeursive languages.

DO
(1) Algol-R01: [As,P4,,L , (~) , (~) ,EN D ,E ,R0 I]

DO
(2) SR: [As,P4, ~ ,(~) , ~ i , ~ , E N D , E]

DO
(3) Loop: [+1,0 , () ,END]

DO
(4) L o o p m i n : [+ i ,0 ,END]

The semantics for these languages is again given by regarding each statement
type as an abbreviation for the equivalent G3 program. These abbreviations were
supplied in defining the statement types in Subsection 2.3.

The Loop languages are due independently to Ritchie [19] (Loop) and 5Iinsky
[21] (Loopmln). They are based on ideas developed by the logician Robinson [23].
It is easy to prove that the Loop languages are characterized by the primitive
recursive functions, 6l 1.

6t 1 = [+1, 0, Uin; Os, R01]

where U~(xl , . . . , xn) = xl. For more on 6t 1 see [11, 14, or 23].
THEOREM 3.1. Loop and Loopm~ are characterized by 611.
PRoof. See [19 or 21]. We shall sketch a proof of this in Section 4.
Both SR and Algol-R01 are also characterized by 611. We show the "hard par t "

of this (Theorem 3.2) and leave the other as an exercise. I t would be interesting to
formulate a natural version of subrecursive Algol which allowed full recursive pro-
cedures, rather than explicit recursive procedures, and which was still characterized
by 6t ~.

3.2. TRANSLATING INTO Loop
THEOREM 3.2. SR is characterized by 611.
DISCUSSION of PROOf. The idea is to show that SR can be translated into Loop

in the sense that for every SR program z- there is a Loop program, p~, and

*: 7r(xl, "" , x~) = pi(xl , "'" , z~)

for all xl, • • • , x~. Since the meaning of the statement types in both SR and Loop

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

538 n . L . CONSTABLE AND ALLAN B. BORODIN

are given in terms of G3, the precise verification of • can be done in G3 where the
semantics are manageable (and standard in the literature, especially [9 or 21]). We
shall often leave to the reader the final detail of verifying this G3 level equivalence.

The proof is given in three parts. First the operations and predicates of SR are
reduced. The reduced language has the form:

DO
[+1,0, ~0, = 0, $,($),(}i,~,END,E]

Next the conditional ~ is reduced to ~1, computed go to's are reduced to go to's
and procedures are eliminated. This leaves the language

DO
[+1,0,~0, =0, $,~x,END]

The final, and hardest, phase is the elimination of all go to's and conditionals. This

DO
is done using the END statement as a switch to "shut-off" statements under appro-

priate conditions.
We absorb a proof of correctness of the translation into the construction itself.

This is done at the end of each phase.

PROOFS.

DO
Phase I. We define all operations, As, in [+i,0,END]

(1) First X~-- Y becomes X ~ 0

(3) So Z ~ - - X 4 - Y

(5) Then Z ~ - - X . Y

(4) And Z ~ Y--" X

DO Y
X~- -X- { - -1
END

becomes S ~- 0
Z~--0
DO Y
Z~---S
S ~ - - S ~ I
END

becomes Z ~-- X
DO Y
Z ~ - - Z + I
END

becomes Z ~ Y
DO X
Z~-'--Z --" 1
END

becomes Z ~-- 0
DO Y
Z ~ - - - Z + X
END

(2) Then Z ~ - Y ~ 1

Subrecursive Programming Languages I: Ej~iciency and Program Structure 539

(6) And Z ~ - - X ÷ Y becomes 8 ~ - - X
Z ~ - - 0
DO X

8 ~ - - S -" Y
B~--O

DO S
DO Y
B ~ - 0
B e - B + 1
E N D

E N D
DO B
Z * - Z + I
E N D

E N D

(where B = 1 iff 8 > 0 so B is simply a "switch" which allows Z to increase only
while Y can still be subtracted from S, thus Z counts the number of times Y can
be subtracted from S as long as Y > 0).

The reader can verify tha t these Loop programs are equivalent to the usual inter-
pretation of the operations (given in Subsection 2.3).

We next show tha t the relations v = w and v # w can be replaced by relations
u = 0 , u # 0 .

Notice, X = Yif f (X - " Y) + (Y - " X) = 0 s o w h e n e v e r X = Y o r X # Y
occurs compute:

(7) S i ~ - X - - " Y
& ~ - Y - ' X
8 ~ 8 1 + &

and test S = 0 or S # 0 respectively.
The replacements described in phase I are used in translation as follows. Given

~r E SR, find variables 8, $1 ,82 , B not in ~ and replace each assignment s ta tement
of ~r by the Loop code. Before each conditional which tests v = w (v # w) place the
Loop code (7) and move the label of the conditional to the first s ta tement of (7),
and change the relation to S = 0 (8 # 0).

Phase I I . Whenever, if p then s else s2, is encountered it can be replaced by

(1) if p then sx
82

So, the new program obtained this way is equivalent to the original.
A computed go to, go to + X , can be replaced by a sieve of go to's. First notice

that only finitely many of the values of X can make sense, say 1, • • -, m. Therefore, go
to + X can be replaced by

(2) i f X = l t h e n + l
i f X = 2 t h e n + 2

i f X = m t h e n + m

where X = i is provided for by setting a certain number of variables to constants
at the beginning of the program, e.g. set N~ = m by

. l o u r n M of thA A~tqnei~tinn fn r ~ n r n n u t l n g Mmeh |n~vv Vn l 1Q N~'n 5t I, ,1,, 1Q7~

540 R . L . C O N S T A B L E A N D A L L A N B. BOI:tODIN

Nm ~- Nm "+ 1)

: i I m times
N ~ - - N m +

Function procedures are t reated as "macros ." Tha t is, whenever an f-assignment
s tatement , v ~ f (v l , • • • , v n) , is encountered in a program 4~ is replaced by the se-
quence of s tatements

(3) ~f
V <--- W

B~

The code ~ f is obtained from the function definition o f f , f (x : , . - . , x ,) = [ii,
as follows. Delete the I / O commands. I f wl, " . . , wp are the variables of [Is,
with I N wq , • • • , wi, , and Vl, • • ", v, are the arguments of f in the f-assignment
s ta tement (in 4~), then put the n s ta tement wij ~- vj., j = 1, • • • , n, at the beginning
of IIs , and make all other variables of IIs disjoint from those of ¢. Let w be the out-
put variable of Hi . Move the label of v t - - - f (v : , • • • , v ,) in 4~ to the first statement
of HI .

Since we are assuming tha t all work variables of function programs are initialized
to zero from outside the program (see Footnote 4), we must restore the work vari--
ables of II1 before we leave it. Tha t is what the instructions of Bs do.

Now when control reaches v e - f (v~, • • • , v~) in ~, the computat ion Hi (Vx, • • • , vp)
occurs and its value is placed in v. No other variables of 4~ are changed. In the new
program, when control reaches the first s ta tement of ~ i it causes the computation
of n j . This computat ion does not affect any values of 4, other than v and before any
s ta tement of 4~ can cause a return to HI , all work variables are initialized so that
Hf(Xx, " ' ' , X n) = IIs(x: , . . . , x ~) f o r a l l x l , . . ' , x ~ .

This argument can be made precise by appealing to formal semantics for G~
and proceeding as in Elgot and Robinson [9]. However, we feel tha t this informal
t rea tment does not omit the essential ideas.

Phase I I I . Our goal is to remove all go to's and conditionals. I t is by no means
obvious how this can be done, but we can simplify the mat te r by concentrating on
one type, conditionals. Notice tha t by using a variable like N: (recall N 1 - - 1) we
can replace go to + c by " i f N : # 0 then + c" (abbreviate this by ~+~); further-
more, we can restrict consideration to conditionals with the predicate v # 0. Simply
replace

l i f v = 0 t h e n + c by l i l y # 0 t h e n + d

go to -k-c

where + d refers to the s ta tement after go to +c .
DO

We are now concerned with showing tha t Loop + = [+ 1, 0, ~ + : , END] is equiva-
DO

lent to [+1, 0, END] = Loop,,,:n. Given II in Loop +, suppose there are m con-
ditionals. For each of them pick a variable, H i , not in II. We form a switch, SW (Hi),
to put around certain statements of II. The switch around s ta tement s,

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 541

[sw (u)

is defined by

S ~ O
DO H
S ~ O
S ~ S + I
END
DO S
8

END

The operation of the switch is simple; if H = 0, then s is not executed because
S is 0. If H > 0 then S = 1 and s is executed exactly once.

The conditionals of II are removed in steps. Let their order of occurrence in II be

l t : i f v t ¢ 0 then + cl
12 : if v~ ¢ 0 then -t- cz

lm :if v m ¢ 0 then + cm

Replace ll by

DO vl
H1 ~---- 0

END

If statement ~1 is a t location + ci, then replace ~ by the pair H~ ~ H1 -t- 1 ; ~ ,
and move the label of S~ to H1 ~-- H1 -I- 1.

Now put the switch SW (H~) around every s ta tement of II and every s ta tement
in the scope of all DO-loops in II except the two just modified. Move labels of state-
ments to first s ta tement of SW (Hx). Call the resulting program II~.

Now treat IIi as II and repeat the process for 12. Call the resulting program II2.
Notice that all original s tatements of II except l~ and ~1 have around them a double
switch,

SW (H2)

The statements ~ and DO vx ; H i ~ 0; E N D only have the single switch SW(H2).
Continue in this manner producing II~, II2, . . . , I Im . Non" prefix to each II~ 2m

statements which initialize the switches:

H i ~ - - 0 ; H t ~ - - H i + I ; H 2 ~ - - 0 ; " " ; H m ~ - - H m + l .

Still call the resulting programs II~. Notice tha t IIm belongs to Loop. We claim tha t
the II~ are all equivalent. The intuition behind the equivalence is tha t when a
conditional causes control to "branch" or " jump," the switches are all turned off
(set to 0) and no s ta tement of II is executed until they are turned on again. This
happens only at the location to which control branched. I t is important that this
location be accessible from the conditional without the use of further branches

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

542 R. L. C O N S T A B L E AND A L L A N B. BORODIN

because they are all turned off. Because the branch point lies below the conditional,
it is so accessible.

Notice that the theorem cannot be true for the language GR which differs from
SR only by the inclusion of backwards branches, 1" and (1"). We see from the
above intuitive argument why this translation would fail for GR, namely there is
no way to reach the location which turns the switches back on again.

We now offer a more precise proof that Phase I I I is correct. We prove for all n
that II, is equivalent to IIn+~. Let "if v ~ 0 then + c " be the first conditional of II,
(if there is none, then IIn = II~+~ and we are finished). Call it s. Let ~ be the state-
ment referred to by + c.

The two statements, s and ~, can be separated by 0 or m > 0 E N D statements
not matched with DO's (m indicates the depth from which l is branching). We prove
the result by induction on m.

For m = 0 the program II, has the form

[]

[]

where A, B, C are blocks of statements and where the box around s, ~ indicates the
outer boundary of any loops containing them (this description is not vital to the
proof, but hopefully it is helpful).

The program II~+~ has the form

[]

H * - H + I

enlargement of
switch portion

where fi~, B, C are the blocks A, B, C with the switch, SW(H) , installed.
Before control in IIn reaches s, the programs IIn and IIn+l behave identically

since H > 0 and the switches have no effect. When IIn reaches s, if the branch is not
taken, then H remains 1 and the programs operate identically. If the branch is taken,
then IIn jumps to ~ skipping over B. Control in I]~+1 proceeds through B downward
to H ~ H + 1. But no statements of B are executed since they are all protected by
switches which are set to 0. Once H ~-- H -/- 1 is executed, the switches are restored
and ~ is executed. So IIn and IIn+l are operating identically again and the result of
each computation on the variables of II~ between s and ~ is the same. Thus the com-
putations produce identical results on outputs (on all variables of II,), and the case
m = 0 is proved.

Assume the theorem is true up to m. We prove it for m + 1. We actually assume
the stronger statement that the computation is identical on the (explicit) variables
of IIn (but not necessarily on the loop control variables of II~).

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

Subrecursive Programming Languages I: Ei~ciency and Program Slructure 543

The critical piece of II~ has the form

[D O vt

!--I--E, E,A
', B
1

and lII~+~ has the form

--SW(H)

i ~iW(H)

L
B

. H ~ - - H + I

As in the m = 0 ease, as long as H > 0 the computations run identically. Suppose
the branch is taken at s. Then in II~, control skips to g leaving all the loop control
variables and explicit variables of IIn unchanged. In II,,+l, H is set to 0 but control
continues in the loops until it eventually exits to the outermost loop whose E N D -
statement separates s and ~. At this point, the variables of lII~ and IIn+l have the
same values (by the induction assumption).

When control reaches DO vl (the test, if ~1 = 0 then ____ in the implementat ion of
the DO-loop), no s tatements in the scope of the DO vl are executed because they
are all protected by the switch, S W (H) . Thus after a t most v~ iterations control
passes to ~ and then to H +- H + 1 without changing any (explicit) variables of
I I , . At location ~ the H is restored to 1 and the programs IIn and lII~+~ have had the
same effect on the variables of II~. The only difference is tha t all loop control
variables of IIn+~ in the scope of DO vl are at zero but those of lII~ have positive
values.

This difference can have no effect because if control ever returns to DO vl in
either II , or IIn+l, all loop control variables in its scope will be reinitialized to values
of the (explicit) variables of IIn. If control does not return to DO Vl, then those
loop control variables cannot affect the (explicit) variables. Hence, in either case,
the (explicit) variables of IIn and IIn+~ remain identical throughout the computa-
tion. Hence, 1In and lrln+~ are equivalent. Q.E.D.

This concludes the proof tha t Phase I I I is correct. The entire translation of
II C SR to T (I I) ~ Loop has been broken down into phases;

T (I I) = T3(T2(T~(H))), SR) II ~ T~(H) ~ T2(II) --~ T3(H) ~ Loop,

and each phase has been shown to preserve equivalence.
Thus HI (xl, • " , x~) = T (II) (xl, • • • , x~) for all xi . Q.E.D. (Theorem 3.2)

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

544 R. L. CONSTABLE AND ALLAN B. BORODIN

4. Preliminary Theory

In this section we prove a set of theorems which leads to a deeper understanding of
the main results on efficiency in Section 5. The ideas and proof techniques used here
are essential in Section 5, and the main purpose of this section is to present those
ideas systematically. The final subsection, Subsection 4.5, connects our results to
well-known facts about subrecursive hierarchies.

Central to the pertinent set of results is a simulation theorem. I t has the flavor of
those theorems which locate small universal Turing machines in the sense that it
describes a simple structure for universality. The theorem is due to Meyer and
Ritchie [19].

4.1. DEPTH OF NESTING IN LOOP PROaRAMS. Let L~ be the class of Loop programs
having DO-loops nested to a depth of at most n. More precisely, L0 has no DO-
loops and for II C Loop, II C L~+i iff II C Ln or the only programs in the scope of
i teratives are programs in Ln.

Thus if II represents a program of L0, B i a program of L1, and A~ a program of
L2, we see tha t any program in L2 has the form A1 ; • • • ; Am where A~ is of the form
DO v; B1, • .. ,Bm ; E N D or of the form B~ or II, and B~ has the form DO v; II;
E N D or the form lI.

The same rules can be used to define the classes SRn and GRn.
The class of functions computed by programs in Ln is denoted by ~ , .

4.2 SIMULATION. I f a~ is an Algol-R program, then we know tha t it has an
equivalent G3 image under translation, say ~b,(i~. Therefore the simulation theorem
we state is applicable to Algol-R (hence G R) as well as G3.

THEOREM 4.1. I f ¢~ C G~ , then there is a ck~* C L1 such that ~(~) as defined by (the
translation of the GR# program)

H ~ - i
DO W H I L E H # 0

¢i*
E N D

is equivalent to ~i, i.e. ¢i () = ¢~(~) () .
Discuss ion OF THE PROOF. Our proof is based on the ideas of Theorem 3.2.

Because of the DO W H I L E loop, tile backward conditionals can be eliminated in
the same manner as the forward conditionals. The variable H remains 1 until 4~i
halts (if ever), so essentially the DO W H I L E loop "runs a simulation of ¢i until it
halts."

The only technical details are showing tha t all of the steps of Theorem 3.2 can be
done with only one level of nesting. The switches and subtraction are the only steps
tha t need to be modified from the approach of Section 3.

PROOF. Recall tha t the program ,0~ halts by executing an output s ta tement (or
by branching to a nonexistent s ta tement immediately after executing an output
s ta tement) . Replace OUT w by the pair of s tatements H ~ 0; OUT w and move the
label of OUT w to H ~-- 0 (then relabel the entire program to keep it in standard
form).

Now apply the Phase I I I translation of Theorem 3.2 to the modified ¢~ and call the
result ~+. Observe tha t H *- 1; DO W H I L E H # 0; 4~+; E N D is equivalent to ¢~

Journal of the _Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 545

for the reasons given in the correctness proof for Phase I I I . In particular, for the
case of a backward conditional, if v ~ 0 then - c , after setting the switch correspond-
ing to this conditional, control will proceed downward to the E N D statement and
then will return to the beginning of 4~i and flow down to the label c without changing
the explicit variables of ¢i nor H.

To put ~b~ + into L1 we need to modify the use of switches. The nested switches

SW (H1)

can be replaced by the single switch,

S W (H 1 , ' " " , H ,)
Is

defined by

P~-- V (H 1 , H 2 , . " , H n)
S ~ - 0
DO P
S ~ 0
S~--S + i
E N D
DO S
S

END

where V (H1, • • • , Hn) is 0 if any Hi is 0, and is positive otherwise. The code for
one such function is:

Pc--H1
DO P
Pc--H2
END

DO P
P~--H~
END

Thus the whole multiple switch, SW (Hi, . . . , Hn), belongs to L1. If the state-
m e n t s i s v ~ - - v + 1, then SW(H~, . - - , H n) is in L~. But if it is v ~-- v --" l o r i f
v ¢ 0 then c, then the previously given Loop replacements cannot be used with this
switch mechanism. Ins tead use the following. For

I SW (H1, "'" , H,~)
X ~ - X = 1

Journa l of the Association for Compu t ing Machinery, Vol. 19, No. 3, J u l y 1972

546 R . L . CONSTABLE AND ALLAN B. BORODIN

use

X ~ - 0

I SW (H1, . . . , H~)
2 ~ X
Z ~ - - O

DO .~
X ~ - - Z

Z ~ - - Z + I

END

and for

I SW(H1, . . . , H ,)
lx = i f X ~ 0 t h e n c

notice tha t it would, according to Theorem 3.2, become

ll : [' S W (H a , . . . , H .)
] D O X
|H1 ~ 0
LEND

It now becomes

11: .,g~O

[SW(Hi , . - . , H~)
2 ~ X
DO .,~
H ~ - - 0
END

These are easily seen to have the same effect, and they are in L1. Let ~b~* be the
program ¢i + with the above replacements. Then, since 4'i* and 4,~ + are equivalent,
the result follows. Q.E.D.

An interesting corollary follows from this theorem. Suppose t4~ (x~, . . . , xn) _<
f (x l , • • • , x n) f o r f C L~, where n _> 2. Then the DO W H I L E iterative in Theorem
4.1 can be replaced by a simple DO S, where S is larger than the time needed for
4,~* to simulate ¢~. This simulation time is no more than the maximum of the input
variables times a multiple of the length of ¢~, denoted] ~i [, plus a constant. 9 Thus
for d = a.l~bi I + b, the time to simulate is bounded by d-max{x~, . . . , x,}
• f (x l , . . " , x , ,) which is bounded by b (x l , . . . , x n) = d . ~ = 1 x i ' f (x l , " " , x n) . If

f () is in L~ then so is b () . Suppose it is computed by Bi E L~.
The idea now is to use a program like

Bf

H ~ - -
D O ,S

END

g The length of 4,4 is simply the number of statements in 4,~ •

Subrecursive Programming Languages I: E~c i ency and Program Structure 547

to simulate ¢~. The only difficulty is that S is only an upper bound on t¢~ (Xl, • • • , x~)
and ¢~* may "run too long and damage the simulation." We correct this problem by
setting a switch based on H. Then when H = 0, no statements of ¢~* will be executed.

So let ¢~* be ¢~* with H as part of all switches, i.e. replace SW (H1, .. • , Hp) by
SW (H, H~, • • • , H~). By the same reasoning as given in detail before, the following
program is equivalent to ¢~.

B/
S~- - -F
H~--1
DO S
¢~*
E N D

But also the program belongs to Ln if n k 2 because the maximum nesting occurs in
computing f (x~ , . . . , xn). Thus the following result.

COROLLARY 4.1. There is a p () C (R2 such that i f ¢i ~ G3 and tel (X l , " " " , Xn)
¢i(xl , " '" , xn) and ¢~ C L n f o r n > 2, then there is a program ¢~(i.j) in L , which is
equivalent to ¢i .

This corollary was first proved by Meyer and Ritchie [19]. For the language SR,
the bound can be made tighter because the switches and the simulation of -" 1 are
unnecessary. Thus by the same reasoning as above.

THEOREM 4.2. There is a p() C ~2 such that i f ¢i C G3 and ~ (x t , . . . , xn) <
¢~'(xl, " " , x~) a n d C j C S R ~ f o r n > 1, thenCp(~.j) C SR~ andCp(id)() = ~i().

PROOF. We describe the construction of a function ¢i + ~ SR0 for which

IN X
H ~ - - 1
DO W H I L E H # 0
qbl +

END
OUT Y

is equivalent to ¢~. From the construction and the arguments of the previous
theorem, it will be clear how to prove this equivalence and complete the theorem.
We now give the construction of ¢~+.

(i) Place at the beginning of ¢~ a computed go to, go to + G, where G is not in
¢i • This will be used in executing backwards go to's of ¢i •

(ii) Assume Y is an output variable of ¢~ and that OUT Y is the last s tatement
of ¢i , and I 4i] = l, then replace OUT Y by the pair, H ~-- 0; G ~-- l + 2. These
statements have labels l + 1, l + 2. The statement G ~-- 1 + 2 forces all subsequent
executions of "go to + G" to branch back to G ~-- l + 2, thus setting up a loop
which bypasses ¢~.

(iii) Replace every backwards go to, say "go to - C," by the pair G ~-- m;
go to + (l + 3), where m is the value needed to jump from go to + G to the state-
ment - C (and l + 3 refers to the location beyond the last statement of the pro-
gram ¢ modified by (i) and (i i)) .

Journal of the Association for Comvutin~ Machinerv. Vol. 19. No. 3. July 1972

548 R. L. CONSTABLE AND ALLAN B. BORODIN

This is the best possible n for a result of this type because we can easily find 4~i
for which t¢i is bounded in SR0, but there is no equivalent SR0 program.

4.3. STRUCTURAL COMPLEXITY CLASSES. The relationship between' Theorems
4.1 and 4.2 is explained by the fact that SR1 and L2 compute the same class of
functions. We say that two languages, ~£, ~, are equivalent, ~ ~ ~, whenever they
compute the same class functions. Thus we prove SR. ~ L.+~.

THEOREM 4.3. S R , ~- L~+i.
DISCUSSION OF THE PROOF. This result depends on two critical bounding

lemmas which estimate the growth rates of functions in terms of their depth of
nesting and length. We shall state these lemmas here and prove them in the Ap-
pendix. To state them we need two recursive sequences of programs. 1°

(1) L e t f o b e X + - X + l a n d f n + ~ b e D O X ; f , ;END.
(2) Let go be X <--- X . X and g,~+i be DO X ; g,, ;END.
Let f n () , g~() be the functions computed by fn and g~ respectively. Notice that

fo(X) = x + 1,fl(x) = 2. x, f~(x) = 2*.x and go(x) = x 2, gl(x) = x 2~. The standard
mathematical definition of these functions is in terms of iteration. Namely, for any
h() E 5:1 define h(°)(x) = x, h(n+l)(x) = h(h('~)(x)). Then notice that f ,+ l (x) =
f~') (x) and gn+l(X) = g~*)(x). (The notion of iteration is extended to vector valued
functions in the Appendix.)

Also notice that gl() and f~2)() have the same order of growth (this will be
made precise below). This is the essential reason that SR1 = L~. Likewise g.()
and*(~) / .1~+~) for some p have the same order of growth.

Furthermore, f~ E L, and g~ E S R , . The following additional facts about f , and
g, are needed and are easily established by routine inductive arguments. They
simply say that f~, g, are monotone when x > 2.

LEMMA 4.1.

(a) f , , (x) >_ x, gn(x) ~_ X for all n, all x.
(b) f~(x) > x, g , (x) > x for all n, all x > 2.
(c) .~(x) < fro(x) for all n < m, a l l x > 1,

gn(x) ~_ gin(x) for all n < m, all x > 1.
(d) f~(x) < fro(X) for all n < m, all x > 2,

g , (x) < gm(x) for all n < m, all x ~_ 2.
(e) f~(x) < f~(x --F 1) for all n, all x,

g,,(x) < g , (x + 1) for all n, all x.

We now state the critical bounding lemmas.
LEMMA 4.2 (Bounding for Loop). I f ¢i E L m and Oi() : H '~ ~ 5T ~, then for all

j = 1, . . . ,p,¢~(~)~ _<.~(I,,I) (m a x ,) i f m a x Z > 2,
where ~ E H '~, and max ~ = max {xl , • . . , xn}.

LEMMA 4.3 (Bounding for SR). I f ¢~ E SRm and ¢~() : H '~ ~ ~ , then for all
j = 1, . . . , p, ¢~(x)s -< g,(I,~l) (max ~) i f max ~ _> 2.

These lemmas simply state the fairly obvious fact that fn and g, are the fastest
growing programs in L~ and SR~ for their size. The details, like using vector valued
functions and requiring max .~ >_ 2, fall out of the proof technique. The first is a

to S u c h s e q u e n c e s a re e x a m p l e s of spines a n d are i m p o r t a n t in s u b r e c u r s i v e h i e r a r c h y t heo ry .
They are discussed in [8].

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: Eyficiency and Program Structure 549

convenience, the second is because when x = 0 the "loops do not work," and when
x = l , x . x = x .

One more lemma is required before we can prove Theorem 4.3. We must point
out that the classes L, and SRn are "closed under the step counting operations."
More precisely, given ~bi E L,, we must show that t¢~ ~ L , . As presently defined,
tel does not have this property, so we modify the definition for ~b~ E Loop.

If ¢~ E Loop, then define tel as follows:

(i) Pick a variable S not in 4~i and place S *- 0 before 4,i •
(ii) P l a c e S ~ - - S + 2 (S ~ - - S + 1; S ~ - - S + 1) a f t e r S ~ 0 (t h i s c o u n t s

the steps needed to define the work variable of G3 programs used to translate go
to's).

(iii) After each assignment of ¢ i , place S ~-- S + 1.
(iv) Before each DO v, place S ~-- S + 1 (to count the loop control variable

initialization, ~ ~-- v).
(v) After each DO v, place S ~-- S + 1 (to count the conditional, if ~ # 0

then) .
(vi) Before each END, a d d S ~ - S + 1 (to cover O~--v ~ l and the go to) .

(vii) After each END, add S ~- S + 1 (to cover the conditional branch, if
v # 0 then , when exiting the loop).

(viii) Replace OUT w by OUT S (thus S, the number of steps, is the outuput) .

Call the resulting program ~ . To be precise we should prove that the new
definition of t¢i agrees with the old, but this should be clear from the construction
and we accept it as proven.

LEMMA 4.4. I f ¢~ E L~ then tCi E Ln
PROOF. None of the steps (i)-(vi i i) increases the depth of nesting.
An easier construction can be given to define t¢~ for ~ E SR such that
LEMMA 4.5. I f ¢i E SR, then tCi E SR~ .
PROOF. For the reader.
We are now ready to prove that SR~ =-- L~+i.
PROOF OF THEOREM 4.3 FOR n = 1. We prove the result in detail only for

SR~ -= L2. The general case follows by similar argument (slightly more complex
-(2) / treatment off,+1() _< g~() and g,+~() < J~ ~)) .

(1) SR1 ~ L2. According to Corollary 4.1 we need only show that 4~i E SR1
implies tC~(x) _< f(~) for f E L2. But ¢~ E SR1 implies tel E SRi by Lemma 4.5
and/¢~(~) _< g~l~,t) (max ~).

But notice tha t gx(x) = x 2" < 22"'~2~.x = f22(x) if x > 2. Thus

tO~(Y) < f2 (~'l*~') (max ~ + 2) < f2(21¢i[)(Xl + . . - + Xn + 2) .

The program for f2(~"*~l)(xa + . - . + x,, + 2) is simply

X * - - X i + . . . + X ~ + 2

where X ~-- X1 + . - . + X , + 2 is implemented by

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

5 5 0 R . L . CONSTABLE AND ALLAN B. BORODIN

X~--0
DO X1
X ~ X + I
END
DO X~
X ~ - - X + I
END

DO X~
X ~ - - X + I
END
X ~ - - X + I
X ~ - - X + I

(2) So f= (Xx+ " " + Xa+ 2) can be done inL2.
(2) L2 ~ SR1. We argue in an exactly parallel manner as for (1). In brief

¢i C L2 implies tel C L= implies t~i(£) _< f~l,,o (max £ + 2) but f=(x) < gl(z)
for all x _> 2. So

t4~(5) _< g~l*'l>(xl + . ." + zn + 2) ,

and the rhs is clearly in SR1. Q.E.D.
This theorem suggests that the class of functions computed by SR1 and L2 might

be fundamental. The class turns out to be one which is important in logic and which
has been extensively studied, namely the elementary functions, 5.

4.4 THE ELEMENTARY FUNCTIONS, 5. This class is defined algebraically as
follows. Introduce the operators for 5 E N ~.

(1) ~ : partial summation: s(~, y) = ~ = 0 f (i , 5).
= v i (2) I I : partial product: p(5, y) IXi=0f(, 5).

_< v (z, 5) = o],
(3) U_< : bounded least number: b(~, y) = (0 if no such z exists.

The functions s () , p () , b() are said to be obtained from f() by ~ , IX, v_<
respectively.

Let x**y denote x ~ and then in the notation of Subsection 2.3, item (6), define
8 = [+ 1, "--1,0,+,--" ,. ,+,**;Os,~<].

It is proved in Grzegorczyk [11] that:
THEOREM 4.4. 8 = [+1,--" 1,0,+,--" , + ; O s , ~ , I I] .
We can easily show:
THEOREM 4.5. 8 C $~tl.
PROOF. The base functions except for ** are in $~1 since there is a basic SR~

instruction for each. For Z ~- X * * Y use Z ~-- 1; DO Y; Z ~ Z . X ; END. The
closure under 0.~ is contained in $~1 because the operations of substitution corre-
spond to composition of programs. The only remaining task is showing closure of
$~x under ~< . This cannot be done directly by simulating, ~_<, with a DO-loop,
because the loops cannot be nested. The strategy is to write G3-programs for ~_<

b (">:x and show that the run time can be estimated y g~ ~ + q) for some p, q. Then ap-
ply the simulation theorem, Theorem 4.3.

Suppose for induction on the number of applications of t~_~ that 0:() computes

Journal of the Asaociation for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 551

f () and t¢ : (x) < g[~)(x+ q) for a l lx . Let¢~(2, y) = tLz _~ y[f(2, z) = 0]. Let
~: have inputs x l , • • • , x~ Z and output W, then let ~b~ be the G3 program for

I N X : , . . . , X , , Y
Z ~ - - 0
D O Y + 1
¢:
i f W = 0 t h e n 1
Z ~ - - Z + I
E N D
Z ~ - 0
Y ~ - - Z
OUT Y

The run time, t ¢ i () , is bounded by ~ = o a . t ¢ : (2 , i) + b, thus by

~ = o a'g~ p) (max {2, i}) + b _~ (y + 1).a.g~ p) (max {2, y}) + b.

Now (y + 1) .a < g~p+a) (max {2, y}), so clearly there exist p:, q: such that

(y -~- 1).a.g~ p) (max {2, y}) + b < g~P:) (max {2, y} -~- qi).

Thus by induction, the run time of any 4~i computing a function in ~ is bounded
in $(~1, so Oi() C $(~ • Q.E.D.

The inverse inclusion, $(~ c 5, can easily be proved from ~ general principle
well known in the literature. We summarize in the next section the t reatment of
these principles given in [8], which is a synthesis of Kleene [14], Cobham [6], and
Ritchie [22], from the viewpoint of functionals (or relative subrecursion).

4.5. ELEMENTARY INDEXINGS AND MEASURES. The programming languages
considered here can all be relativized to an arbitrary function f() E ~:. We simply
allow f as a new basic operation and interpret the assignment w ~ f (v l , • • • , v,,)
as: w receives the value of f () applied to the values of v~, • • • , v~. This simple
mechanism for relative computabili ty is one of the salient advantages of the lan-
guage approach to computability. ~:

The concept of an acceptable indexing directly generalizes to relative com-
putability, and the time measure, {t0i() }, generalizes directly by counting the
assignment as a single step. We denote the relative indexing of a measure by
{~if()} and {tCJ()}. General relativized {~if()} = (I)f measures are defined by
requiring ~ relativized measure function, M f () , in the axioms of Subsection 2.7. ~'~

We will now outline the approach to elementary measures given in [8]. First we
define the (relativized) computation predicate, T () . This is also known as the
Kleene T-predicate (see [14]).

(1) Tf~+2 (i, 2, y) iff y is the number of ~ terminating computation of program
o~f with 2 E N ~ as inputs. Also write comp f (i, 2) = t~zT(i, 2, z), called the compu-
tation function.

n Notice that relative computability is of interest even in a constructive theory if one is not
willing to accept Church's thesis. In the constructive setting, Church's thesis has the character
of a reduction axiom.
1~ There is a good deal of interesting work to be done in generalizing the notion {m¢,i:() }
correctly.

Journal of the Association for Computing Machinery. Vol. 19. No. 3. July 1972

5 5 2 R . L . CONSTABLE AND ALLAN B. BORODIN

(2) Define ~(f()) = [+ l , ' - l , 0 , + , - ' , . , ÷ , * * , f ();0s,~_~], the functions
elementary in f() (or elementary relative to f ()) . A predicate P() is elementary in
f() iff its characteristic function chp(x) = if P(x) then 1 else 0, belongs to ~(f()).

(3) The Klecne normal form theorem asserts that 3 U () E ~ and T~+~() E
8 (f ()) such that ~i:(~) = U(~yT~+~(i, ~, y)).

(4) An acceptable relativized indexing will be called elementary iff (3) holds
for ¢ i : () . A measure, {mCi:()}, is elementary iff

(a) 3h() E ~ (f ()) such that comp: (i, x) < h(mC~:(x)) and
(b) 4~,:() E g (f ()) implies me,:() E ~(f ()) .

(A third condition which is natural but unnecessary here is
(c) M : () , the measure function, belongs to ~ (f ()) .)

I t is now easy to verify the following critical principle. By way of abbreviation
we use~() < ~b() iff~b(x) < ~b(x) for a l l x ; a n d i f C ~ f f t h e n w r i t e ~ () < C
i f f3g () E Gand~b() < g () .

THEOREM 4.6 13 (Ritchie-Cobham). I f {4~J()} and {m¢~:()} are elementary,
then

m~,/() < ~(S()) i# C s() E ~(S()).

PROOF. For simplicity, consider only 4~() E ~ 1 • The "if condition" is imme-
diate from the definition. For the "only if" part, note that from (3): ~i:(x) =
U(~yT:(i, x, y)), and since {~bi:()} is elementary, U() , T:() E 8 (f ()) . Since
{mCi:()} is elementary, the y above satisfies y _< h(mCi:(x)) for h() E g (f ()) .
Define IX(x) = ~ = 0 h (i) W 1; then h() < h() and]~() is increasing. Also,
]~() E ~ (f ()) (recall Theorem 4.4). Since m~bJ() < 8 (f ()) , 3g() E ~ (f ())
such that mCi:(x) ~_ g(x) for all x. So y <_ h(mCi:(x)) < h(mchJ(x)) _< h(g(x)) and
h (g ()) E ~ (f ()) . D e f i n e s (i , x, y) = U (#z < yT:(i, x, z)) ; t h e n s () E g (f ())
and s(- , - , IX(g())) E ~ (f ()) . Since ¢~:(x) = s(i, x, h(g(x))), ~:() E g (f ()) .
Q.E.D.

Remark. A class ~ satisfying the condition that m4~J() _~ a implies ~b~:() E

is called full wrt ~:. If also ¢~:() E ~ implies ~ J () = 4~:() and m~J() _~ ~,
then ~ is called closed wrt ¢:.

The statement of Theorem 4.6 is now that "the classes g (f ()) are full and
closed wrt to any elementary measure ~:." It is an interesting open problem to
find the least closed and full class wrt {t¢~:()}.

I t is well known that all reasonable or natural formulations of abstract machine
and language models (e.g. Turing machines, G,~-programs, etc.) are elementary as
are the usual measures of computational complexity (time and tape, for instance)
on them. Cobham [6] argues this explicitly for a subset g~ of 5. ~ are called the
primary functions.

The reason for this is that the elementary functions allow most all functions and
predicates which are used in combinatorial description. Furthermore, machine and
language models are intentionally constructed by simple means from simple bases.
We summarize this information as

THEOREM 4.7. The relativized G3 indexing and time measure, {¢J()} and {tCJ()},
are elementary.

~ The historical origins of this theorem can be found in Kleene's treatment of primitive recur-
sive functions. N. A. Routledge called the theorem "Kleene's principle." The exact version
given here was first due to Ritchie [22] and later explicitly discussed by Cobham [6].

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 553

PROOF. See Minsky [21] or Shepherdson and Sturgis [26].
This fact means that all the specific languages and measures considered here are

elementary. From this we can easily prove:
THEOREM 4.8. 8 = 801 •
PROOF. Again consider only one argument functions for simplicity. By Theorem

4.5 we need only show that $6t, C 5. But if ¢i() C $~1, then tCi() C 86h and in
fact t tdx) _< g~'t*~'l(x + q). But g,() is defined in 8 by the expression x**(2**x)
(i.e. x2~), which is clearly elementary. Thus we have shown ¢i E $6t implies tel() _<
8. So by Theorems 4.6 and 4.7, ~b~() ~ 8. Q.E.D.

It is most natural to inquire about generalizing the equalities 8 = $5~, = 22 to
8(f() , $6h(f()) and 22 (f ()) . The classes are all well defined. Unfortunately the
classes are not equal. This points up a deficiency in the L2 and SR1 definitions of 8.
They do not provide a definition of the relativized classes.

The classes $611(f()) and £ 2 (f ()) are not as interesting mathematically as
8 (f ()) because they are not as stable; they are not functionally closed, i.e. if
g() E $6h, it is not necessarily the case that $6{,(g()) ~ $6~1.

We now verify the class inequalities.
FACT4.1. 22 (f ()) ~ $(Rl(f()) ~ E(f()) f o ra l l f () E 5:,.
Take f() =f2() , t hen f4() C 22(f2()) but f4() ~ 8(f2()),f4() ~ 86t1(f2()).

Alsofi() C 8~1(f2()) but f3() ~ 8(f2()) . These observations all follow directly
from the bounding theorems for L and SR and from the fact that 8(f~()) =
8 = $6t = 22 • The same observations yield:

THEOREM 4.9. (Grzegorczyk hierarchy).
(i) 8 (f~()) C 8(f~+~()) for all u _> 2,

(ii) [.J:=08(f~()) = 8~ = (R'.
It can also be shown by arguments similar to those in Theorem 4.3 that :
THEOREM 4.10. For all n _> 1, 8(f~+1()) = ~ = ~ + , .

5. Computational E~ciency and Program Structure

5.1. RELATIVE EFFICIENCY. We know from the work of Blum that the avail-
ability of the "negative go to" allows a programmer to "compress his code." That
is, GR programs can be much shorter than the shortest SR programs for some 60
functions. How does the "negative go to" effect computational efficiency measured
in terms of running time?

The best result previously known (Meyer and Ritchie [19]) is that if ¢i denote
G3 programs and ¢~i denote Loop programs, then if tCi() < f(,~) () there is a/3i() =
~() and t/3~() < f~,P)().

There is, however, considerable latitude among run times bounded by f(,~)(),
and the previous best result leaves open the possibility that for every (increasing)
primitive recursive function, h() C ~ , there exists some 4~i() ~ 6t ~ such that
every Loop program /3~ for ¢~() satisfies h (~ (x)) < t~(x) for all x > m for
some m. That is, some G3 programs may be arbitrarily more efficient than the best
Loop programs for the same function, because there might be arbitrarily large
primitive recursive gaps between G3 and Loop run times for the same function. The
main result of Theorem 5.1 shows that there are no such gaps.

To facilitate stating the results of this section, let {ai()} be an indexing of SR
and {/3i()} be an indexing of Loop, and {¢~()} an indexing of G3. As before, ai,
~ will actually be the G~ images of SR and Loop programs, so {a~()} and {fli()}
are sublists of {4,i()}.

Journal of the Associat ion fnr ('~nTrJnllt~n~ M ~ a h l n ~ r ~ Vn l 1Q ~,Tn 2 .111|v 1~7~

554 R. L. CONSTABLE AND ALLAN B. BORODIN

For simplicity, we state the main theorem only for one argument functions.
The extension to multiple arguments is straightforward from the principles of the
Loop and SR bounding theorems (Lemmas 4.2 and 4.3).

THEOREM 5.1 (Relative efficiency). I f ~i C G3 and 4~() C ~1 and tCi(x) > x,
then there exist nil E SR, ~is C Loop and constants ci~ , ci2 such that

(a) tai,(x) < c~l.tCi(x) and
nil(x) = ¢i(x) for all x,

(b) t~i~(x) <_ ci~.(ti(x))~ and
f~s(x) = ¢i(x) for all x.

The all and ill2 can be found effectively. More precisely, there exist pj() and qj(),
j = 1, 2, such that i f tC~(x) < f~m)(x) for all x, then

(a') tap,(~)(x) < q,(i, n, u) . H i (x) and
ap~(i)(x) = ~i(x) for all x and

(b') t~(~ )(x) _< q2(i, n, m).tC~(x) and
fl~,2(i)(x) = @i(x) for all x and
l~ps(~) C L,+~.

COROLLARY 5.1. The list {a~()} can also be taken to be an indexing of [+1,-" 1,0,

DO
() , END] and the results (a) and (a') hold with a~(~) having depth of nesting
n W 1 .

DiscussioN OF THE THEOREM. The results say that restrictions on program
structures in going from G~ to SR cost only a multiplicative efficiency factor, and
in going from Ga to Loop the restrictions cost at most a square. Corollary 5.1 says
that the nonlinearity results only from the cost of simulating subtraction.

DISCUSSION OF THE PROOF. The idea of the proof is simple. We will use a
Loop program,

DO S
~*
END

or an SRprogram,

DO S
~bi +
END

(just as in Section 4), to simulate ¢,i •
The key factor in controlling the efficiency of the simulation is calculation of the

bound S "in parallel" with the simulation. That is, we construct a "clocklike
mechanism"; the clock will run for exactly f ~) (x) steps unless it is shut off. 14 The
simulation continues as long as the clock is running. If the simulation finishes
before the clock, then it sends a signal to stop the clock. In the Loop language the
clock cannot stop immediately, there is an overrun factor. Estimation of this
factor is a critical step in the proof (Lemmas 5.3 and 5.4).

~ T h e f ac t t h a t t h e r e is a c lock for f,,~() d e p e n d s on t h e " h o n e s t y " of t h e f u n c t i o n f ~ () , i.e.
i t s v a l u e s a re close to i t s r u n t i mes .

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 555

The "clock-simulation" argument used here is typical of a certain class of di-
agonalization arguments in complexity theory (called downward diagonalization in
[7] and discussed at length in [13]), but it is used for a different purpose here.

PROOF. In the first part of the proof we construct one part of the parallel pro-
cedure, the simulation of ~b4(), and show that it works correctly. In the second part
we build the clock mechanism into the simulation and show why it works correctly.

Part I:
(1) Given ¢4, construct ~ '* ~ L1 just as in Corollary 4.1 of Subsection 4.2.

Again assume that H does not appear in ~4 • The correctness of ~b~* will follow from
the arguments of Subsection 4.2. This finishes the simulation part for Loop.

(2) Construct an SR0 program, ~b4 +, to simulate ¢4 just as in Theorem 4.2, Sub-
section 4.2 (assume G does not occur in ~b4). The correctness of 4~ + will follow from
the arguments of Subsection 4.2.

Notice ¢4 + C SR0 and ~b~* C L1. Now let ¢i denote either ¢4 + ** or 4,~ • Then

IN X
H+- -1
DO W H I L E H # 0
5,
END
OUT Y

is equivalent to ¢4 • Our task in the next par t is to simulate the DO W H I L E itera-
rive by a clocklike mechanism.

If ¢4 C G3 and ¢4() C R ~, then for purposes of the theorem we can assume that
- - ~ (P i) / \ there exist n i , pi such that t~h4(x) < tn~ (x) for all x. This is because there must be

some aj which computes ¢4() , i.e. a i(x) = ¢4(x) for all x, and the Ga program, tk,
which simulates the execution of ai and 4~i in parallel and stops as soon as one of
them stops, has a run time which is less than c.min(tCdx), ta i(x)) for some
constant c. So tea(x) < c.tCi(x) and 3n~, pi ttk(x) < +(P~)" " _ _ j ~ (x) .

Part II :
(1) Suppose now that tCi(x) < ~c~)+ , _ j ~ kx) for all x. The goal of this step is to

describe a way to compute the clock in parallel with $~ and shut it off (without
much "overrun") when ¢i halts. ~5 The asterisk' will indicate the critical statement
needed.

• if H # 0 then X ~-- Z else X +-- 0

In SR, • becomes

l i f H # 0 t h e n + (l + 3) so we get l i f H # 0 t h e n + (1 + 3)
l + l X+---0 / + 1 X~---0
1 + 2 g o t o + (/ + 4) / + 2 g o t o + (/ + 4)
/ + 3 X + - - Z / + 3 X+---Z

In Loop • becomes

X+- -0
DO H
X ~ Z
END

ti We need not make the concept of a clock precise here. It is done in [13l and [8].

556 R.L. CONSTABLE AND ALLAN B. BORODIN

Now form a program ~/1

DO X

DO X
DO X

DO X
&

In /

Z ~ - - Z + I

E N D

END

END

(if$~ = ¢i +) or ~i~ (if$i = ~b~*) or ~ for short.

END

Looking at the innermost loops we see the mechanism in more detail.

DO X
DO X

Z ~ - - Z + I
END
if H # 0 then X ~-- Z else X ~-- 0

END

Observe that as long as H # 0 this program will compute fn(x) in variable Z, since
the program is essentially

DO X ln i times

J DO X
DO X
Z * - Z + 1
END

X,~--Z
END

n/

X 4:--Z
END

times

Journal of the Association for Computing Machinery, VoL 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 557

Furthermore, while H ~ 0 the program is simulating at least one-half step of
4,~ every t ime Z ~-- Z + 1 is executed. Thus while H # 0 the value of Z indicates
a lower bound on the number of steps of ¢ /which $~ has "simulated."

I Pl times I

To compute the final result, 4~ (x), form I N X; H ~ 1; ~; . ; ~; . ; • • • ; ~; OUT Y.
The result is either a~ 1 or/311 depending on ~.

Now Z will potentially have the value of jn¢¢~)~ (x). I t s actual value will depend
on the value it has when H becomes zero, i.e. when q~i shuts off, i.e. when ¢i(x)
halts. In the next step we determine how long a~, or/~i2 will run compared to tO;.

(2) To calculate tail(x), tel2 (x), four facts are needed about ~1 and/~i2. Let
D~, • • • , D ~ be the loop control registers in ~ (listed in order with the innermost
loop first). The following hold for all inputs x.

LEMMA 5.1. After executing the innermost DO, at every step of the computation,
Z > D i f o r i = 1, . - . , n l .

LEMMA 5.2. After the first execution of the innermost loop, D1 _< Z < number
of times instructions of 45i have been executed. Also, C.Z < number of steps of qJi
already simulated, for some constant C.

LEMMA 5.3. If H = O, then at most 3. (D1 + D2 + .. • + D~) + ni + D1
steps can be executed before ~ halts.

LEMMA 5.4. I f H = O, then the maximum value of X is Z.
Using these lemmas, conditions (a ') and (b ') of the theorem are easily es-

tablished as follows.
(a) First consider ¢~+. When ¢i + halts (i.e. H = 0), ~bl + has been executed

no more than C.tq~(x) steps ("on the average" ¢i + is probably executing nearly
one for one). 18 Thus, when ~bi + halts, H = 0, and D1 _< X _< Z _< C.tCi(x), by
Lemmas 5.1, 5.2, and 5.4. The total number of steps taken outside 4~ + is no more
than (4n i) .Z , 'thus no more than 4.ni.C.tOdx). When ~i + halts, control is in
some ~ and will not go into another ~. By Lemma 5.3, ~ can execute at
most 4. ~j~2~ Dj + n~ more steps. So tha t by Lemmas 5.1 and 5.2, at most
4.Z + nl _< 4 . (C . tOdx) + n~) more steps. Therefore to complete the program
we add at most 2.p~ more steps in slipping over unused ~'s to complete ap~(~.~,~ 0.
Hence at least

ta~,(x) _< (4 .C) . (n~ + 1) . tCdx) ,

where i~ = p~ (i, n~, p~).
(b) Now consider the case of ~b~**. Several steps must be executed for each

step of ¢~ because the switches must be computed (a t a maximum cost of Cl.p
statements for SW(H1, . . . , H~)) , and subtraction must be simulated (at a maxi-
mum cost of C~.v steps where v is the values of the variable being decremented).
In the worst case this added cost is g(x) =]¢~ I" C3. (maximum value of variables
in ~b~ in input x) as a multiplicative factor. Clearly the maximum value of variables
in 4~ on x is x + tel(x). Thus g(x) _< C3.14~i [" (x + ~ (x)) . Recall tC~(x) > x
for all x, thus g(x) < C4.tCdx).

Now by the same reasoning as in case (a) above, we can conclude

tibia(x) < (4. (n~ -4- 1) . C 4 . ~ (x)) . t C , (x) ,
so t~2(x) < C. (t¢dx)) ~, where/2 = p~(i, n~, p~).

tt If we could count assignments of the type w ~ n as a single step, then the simulation is
close to 2.t¢~(x).

Journal of the Association for Computing Machinery, Vol. 19, No, 3. July 1972

558 R. L. CONSTABLE AND ALLAN B. BORODIN

To complete each of (a) and (b) we need only prove the lemmas.
(3) The proofs of the lemmas are as follows.
PROOF OF LEMMA 5.1.
(1) After the first time through innermost loop, Z = X and no Di has been

increased.
(2) Assume the result true after m steps, to prove that it is true after m + 1

steps. At each step only three instruction types can change values. They are

(i) Di ~- X
(ii) Z ~ - - Z + 1

(iii) D ~ - - D ~ - - 1
(iv) X ~-- Z

Therefore, if Di _~ Z at m, then (i) can at worst bring some Di = X which by
(iv) is < Z. The other two instructions can only cause Dj < Z. for some j.
Q.E.D.

PROOF OF LEMMA 5.2.

(1) Z cannot be increased unless an instruction of $i is executed. Therefore
Z < number of steps taken in 5~.

(2) Every step of 4~ + either directly carries out a step of ~ or else carries out
the step of ~b~ after one loop and C extra steps, thus after increasing Z. Thus C. Z <
number of steps of 4~i already simulated.

(3) The argument for ~ * is similar to 2. Q.E.D.
PROOF O f LEMMA 5.3.

(1) If H = 0 then by the * statement, the only value that can be assigned
to D~ is 0. Also when D~ = 0 then the only statements executed in the D~+I loop
are "D~+I ~ D~+i -" 1", "go to _ _ " and "if D~ # 0 then _ _ " so that after
3.D~+1 steps, D~÷~ = 0.

(2) After D1 = 0, then 3D2 + 1 + 3D3 + 1 + . . . + 3Dn steps are executed.
D~ may execute 4D~ steps before being set to 0 (the "go to G" is also executed).
Q.E.D.

PROOF OF LEMMA 5.4. Trivial by examining *. Q.E.D. (Theorem 5.1)
Discussion. The estimate produced in the proof is very crude. There are two

basic factors influencing the cost of a ~ , ~2:
(A) simulation time, the cost of

2o-- w-
END

and (B) clock time. The clock time, (B), has two subeosts: (i) computation time
while the clock is still needed, and (ii) overrun time, the time the clock keeps
running after it is no longer needed (after $~ halts). The cost of (i) is inescapable
but is minimized by computing it in parallel. This cost is reflected in the factor
4hi.Z, the time spent outside of $i . Notice that the (B) cost depends on hi , an
index reflecting the complexity of the clock. The cost (ii) can be eliminated in
the case of SR and it will allow us to reduce the value of the constant C,: in (a).
This is done by placing "if H = 0 then + d" immediately after "H ~ 0" in
~+, where + d refers to the output statement which is outside of all loops.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 559

The simulation cost (A) depends on the "structural complexity" of ~bl measured
in terms of the number and distribution of negative go to's. The value of Z, which
determines the nondirect simulation cost as well as the clock cost, actually measures
the number of times that negative go to's are executed. Thus if there are few
negative go to's, then t~b~+() and t4~i() may be very close. The topic of structural
complexity and efficiency will be discussed further in Subsection 5.3.

In comparing the structure restrictions on a~l and/~i2 we see that/3i2 has a larger
nesting complexity than a ~ . Furthermore, if tO~(x) _< f~cP)(x) for all x and n _> 2,
we know that there is a ~ C L. for ¢ i () . How does the efficiency of ~i compare
with that of/~2 ? We can say the following.

THEOREM 5.2. I f qbi() C 6t ~ and ~ i (x) _< f,,(P)(x) for all x and for n > 2, then
3l~i ~ L~ such that ~ () ~- ~ () and

t~j(x) < s(max{x, ~i(x)}) for all x,

where s(x) = 2~.x.
PROOF. Replace the two innermost nested loops of the program/~i of Theorem

5.1 with

DO X

DO Z
Z ~ Z + i
END
¢~*

END

The resulting program has nesting n as desired, and its run time behaves as claimed
for reasons similar to those detailed in Theorem 5.1. Q.E.D.

This theorem illustrates another aspect of the trade-off between structural and
computational complexity. In summary, the theorems of this section have de-
termined the cost of putt ing programs into certain normal forms or restricted forms.

5.2. Min imum Growth Rates. The main theorem was proved with the restriction
that ~i(x) > x for all x. This restriction is necessary because Loop programs con-
structed as in the proof cannot run in less than x steps. For GR functions, running
times below x are possible if the base functions, A8, are all assigned a cost of one
step. However, all languages mentioned, G3, GR, SR, Algol-R01, and Loop, have a
strong minimum growth rale in the following sense: there is a recursive monotonic
increasing function ~() such that if l i m ~ , inf ¢i(x) = oo, then tCi(x) _> X(x) for
all x except possiblythose in a finite set F (write e.f.s, for except on a finite set). Tha t
is, if the run times grow, they must grow at least at the rate of ~ () . Given a strong
min growth rate ~() for the general recursive language GR and the time measure,
we know:

COROLLARY 5.2. There is a recursive function ~-1 such that for all Oi() E (R 1
there is an ai() = 4~i() such that taj(x) _< ~-l(max{x, tCi(x)}) for all x.

THEOREM 5.3. GR and G3 have strong minimum growth tales.
PROOF. We prove first that G3 has a strong min growth rate ~ () and then show

that growth rate in GR can be bounded in terms of ha •

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

5 6 0 R . L . CONSTABLE AND ALLAN B. BORODIN

(1) The strong minimum growth rate for G3 is ~3(x) = x. To prove this, con-
sider any one argument G3 program ¢4 (suppose input is X, output is Y). To de-
termine the minimum growth rate we ask how few steps q)~ can take on input x and
still have a growing run time. This can be estimated by working backward; given a
run time value, ~ i (x) = k, how large can x be?

I f tq~(x) = k, then we can write down a finite tree of all possible paths of execu-
tion of length k (if there are no conditionals, then the tree has only one branch).

On the edges after each decision node, the condition on the variable being tested
is written down. Since we are estimating x, we need to record only the condition on
x. These are always of the form X - n = 0 or X - n > 0 since the conditional is, if
X re 0 then . We now consider two possible types of terminating branches in the
execution tree (the branch is terminating if it causes OUT Y as the last node).

(A) The last decision on this pa th was X - n = 0. In this case n _< k because
at most k operations can be performed on X. Therefore, the maximum value of X is
k and we conclude tha t x < k; so the growth rate is tel(k) > k, and the growth func-
tion is ~3(x) = x.

(B) The last decision on the pa th was X - n > 0. In this case, for all x > n the
program terminates in k steps. Therefore lim inf ~ (x) < ~ which violates the
hypothesis. So no such pa th exists.

Since only case A can hold, the growth rate is X~(x) = x.
(2) To establish a growth rate for GR, notice tha t since G R can be translated

uniformly into G~, there is for each G R arithmetic function (say x -" y) a cost
si(x, y) in terms of G3 • If tCi(x) = y, then the simulation cost using G3 can be de-
termined. Let S(x , y) = ~ = 1 si(x, y) for p the number of ari thmetic instructions
of GR. Then S() bounds the cost of simulating any G R arithmetic operation. Thus
since S(x , y) is monotone in x, y, the simulation cost will be at most S(v l , v~) A-
S(v2, v2) + " • -4- S(v~, v~), where v~ is the maximum value in any variable at
step i.

This maximum value v~ can be determined as a function of v0, the maximum initial
value, and y the number of steps. The t ime measure { ~ () } has a speed limit, sl, that
is, in y steps a program with maximum initial value v0 cannot produce a value larger
than sl(vo, y) . Thus after y steps, v~ _< sl(vo, y) . Since S() is monotone the value
y. S(sl(vo, y), sl(vo , y)) = t(vo , y) will be the maximum number of simulation steps
required. The function t() is increasing in v and y, and because of the e.f.s, condi-
tions on min growth rate we need only consider T(y) = t(y, y) . Since T is increas-
ing, T -1 is defined.

The minimum growth rate in GR, say ~, must satisfy X(x) > T-~(h~(x)) e.f.s.
Q.E.D.

The idea of a speed limit which appears in this proof will be of interest to us in
Section 6, on abstract subrecursive complexity measures.

To finish this section we note tha t Theorem 5.1 is not constructive in the sense
that given ~ we cannot determine n~ and p~ effectively.

THEOREM 5.4. (a) There is no algorithm to determine for any GR program ¢i
whether Ok() ~ (R 1. I f 4~i() C ~ , then there is an n such that 3 p and * tCi(x) < f~P) (x)
for all x. (b) However, given the information that OOi() C (R ~, there is no algorithm to
determi~e an n satisfying . . (c) Moreover, given the information that Oi() C ~ , there
is no algorithm to find the least p satisfying *.

PROOf. Case (a) : This is a well-known fact. I t is proved by embedding the

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 561

halting problem in the decision. Namely design ¢~(i.n) such that on input x it runs
O,,(n) for x steps. If this halts, it then computes a nonprimitive recursive function.
If it does not, halt, it computes the successor function X ~ X -~- 1. Knowing whether
0,(i0..~/ ~ 611 is equivalent to knowing whether 0~(n) J,.

Cases (b) and (c) are similar.

5.3. Speed- Up Theorem for 611. One of the most interesting theorems in the theory
of computational complexity is Blum's "speed-up" theorem.

THEOREM5.5. Foral lr() ,a() i n61 there i san f () ~ 61suchthat
(i) f (x) > a(x) e.f.s.,

(ii) for all OOii() = f () , there is a 4)ii+,() = f() such that r(x, t41i+~(x)) >
t4~j(x) e.f.s.

This theorem is proved in Blum [1] and Hartmanis and Hopcroft [13].
This says that there are peculiar functions whose computation time can be "sped

up" by an arbitrary amount r() almost everywhere. However, Blum has shown
that the speed-up cannot be effective in the following sense.

THEOREM 5.6. Let r() C 6l be any su.l~ciently large funnction. Let f () C 61; then
there does not exist a program 7r such that i f ¢ i () = f () , then 7r(i) halts
and r(x, t¢~(i)(x)) < t4~i(x) e.f.s, andrh,(i)() = f () .

In the case of GR programs and the time measure, {tCi()}, "sufficiently large r"
means r(x, y) > y2 e.f.s. Thus there is no way to go effectively from ~bii to 4~i~+. for
all n.

The noneffectiveness of the speed-up means that it is impossible to exhibit ex-
amples of square speed-up in GR. For the purpose of illustrating the speed-up
theorem, this is disappointing. (In fact from a constructive point of view, the result
is a "non-speed-up" theorem.) One might thus ask whether square speed-ups could
be illustrated in the Loop language or some subrecursive language where the struc-
ture is simple. This question has occurred to several people. The first step in answer-
ing it is to prove an 611-speed-up theorem using a simple language like Loop. One
would aim to prove:

THEOREM 5.7. For all r() , a () C 611 there is an f () C 611 such that f() > a()
e.f.s., and for all ai~() = f () there is an aii+~() = f () such that r(x, taii+~(x)) <
taij(x) e.f.s.

This theorem cannot be proved by carrying out the Blum [1] proof directly to
6t ~. It can, however, be proved using different methods, for example, those in [12]
and [17]. However, it has not been shown tha t this 61a-speed-up is noneffective.

From Theorem 5.1 it is possible to easily prove the above Theorem 5.7 and to
prove directly that for sufficiently large r the speed-up cannot be effective. Namely,
the proof is to apply Blum's proof for a given r() C 611 to yield an f() C 611 func-
tion with r() speed-up in GR. Then by Theorem 5.1 the SR programs also have r
speed-up for r(x, y) > y2 e.f.s. Finally the speed-up cannot be effective in SR be-
cause it would lead to an effective GR speed-up by the following argument.

In more detail, suppose 7r speeds up SR programs in the sense that if ai() = f() ;
then 7r(i) halts and r(x, ta~(i)(x)) < tai(X) e.f.s. Then define a program ~ in GR
which uses a fixed SR way to c o m p u t e r () , say al • Given ~ , ~ assumes that 4~() =
f() and that tqSi(x) < tai(x) e.f.s. Therefore, using a boundf~ p) such that ray(X) <
f~P)(x) for all x, it produces the image program $~ and the simulation program
ap,(~,~.p) according to the method of Theorem 5.1. Now if 4~i() = f () , and 4~i is
reasonably fast, i.e. tCi(x) < f~P)(x), then r(x, tc~,(~(~,~,~))(x)) < ta~(i,~.~)(x)

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

562 R. L. CONSTABLE AND ALLAN B. BORODIN

e.f.s. To handle the case when ¢i() = f() but ~bi() is slow (large), we modify
a~l(~.~,~) so that if time f~P) is exceeded, then a,(i)(x) is computed. Call the new
image a~,~(i,,,~) . Now the program a , is an r speed-up of any ~b~() = f () .

The same arguments will work for pure Loop, but now the "sufficiently large r '~
must be increased to compensate for the simulation of x "- 1.

SR k GR
0~--- 0

1

i

0 , 0 id

diagram commutes

The situation is summarized by the above diagram. The map k is the translation
into SR given by Theorem 5.1. The downward maps, ~r, ~ represent the hypothetical
"acceleration functions" (i.e. functions which produce speed-up).

5.4. RELEVANCE TO THE " G o T o " CONTROVERSY. W e have studied certain
facets of program structure found in high-level languages like Fortran, Algol, and
PL/ I . The use of the more sophisticated languages like Algol and P L / I has caused
a certain controversy over the need for "go to's." The motivation for the contro-
versial discussions is the fact that the use of "go to 's" in Algol destroys the logical
simplicity of programs and makes description of the computation difficult. There-
fore, it is desirable to minimize their use. The question arises of whether they
can be eliminated entirely without unbearable sacrifice [15].

The answer to the simple question of whether they can be eliminated at all is a
trivial yes. Using the Kleene normal form we can express every number theoretic
computation ¢~ as Ck(i) =

IN I, X
DO W H I L E S = 0
Y ~ - - Y + I
S ~-- T(1, X, Y)
END
Z ~-- U (Y)

OUT Z

where T() is the computation predicate. The T-predicate can be computed in Loop,
and we know that Loop does not need any conditionals. But this answer is unin-
teresting.

We can offer more enlightening comments on the situation. Consider the follow-
ing "go-to-free" languages

General recursive:

DO DOWH
(1) [As, P4, (~) , END, END,

DOWH
(2) [+1, - 1 , ~0 , (~) , END]

Subrecursive:
DO

(3) [As, P4, (~) , END, E]

E, R] Algol-gf

G~-gf

SR-gf

Journal of the Association for Computing Machinery. Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: E~ciency and Program Structure 563

DO
(4) i + l , - 1 , #0 , (~) , END] Loop~-gf

DO
(5) [+ l , 0, () , #0 , (~) , END] Loop-gf

To study the effects of the go to on efficiency, one might investigate the relative
efficiency of these languages and their counterparts with go to's.

For example, we can immediately see that using the Kleene normal form, a pro-
gram in G~-gf can mimic a G3 program within a fixed cost, C, in size and h () in
efficiency.

An interesting question is whether a more reasonable simulation works in this
context to give a small efficiency factor h () , like h(x) = 2x or log (x) + x.

To prevent simple answers to the simulation problem, such as we have given
here in Section 5 (by using only the Loop part of the language and appealing to
Theorem 5.1), one could investigate the efficiency of the program which uses a mini-
mal ~umber of DO-loops. This will force use of the nested conditional as much as
possible.

For the subrecursive languages, the comparison between go to and go-to-free ver-
sions is decisive. Using the methods of Section 5 we can simulate forward go to's with
nested conditionals without decreasing efficiency by more than a constant factor.
The cost ill terms of size between SR and SR-gf is at most (l 2 + 5 . l) / 2 where 1 =
I a~ [. The method of translation, in brief informal terms, is as follows. Move all go to's
from inside loops by using a statement like * in Theorem 5.1 to get control outside
the loop. Then put the conditional after the E N D of the loop. Now given the con-
ditional, "if v # 0 then + C " , followed by statement s, where + C refers to state-
ment ~, replace the conditional by, "if v # 0 then [~,end] else [s,end]", where
It,end] refers to the segment from statement t to the end of the program.
Such a translation does not increase the number of loops, only the length of the pro-
gram and the number of conditionals (their number at most doubles).

This result is not at all practical, but it allows us to roughly quantify the value of
go to statements in a subrecursive language.

6. Conclusion

Although many of the results here are interesting or difficult only because of the
special nature of the languages involved, e.g. Theorem 5.1 for Loop, the general
principles (relative efficiency, simulation, parallelism, clock mechanisms, etc.) apply
to a wide class of computing systems (machines and//or languages).

A more abstract theory of subrecursive computing systems would not only clarify
the extent of this generality, it would render the whole approach to subrecursive
phenomena more palatable. I t would also help isolate the critical features of the
proofs and constructions.

For these and numerous other reasons, we would propose an abstract t reatment
of certain aspects of concrete subrecursive complexity theory. This is a difficult
matter to handle, and we hope eventually to contribute to an adequate treatment.
For the moment we speculate on one approach to the area and suggest some prob-
lems. These comments should also shed a more general light on Sections 2-5.

Let £ be the subrecursive class of functions which we intend to characterize, say
is an r.e. subset of ~. We might begin with an indexing

. l n n r n a l ~f t h ~ A~tanai~tinn fn r C n m n u t i n ~ M a e h i n A r v . Vo l . 19_ N o . 3. J u l y 1972

564 R. L. C O N S T A B L E A N D A L L A N B. B O R O D I N

: ~" ~ £ C (R obtained from ~b: ~r ~ (p~,

obtained by selecting a subset of {0i()} by a function of r. Thus a~ = a(n) =
O(r(n)) = O,(n), so a: 2~ -+£ . Let mai(x) = mC,<i>(x) for all x. This defines a
measure A = { m a i ()}.

There are certain obvious restrictions that must be placed on Imam} for it to
qualify as a subrecursive measure. Among the desirable attributes would be

(a) 3 m() E £ such that ma~ = a,~(~). Thus the measure is syntactically de-
finable within the class 2.

(b) ti , x, y M(r(i) , x, y) E £. The measure function restricted to ai belongs to
£.

(c) 3 s() E £ such that ai(x) < s (ma~(x)) for all x. Thus the measure has a
speed limit in £.

(d) 3 h() E 2 such that ma,~(i)(x) _< h(ma~(x), x) for all x. Thus the com-
plexity functions are h() honest for some h() in £.

These properties are analogues of the Blum axioms. Blum's Axiom 1 forces the
measure to have arbitrarily large complexity functions, e.g. it prevents O~(x) = 0
for all x from being a measure. This is accomplished here by (c).

Among the consequences desired for the subrecursive measures are those theorems
of the general theory which hold in the class 2. For example, when 2 = (R 1 we want

(1) speed-up theorem,
(2) compression theorem (upward diagonalization theorem or jump theorem

when stated in terms of classes),
(3) gap theorem,
(4) honesty theorem,
(5) union theorem.
Many important abstract properties can be established using the recursive rela-

tionship [1, Th. 2] in the following manner. Prove the result for T a specific meas-
ure like time, then show that the result is measure independent, and finally use the
recursive relationship to carry over the result to any other measure, i.e. speed-up
theorem [2 and 13].

Using the same technique with abstract subrecursive measures requires an £-re-
cursive relationship. £-recursive relationships are defined as follows: If A = {mai}
and B = {m~i} are £-measures, then there is an r in £ such that

(i) mat(x) _~ r(mfli(x), x) e.f.s.,
(it) m~(x) < r(mai(x), x) e.f.s.

This at tr ibute does not follow from (a) - (c) because it involves two formalisms
while the others are all " internal" or "coordinate-free" properties. In the Blum
case, recursive relationship holds because the indexings are acceptable. The satis-
fying fact is tha t acceptable indexings are given an intrinsic or coordinate-free
definition. A satisfactory definition of 2-acceptable indexing would presumably
lead to the £-relationship among measures.

Some interesting observations can already be made about (a), (b), and (c) as
possible axioms. First, they are independent but insufficient to guarantee either the
compression theorem or a recursive relationship between measures. Even (a), (b),
and (c) plus compression do not guarantee a recursive relationship. However, if £
is closed under t~_< and iteration, then (a) implies the gap theorem. In [16] Lewis
shows that (a) , (b) , and (c) allow non-r.e, complexity classes.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

Subrecursive Programming Languages I: Eg~ciency and Program Structure 565

Results like Theorem 5.1 would follow from the existence of the function T~(i, x, y)
of Section 4 in ~ and from a parallel cost axiom of the form

(d) 3 p C ~ V i V j , ma~(a~) _< p(mai() , m a j ()) .

The function p() represents the cost of parallelism in the formalism. For general
recursive formalisms and measures such as {t~i()}, p() Mways exists because of a
recursive relationship with models like multitape Turing machines. However, there
are subrecursive formalisms without tha t property (at first sight Loop might appear
to be one).

Appendix

Here we prove the bounding lemma for Loop. The bounding lemma for SR follows
the same plan, so it is omitted.

BOUNDING LEMMA FOR LOOP. I f ~i(): ~V "~ ~ 2~ p, ~i C L,~, then Hi(x1 , "" ",
xn)~ < f~l~il) (max {Xl, . . . , xn} + 2).

PROOF. We prove the theorem by double induction, on depth, n, and within
depth on length, I 2i I.

(1) Assume that depth is 0, /~i C L0.
(a) Let I ~i I = 1. Then ~i is either X ~-- X + 1, Y ~-- X, or X ~-- 0. Clearly

the maximum value is/3i(x) = x + 1 and fli(x) ~ fo(x) = x + 1 for all x.
(b) Assume the result for I ~i] = n, to prove it for] ~i [= n + 1. Since ~ ~ L0,

it has the form s~ ; s2 ; • • • ; sn ; sn+l, where each si is an assignment. By induction, the
maxinmm value in any register in Sl ; " . ; sn is f in)(max {Xl, . . . , xn} + 2). If
Sn+l does not increase any output variables, say y~, then clearly the result holds. If

- - - (n) not, thens~+~is Y~- - Y i + 1. So Yi is bounded by J~(J~ (max {Xl, . . . ,x~} + 2)) .
Q.E.D. (step (1))

(2) Assume the result for H~ C Ln. To show it for ~i C L~+i :
(a) Suppose Hi C L~+i and I/3i[= 2(n + 1) + 1 (this is the minimum

possible length for depth n + 1). Then Hi has the form

DO X1
B
END

where B is a program in L , . Hence by assumption,

B < f~l"l) (max {Xl , " ' ' , Xa} + ~).

The program B computes a vector valued function, say

(B(Z1, . . . , Zk)l , B (Z i , . . . , Zk)2, " . , B (Z1 , . . . , Zk)q) = (Y1, "" ", Yq)

0nly the outputs among Y1, "" ", Yq which are also inputs (i.e. occur among
Z1, • •., Zk, call them feedback variables) can effect the output of Hi as a function of
X~. If there are no such outputs, then

is equivalent to B and the result follows immediately.

Journal of the Associat ion for C o m p u t i n g Machinery, Vol. 19, No. 3, July 1972

566 R. L. CONSTABLE AND A L L A N B. BORODIN

Thus assume some Y~ are also Z / s . B y including all input var iables among the
outputs , it is easy to describe the t y p e of i tera t ion specified by DO X~ ; B; END.
To t h a t end, form a new vec tor va lued func t ion /~ hav ing the same inputs as B but
including all Z~ and Yj among its outputs . S a y / ~ is

(~ (z ~ , . . . , Z ~) l , . . . , ~ (z ~ , . . . , z ~) ~) = (71, . . . , ?~)

where p > k, p > q. For simplicity, assume t h a t Z~ = Y~ for i = 1, . . . , k. Then
B is ob ta ined f r o m / ~ by selecting a subset of ou tpu t s and pe rmu t ing them. Clearly
DO X~ ;/~; E N D is no smaller t h a n D O X~ ; B; E N D in the sense t h a t for every Y~
the re is a Ys such t ha t Y~ = Y i .

We now presen t a succinct no ta t ion for DO X~ ; B; E N D . This is nota t ion for
vec tor i tera t ion of a s imple type .

(i) /~(°)(Zx, . - . , Z~,)~ -- Z i , i = 1 , . . . , p.
(it)

(/~<" +" (Z~ • , - . , Z ~)) =

(~(~(">(Z) (Z)~1 1, , Z p i , ,B (~) . . . Z 1 ,) p / , ,

B (~ < ") (z ~ , . . . , z ~) ~ , . . . , ~ < ") (z , , . . . , z ~) ~)) .

Now we know by definition of the i te ra t ive t h a t

DO Xl

E N D

is (/~(x~)(Z~, . - . , Z~)).

B y the induct ion hypothesis ,

/~(Z~, . . . ,Z~) < f(n I~1) (max {Zl, . . . , Z~} + 2) ~ h (y) ,

where h(y) = f}l~l)(y) and y = max {Zx, . . . , Z~} + 2. So

t}(x~)(Z~, . . . , Z~) < h(X~)(y).

B u t

and not ice

Also

h(Xl)(y) = f~Xl ' l~p(y)

f~x~.l~p(y) _< fn+l(Y) if y > X i " I / ~ I-

f~xl . l~p(y) < ~(q~k)<o ~ _ j n + l ~ y j if y > X 1 ,

but indeed y = max {x l , . . . , x~} -t- 2 > x~ for any xi and the loop var iable X1
has the va lue x~ for some i = 1, • • • , p. Hence

• " _ ~((~l) /max { x l , • , xn} -t- 2) J B (x I) (Z ~ , • , Z p) < > , , ÷ 1 ~ ""

because y < m a x {xl, . . . , xn} + 2. So the result for I ~i l = 2 (n -t- 1) + 1 holds
with room to spare (I /~ [is m u c h larger t h a n necessary) .

(b) Assume the result for]~ i l _< re. To show it for I fli t = m + 1: Either
fl~ has the fo rm A; B for I A [> 0, I B [> 0, A, B C Ln+i, or it has the form

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Subrecursive Programming Languages I: Ej~ciency and Program Structure 567

DO X~ ; B; E N D for B C L~. The latter case proceeds exactly as case (a) . So we
assume ~ has the form A; B. Then by the induction hypothesis on length we know

A < ¢(la() ~(!st)ro _ j ~ + l (Y l) , B _< j n + l ~ v w ,

where y l , y2 are the maxima of the inputs plus 2; so y2 _< max {xl, . . - , x~} -t- 2,
i = 1, 2. Notice, A; B is bounded by

f(IBI)[~(IAI)[,, ~ ~(IAt+lBI) n+l \3n+1 \ylJ) -- < J~+l (Yl)

So the result holds. Q.E.D.

REFERENCES

(Note. References [5, 10, 18] are not cited in the text.)

1. BLUM, M. A machine-independent theory of the complexity of recursive functions.
J. ACM 14, 2 (April 1967), 322-336.

2. BLUM, M. On effective procedures for speeding up algorithms. Conf. Record of ACM
Symp. on Theory of Computing, Marina del Rey, Calif., 1969, pp. 43-53.

3. BLUM, M. On the size of machines. Inform. Contr. 11 (1967), 257-265.
4. BORODIN, A. Complexity classes of recursive functions and the existence of complexity

gaps. Conf. Record of ACM Symp. on Theory of Computing, Marina del Rey, Calif., 1969,
pp. 67-78.

5. CLEAVE, JOHN P. A hierarchy of primitive recursive functions. Z. Math. Logik Grund:
lagen Math. 9 (1963), 331-345.

6. COBHAM, A. The intrinsic computational difficulty of functions. Proe. 1964 Internat.
Congress for Logic, Methodology, and the Philosophy of Science. North-Holland, Am-
sterdam, 1965, pp. 24-30.

7. CONSTABLE, R. L. Upward and downward diagonalization over axiomatic complexity
classes. Comput. Sci. Rep. 69-32, Cornell U., Ithaca, N. Y., 1969.

8. CONSTABLE, R.L. On the size of programs in subrecursive formalisms. Conf. Record of
Second Annual ACM Symp. on Theory of Computing, Northampton, Mass., 1970, pp.
1-9; part of this also appears as: Subrecursive programming languages lI, On program
size, J. Comput. Syst. Sci. 5 (1971), 315-334.

9. ELGOT, C. C., AND ROBINSON, A. Random-access stored-program machines, an ap-
proach to programming languages. J. ACM 11, 4 (Oct. 1964), 365-399.

1O. ENGLER, ERWIN. Formal Languages; Automata and Structures. Markham Co., Chicago,
1968.

11. GRZEGORCZYK, A. Some classes of recursive functions. Rozprawy Mathematcyzne,
No. 4, Instytut Matematyczny Polskiej Akademie Nauk, Warsaw, Poland, 1953, pp. 1-45.

12. HARTMANIS, Z., AND STEARNS, R . E . On the computational complexity of algorithms.
Trans. AMS 117, 5 (1965), 285-306.

13. HARTMANIS, Z., AND HOPCROFT, J .E . An overview of the theory of computational com-
plexity. J. ACM 18, 3 (July 1971), 444-475.

14. KLEENE, S.C. Introduction to Metamathematics. Van Nostrand, Princeton, N. J., 1952.
15. KNUTH, D., AND FLOYD, R. Notes on avoiding " go to" statements. Inform. Proc. Letters

1 (1971), 23-31.
16. LEwis, F. D. The enumerability and invariance of complexity classes. J. Comput.

Syst. Sci. 5 (1971), 286-303.
17. McCREIGHT, E. M., AND MEYER, A. R. Classes of computable functions defined by

bounds on computation: Preliminary report. Conf. Record of ACM Symp. on Theory of
Computing, Marina del Rey, Calif., 1969, pp. 79-88.

18. MEYER, A. R., AND FISCHER, P. C. On computational speed-up. IEEE Conf. Record,
9th Annual SWAT, 1968, pp. 351-355.

19. MEYER, A. R., AND RITCHIE, D .M. The complexity of loop programs. Proc. 22nd Na-
tional Conf. ACM, ACM Pub. P-67, 1967, Thompson Book Co., Washington, D.C., pp.
465-469.

Journal of the Association for Computing Machinery, Vol. 19, No. 3 July 1972

568 R. L. CONSTABLE AND ALLAN B. BORODIN

20. MEYER, A. R., AND RITCHIE, D. M. A classification of functions by computational
complexity. Proc. Hawaii Intern. Conf. on System Sciences, U. of Hawaii Press, 1968,
pp. 17-19.

21. MINSKY[M. Computation, Finite and Infinite. Prentice-Hall, Englewood Cliffs, N. J.,
1967.

22. RrrCHIE, R . W . Classes of predictably computable functions. Trans. AMS 106 (1963),
139-173.

23. ROBINSON, R .M. Primitive recursive functions. Bull. AMS 58 (1947), 915-942.
24. ROGERS, H., JR. Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York, 1967.
25. SCOTT, DANA. Some definitional suggestions for automata theory. J. Comput. Syst.

Sci. I (1967), 187-212.
26. SHEPHERDSON, J. C., AND STURGIS, H. E. Computability of recursive functions. J.

ACM 10, 2 (April 1963), 217-255.
27. WEGNER, P. Programming Languages, Information Structures and Machine Organization.

McGraw-Hill, New York, 1968.

RECEIVED MAY 1970; REVISED AUGUST 1971

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

