
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 30, 130-145 (1985)

Routing, Merging, and Sorting on
Parallel Models of Computation*

A. BORODIN

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, MSS IA7

J. E. HOPCROFT

Department of Computer Science, Cornell University,
Ithaca, N. Y. 14853

Received June 13, 1983; revised July 15, 1984

A variety of models have been proposed for the study of synchronous parallel computation.
These models are reviewed and some prototype problems are studied further. Two classes of
models are recognized, fixed connection networks and models based on a shared memory.
Routing and sorting are prototype problems for the networks; in particular, they provide the
basis for simulating the more powerful shared memory models. It is shown that a simple but
important class of deterministic strategies (oblivious routing) is necessarily inefficient with
respect to worst case analysis. Routing can be viewed as a special case of sorting, and the
existence of an O(log n) sorting algorithm for some n processor fixed connection network has
only recently been established by Ajtai, Komlos, and Szemeredi (“15th ACM Sympos. on
Theory of Cornput.,” Boston, Mass., 1983, pp. l-9). If the more powerful class of shared
memory models is considered then it is possible to simply achieve an O(log n loglog n) sort via
Valiant’s parallel merging algorithm, which it is shown can be implemented on certain models.
Within a spectrum of shared memory models, it is shown that loglogn is asymptotically
optimal for n processors to merge two sorted lists containing n elements. 0 1985 Academic Press,

Inc.

I. INTRODUCTION: WHAT Is A REASONABLE MODEL?

A number of relatively diverse problems are often referred to under the topic of
“parallel computation.” The viewpoint of this paper is that of a “tightly coupled,”
synchronized (by a global clock) collection of parallel processors, working together
to solve a terminating computational problem. Such parallel processors already
exist and are used to solve time-consuming problems in a wide variety of areas

*This research was supported in part by ONR contract NOOO14-76-C-0018 and NSF grant
MCS-81-01220.

130
0022~OOOO/SS $3.00
Copyright 6 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PARALLEL MODELS OF COMPUTATION 131

including computational physics, weather forecasting, etc. The current state of
hardware capabilities will facilitate the use of such parallel processors to many
more applications as the speed and the number of processors that can be tightly
coupled increases dramatically. (A very good introduction to the future promise of
“highly parallel computing” can be found in the January, 1982 issue of Computer,
published by the IEEE Computer Society.)

Within this viewpoint, Preparata and Viullemin [20] distinguish two broad
categories. Namely, we can differentiate between those models that are based on a
fixed connection network of processors and those that are based on the existence of
global or shared memory. In the former case, we assume that only graph
theoretically adjacent processors can communicate in a given step, and we usually
assume that the network is reasonably sparse; as examples, consider the shuf-
fle-exchange network (Stone [26]) and its development into the ultracomputer of
Schwartz [22], the array or mesh connected processors such as the Illiac IV, the
cube-connected cycles of Preparata and Viullemin [20], or the more basic d-dimen-
sional hypercube studied in Valiant and Brebner [29]. As examples of models
based on shared memories, there are the PRAC of Lev, Pippenger, and Valiant
[lS], the PRAM of Fortune and Wyllie [S], the unnamed parallel model of
Shiloach and Vishkin [23], and the SIMDAG of Goldschlager [111. Essentially
these models differ in whether or not they allow fetch and write conflicts, and if
allowed, how write conflicts are resolved.

From a hardware point of view, fixed connection models seem more reasonable
and, indeed, the global memory-processor interconnection would probably be
realized in practice by a fixed connection network (see Schwartz [22]). Further-
more, for a number of important problems (e.g., FFT, bitonic merge, etc.) either the
shuffle-exchange or the cube-connected cycles provide optimal hosts for well-known
algorithms. On. the other hand, many problems require only infrequent and
irregular processor communication, and in any case the shared memory framework
seems to provide a more convenient environment for constructing algorithms.
Finally, in defense of the PRAM, it is plausible to assume that some broadcast
facilities could be made available.

The problem of sorting, and the related problem of routing are prototype
problems, due both to their intrinsic significance and their role in processor com-
munication. Since merging is a (the) key subroutine in many sorting strategies, we
are interested in merging and sorting with respect to both the fixed connection and
shared memory models. For many fixed connection networks ([20,26,29]) the
complexity of merging has been resolved by the fundamental log n algorithms of
Batcher (see Knuth [151 for a discussion of odd-even and bitonic merge). The
lower bound in this regard is immediate because log n is the graph theoretic
diameter. In this paper, we concentrate on routing in networks and the complexity
of merging (with application to sorting) on shared memory machines.

132 BORODIN AND HOPCROFT

II. ROUTING IN NETWORKS

The problem of routing packets in a network arises in a number of situations.
Various routing protocols have been considered. For packet switching networks we
are concerned with arbitrary interconnections. For these general networks,
protocols such as forward state controllers have been studied. For applications in
parallel computer architecture we are concenred with special networks such as a
d-dimensional hypercube or a shuflle exchange interconnection. In this setting
O(log n) global or centralized strategies and O(log’ n) local or distributed strategies
are known.

For our purposes, a network is a diagraph (V, E), where the set of nodes V are
thought of as processors, and (i, j) E E denotes the ability of processor i to send one
packet or message to processor j in a given time step. A packet is simply an
(origin, destination) pair or, more generally, (origin, destination, bookkeeping
information).

A set of packets are initially placed on their origins, and they must be routed in
parallel to their destinations; bookkeeping information can be provided by any
processor along the route traversed by the packet. The prototype question in this
setting is that of full permutation routing, in which we must design a strategy for
delivering n packets in an II node network, when rc: {origins} + (destinations} is a
permutation of the node labels { 1,2,..., n}. Other routing problems, in particular
partial routing, where z is l-l but there may be less than N packets, are also of
immediate interest. Unless stated otherwise, a routing strategy will denote a
solution to the full permutation routing problem.

There are three positive routing results which provide the motivation for this sec-
tion.

(1) Batcher’s (see Knuth [15]) O(log* n) sorting network algorithm (say,
based on the bitonic merge) can be implemented as a routing strategy on various
sparse networks, such as the shuffle exchange (Stone [26]), the d-dimensional cube
(Valiant and Brebner [29]), or the cube connected cycles (CCC-Preparata and
Vuillemin [20]). This constitutes a local or distributed strategy, in that each
processor p decides locally on its next action using only the packets at p. Indeed,
the algorithm can be implemented so that there is exactly one packet per processor
throughout execution. We also note that Batcher’s bound is a worst case bound,
holding for any initial permutation of the packets; in fact, every initial permutation
uses the same number of steps.

(2) Valiant and Brebner [29] construct an O(log n) Monte Carlo local
routing strategy for the d-cube, where d= log n. In a Monte Carlo strategy,
processors can make random choices in deciding where to send a given packet.
Valiant’s strategy achieves O(log n) in the sense that for every permutation, with
high probability (e.g., 3 1 -n -‘) all packets will reach that destination in
<(1 + c)log n steps. Valiant’s analysis can also be used to show that for a random
input placement, the “naive strategy” on the d-cube terminates in O(log n) steps

PARALLEL MODELS OF COMPUTATION 133

with high probability (here, the probability is on the space of possible inputs). The
naive strategy is to order the dimensions of the cube, and then proceed to move
packets along those dimensions (in order) in which the origin and destination differ.
These initial results have been extended to the shuffle exchange model (Aleliunas
[l]) and a variant CCC+ of the CCC model (Upfal [27]), these latter networks
having only constant degree as contrasted with the log n degree of the cube.
Following this development, Reif and Valiant [21] are now able to achieve an
O(log n) Monte Carlo sorting algorithm for the CCC+.

(3) The Slepian-Benes-Clos permutation network (see Lev, Pippenger, and
Valiant [181) can be implemented as a global worst case O(log n) routing scheme
(on any of the above-mentioned sparse networks). Here, a pair of processors at a
given time step simulate a switch of the permutation network; as such, the actions
of any processor depend on the entire permutation.

We note that each of these strategies can be modified to handle partial routing.
(This is immediate except for the strategy derived from Batcher’s algorithm.) In
order to make the distinction between local and global more meaningful we must
limit the amount of bookkeeping information (say to O(log n) bits) since otherwise
we can funnel all the input permutation information to a distinguished processor
which then broadcasts this information throughout the network. Recently, Ajtai,
Komlos, and Szemeredi [2] have constructed an ingenious O(logn) sorting
algorithm for the comparator network model (see Knuth [151). Since the gates in
each stage of the comparator network have constant degree, these gates can be
collapsed to form an O(log n) degree network in our sense. At the moment, it is not
clear whether or not this algorithm could be implemented (within the same
O(log n) bound) on any of the specific fixed connection networks mentioned in this
paper. Nor is it clear whether the implied constant could be made small enough to
make the algorithm “more competitive.” Yet, this result stands as a theoretical
breakthrough, further challenging us to search for a “simple” and very efficient local
routing (or sorting) method for specific networks of interest.

The Relation Between Fixed Connection and Global Memory Models

Before proceeding to discuss routing algorithms for fixed connection networks,
we want to briefly relate such parallel machines with parallel models based on a
global memory. Indeed, this relation is yet another motivation for the importance
of the routing and sorting problems. The importance of the routing problem is also
emphasized in the paper of Galil and Paul [lo] who consider simulations between
various parallel models. We mention only a few global memory models:

(1) PRAC (Lev, Pippenger, and Valiant)--Simultaneous read or write (of the
same cell) is not allowed (also called EREW RAM).

(2) PRAM (Fortune and WyllieFSimultaneous fetches are allowed but no
simultaneous writes (also called CREW RAM).

(3) WRAM-WRAM denotes a variety of models that allow simultaneous

134 BORODIN AND HOPCROFT

reads and (certain) writes, but differ in how such write conflicts are to be resolved
(also called CRCW RAM).

(a) (Shiloach and Vishkin) A simultaneous write is allowed only if all
processors are trying to write the same thing, otherwise the computation is not
legal.

(b) An arbitrary processor is allowed to write.

(c) (Goldschlager) The lowest numbered processor is allowed to write.

For the purpose of comparison with an n-node fixed connection network, we
assume the global memory models have n processors. It is obvious that even the
weakest of the above models, the PRAC, can efficiently simulate a fixed connection
network by dedicating a memory location for each directed edge of the network.
Conversely, Lev, Pippenger, and Valiant [18] observe that a fixed connection
network capable of (partial) routing in r(n) time, can simulate one step of a PRAC
in time O(r(n)), where now n bounds both the number of processors and the num-
ber of global memory cells. Furthermore, if we assume that the network is capable
of sorting in r(n) time, then one can also simulate one step of a PRAM or WRAM
in time O(r(n)). The idea for this simulation was sketched in a preliminary version
of this paper (Borodin and Hopcroft [3]). A more comprehensive approach is
given by Vishkin [30].

As can then be expected, sorting also provides a way to simulate a PRAM or
WRAM by a PRAC without changing the processor or memory requirements. That
is, if the original machine operates in time t using n processors and m global
memory cells, then the simulating PRAC operates in time 0(t. r(n)) using the same
number of processors and memory cells. A more straightforward 0(t * log n) time
simulation can be achieved using a “tournament” but here we must increase the
global memory by an O(n) factor, although the number of processors does not
increase.

By these observations, and by using the Ajtai et al. [2] or Batcher sort, one sees
that all these models have time complexities within an O(log n) (resp. O(log* n))
multiplicative factor. These observations then closely follow the spirit of Cook [S]
who distinguishes between fixed connection models (e.g., circuits, alternating Tur-
ing machines) and variable connection models (e.g., SIMDAGS) in the context of
developing a complexity theory for the parallel computation of Boolean functions.
For all the models he considers, one has variable connection machine
(time t) < fixed connection machine (time t2). We note that Cook [S] only con-
siders models when the number of processors n is at most exponential in t. Without
certain restrictions (e.g., see the precise definition of a SIMDAG in Goldschlager
[11 I), n can be arbitrarily large relative to t.

A Lower Bound for a Special Case

It turns out to be surprisingly difficult to analyze reasonable simple strategies. We
are able to show, however, that a very simple class of strategies, including the naive

PARALLELMODELSOFCOMPUTATION 135

strategy, cannot work well in the worst case, this being the case for a wide class of
networks. Specifically, we study oblivious strategies, where the route of any packet is
completely determined by the (origin, destination) of the packet. Oblivious
strategies are almost, but not quite, local by definition; we might still determine
when a processor sends a packet along an edge by glocal means. By its very nature,
oblivious strategies tend to be very easy to implement. We can further motivate the
use of such strategies by calling attention to the processor-memory interconnection
network of the NYU-Ultracomputer (see Gottlieb, Lubachevsky, and Rudolpf
[121) which requires an oblivious strategy for the memory arbitration scheme.

THEOREM 1. In any n-node network having in-degree d, the time required in the

worst case by any oblivious routing strategy is 12(&/d3”).

Proof. For motivation, first consider a more restricted class of protocols,
namely those where the next step in the route of a packet depends only on its
present location and its final destination. For this class the set of routes for a packet
heading for a given destination forms a tree. To see this observe that at any vertex
there is a unique edge that the packet will take. Following the sequence of edges
from any vertex must lead to the final destination.

Now, for the given definition of oblivious routing, the packets heading for a given
destination no longer form a tree. Instead, we have a directed, not necessarily
acyclic, graph G with a distinguished vertex v0 (i.e., the destination). Furthermore G
has in-degree d, and there are n distinct (in terms of their origin) but not necessarily
disjoint routes (=distinguished paths) in G terminating at vO. Let us call such a
graph a (d, n) destination graph. If u is the origin of a route that enters v, we will
call u an origin for v.

The goal is to find a vertex through which many, say t, packets must traverse.
Since at most d packets can enter this vertex at a given time, a delay of at least t/d
would be necessitated.

If we superimpose the n destination graphs determined by the n possible
destinations for packets, each vertex is on n graphs. In order to force a packet
headed for a given destination to go through a specific vertex v, we must initially
start the packet on a vertex that is an origin of v in the particular destination graph.
But there may be only a small number of such origins of v and if many destination
graphs have the same set there will not be enough descendents to start each packet
at a distinct vertex. Hence we would like to have a vertex v with the property that v
has many origins in many destination graphs. To this end, we need

LEMMA 1. Let G = (V, E) be a (d, n) destination graph and let T(d, k, n) be the
minimum number of vertices having k (k 3 1) or more origins in G. Then T(d, k, n) >
n/(d(k+ 1) + 1).

Proof: (The proof we use here is due to Paul Beam.). Let S = {v 1 v E V and v
has at least k origins}. Let s = the cardinality of S. Now a route must either
originate in S or V-S. Hence n is less than or equal to s plus the number of routes
originating in V-S. We wish to count the routes originating in V-S as they enter S

571/30/l-IO

136 BORODIN AND HOPCROFT

for the first time. Since the in-degree of G is d, for any node u E S there are at most d
nodes u such that (u, u) E E. Now any u E V-S can contribute at most k - 1 routes
to the count. Hence the number of routes originating in V-‘-s is at most s. de (k - l),
since s bounds the number of entry points. Hence n <s + s. d. (k - 1) or
s>n/(d(k-- l)+ 1). 1

We are now ready to complete the proof of Theorem 1. In each destination graph
mark those vertices that have at least k origins. Let k = $$. In the network assign
a count to each vertex indicating the number of destination graphs in which the
vertex is marked. Since at least n/dk vertices are marked in each graph, the sum of
the counts must be at least n2/dk. Therefore, the average count (over all vertices) is
at least n/dk = m which implies there is at least one vertex u which has at least
Jnld origins in each of @ destination graphs. For each of these destination
graphs we can place the corresponding packet at some vertex of the network so
that it will pass through vertex u. Thus J;;Td packets will go through u. Since u is of
degree at most d, routing requires time at least equal to $@. 1

The question of when there exists a corresponding upper depends on the par-
ticular structure of the network. One important parameter in addition to the degree
is the diameter of the graph. Clearly if the diameter of the graph is n we cannot
hope for a O(h) algorithm. However, even for some O(log n) diameter graphs
with degree 2 we cannot achieve an O(&) algorithm since there may be an
isthmus or other type of bottleneck. However, for many structures there are
oblivious routing algorithms that achieve or approach this lower bound.

Lang [17] has given an O(h) oblivious routing algorithm for the shuffle
exchange network, which is then asymptotically optimal since this network has con-
stant degree. For the d= log n dimensional hypercube, the “obvious” oblivious
algorithm will route packets for any permutation in time O(h). (Since the hyper-
cube has degree log n this is a factor of (log n)3’2 from optimal.) Namely order the
dimensions xi, x2 ,..., xlogn. At time 1 transmit any packet whose destination is on
the opposite subcube determined by the xi dimension. This may result in as many
as two packets being on a vertex. Next transmit packets across the x2 dimension,
etc. After l log n dimensions there may be as many as ,/$ packets at a vertex caus-
ing a delay of 4. In each subsequent dimension the maximum number of packets
that can be on a vertex halves, with eventually each packet arriving at its
destination. It may be possible to improve this bound to &/log n if one partitions
the & packets that could go through a vertex u into log n groups and routes them
by different edges.

Another restriction on routing is minimality. A minimal routing scheme forbids
transmitting along an edge if it increases the distance of the packet from its
destination. Thus every packet must follow a shortest path. For minimal routing
schemes it is an interesting open problem whether there is a local (or even a global)
routing scheme that is O(log’n) for any r. For networks such as the d-cube we
know of no monotone scheme better than the oblivious strategy just given.

PARALLELMODELSOF COMPUTATION 137

A primary question is whether there is a local routing algorithm for say the
d-cube that is better than 0(log2 n). It is remarkably difficult to analyze some very
simple strategies. In particular, does the following algorithm or some variant of it,
route an arbitrary permutation in O(log n). Consider some vertex. At a given stage
as many as d packets, where d is the dimension of the cube, will arrive. As many as
possible will be sent closer to their destinations. The remaining packets will be ship-
ped to vertices of distance one greater. Since packets are not allowed to build up at
a vertex the intuitive effect is to enlarge bottlenecks to several vertices and hence to
allow more packets to get to their destinations in a given time. Although
experimentally the algorithm appears promising we have not been able to formally
analyze its behavior.

III. MERGING AND SORTING ON SHARED MEMORY MODELS

A Hierarchy of Models

The shared memory models usually studied all possess a global memory, each
cell of which can be read or written by any processor. For the purpose of con-
structing algorithms, one usually assumes a single instruction stream; that is, one
program is executed by all processors. However, when the processor number itself
is used to control the sequencing of steps, and some ability to synchronize control is
introduced, then the effect is that of a multiple instruction stream. The processors
are assumed to have some local memory and each processor can execute basic
primitive operations such as <, =, # comparisons and integer +, -, x , + and
LrJ arithmetic operations in a single step. The PRAC, PRAM, and WRAM
models have already been noted in Section II.

Other variants are clearly possible. We are concerned with the merging and
sorting problems of elements from an arbitrary linear order (i.e., the schematic or
structured approach). In this context, a “most powerful” parallel model (analogous
to the comparison tree for sequential computation) has been studied by Valiant
[28]. The parallel computation tree idealizes k-processor parallelism by a 3k-tree,
where each node is labeled by a set of k { <, =, > } comparisons and the branches
are labeled by each of the 3k possible outcomes. It should be clear that for the
problems of concern, parallel computation trees can simulate any reasonable
parallel model, and in particular, can simulate all of the aforementioned shared
memory models.

Let M denote any of these models. We will be concerned with Tl_ (n, m, p) and
Tzr,(n, p), the minimum number of parallel steps to merge two sorted lists of n and
m elements (resp. to sort n arbitrary elements) using p processors. Typically, n = m
and p is O(n) or O(n log* n). Clearly, for any problem we have

7+RAC > TPRAM > TWRAM , /

Our main contribution is to establish the following two theorems:

138 BORODIN AND HOPCROFT

THEOREM 2. Let M denote the parallel computation tree model. Then
TE&Jn, n, cn) is IR(log log cn - log log c) and hence Tg_(n, n, n log* n) is
.Q(log log n) for all CI. (Haggkvist and Hell [141 have independently proved similar
lower bounds for merging on parallel computation trees.)

THEOREM 3. TLt&!(n, n, n) is O(log log n).

We use Valiant’s algorithm, which already establishes the upper bound for the
parallel comparison tree, but following Valiant [28], Preparata [191, and Shiloach
and Vishkin [23], remark that a “processor allocation” problem must be solved to
realize Valiant’s algorithm on the PRAM model. Hence, the problem of merging is
now resolved on all of the above-shared memory models except the PRAC, for
which we cannot improve on the log n upper bound of the Batcher merge. For the
PRAC, Snir [24] has recently established an Q(log n) lower bound for searching or
insertion (and hence merging), allowing any number of processors. Hence, the
asymptotic complexity of parallel merging is now well understood for all the
above-mentioned models.

With regard to sorting, we have the following direct corollaries:

COROLLARY 1. TPRAM (n, n) is O(log n log log n).

COROLLARY 2. TPRAM(n, n log n) is @log n).

Clearly, Corollary 1 follows from a standard merge sort, whereas Corollary 2 is a
restatement of Preparata’s [19] result, which can now be stated for PRAM’s using
Theorem 2. Corollaries 1 and 2 should be compared with the Shiloach and Vishkin
upper bound of O(log*(n/log(p/n)) + log n) for sorting on their version of a WRAM
with p processors. Whether or not an O(log n) sort can be achieved on any of the
RAM models using only O(n) processors would be resolved by the Ajtai, Komlos,
and Szemeredi [2] result (assuming their algorithm can be implemented without
loss of efficiency on these models). Without their result, Corollary 2 and Preparata’s
[19] O(klogn) sort using n’+‘lk processors on a PRAC represent the best known
O(log n) sorting algorithms for the RAM models.

With regard to lower bounds for sorting, Haggkvist and Hell [131 prove that in
terms of the parallel computation tree, time less than or equal to k implies
Q(n ’ + ‘lk) processors are required (and this is essentially sufficient). It follows, that
for the tree model and any of the RAM models, Q(log n/log log n) is a lower bound
for sorting with O(n log” n) processors. For O(n) processors, sZ(log n) is a trivial
lower bound resulting from the sequential lower bound of Q(n log n).

Cook and Dwork [6] show that Q(log n) steps on a PRAM are required for the
Boolean function x, v x2 v ... v x,, no matter how many processors are
available. It follows that O(log n) steps on a PRAM are required for the MAX
function and hence for sorting. However, it is possible to achieve O(log n) sorting
on a WRAM. Indeed, it is possible to achieve 0(1) time by using an exponential

PARALLEL MODELSOF COMPUTATION 139

number of processors; e.g., use n. n! processors to check each of the possible per-
mutations. A major open problem is to determine the minimal number of
processors needed for an O(1) time sort on a WRAM. Stockmeyer and Vishkin
[25] have shown how to simulate a t time, p processor WRAM (in particular, the
SIMDAG) by an unbounded fan-in AND/OR circuit having depth O(t) and size
polynomial (p). By this simulation and some appropriate reducibilities, Stockmeyer
and Vishkin [25] are able to use the beautiful lower bound of Furst, Saxe, and Sip-
ser [9] to show that a WRAM cannot sort in O(1) time using only a polynomial
(in n) number of processors. (See also Chandra, Stockmeyer, and Vishkin [4].)

A Q(log log n) Lower Bound for Merging on Valiant’s Model

Sequentially merging two lists of length n can be accomplished with 2n-1 com-
parisons and this is provably optimal. Since only 2~2-1 comparisons are necessary to
merge two such lists, conceivably in a parallel model they could be merged in time
0(1) with n processors. However, we shall show that this is not possible. Even
allowing n log” n comparisons per step, a depth of log log n is needed. The
previously stated Theorem 2 will follow as an immediate corollary of Lemma 3,
which we now motivate. Throughout Section III we use integer floor and integer
ceiling only when crucial.

Consider the process of merging two sorted lists a,,..., a,, and b,,..., b, with n
processors. At the first step at most n comparisons can be made. Partition each list
into 2& blocks of length t,/‘&. Form pairs of blocks, one from each list. There are
4n such pairs of blocks. Clearly there must be 3n pairs (Ai, Bj) of blocks such that
no element from the block Aj is compared with any element from the block Bj. We
shall show that we can select S,/% pairs of blocks

such that i, < i,, 1 and j, <jr+ 1 for 16 I < i&r. If the total order is such that all
elements in Ai,u Bj, are less than any element in Ai,+l u Bj,+,, 1 < I < $&, then after
the first stage we are faced with $,,6 subproblems each of size t&.

At the second stage the n processors are partioned somehow among the t,/%
subproblems. However this is done, at least one half of the subproblems have
assigned to them fewer than twice the average available number of processors per
subproblem. Thus there are $& subproblems with at most 4fi processors per
problem. Intuitively this argument suggests that at each stage the size of sub-
problem goes down by a square root and hence log log n time is necessary. These
ideas will be made precise in the following lemmas.

In what follows let G = (A u B, E) be a bipartite graph with Es A x B. Further
let A,, A, ,..., and B, , B, ,..., be fixed orderings of the vertices in A and B, respec-
tively. A matching is said to be compatible if for each pair of edges (Ai, Bj) and
(A,, B,,) in the matching i < g if and only if j < h.

LEMMA 2. Let G = (A u B, E) be a bipartite graph with A = A,, AZ,..., ATk and

140 BORODIN AND HOPCROFT

B = B, , Bz ,..., Bur and let E c A x B have 3k2 edges. Then G has a compatible
matching of cardinality at least k.

Proof: Partition the edges into 2k blocks as follows. For -k < b c k we have a
block consisting of edges ((Ai, Bi+b) 1 16 i< 2k and 16 i + b < 2k). In addition we
have one block consisting of all other edges. At most k2 + 2 edges fall into the block
of other edges. Thus at least 2k2 - k edges must be partitioned into 2k - 1 blocks.
Hence at least one block must have at least k edges and these edges form a com-
patible matching.

LEMMA 3. Let T(s, c) be the time necessary to solve k, k > 1, merging problems of
size s with cks processors. Then T(s, c) is s2(log(log SC/log c)).

ProoJ On the average we can assign cs processors to each problem. At least one
half of the problems can have no more than twice this number of processors
assigned to them. That is, at least k/2 problems have at most 2cs processors.

Consider applying 2cs processors to a problem of size s. This means that in the
first step we can make at most 2cs comparisons. Partition the lists into 2,/?%s
blocks each of size J&% There are 8cs pairs of blocks. Thus there must be 6cs
pairs of blocks with no comparisons between elements of the blocks in a pair. Con-
struct a bipartite graph whose vertices are the blocks from the two lists with an
edge between two blocks if there are no comparisons between elements of the two
blocks. Clearly there are 6cs edges and thus by the previous lemma there is a com-
patible match of size at least 4,/%. This means that there are at least, $,/%
problems each of size at least i,,&% that we must still solve. Thus T(s, c) 2 1 +
T(?i&?%, 4~).

We show by induction on s, that

log SC
T(s, c) B d log -

log c

for some sufficiently small d.

T(s, c) > 1 + d log
log &/(s/2c) 4c

log 4c

(w.l.0.g. assume c > 4)

log SC
B 1 +dlog-

log c
dlog4

log SC
>dlog-

log c

provided d < f. Observe that log(log se/log c) is Q(log log s - log log c) which
matches Valiant’s upper bound of 2(log log s - log log c).

PARALLEL MODELS OF COMPUTATION 141

An O(log log n) Upper Bound for Merging on a PRAM

We recall Valiant’s (n, m) merging algorithm which merges X and Y with
X= n, # Y = m, n < m using fi processors. Our goal is to implement Valiant’s
algorithm on a PRAM. However, we shall require IZ + m processors rather than

J-- nm as in Valiant, because of the data movement which need not be accounted for
in the tree model. The algorithm (taken verbatim from Valiant [28]) proceeds as
follows:

(a) Mark the elements of X that are subscripted by i. $1 and those of Y
subscripted by i. r&J for i = 1, 2,.... There are at most L J’ n J and L$ J of these,
respectively. The sublists between successive marked elements and after the last
marked element in each list we call segments.

(b) Compare each marked element of X with each marked element of Y. This
requires no more than LrJ nm comparisons and can be done in unit time.

(c) The comparisons of (b) will decide for each marked element the segment
of the other list into which it needs to be inserted. Now compare each marked
element of X with every element of the segment of Y that has thus been found for it.
This requires at most

L,hJT&+WL&J
comparisons altogether and can also be done in unit time.

On the completion of (a), (b), and (c) we can store each xir~, in its appropriate
place in the output Z. It then remains to merge the disjoint pairs of sublists
(X0, Y,,), (Xi, Yi),..., where the Xi and Yi are sequences of X and Y, respectively.
Whereas Cauchy’s inequality guarantees that there will be enough processors to
carry out these independent merges by simultaneous recursive calls of the
algorithm, it is not clear how to inform each processor to which (X,, Yi) sub-
program (and in what capacity) it will be assigned. This is the main concern in
what Shiloach and Vishkin [23] refer to as the processor allocation problem.

We desire a recursive procedure (in fact, a macro might be more appropriate)
MERGE(i, ni,j, mj,k) which merges xi, xi+, ,..., xi+,,_r and yj ,..., Y~+~,_~ into
zi+j- I,..., Zi+j+ ni+ mj_ 2 using at most ni + mj processors beginning at processor
number pk. Such a merge will be simultaneously invoked by processors pk, pk + 1 ,...,

Pk +n,+m,-l* The initial call is MERGE(1, n, 1, m, 1). As we enter this subroutine, a
processor pk will know from i,j, ni, mj, and k, the (relative) role it plays in parts
(a), (b), and (c) of Valiant’s algorithm. For example, say n,< mj and let

I=k+i’r&l+j’, O<i’<L&J-1, OQ%L&J-L

then in step (a), processor p1 compares xi,- and yi’m.
We will now indicate how processors reassign themselves before recursively

invoking the merge routine. For simplicity, assume that we have just completed
steps (a), (b), (c) of MERGE(1, n, 1, m, 1). We can assume that we have deter-

142 BORODIN AND HOPCROFT

TABLE J

0 jl j, . . . _iJnT, m

mined for each i, 0 6 i< L&J - 1 that yj, <xB~;;l <yjj+ 1 and that we have con-
structed a table J accessible by all processors. A given processor p must determine
its role in the next iteration of the algorithm. We state the following without proof.

LEMMA 4. Suppose (X0, Y,,),..., (X, _ 1, Y, _ I) have been assigned processors, and
x r-1= (..., x,m) and Y,- 1 = (..., yjJ. There exists a function 4 such that no more
than 4(r, n, j,) processors have been assigned. Indeed, b(r,n,f)=rJ;;+J:

The impact of this Lemma is that we can safely assign processors P#(~,~~,)+, ,...,
P,(~+ l,nj,+,) to (X,., Y,). It remains for each processor to know to which (X,, Y,) it
will be assigned. Indeed, once a processor knows to which (X,, Y,) it has been
assigned, then it can obtain all the information it will need to invoke MERGE from
Table J and the 4 function; namely, X, starts at kr&l + 1 and has length
L/%1 - 1, Yk starts at y, and has length j,, I -j,, and the processors assigned to
this task begin at p4Ck,njkl + 1.

The actual assignment of a processor to a (X,, Y,) subproblem proceeds in two
stages (note that we cannot simply do a sequential binary search in J because this
would require log & steps):

Stage (1) Processors are assigned for those (X,, Yk) with # Y, <m/A (and
hence no more than & + ml& = (n + m)/,f p n rocessors need be assigned to this
task since #Xi = ,,& - 1 for all i.

Stage (2) Processors are assigned to the remaining (X,, Y,).

Stage 1. For each k, 0 < k 6 & - 1, we assign (n + m)/& processors to look
at both the k and the k + lth entry of Table J. If j,, 1 -j, <m/&, then these
processors inform (by posting the information in an appropriate place of global
memory) processors numbered q5(k, n, j,) + l,..., &k+ 1, n, j,, 1) that they are
assigned to (X,, Y,). We then wait until the cpmpletion of Stage 2 before invoking
merge on (X,, Y,) since all processors are needed for Stage 2.

Stage 2. The processors are divided into (n + m)/& blocks, each block con-

taining ,,I’% processors. Each of the ,,&r processors in a block are trying to deter-
mine to which X,, Yk these & processors will be assigned. Let pi, be the first
processor of block 1. The kth processor of block 1 looks at the j, and j,, 1 in
Table J and determines (via the function 4) whether or not processor pj, would be

PARALLELMODELSOF COMPUTATION 143

assigned to this subproblem. Now each processor p in the lth block can determine
(again via Table J and 4) which of the following hold:

(i) p is assigned to (X,, Y,), the subproblem assigned to pi,.

(ii) p is assigned to (X,,, Y,,), the subproblem assigned to pi,+,.
(iii) p has already been assigned in Stage 1.

We claim that if neither (i) and (ii) hold, then (iii) must hold since clearly less than
& < (n + rn)/& processors have been assigned to the same task as p. 1

Finally, we note that the base case (n - 1, m arbitrary), where most of the data
movement takes place, is easily performed with m + 1 processors. This completes
the informal description of the algorithm which we claim establishes Theorem 3.

Kruskal [161 has unified and somewhat improved Valiant’s merging algorithms
to yield the following upper bound: p processors can perform an (n, m) merge in
time (n + m)/p + O(log log n) + O(log(n + m)/p)). Letting n = m, it follows that
n/log log n processors are sufficient to achieve an (n, n) merge in time O(log log n).
Clearly, this is now asymptotically optimal since 2n-1 comparisons are needed
sequentially. Assuming this can be implemented on a PRAM, there will be some
corresponding improvements in Corollaries 1 and 2. For example, Corollary 1
would become T(n, n) is O(log n log log n/log log log n).

IV. CONCLUSION

Our underlying goal is to better understand the theoretical capabilities and
limitations inherent in large scale, general purpose, parallel computation. To this
end, we have considered in this paper two of the major theoretical viewpoints of
large scale parallel processing, namely fixed connection networks and shared
memory models. We have not considered circuit models or Cook’s [S] fundamental
HMM model, nor have we dealt with the more specific consideration of various
VLSI models. In fact, the HMM model is “conceptually” between the fixed connec-
tion and shared memory models, although its power relative to either the d-dimen-
sional hypercube or the PRAC is not precisely known. (On the other hand, an
HMM can be viewed as a PRAM with a restricted instruction set.) As a common
point of reference for discussing these models, we have considered the routing,
merging, and sorting problems. In this regard, the theoretical complexity of
oblivious routing and merging has been essentially resolved for a wide spectrum of
models. For many models, sorting is also very well understood.

We are, however, still fundamentally intrigued by the worst case analysis of sim-
ple routing strategies such as the one suggested in this paper. Other natural classes
of routing strategies (e.g., minimal routing) also deserve further consideration. As
for sorting, while the Ajtai, Komlos, and Szemeredi [2] result should resolve many
questions, we are still concerned with the problem of O(log n), and in particular

144 BORODIN AND HOPCROFT

O(l), parallel time sorting on a WRAM. Further progress (beyond [9, 253) on this
problem will almost surely have to await a better understanding of the more basic
circuit models. The general question of tradeoffs between parallel time and the
number of processors (or “hardware” as referred to by Cook and Dymond [7]) is
clearly a major theme in complexity theory.

ACKNOWLEDGMENTS

We are indebted to U. Vishkin for observing that our original claims about merging on a PRAM
could not hold because of the amount of data movement required by our formulation of the problem.
We thank P. Beam for his clear proof of Lemma 1, and we also thank R. Prager and L. Rudolph for
many helpful comments.

REFERENCES

1. R. ALELIUNAS, Randomized parallel communications, in “Proc. of ACM Sympos. on Principles of
Distributed Computing,” Ottawa, Canada, 1982, pp. 672.

2. M. AJTAI, J. KOML~~ AND E. SZEMEREDI, An O(nlogn) sorting network, in “15th Annual ACM
Sympos. on Theory of Comput.” Boston, Mass., 1983, pp. l-9.

3. A. BORODIN AND J. HOPCROFT, Routing, merging, and sorting in parallel models of computation, in
“Proc. 14th Annual ACM Sympos. on Theory of Cornput.” San Francisco, Calif., 1982, pp. 338344.

4. A. K. CHANDRA, L. J. STOCKMEYER, AND U. VISHKIN, Complexity theory for unbounded fan-in
parallelism, in “Proc. 23rd Annual IEEE Sympos. on Found. of Comput. Sci.,” 1982, pp. 1-13.

5. S. A. COOK, Towards a complexity theory of synchronous parallel computation, Enseign. M&i. (2)
27 (1981), pp. 99-124.

6. S. A. Coon AND C. DWORK, Bounds on the time of parallel RAM’s to compute simple functions, in
“Proc. 14th Annual ACM Sympos. on Theory of Comput.,” 1982, pp. 231-233.

7. S. A. COOK AND P. DYMOND, Hardware complexity and parallel computation, in “Proc. 21st Annual
IEEE Sympos. on Found. of Comput. Sci.,” 1980, pp. 36(X372.

8. S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, in “Proc. 10th Annual ACM
Sympos. on Theory of Comput.,” San Diego, Calif., 1978, pp. 114-118.

9. M. FURST, J. B. SAXE, AND M. SIPSER, Parity, circuits and the polynomial-time hierarchy, in “Proc.
22nd Annual IEEE Sympos. on Found. of Comput. Sci.,” 1981, pp. 260-270.

10. Z. GALIL AND W. J. PAUL, An efficient general purpose parallel computer, in “Proc. 13th Annual
ACM Sympos. on Theory of Comput.,” Milwaukee, Wise., 1981, pp. 247-256.

11. L. GOLDSCHLAGER, A unified approach to models of synchronous parallel machines, in “Proc. 10th
Annual ACM Sympos. on Theory of Comput.,” San Diego, Calif., 1978, pp. 89-94.

12. A. GOTTLIEB, B. D. LUBACHEVSKY, AND L. RUDOLPH, Coordinating large number of processors, in
“Proc. of Int. Conf. on Parallel Processing,” 1981, pp. 341-349.

13. R. HAGGKVIST AND P. HELL, Parallel sorting with constant time for comparisons, SIAM J. Comput.
10 (3) (1981), 465472.

14. R. HAGGKVIST AND P. HELL, “Sorting and Merging in Rounds,” Computing Science technical report
TR81-9, Simon Fraser University, Burnaby, B.C., Canada, 1981.

15. D. E. KNUTH, “The Art of Computer Programming, Vol. 3: Sorting and Searching,”
Addison-Wesley, Reading, Mass., 1972.

16. C. P. KRUSKAL, Searching, merging, and sorting in parallel computation, IEEE Trans. Comput.,
1983, in press.

17. T. LANG, Interconnections between PE and MBs using the shuffle-exchange, IEEE Trans. Comput.
C-25 (1976), 496.

PARALLEL MODELS OF COMPUTATION 145

18. G. LEV, N. PIPPENHER AND L. G. VALIANT, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. Comput. C-30 (1981), 93-100.

19. F. P. PREPARATA, New parallel-sorting schemes, IEEE Trans. Comput. C-27 (7) (1978) 669-673.
20. F. P. P~EPARATA AND J. VIULLEMIN, The cube-connected cycles, in “Proc. 20th Sympos. on Found.

of Comput. Sci.,” 1979, pp. 140-147.
21. J. REIF AND VALIANT, L. G., “A Logarithmic Time Sort for Linear Size Networks,” Aiken Com-

putation Laboratory, TR13-82, Harvard University, 1982.
22. J. T. SCHWARTZ, “Ultracomputers,” ACM Trans. Programming Lang. Systems 2 (1980), 484521.
23. Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel com-

putation model, J. Algorithms 2 (1) (1981) 88-102.
24. M. SNIR, “On Parallel Searching,” Department of Computer Science technical teport TRO45,

Courant Institute, New York University, June 1982.
25. L. J. STOCKMEYER AND U. VISHKIN, “Simulation of Parallel Random Access Machines by Circuits,”

RC-9362, IBM T. J. Watson Research Center, Yorktown Heights, N.Y., 1982.
26. H. STONE, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20 (2) (1971),

153-161.
27. E. UPFAL, “Efficient schemes for parallel communication, in “Proc. of ACM Sympos. on Principles

of Distributed Computing,” Ottawa, Canada, 1982.
28. L. G. VALIANT, Parallelism in comparison problems, SIAM .I. Comput. 4 (1975) 348-355.
29. L. G. VALIANT AND G. J. BREBNER, Universal schemes for parallel computation, in “Proc. 13th

Annual ACM Sympos. on Theory of Comput., Milwaukee, Wisconsin, 1981, pp. 263-277.
30. U. VISHKIN, “A Parallel-Design Space Distributed-Implementation Space (PDDI) General Purpose

Computer,” RC-9541, IBM T. J. Watson Research Center, Yorktown Heights, N.Y.. 1983.

