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A variety of models have been proposed for the study of synchronous parallel computation. 
These models are reviewed and some prototype problems are studied further. Two classes of 
models are recognized, fixed connection networks and models based on a shared memory. 
Routing and sorting are prototype problems for the networks; in particular, they provide the 
basis for simulating the more powerful shared memory models. It is shown that a simple but 
important class of deterministic strategies (oblivious routing) is necessarily inefficient with 
respect to worst case analysis. Routing can be viewed as a special case of sorting, and the 
existence of an O(log n) sorting algorithm for some n processor fixed connection network has 
only recently been established by Ajtai, Komlos, and Szemeredi (“15th ACM Sympos. on 
Theory of Cornput.,” Boston, Mass., 1983, pp. l-9). If the more powerful class of shared 
memory models is considered then it is possible to simply achieve an O(log n loglog n) sort via 
Valiant’s parallel merging algorithm, which it is shown can be implemented on certain models. 
Within a spectrum of shared memory models, it is shown that loglogn is asymptotically 
optimal for n processors to merge two sorted lists containing n elements. 0 1985 Academic Press, 

Inc. 

I. INTRODUCTION: WHAT Is A REASONABLE MODEL? 

A number of relatively diverse problems are often referred to under the topic of 
“parallel computation.” The viewpoint of this paper is that of a “tightly coupled,” 
synchronized (by a global clock) collection of parallel processors, working together 
to solve a terminating computational problem. Such parallel processors already 
exist and are used to solve time-consuming problems in a wide variety of areas 
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including computational physics, weather forecasting, etc. The current state of 
hardware capabilities will facilitate the use of such parallel processors to many 
more applications as the speed and the number of processors that can be tightly 
coupled increases dramatically. (A very good introduction to the future promise of 
“highly parallel computing” can be found in the January, 1982 issue of Computer, 
published by the IEEE Computer Society.) 

Within this viewpoint, Preparata and Viullemin [20] distinguish two broad 
categories. Namely, we can differentiate between those models that are based on a 
fixed connection network of processors and those that are based on the existence of 
global or shared memory. In the former case, we assume that only graph 
theoretically adjacent processors can communicate in a given step, and we usually 
assume that the network is reasonably sparse; as examples, consider the shuf- 
fle-exchange network (Stone [26]) and its development into the ultracomputer of 
Schwartz [22], the array or mesh connected processors such as the Illiac IV, the 
cube-connected cycles of Preparata and Viullemin [20], or the more basic d-dimen- 
sional hypercube studied in Valiant and Brebner [29]. As examples of models 
based on shared memories, there are the PRAC of Lev, Pippenger, and Valiant 
[lS], the PRAM of Fortune and Wyllie [S], the unnamed parallel model of 
Shiloach and Vishkin [23], and the SIMDAG of Goldschlager [ 111. Essentially 
these models differ in whether or not they allow fetch and write conflicts, and if 
allowed, how write conflicts are resolved. 

From a hardware point of view, fixed connection models seem more reasonable 
and, indeed, the global memory-processor interconnection would probably be 
realized in practice by a fixed connection network (see Schwartz [22]). Further- 
more, for a number of important problems (e.g., FFT, bitonic merge, etc.) either the 
shuffle-exchange or the cube-connected cycles provide optimal hosts for well-known 
algorithms. On. the other hand, many problems require only infrequent and 
irregular processor communication, and in any case the shared memory framework 
seems to provide a more convenient environment for constructing algorithms. 
Finally, in defense of the PRAM, it is plausible to assume that some broadcast 
facilities could be made available. 

The problem of sorting, and the related problem of routing are prototype 
problems, due both to their intrinsic significance and their role in processor com- 
munication. Since merging is a (the) key subroutine in many sorting strategies, we 
are interested in merging and sorting with respect to both the fixed connection and 
shared memory models. For many fixed connection networks ([20,26,29]) the 
complexity of merging has been resolved by the fundamental log n algorithms of 
Batcher (see Knuth [ 151 for a discussion of odd-even and bitonic merge). The 
lower bound in this regard is immediate because log n is the graph theoretic 
diameter. In this paper, we concentrate on routing in networks and the complexity 
of merging (with application to sorting) on shared memory machines. 
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II. ROUTING IN NETWORKS 

The problem of routing packets in a network arises in a number of situations. 
Various routing protocols have been considered. For packet switching networks we 
are concerned with arbitrary interconnections. For these general networks, 
protocols such as forward state controllers have been studied. For applications in 
parallel computer architecture we are concenred with special networks such as a 
d-dimensional hypercube or a shuflle exchange interconnection. In this setting 
O(log n) global or centralized strategies and O(log’ n) local or distributed strategies 
are known. 

For our purposes, a network is a diagraph ( V, E), where the set of nodes V are 
thought of as processors, and (i, j) E E denotes the ability of processor i to send one 
packet or message to processor j in a given time step. A packet is simply an 
(origin, destination) pair or, more generally, (origin, destination, bookkeeping 
information ). 

A set of packets are initially placed on their origins, and they must be routed in 
parallel to their destinations; bookkeeping information can be provided by any 
processor along the route traversed by the packet. The prototype question in this 
setting is that of full permutation routing, in which we must design a strategy for 
delivering n packets in an II node network, when rc: {origins} + (destinations} is a 
permutation of the node labels { 1,2,..., n}. Other routing problems, in particular 
partial routing, where z is l-l but there may be less than N packets, are also of 
immediate interest. Unless stated otherwise, a routing strategy will denote a 
solution to the full permutation routing problem. 

There are three positive routing results which provide the motivation for this sec- 
tion. 

(1) Batcher’s (see Knuth [15]) O(log* n) sorting network algorithm (say, 
based on the bitonic merge) can be implemented as a routing strategy on various 
sparse networks, such as the shuffle exchange (Stone [26]), the d-dimensional cube 
(Valiant and Brebner [29]), or the cube connected cycles (CCC-Preparata and 
Vuillemin [20]). This constitutes a local or distributed strategy, in that each 
processor p decides locally on its next action using only the packets at p. Indeed, 
the algorithm can be implemented so that there is exactly one packet per processor 
throughout execution. We also note that Batcher’s bound is a worst case bound, 
holding for any initial permutation of the packets; in fact, every initial permutation 
uses the same number of steps. 

(2) Valiant and Brebner [29] construct an O(log n) Monte Carlo local 
routing strategy for the d-cube, where d= log n. In a Monte Carlo strategy, 
processors can make random choices in deciding where to send a given packet. 
Valiant’s strategy achieves O(log n) in the sense that for every permutation, with 
high probability (e.g., 3 1 -n -‘) all packets will reach that destination in 
<( 1 + c)log n steps. Valiant’s analysis can also be used to show that for a random 
input placement, the “naive strategy” on the d-cube terminates in O(log n) steps 
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with high probability (here, the probability is on the space of possible inputs). The 
naive strategy is to order the dimensions of the cube, and then proceed to move 
packets along those dimensions (in order) in which the origin and destination differ. 
These initial results have been extended to the shuffle exchange model (Aleliunas 
[l]) and a variant CCC+ of the CCC model (Upfal [27]), these latter networks 
having only constant degree as contrasted with the log n degree of the cube. 
Following this development, Reif and Valiant [21] are now able to achieve an 
O(log n) Monte Carlo sorting algorithm for the CCC+. 

(3) The Slepian-Benes-Clos permutation network (see Lev, Pippenger, and 
Valiant [ 181) can be implemented as a global worst case O(log n) routing scheme 
(on any of the above-mentioned sparse networks). Here, a pair of processors at a 
given time step simulate a switch of the permutation network; as such, the actions 
of any processor depend on the entire permutation. 

We note that each of these strategies can be modified to handle partial routing. 
(This is immediate except for the strategy derived from Batcher’s algorithm.) In 
order to make the distinction between local and global more meaningful we must 
limit the amount of bookkeeping information (say to O(log n) bits) since otherwise 
we can funnel all the input permutation information to a distinguished processor 
which then broadcasts this information throughout the network. Recently, Ajtai, 
Komlos, and Szemeredi [2] have constructed an ingenious O(logn) sorting 
algorithm for the comparator network model (see Knuth [ 151). Since the gates in 
each stage of the comparator network have constant degree, these gates can be 
collapsed to form an O(log n) degree network in our sense. At the moment, it is not 
clear whether or not this algorithm could be implemented (within the same 
O(log n) bound) on any of the specific fixed connection networks mentioned in this 
paper. Nor is it clear whether the implied constant could be made small enough to 
make the algorithm “more competitive.” Yet, this result stands as a theoretical 
breakthrough, further challenging us to search for a “simple” and very efficient local 
routing (or sorting) method for specific networks of interest. 

The Relation Between Fixed Connection and Global Memory Models 

Before proceeding to discuss routing algorithms for fixed connection networks, 
we want to briefly relate such parallel machines with parallel models based on a 
global memory. Indeed, this relation is yet another motivation for the importance 
of the routing and sorting problems. The importance of the routing problem is also 
emphasized in the paper of Galil and Paul [lo] who consider simulations between 
various parallel models. We mention only a few global memory models: 

(1) PRAC (Lev, Pippenger, and Valiant)--Simultaneous read or write (of the 
same cell) is not allowed (also called EREW RAM). 

(2) PRAM (Fortune and WyllieFSimultaneous fetches are allowed but no 
simultaneous writes (also called CREW RAM). 

(3) WRAM-WRAM denotes a variety of models that allow simultaneous 
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reads and (certain) writes, but differ in how such write conflicts are to be resolved 
(also called CRCW RAM). 

(a) (Shiloach and Vishkin) A simultaneous write is allowed only if all 
processors are trying to write the same thing, otherwise the computation is not 
legal. 

(b) An arbitrary processor is allowed to write. 

(c) (Goldschlager) The lowest numbered processor is allowed to write. 

For the purpose of comparison with an n-node fixed connection network, we 
assume the global memory models have n processors. It is obvious that even the 
weakest of the above models, the PRAC, can efficiently simulate a fixed connection 
network by dedicating a memory location for each directed edge of the network. 
Conversely, Lev, Pippenger, and Valiant [18] observe that a fixed connection 
network capable of (partial) routing in r(n) time, can simulate one step of a PRAC 
in time O(r(n)), where now n bounds both the number of processors and the num- 
ber of global memory cells. Furthermore, if we assume that the network is capable 
of sorting in r(n) time, then one can also simulate one step of a PRAM or WRAM 
in time O(r(n)). The idea for this simulation was sketched in a preliminary version 
of this paper (Borodin and Hopcroft [3]). A more comprehensive approach is 
given by Vishkin [30]. 

As can then be expected, sorting also provides a way to simulate a PRAM or 
WRAM by a PRAC without changing the processor or memory requirements. That 
is, if the original machine operates in time t using n processors and m global 
memory cells, then the simulating PRAC operates in time 0(t. r(n)) using the same 
number of processors and memory cells. A more straightforward 0(t * log n) time 
simulation can be achieved using a “tournament” but here we must increase the 
global memory by an O(n) factor, although the number of processors does not 
increase. 

By these observations, and by using the Ajtai et al. [2] or Batcher sort, one sees 
that all these models have time complexities within an O(log n) (resp. O(log* n)) 
multiplicative factor. These observations then closely follow the spirit of Cook [S] 
who distinguishes between fixed connection models (e.g., circuits, alternating Tur- 
ing machines) and variable connection models (e.g., SIMDAGS) in the context of 
developing a complexity theory for the parallel computation of Boolean functions. 
For all the models he considers, one has variable connection machine 
(time t) < fixed connection machine (time t2). We note that Cook [S] only con- 
siders models when the number of processors n is at most exponential in t. Without 
certain restrictions (e.g., see the precise definition of a SIMDAG in Goldschlager 
[ 11 I), n can be arbitrarily large relative to t. 

A Lower Bound for a Special Case 

It turns out to be surprisingly difficult to analyze reasonable simple strategies. We 
are able to show, however, that a very simple class of strategies, including the naive 
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strategy, cannot work well in the worst case, this being the case for a wide class of 
networks. Specifically, we study oblivious strategies, where the route of any packet is 
completely determined by the (origin, destination) of the packet. Oblivious 
strategies are almost, but not quite, local by definition; we might still determine 
when a processor sends a packet along an edge by glocal means. By its very nature, 
oblivious strategies tend to be very easy to implement. We can further motivate the 
use of such strategies by calling attention to the processor-memory interconnection 
network of the NYU-Ultracomputer (see Gottlieb, Lubachevsky, and Rudolpf 
[ 121) which requires an oblivious strategy for the memory arbitration scheme. 

THEOREM 1. In any n-node network having in-degree d, the time required in the 

worst case by any oblivious routing strategy is 12(&/d3”). 

Proof. For motivation, first consider a more restricted class of protocols, 
namely those where the next step in the route of a packet depends only on its 
present location and its final destination. For this class the set of routes for a packet 
heading for a given destination forms a tree. To see this observe that at any vertex 
there is a unique edge that the packet will take. Following the sequence of edges 
from any vertex must lead to the final destination. 

Now, for the given definition of oblivious routing, the packets heading for a given 
destination no longer form a tree. Instead, we have a directed, not necessarily 
acyclic, graph G with a distinguished vertex v0 (i.e., the destination). Furthermore G 
has in-degree d, and there are n distinct (in terms of their origin) but not necessarily 
disjoint routes (=distinguished paths) in G terminating at vO. Let us call such a 
graph a (d, n) destination graph. If u is the origin of a route that enters v, we will 
call u an origin for v. 

The goal is to find a vertex through which many, say t, packets must traverse. 
Since at most d packets can enter this vertex at a given time, a delay of at least t/d 
would be necessitated. 

If we superimpose the n destination graphs determined by the n possible 
destinations for packets, each vertex is on n graphs. In order to force a packet 
headed for a given destination to go through a specific vertex v, we must initially 
start the packet on a vertex that is an origin of v in the particular destination graph. 
But there may be only a small number of such origins of v and if many destination 
graphs have the same set there will not be enough descendents to start each packet 
at a distinct vertex. Hence we would like to have a vertex v with the property that v 
has many origins in many destination graphs. To this end, we need 

LEMMA 1. Let G = (V, E) be a (d, n) destination graph and let T(d, k, n) be the 
minimum number of vertices having k (k 3 1) or more origins in G. Then T(d, k, n) > 
n/(d(k+ 1) + 1). 

Proof: (The proof we use here is due to Paul Beam.). Let S = {v 1 v E V and v 
has at least k origins}. Let s = the cardinality of S. Now a route must either 
originate in S or V-S. Hence n is less than or equal to s plus the number of routes 
originating in V-S. We wish to count the routes originating in V-S as they enter S 

571/30/l-IO 
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for the first time. Since the in-degree of G is d, for any node u E S there are at most d 
nodes u such that (u, u) E E. Now any u E V-S can contribute at most k - 1 routes 
to the count. Hence the number of routes originating in V-‘-s is at most s. de (k - l), 
since s bounds the number of entry points. Hence n <s + s. d. (k - 1) or 
s>n/(d(k-- l)+ 1). 1 

We are now ready to complete the proof of Theorem 1. In each destination graph 
mark those vertices that have at least k origins. Let k = $$. In the network assign 
a count to each vertex indicating the number of destination graphs in which the 
vertex is marked. Since at least n/dk vertices are marked in each graph, the sum of 
the counts must be at least n2/dk. Therefore, the average count (over all vertices) is 
at least n/dk = m which implies there is at least one vertex u which has at least 
Jnld origins in each of @ destination graphs. For each of these destination 
graphs we can place the corresponding packet at some vertex of the network so 
that it will pass through vertex u. Thus J;;Td packets will go through u. Since u is of 
degree at most d, routing requires time at least equal to $@. 1 

The question of when there exists a corresponding upper depends on the par- 
ticular structure of the network. One important parameter in addition to the degree 
is the diameter of the graph. Clearly if the diameter of the graph is n we cannot 
hope for a O(h) algorithm. However, even for some O(log n) diameter graphs 
with degree 2 we cannot achieve an O(&) algorithm since there may be an 
isthmus or other type of bottleneck. However, for many structures there are 
oblivious routing algorithms that achieve or approach this lower bound. 

Lang [17] has given an O(h) oblivious routing algorithm for the shuffle 
exchange network, which is then asymptotically optimal since this network has con- 
stant degree. For the d= log n dimensional hypercube, the “obvious” oblivious 
algorithm will route packets for any permutation in time O(h). (Since the hyper- 
cube has degree log n this is a factor of (log n)3’2 from optimal.) Namely order the 
dimensions xi, x2 ,..., xlogn. At time 1 transmit any packet whose destination is on 
the opposite subcube determined by the xi dimension. This may result in as many 
as two packets being on a vertex. Next transmit packets across the x2 dimension, 
etc. After l log n dimensions there may be as many as ,/$ packets at a vertex caus- 
ing a delay of 4. In each subsequent dimension the maximum number of packets 
that can be on a vertex halves, with eventually each packet arriving at its 
destination. It may be possible to improve this bound to &/log n if one partitions 
the & packets that could go through a vertex u into log n groups and routes them 
by different edges. 

Another restriction on routing is minimality. A minimal routing scheme forbids 
transmitting along an edge if it increases the distance of the packet from its 
destination. Thus every packet must follow a shortest path. For minimal routing 
schemes it is an interesting open problem whether there is a local (or even a global) 
routing scheme that is O(log’n) for any r. For networks such as the d-cube we 
know of no monotone scheme better than the oblivious strategy just given. 
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A primary question is whether there is a local routing algorithm for say the 
d-cube that is better than 0(log2 n). It is remarkably difficult to analyze some very 
simple strategies. In particular, does the following algorithm or some variant of it, 
route an arbitrary permutation in O(log n). Consider some vertex. At a given stage 
as many as d packets, where d is the dimension of the cube, will arrive. As many as 
possible will be sent closer to their destinations. The remaining packets will be ship- 
ped to vertices of distance one greater. Since packets are not allowed to build up at 
a vertex the intuitive effect is to enlarge bottlenecks to several vertices and hence to 
allow more packets to get to their destinations in a given time. Although 
experimentally the algorithm appears promising we have not been able to formally 
analyze its behavior. 

III. MERGING AND SORTING ON SHARED MEMORY MODELS 

A Hierarchy of Models 

The shared memory models usually studied all possess a global memory, each 
cell of which can be read or written by any processor. For the purpose of con- 
structing algorithms, one usually assumes a single instruction stream; that is, one 
program is executed by all processors. However, when the processor number itself 
is used to control the sequencing of steps, and some ability to synchronize control is 
introduced, then the effect is that of a multiple instruction stream. The processors 
are assumed to have some local memory and each processor can execute basic 
primitive operations such as <, =, # comparisons and integer +, -, x , + and 
LrJ arithmetic operations in a single step. The PRAC, PRAM, and WRAM 
models have already been noted in Section II. 

Other variants are clearly possible. We are concerned with the merging and 
sorting problems of elements from an arbitrary linear order (i.e., the schematic or 
structured approach). In this context, a “most powerful” parallel model (analogous 
to the comparison tree for sequential computation) has been studied by Valiant 
[28]. The parallel computation tree idealizes k-processor parallelism by a 3k-tree, 
where each node is labeled by a set of k { <, =, > } comparisons and the branches 
are labeled by each of the 3k possible outcomes. It should be clear that for the 
problems of concern, parallel computation trees can simulate any reasonable 
parallel model, and in particular, can simulate all of the aforementioned shared 
memory models. 

Let M denote any of these models. We will be concerned with Tl_ (n, m, p) and 
Tzr,(n, p), the minimum number of parallel steps to merge two sorted lists of n and 
m elements (resp. to sort n arbitrary elements) using p processors. Typically, n = m 
and p is O(n) or O(n log* n). Clearly, for any problem we have 

7+RAC > TPRAM > TWRAM , / 

Our main contribution is to establish the following two theorems: 
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THEOREM 2. Let M denote the parallel computation tree model. Then 
TE&Jn, n, cn) is IR(log log cn - log log c) and hence Tg_(n, n, n log* n) is 
.Q(log log n) for all CI. (Haggkvist and Hell [ 141 have independently proved similar 
lower bounds for merging on parallel computation trees.) 

THEOREM 3. TLt&!(n, n, n) is O(log log n). 

We use Valiant’s algorithm, which already establishes the upper bound for the 
parallel comparison tree, but following Valiant [28], Preparata [ 191, and Shiloach 
and Vishkin [23], remark that a “processor allocation” problem must be solved to 
realize Valiant’s algorithm on the PRAM model. Hence, the problem of merging is 
now resolved on all of the above-shared memory models except the PRAC, for 
which we cannot improve on the log n upper bound of the Batcher merge. For the 
PRAC, Snir [24] has recently established an Q(log n) lower bound for searching or 
insertion (and hence merging), allowing any number of processors. Hence, the 
asymptotic complexity of parallel merging is now well understood for all the 
above-mentioned models. 

With regard to sorting, we have the following direct corollaries: 

COROLLARY 1. TPRAM (n, n) is O(log n log log n). 

COROLLARY 2. TPRAM(n, n log n) is @log n). 

Clearly, Corollary 1 follows from a standard merge sort, whereas Corollary 2 is a 
restatement of Preparata’s [19] result, which can now be stated for PRAM’s using 
Theorem 2. Corollaries 1 and 2 should be compared with the Shiloach and Vishkin 
upper bound of O(log*(n/log(p/n)) + log n) for sorting on their version of a WRAM 
with p processors. Whether or not an O(log n) sort can be achieved on any of the 
RAM models using only O(n) processors would be resolved by the Ajtai, Komlos, 
and Szemeredi [2] result (assuming their algorithm can be implemented without 
loss of efficiency on these models). Without their result, Corollary 2 and Preparata’s 
[19] O(klogn) sort using n’+‘lk processors on a PRAC represent the best known 
O(log n) sorting algorithms for the RAM models. 

With regard to lower bounds for sorting, Haggkvist and Hell [ 131 prove that in 
terms of the parallel computation tree, time less than or equal to k implies 
Q(n ’ + ‘lk) processors are required (and this is essentially sufficient). It follows, that 
for the tree model and any of the RAM models, Q(log n/log log n) is a lower bound 
for sorting with O(n log” n) processors. For O(n) processors, sZ(log n) is a trivial 
lower bound resulting from the sequential lower bound of Q(n log n). 

Cook and Dwork [6] show that Q(log n) steps on a PRAM are required for the 
Boolean function x, v x2 v ... v x,, no matter how many processors are 
available. It follows that O(log n) steps on a PRAM are required for the MAX 
function and hence for sorting. However, it is possible to achieve O(log n) sorting 
on a WRAM. Indeed, it is possible to achieve 0( 1) time by using an exponential 
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number of processors; e.g., use n. n! processors to check each of the possible per- 
mutations. A major open problem is to determine the minimal number of 
processors needed for an O(1) time sort on a WRAM. Stockmeyer and Vishkin 
[25] have shown how to simulate a t time, p processor WRAM (in particular, the 
SIMDAG) by an unbounded fan-in AND/OR circuit having depth O(t) and size 
polynomial (p). By this simulation and some appropriate reducibilities, Stockmeyer 
and Vishkin [25] are able to use the beautiful lower bound of Furst, Saxe, and Sip- 
ser [9] to show that a WRAM cannot sort in O( 1) time using only a polynomial 
(in n) number of processors. (See also Chandra, Stockmeyer, and Vishkin [4].) 

A Q(log log n) Lower Bound for Merging on Valiant’s Model 

Sequentially merging two lists of length n can be accomplished with 2n-1 com- 
parisons and this is provably optimal. Since only 2~2-1 comparisons are necessary to 
merge two such lists, conceivably in a parallel model they could be merged in time 
0( 1) with n processors. However, we shall show that this is not possible. Even 
allowing n log” n comparisons per step, a depth of log log n is needed. The 
previously stated Theorem 2 will follow as an immediate corollary of Lemma 3, 
which we now motivate. Throughout Section III we use integer floor and integer 
ceiling only when crucial. 

Consider the process of merging two sorted lists a,,..., a,, and b,,..., b, with n 
processors. At the first step at most n comparisons can be made. Partition each list 
into 2& blocks of length t,/‘&. Form pairs of blocks, one from each list. There are 
4n such pairs of blocks. Clearly there must be 3n pairs (Ai, Bj) of blocks such that 
no element from the block Aj is compared with any element from the block Bj. We 
shall show that we can select S,/% pairs of blocks 

such that i, < i,, 1 and j, <jr+ 1 for 16 I < i&r. If the total order is such that all 
elements in Ai,u Bj, are less than any element in Ai,+l u Bj,+,, 1 < I < $&, then after 
the first stage we are faced with $,,6 subproblems each of size t&. 

At the second stage the n processors are partioned somehow among the t,/% 
subproblems. However this is done, at least one half of the subproblems have 
assigned to them fewer than twice the average available number of processors per 
subproblem. Thus there are $& subproblems with at most 4fi processors per 
problem. Intuitively this argument suggests that at each stage the size of sub- 
problem goes down by a square root and hence log log n time is necessary. These 
ideas will be made precise in the following lemmas. 

In what follows let G = (A u B, E) be a bipartite graph with Es A x B. Further 
let A,, A, ,..., and B, , B, ,..., be fixed orderings of the vertices in A and B, respec- 
tively. A matching is said to be compatible if for each pair of edges (Ai, Bj) and 
(A,, B,,) in the matching i < g if and only if j < h. 

LEMMA 2. Let G = (A u B, E) be a bipartite graph with A = A,, AZ,..., ATk and 
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B = B, , Bz ,..., Bur and let E c A x B have 3k2 edges. Then G has a compatible 
matching of cardinality at least k. 

Proof: Partition the edges into 2k blocks as follows. For -k < b c k we have a 
block consisting of edges ((Ai, Bi+b) 1 16 i< 2k and 16 i + b < 2k). In addition we 
have one block consisting of all other edges. At most k2 + 2 edges fall into the block 
of other edges. Thus at least 2k2 - k edges must be partitioned into 2k - 1 blocks. 
Hence at least one block must have at least k edges and these edges form a com- 
patible matching. 

LEMMA 3. Let T(s, c) be the time necessary to solve k, k > 1, merging problems of 
size s with cks processors. Then T(s, c) is s2(log(log SC/log c)). 

ProoJ On the average we can assign cs processors to each problem. At least one 
half of the problems can have no more than twice this number of processors 
assigned to them. That is, at least k/2 problems have at most 2cs processors. 

Consider applying 2cs processors to a problem of size s. This means that in the 
first step we can make at most 2cs comparisons. Partition the lists into 2,/?%s 
blocks each of size J&% There are 8cs pairs of blocks. Thus there must be 6cs 
pairs of blocks with no comparisons between elements of the blocks in a pair. Con- 
struct a bipartite graph whose vertices are the blocks from the two lists with an 
edge between two blocks if there are no comparisons between elements of the two 
blocks. Clearly there are 6cs edges and thus by the previous lemma there is a com- 
patible match of size at least 4,/%. This means that there are at least, $,/% 
problems each of size at least i,,&% that we must still solve. Thus T(s, c) 2 1 + 
T(?i&?%, 4~). 

We show by induction on s, that 

log SC 
T(s, c) B d log - 

log c 

for some sufficiently small d. 

T(s, c) > 1 + d log 
log &/(s/2c) 4c 

log 4c 

(w.l.0.g. assume c > 4) 

log SC 
B 1 +dlog- 

log c 
dlog4 

log SC 
>dlog- 

log c 

provided d < f. Observe that log(log se/log c) is Q(log log s - log log c) which 
matches Valiant’s upper bound of 2(log log s - log log c). 



PARALLEL MODELS OF COMPUTATION 141 

An O(log log n) Upper Bound for Merging on a PRAM 

We recall Valiant’s (n, m) merging algorithm which merges X and Y with 
# X= n, # Y = m, n < m using fi processors. Our goal is to implement Valiant’s 
algorithm on a PRAM. However, we shall require IZ + m processors rather than 

J-- nm as in Valiant, because of the data movement which need not be accounted for 
in the tree model. The algorithm (taken verbatim from Valiant [28]) proceeds as 
follows: 

(a) Mark the elements of X that are subscripted by i. $1 and those of Y 
subscripted by i. r&J for i = 1, 2,.... There are at most L J’ n J and L$ J of these, 
respectively. The sublists between successive marked elements and after the last 
marked element in each list we call segments. 

(b) Compare each marked element of X with each marked element of Y. This 
requires no more than LrJ nm comparisons and can be done in unit time. 

(c) The comparisons of (b) will decide for each marked element the segment 
of the other list into which it needs to be inserted. Now compare each marked 
element of X with every element of the segment of Y that has thus been found for it. 
This requires at most 

L,hJT&+WL&J 
comparisons altogether and can also be done in unit time. 

On the completion of (a), (b), and (c) we can store each xir~, in its appropriate 
place in the output Z. It then remains to merge the disjoint pairs of sublists 
(X0, Y,,), (Xi, Yi),..., where the Xi and Yi are sequences of X and Y, respectively. 
Whereas Cauchy’s inequality guarantees that there will be enough processors to 
carry out these independent merges by simultaneous recursive calls of the 
algorithm, it is not clear how to inform each processor to which (X,, Yi) sub- 
program (and in what capacity) it will be assigned. This is the main concern in 
what Shiloach and Vishkin [23] refer to as the processor allocation problem. 

We desire a recursive procedure (in fact, a macro might be more appropriate) 
MERGE(i, ni,j, mj,k) which merges xi, xi+, ,..., xi+,,_r and yj ,..., Y~+~,_~ into 
zi+j- I,..., Zi+j+ ni+ mj_ 2 using at most ni + mj processors beginning at processor 
number pk. Such a merge will be simultaneously invoked by processors pk, pk + 1 ,..., 

Pk +n,+m,-l* The initial call is MERGE( 1, n, 1, m, 1). As we enter this subroutine, a 
processor pk will know from i,j, ni, mj, and k, the (relative) role it plays in parts 
(a), (b), and (c) of Valiant’s algorithm. For example, say n,< mj and let 

I=k+i’r&l+j’, O<i’<L&J-1, OQ%L&J-L 

then in step (a), processor p1 compares xi,- and yi’m. 
We will now indicate how processors reassign themselves before recursively 

invoking the merge routine. For simplicity, assume that we have just completed 
steps (a), (b), (c) of MERGE(1, n, 1, m, 1). We can assume that we have deter- 
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TABLE J 

0 jl j, . . . _iJnT, m 

mined for each i, 0 6 i< L&J - 1 that yj, <xB~;;l <yjj+ 1 and that we have con- 
structed a table J accessible by all processors. A given processor p must determine 
its role in the next iteration of the algorithm. We state the following without proof. 

LEMMA 4. Suppose (X0, Y,,),..., (X, _ 1, Y, _ I ) have been assigned processors, and 
x r-1= (..., x,m) and Y,- 1 = (..., yjJ. There exists a function 4 such that no more 
than 4(r, n, j,) processors have been assigned. Indeed, b( r,n,f)=rJ;;+J: 

The impact of this Lemma is that we can safely assign processors P#(~,~~,)+, ,..., 
P,(~+ l,nj,+,) to (X,., Y,). It remains for each processor to know to which (X,, Y,) it 
will be assigned. Indeed, once a processor knows to which (X,, Y,) it has been 
assigned, then it can obtain all the information it will need to invoke MERGE from 
Table J and the 4 function; namely, X, starts at kr&l + 1 and has length 
L/%1 - 1, Yk starts at y, and has length j,, I -j,, and the processors assigned to 
this task begin at p4Ck,njkl + 1. 

The actual assignment of a processor to a (X,, Y,) subproblem proceeds in two 
stages (note that we cannot simply do a sequential binary search in J because this 
would require log & steps): 

Stage (1) Processors are assigned for those (X,, Yk) with # Y, <m/A (and 
hence no more than & + ml& = (n + m)/,f p n rocessors need be assigned to this 
task since #Xi = ,,& - 1 for all i. 

Stage (2) Processors are assigned to the remaining (X,, Y,). 

Stage 1. For each k, 0 < k 6 & - 1, we assign (n + m)/& processors to look 
at both the k and the k + lth entry of Table J. If j,, 1 -j, <m/&, then these 
processors inform (by posting the information in an appropriate place of global 
memory) processors numbered q5(k, n, j,) + l,..., &k+ 1, n, j,, 1) that they are 
assigned to (X,, Y,). We then wait until the cpmpletion of Stage 2 before invoking 
merge on (X,, Y,) since all processors are needed for Stage 2. 

Stage 2. The processors are divided into (n + m)/& blocks, each block con- 

taining ,,I’% processors. Each of the ,,&r processors in a block are trying to deter- 
mine to which X,, Yk these & processors will be assigned. Let pi, be the first 
processor of block 1. The kth processor of block 1 looks at the j, and j,, 1 in 
Table J and determines (via the function 4) whether or not processor pj, would be 
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assigned to this subproblem. Now each processor p in the lth block can determine 
(again via Table J and 4) which of the following hold: 

(i) p is assigned to (X,, Y,), the subproblem assigned to pi,. 

(ii) p is assigned to (X,,, Y,,), the subproblem assigned to pi,+,. 
(iii) p has already been assigned in Stage 1. 

We claim that if neither (i) and (ii) hold, then (iii) must hold since clearly less than 
& < (n + rn)/& processors have been assigned to the same task as p. 1 

Finally, we note that the base case (n - 1, m arbitrary), where most of the data 
movement takes place, is easily performed with m + 1 processors. This completes 
the informal description of the algorithm which we claim establishes Theorem 3. 

Kruskal [ 161 has unified and somewhat improved Valiant’s merging algorithms 
to yield the following upper bound: p processors can perform an (n, m) merge in 
time (n + m)/p + O(log log n) + O(log(n + m)/p)). Letting n = m, it follows that 
n/log log n processors are sufficient to achieve an (n, n) merge in time O(log log n). 
Clearly, this is now asymptotically optimal since 2n-1 comparisons are needed 
sequentially. Assuming this can be implemented on a PRAM, there will be some 
corresponding improvements in Corollaries 1 and 2. For example, Corollary 1 
would become T(n, n) is O(log n log log n/log log log n). 

IV. CONCLUSION 

Our underlying goal is to better understand the theoretical capabilities and 
limitations inherent in large scale, general purpose, parallel computation. To this 
end, we have considered in this paper two of the major theoretical viewpoints of 
large scale parallel processing, namely fixed connection networks and shared 
memory models. We have not considered circuit models or Cook’s [S] fundamental 
HMM model, nor have we dealt with the more specific consideration of various 
VLSI models. In fact, the HMM model is “conceptually” between the fixed connec- 
tion and shared memory models, although its power relative to either the d-dimen- 
sional hypercube or the PRAC is not precisely known. (On the other hand, an 
HMM can be viewed as a PRAM with a restricted instruction set.) As a common 
point of reference for discussing these models, we have considered the routing, 
merging, and sorting problems. In this regard, the theoretical complexity of 
oblivious routing and merging has been essentially resolved for a wide spectrum of 
models. For many models, sorting is also very well understood. 

We are, however, still fundamentally intrigued by the worst case analysis of sim- 
ple routing strategies such as the one suggested in this paper. Other natural classes 
of routing strategies (e.g., minimal routing) also deserve further consideration. As 
for sorting, while the Ajtai, Komlos, and Szemeredi [2] result should resolve many 
questions, we are still concerned with the problem of O(log n), and in particular 
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O(l), parallel time sorting on a WRAM. Further progress (beyond [9, 253) on this 
problem will almost surely have to await a better understanding of the more basic 
circuit models. The general question of tradeoffs between parallel time and the 
number of processors (or “hardware” as referred to by Cook and Dymond [7]) is 
clearly a major theme in complexity theory. 
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