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Submodular functions are well-studied in combinatorial optimization, game theory and economics. The nat-
ural diminishing returns property makes them suitable for many applications. We study an extension of
monotone submodular functions, which we call proportionally submodular functions. Our extension includes
some (mildly) supermodular functions. We show that several natural functions belong to this class and relate
our class to some other recent submodular function extensions.

We consider the optimization problem of maximizing a proportionally submodular function subject to uni-
form and general matroid constraints. For a uniform matroid constraint, the “standard greedy algorithm”
achieves a constant approximation ratio. More specifically, for any cardinality constraint p, the greedy al-
gorithm has a constant approximation ratio bounded by a function α(p) that experimentally appears to be
converging (from below) to 5.95 as p increases. For a general matroid constraint with rank s, we prove that
the local search algorithm has constant approximation ratio bounded by a function ρ(s) which analytically
is converging (from above) to 10.22 as s increases.

Additional Key Words and Phrases: submodular functions, max-sum dispersion, greedy algorithms, local
search

1. INTRODUCTION
There are many applications where the goal becomes a problem of maximizing a sub-
modular function subject to some constraint. In many cases the submodular function
f is also monotone, non-negative and normalized so that f(∅) = 0. Such applications
arise for example in the consideration of influence in a stochastic social network as
formalized in [Kempe et al. 2003], diversified search ranking as in [Bansal et al. 2010]
and document summarization as in [Lin and Bilmes 2011]. In another application, fol-
lowing the work of [Gollapudi and Sharma 2009], [Borodin et al. 2012] considered the
linear combination of a monotone submodular function that measures the “quality”
of a set of results combined with a diversity function given by the max-sum disper-
sion measure, a widely studied measure of diversity. Their analysis suggested that
although the max-sum dispersion measure is a supermodular function, it possessed
similar properties to monotone submodular functions. In this paper we develop this
idea by introducing the class of proportionally submodular functions and show that
greedy and local search algorithms can be used (respectively) to approximately maxi-
mize such functions subject to a cardinality (resp. general matroid) constraint.

The literature on the maximization of submodular functions is extensive. Here
we only mention the most relevant work. Perhaps the most seminal paper concern-
ing monotone submodular functions is the Nemhauser, Fisher and Wosley paper
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[Nemhauser et al. 1978] showing that natural greedy and local search algorithms for
maximizing a monotone submodular function obtains approximation ratios e

e−1 (resp.
2) for maximizing any monotone submodular function subject to a cardinality (resp.
arbitrary matroid) constraint. Our work shows that these algorithms still enjoy con-
stant approximation ratios for the broader class of proportionally submodular func-
tions. More recent work (see, [Feige et al. 2007], [Feldman et al. 2011], [Buchbinder
et al. 2012], [Buchbinder et al. 2014]) provides constant approximation bounds for un-
constrained and constrained non monotone submodular functions.

The remainder of the paper is as follows. In section 2, we provide the definition of
proportionally submodular 1 functions. In section 3 we provide some basic observations
about this class of functions along with a number of examples of monotone proportion-
ally submodular function (that are not submodular). Section 4 contains a discussion of
two other frameworks for extending submodular functions. Sections 5 and 6 contain
analyses of the approximation ratios of the natural greedy (respectively local search)
algorithms for maximizing monotone proportionally submodular functions subject to
cardinality (respectively, matroid) constraints. We conclude in section 7 with some open
problems.

2. PRELIMINARIES
Let f : U → < be a set function over a universe U . All of the specific set functions we
consider are normalized and non-negative. That is, f satifies:

— f(∅) = 0
— f(S) ≥ 0 for all S ⊆ U
For the most part, we will focus attention on functions that are monotone. That is,

— f(S) ≤ f(T ) for all S ⊆ T ⊆ U

A function f(·) is submodular if for any two sets S and T , we have
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

We define the following variant of submodular functions. We call a normalized, non-
negative function f(·) proportionally submodular if for any two sets S and T , we have

|T |f(S) + |S|f(T ) ≥ |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ).

Our extension of submodularity “normalizes” the submodularity definition in terms
of the cardinality of the sets occuring in the definition. This allows for some supermod-
ular functions since now large set unions with small intersections can possibly observe
the required inequality. A similar idea can be found in the class of meta-submodular
functions as introduced by [Kleinberg et al. 1998]. Such meta-submodular functions
need not satisfy the submodular inequality when the sets are disjoint. We will see
that monotone proportionally submoudular functions generalize monotone submodu-
lar (and monotone meta-submodular functions ) and still retain the main algorithmic
property of monotone submodular functions; namely that simple and efficient greedy
and local search algorithms suffice to approximately maximize such functions subject
to cardinality and general matroid constraints.

1In a previous version of this paper, we used “weakly submodular” as the name for this class. This name
has been used before in the context of lattices by [Wild 2008]. It is difficult to find an appropriate name for
the class of functions studied in this paper. For example, we might have preferred to have used the term
meta-submodular but that term is already used in the computer science community [Kleinberg et al. 1998].
The name “proportionally submodular” was suggested by Sophie Laplante and we believe that it is more
suggestive of the class we are defining.
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3. EXAMPLES OF PROPORTIONALLY SUBMODULAR FUNCTIONS
In this section, we will first consider some natural proportionally submodular functions
showing in particular that this class includes all monotone submodular functions as
well as some supermodular functions. In Section 4, we will relate weak submodularity
to the functions of supermodular degree defined by [Feige and Izsak 2013] and further
studied in x‘[Feldman and Izsak 2014], and to the k-wise dependent functions of i
[Conitzer et al. 2005], and the related MPH-k functions defined by [Feige et al. 2014].

3.1. Submodular Functions
From the proportionally submodular definition, it is not obvious that monotone sub-
modular functions are a subclass of proportionally submodular functions. We will prove
that this is indeed the case.

PROPOSITION 3.1. Any monotone submodular function is proportionally submod-
ular. This, of course, implies that every linear function (with non-negative weights) is
proportionally submodular.

PROOF.
Given a monotone submodular function f(·) and two subsets S and T , without loss

of generality, we assume |S| ≤ |T |, then

|T |f(S) + |S|f(T ) = |S|[f(S) + f(T )] + (|T | − |S|)f(S).

By submodularity f(S) + f(T ) ≥ f(T ∪S) + f(T ∩S) and monotonicity f(S) ≥ f(S ∩T ),
we have

|T |f(S) + |S|f(T ) = |S|[f(S) + f(T )] + (|T | − |S|)f(S)

≥ |S|[f(S ∪ T ) + f(S ∩ T )] + (|T | − |S|)f(S ∩ T )

= |S|f(S ∪ T ) + |T |f(S ∩ T )

= |S ∩ T |f(S ∪ T ) + Big[(|S| − |S ∩ T |)f(S ∪ T ) + |T |f(S ∩ T )Big].

And again by monotonicity f(S ∪ T ) ≥ f(S ∩ T ), we have

(|S| − |S ∩ T |)f(S ∪ T ) + |T |f(S ∩ T ) ≥ (|S|+ |T | − |S ∩ T |)f(S ∩ T ) = |S ∪ T |f(S ∩ T ).

Therefore

|T |f(S) + |S|f(T ) ≥ |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T );

the proposition follows.

We note that the proof of Proposition 3.1 did not require the function f(·) to be nor-
malized or non-negative. But the proof did use the monotonicity of f(·). Non-monotone
submodular functions (such as Max-Cut and Max-Di-Cut) are, of course, also widely
studied. In contrast to Proposition 3.1, if we apply the proportionally submodular def-
inition to non-monotone functions, then it is no longer the case that a non-monotone
submodular function would necessarily be a non-monotone proportionally submodular
function.

PROPOSITION 3.2. There is a non-monotone submodular function f(·) that is not
proportionally submodular. More specifically, the Max-Cut function (for a particular
graph G) is not proportionally submodular.

PROOF.
Consider a graph G = (U,E) where V = R ∪ {s} ∪ {t} and E = {(s, u), (u, t)|u ∈ R}.

Letting S = R ∪ {s} and T = R ∪ {t}, for |R| = n we have the following:

— f(S) = f(T ) = n
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— f(S ∪ T ) = f(U) = 0
— f(S ∩ T ) = f(R) = 2n

Thus

(1) |T |f(S) + |S|f(T ) = (n+ 1)n+ (n+ 1)n = 2n2 + 2n
(2) |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ) = n · 0 + (n+ 2) · 2n = 2n2 + 4n

This contradicts the proportionally submodular definition.

PROPOSITION 3.3. Let f be a proportionally submodular function. Then the com-
plement function f̄ = f(U/S) is proportionally submodular iff f is submodular.

PROOF.
It is well known that submodular functions are closed under complememts so one

direction of the proposition holds. We now show that when f̄ is also proportionally
submodular, then f is submodular.

For the other direction, let g be the complement function of a proportionally submod-
ular function f and assume that g satisfies the proportionally submodular definition:
|T |g(S) + |S|g(T ) ≥ |S ∩ T |g(S ∪ T ) + |S ∪ T |g(S ∩ T )
Simplifying the above inequality using the notation S̄ = U \ S, we have:
(|U | − |T |)f(S̄) + (|U | − |S|)f(T̄ ) ≥ (|U | − |S̄ ∪ T̄ |f(S̄ ∩ T̄ ) + (|U | − |S̄ ∩ T̄ )f(S̄ ∪ T̄ )
Rearranging the above expression:
|U |[f(S̄) + f(T̄ )− f(S̄ ∩ T̄ )− f(S̄ ∪ T̄ )]
≥ |T |f(S̄) + |S|f(T̄ )− |S̄ ∪ T̄ |f(S̄ ∩ T̄ )− |S̄ ∩ T̄ )f(S̄ ∪ T̄ ) ≥ 0
This shows that f is submodular since for all S̄, T̄ ⊆ U , we have the desired condition
for submodularity.

On the other hand, it is easy to construct non-monontone proportionally submodular
functions from any monotone proportionally submodular function f having at least one
positive valuation. Namely, let f(S∗) > 0 for some S with ∅ ⊂ S∗ ⊂ U . Then define the
function g to be identical to f except that g(U) = 0. Clearly, g is non-monotone. We can
verify that g is proportionally submodular by checking the cases where U appears in
the inequality that defines weak submodularity, namely when either S or T is U , or
when S ∪ T = U . Furthermore, if f was say the metric dispersion function, g is then
clearly not submodular.

3.2. Meta-Submodular and Average Non-Negative Segmentation Functions
Motivated by appliations in clustering and data mining, [Kleinberg et al. 1998] in-
troduce the general class of segmentation functions. In their generality, segmentation
functions need not be submodular nor monotone. They show that every segmentation
function belongs to what they call the class of meta-submodular functions and consider
the greedy algorithm for “proportionally montone” meta-submodular functions. A set
function is a meta-submodular fuction if for any non-disjoint sets S and T , we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Clearly every submodular function is meta-submodular and hence there are (non
monotone) meta-submodular functions that are not proportionally submodular.

PROPOSITION 3.4. Any monotone meta-submodular function is proportionally sub-
modular.

PROOF. If S and T are not disjoint then the proof of Proposition 3.1 applies immedi-
ately. If S and T are disjoint, then |S ∩ T | = 0, and |S ∪ T | = |S|+ |T |. By monotonicity,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Proportionally Submodular Functions A:5

we also have σ(S) ≥ σ(S ∩ T ) and σ(T ) ≥ σ(S ∩ T ). Therefore,

|S ∩ T |σ(S ∪ T ) + |S ∪ T |σ(S ∩ T ) = |S|σ(S ∩ T ) + |T |σ(S ∩ T ) ≤ |T |σ(S) + |S|σ(T )

We now consider a specific class of segmentation functions.
Given an m × n matrix M and any subset S ⊆ [m], a segmentation function σ(S) is

the sum of the maximum elements of each column whose row indices appear in S; i.e.;
σ(S) =

∑n
j=1 maxi∈S Mij . A segmentation function is average non-negative if for each

row i, the sum of all entries of M is non-negative; i.e.,
∑n

j=1Mij ≥ 0. Letting columns
index individuals, and rows index items, each entry of Mij represents how much the
individual j likes or dislikes the item i. The average non-negative property requires
that for each item i, on average, people do not dislike it.

We can use columns to model individuals, and rows to model items, then each entry
of Mij represents how much the individual j likes the item i. The average non-negative
property basically requires that for each item i, on average people do not dislike it.
Next, we show that an average non-negative segmentation function is proportionally-
submodular. We first prove the following two lemmas.

LEMMA 3.5. An average non-negative segmentation function is monotone.

PROOF. Let S be a proper subset of [m], and e be an element in [m] that is not in S. If
S is empty, then by the average non-negative property, we have σ({e}) =

∑n
j=1Mej ≥ 0.

Otherwise, by adding e to S we have maxi∈S∪{e}Mij ≥ maxi∈S Mij for all 1 ≤ j ≤ n.
Therefore σ(S ∪ {e}) ≥ σ(S).

LEMMA 3.6. For any non-disjoint set S and T and an average non-negative segmen-
tation function σ(·), we have

σ(S) + σ(T ) ≥ σ(S ∪ T ) + σ(S ∩ T ).

That is, σ is a meta-submodular function.

PROOF. For any non-disjoint set S and T and an average non-negative segmentation
function σ(·), we let σj(S) = maxi∈S Mij . We show a stronger statement that for any
j ∈ [n], we have

σj(S) + σj(T ) ≥ σj(S ∪ T ) + σj(S ∩ T ).

Let e be an element in S ∪ T such that Mej is maximum. Without loss of generality,
assume e ∈ S, then σj(S) = σj(S∪T ) = Mej . Since S∩T ⊆ T , we have σj(T ) ≥ σj(S∩T ).
Therefore,

σj(S) + σj(T ) ≥ σj(S ∪ T ) + σj(S ∩ T ).

Summing over all j ∈ [n], we have

σ(S) + σ(T ) ≥ σ(S ∪ T ) + σ(S ∩ T )

as desired.

The following proposition is immediate by the above two lemmas and Proposition
3.4.

PROPOSITION 3.7. Any average non-negative segmentation function is proportion-
ally submodular.

We note that an average non-negative segmentation function need not be submodu-
lar. Consider the 2 × 2 matrix with rows S = {1,−1} and T = {−1, 1}. Then it is easy

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 A Borodin et al.

to verify that the function defined by this matrix is an average non-negative segmen-
tation function. However σ(S) = σ(T ) = 0 while σ(S ∪ T ) = 2.

Hereafter, we will we restrict attention to monotone, non-negative and normalized
functions. In the remaining subsections of section 3, we present a number of monotone
proportionally submodular functions that are not submodular (and in fact are “mildly”
supermodular).

3.3. Sum of Metric Distances of a Set
Let U be a metric space with a distance function d(·, ·). For any subset S, define d(S) to
be the sum of distances induced by S; i.e.,

d(S) =
∑

{u,v}⊆S

d(u, v)

where d(u, v) measures the distance between u and v. The problem of maximizing d(S)
subject to a cardinality constraint is called the max-sum dispersion problem and is one
of many dispersion problems studied in location theory.

We extend the distance function to a pair of disjoint subsets X and Y and define
d(X,Y ) to be the sum of pair-wise distances between X and Y ; i.e.,

d(X,Y ) =
∑

u∈X,v∈Y
d(u, v).

We have the following proposition.

PROPOSITION 3.8. The sum of metric distances d(S) of a set is proportionally sub-
modular (and clearly monotone).

PROOF. Given two subsets S and T of U , let A = S \ T , B = T \ S and C = S ∩ T .
Observe the fact that by the triangle inequality, we have

|B|d(A,C) + |A|d(B,C) ≥ |C|d(A,B).

Therefore,

|T |d(S) + |S|d(T )

= (|B|+ |C|)[d(A) + d(C) + d(A,C)] + (|A|+ |C|)[d(B) + d(C) + d(B,C)]

= |C|[d(A) + d(B) + d(C) + d(A,C) + d(B,C)] + (|A|+ |B|+ |C|)d(C)

+|B|d(A) + |A|d(B) + |B|d(A,C) + |A|d(B,C)

≥ |C|[d(A) + d(B) + d(C) + d(A,C) + d(B,C)] + |S ∪ T |d(S ∩ T ) + |C|d(A,B)

= |C|[d(A) + d(B) + d(C) + d(A,C) + d(B,C) + d(A,B)] + |S ∪ T |d(S ∩ T )

= |S ∩ T |d(S ∪ T ) + |S ∪ T |d(S ∩ T ).

3.4. Minimum Cardinality Functions
For any k ≥ 1, let fk(S) = B > 0 for |S| ≥ k and 0 otherwise.

PROPOSITION 3.9.

(1) For k = 1, 2, fk is proportionally submodular
(2) For k ≥ 3, fk is not proportionally submodular on any universe of size at least k

PROOF.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Proportionally Submodular Functions A:7

In all cases, we need only restrict attention to non empty sets S and T in the weak
submodularity definition since we are assuming f(∅) = 0.

(1) For k = 1, weak submodularity follows from the fact that |S|+ |T | = |S ∩T |+ |S ∪T |
given that f1(Z) = B for all non empty sets Z.

(2) For k = 2, we can verify that f is proportionally submodular by considering the
possible cardinalities of the sets in the proportionally submodular definition; that
is, when say |S| ≤ |T | we consider the cases |S| < 2 and |S| ≥ 2. For |S| < 2, either
S ⊆ T or |S∩T | = ∅ and we can easily verify that f satisfies the weak submodularity
definition in either case. If |S| and |T | are both≥ 2, then weak submodularity follows
as in the proof for k = 1 since f2(Z) = B for all sets Z with cardinality at least 2.

(3) If k ≥ 3, let S = {a1, . . . ak−1} and T = {ak−1, ak} for distinct elements a1 . . . ak. Then
— |T |fk(S) + |S|fk(T ) = 0
— |S ∩ T |fk(S ∪ T ) + |S ∪ T |fk(S ∩ T ) = B ¿ 0

which contradicts the proportionally-submodular definition.

3.5. Powers of the Cardinality of a Set
Clearly, for any positive integer k, the functions f(S) = |S|k can be computed in time
O(log k). However, given Lemma 3.13 below, it is still useful to know what simple func-
tions can be used in conjuction with other submodular and proportionally submodular
functions.

It is immediate to see that the functions f(S) = |S|0 and f(S) = |S|1 are linear and
hence submodular. We now show that the square and the cube of the cardinality of a
set are also proportionally submodular.

PROPOSITION 3.10. The square of cardinality of a set is proportionally submodular.

PROOF. Given two subsets S and T of U , let a = |S \ T |, b = |T \ S| and c = |S ∩ T |.

|T |f(S) + |S|f(T )

= (b+ c)(a+ c)2 + (a+ c)(b+ c)2

= (a+ b+ 2c)(b+ c)(a+ c)

= (a+ b+ 2c)(ab+ ac+ bc+ c2)

≥ (a+ b+ 2c)(ac+ bc+ c2)

= (a+ b+ 2c)c(a+ b+ c)

= c(a+ b+ c)2 + (a+ b+ c)c2

= |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ).

PROPOSITION 3.11. The cube of cardinality of a set is proportionally submodular.
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PROOF. Given two subsets S and T of U , let a = |S \ T |, b = |T \ S| and c = |S ∩ T |.

|T |f(S) + |S|f(T )

= (b+ c)(a+ c)3 + (a+ c)(b+ c)3

= (a2 + b2 + 2c2 + 2ac+ 2bc)(b+ c)(a+ c)

= [(a+ b+ c)2 + c2 − 2ab][ab+ c(a+ b+ c)]

= [(a+ b+ c)2 + c2][c(a+ b+ c)] + ab[(a+ b+ c)2 + c2]− 2a2b2 − 2abc(a+ b+ c)

= c(a+ b+ c)3 + c3(a+ b+ c) + ab[(a+ b+ c)2 + c2 − 2ab− 2c(a+ b+ c)]

= |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ) + ab(a2 + b2 + c2 + 2ab+ 2ac+ 2bc+ c2 − 2ab− 2ac− 2bc− 2c2)

= |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ) + ab(a2 + b2)

≥ |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ).

We now give an example that shows f(S) = |S|4 is not proportionally submodular.

PROPOSITION 3.12. f(S) = |S|4 is not proportionally submodular.

PROOF. Given two subsets S and T of U , let a = |S \ T |, b = |T \ S| and c = |S ∩ T |.
Suppose a = 4, b = 4, c = 1.

|T |f(S) + |S|f(T ) = (b+ c)(a+ c)4 + (a+ c)(b+ c)4 = 6250

On the other hand, we have

|S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ) = c(a+ b+ c)4 + (a+ b+ c)c4 = 94 + 9 = 6570

Therefore, the function is not proportionally submodular.

Similarly, one can see that f(S| = |S|k is not proportionally submodular for all in-
tergers k ≥ 4.

3.6. Linear combinations of proportionally submodular functions
Next we show a basic but important property of proportionally submodular functions.

LEMMA 3.13. Non-negative linear combinations of proportionally submodular
functions are weakly submodular.

PROOF. Consider proportionally submodular functions f1, f2, . . . , fn and non-
negative numbers α1, α2, . . . , αn. Let g(S) =

∑n
i=1 αifi(S), then for any two set S and
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T , we have

|T |g(S) + |S|g(T )

= |T |
n∑

i=1

αifi(S) + |S|
n∑

i=1

αifi(T )

=

n∑
i=1

αi[|T |fi(S) + |S|fi(T )]

≥
n∑

i=1

αi[|S ∩ T |fi(S ∪ T ) + |S ∪ T |fi(S ∩ T )]

= |S ∩ T |
n∑

i=1

αifi(S ∪ T ) + |S ∪ T |
n∑

i=1

αifi(S ∩ T )

= |S ∩ T |g(S ∪ T ) + |S ∪ T |g(S ∩ T ).

Therefore, g(S) is proportionally submodular.

COROLLARY 3.14. The welfare maximization problem (also known as the maxi-
mization problem for combinatorial auctions) for agents with proportionally submod-
ular valuations is a special case of the maximization of a proportionally submodular
function subject to a partition matroid.

PROOF.
In the maximum welfare problem, n agents A = {1, . . . , n} have valuation functions

vi := U → <. A feasible allocation is a disjoint allocation of subsets Si to each agent
(1 ≤ i ≤ n) so as to maximize the social welfare function f(S) =

∑n
i=1 vi(Si). It is well

known then how to view the disjointness constraint as a partition matroid constraint.
Namely, we consider a universe U ′ = A × U where the elements of U ′ are partitioned
into blocks Bu = {i, u)|i ∈ A} for each u ∈ U . For S′ = ∪B′u, we let the partition
matroid be defined by the independence condition that a subset S′ ⊆ U ′ is independent
iff |B′u| ≤ 1; that is, it does not contain any two elements (i, u) and (i′, u) for some
u ∈ U and i 6= i′. Letting πi(S

′) = {u : (i, u) ∈ S′}, define f ′i(S) = vi(πi(S
′) and

f ′(S′) =
∑n

i=1 vi(πi(S
′)) for any subset S′ ⊆ U ′. Given that each vi is proportionally

submodular on the universe πi(U
′) and that the class of proportionally submodular

functions is closed under linear combinations, f ′(S′) is a proportionally submodular
function when all the valuations vi are proportionally submodular.

We now show two more examples of proportionally submodular function using
Lemma 3.13.

3.7. The Objective Function of Max-Sum Diversification
COROLLARY 3.15. The objective function of the max-sum diversification problem,

f(S) = g(S) +
∑
{u,v}⊆S d(u, v), is proportionally submodular when g is monotone sub-

modular (or proportionally submodular) and d is a metric.

PROOF. This follows immediate from Proposition 3.1 and 3.8 and Lemma 3.13.
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3.8. Restricted Polynomial Function on the Cardinality of a Set
COROLLARY 3.16. For polynomial functions on the cardinality of a set, if the degree

is less than four and coefficients are all non-negative, then the function is proportionally
submodular.

PROOF. This follows immediate from Proposition 3.10 and 3.11 and Lemma 3.13.

4. RELATED WORK
It is well known that submodular functions are a strictly smaller class than that
of subadditive functions. In their study of subadditive valuations for combinatorial
auctions, [Lehmann et al. 2001] introduce XOS functions as a subadditive mono-
tone extension of monotone submodular functions. A function f is an XOS function
is there exists a (possibly exponentially large) collection L of linear functions such that
f(S) = maxL∈L L(S). To date this class has been mainly used to facilitate analysis as
in [Feldman et al. 2015].

PROPOSITION 4.1. There is an XOS (and hence subadditive function) f that is not
proportionally submodular.

PROOF. As shown in [Lehmann et al. 2001], for the universe U = {a, b, c}, the fol-
lowing function is XOS but not submodular:
f(S) = 0 for |S| = 0; 2; 3 (respectively) for |S| = 0; 1, 2; 3 (respectively).
The same function is easily seen to violate the proportionally submodular definition by
considering S = {a, b} and T = {b, c}.

Recently, there have been other generalizations of monotone submodular functions2.
In particular with regard to combinatorial auctions, [Feige and Izsak 2013] defined the
concept of the supermodularity degree of a set function as a measure of the degree of
complementarity. Intuitvely, for each item u, its supermodular degree is the number
of other items v that increase the marginal value of u with respect to some subset not
containing u. This induces a supermodular dependency graph and the supermodular
degree of an item is its degree in this dependency graph. The supermodular degree of
a set function is the maximum of the item supermodular degrees. Set functions with
supermodular degree 0 are precisely the submodular functions and every set function
on a universe U has supermodular degree at most |U |−1. Feige and Izsak consider the
welfare maximization problem when each agent has a valuation function with super-
modular degree at most d. Amongst their results, they show that given the supermodu-
lar dependency graph, and a value oracle to access the valuation function of each agent,
a greedy algorithm approximates the welfare maximization problem to within a factor
3 of d + 2. [Feldman and Izsak 2014] consider the maximization of set functions with
supermodular degree d degree subject to independence in a matroid and more gen-
erally to independence in a k-extendible system as defined by Mestre [Mestre 2006].
They show that a natural greedy algorithm achieves approximation ratio k(d + 1) + 1
assuming a value oracle (for accessing the set function) and an independence oracle
(for determining if a set is indepedendent in I).

It is easy to see that the class of proportionally submodular functions does not corre-
spond to functions having bounded supermodular degree. For example, the function f2

2We note that the class of proportionally submodular functions (named “weakly submodular functions”)
was introduced in the PHD thesis of [Ye 2013] and followed from observations made with regard to the
diversifcation problem in [Borodin et al. 2012]. As such this class was studied independently from the work
relating to supermodular degree and the MPH-k hierarchy that will now be discussed.
3We are stating all of our approximation ratios to be greater than or equal to 1 whereas Feige and Izsak use
fractional approximation ratios.
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in Proposition 3.9 is proportionally submodular and has supermodular degree |U | − 1
for any universe U with at least 3 elements. Furthermore, [Feige et al. 2014] show that
there are instances of the metric sum dispersion problem (even with unit distance on
the complete graph G = (U,U × U) ) that do not have bounded supermodular degree.
In fact, Feige et al show that for this instance of the dispersion function, a function of
supermodular degree d cannot provide an approximation better than |U |

d+1 − 1. On the
other hand, we have the following observation:

PROPOSITION 4.2.
There are simple functions having supermodular degree 1 that are not proportionally

submodular.

PROOF. For the universe U = {a1, a2, b}, let f(S) = B > 0 if {a1, a2} ⊆ S and 0
otherwise. Letting S = {a1, b1} and T = {a2, b1}, we have

— |T |f(S) + |S|f(T ) = 0
— |S ∩ T |f(S ∪ T ) + |S ∪ T |f(S ∩ T ) = B

which violates the definition of weak submodularity.

Another generalization of submodular functions was introduced in [Conitzer et al.
2005] and further developed in the expessive MPH-k hierarchy of [Feige et al. 2014].
They consider the representation of a set function f(S) by its unique hypergraph h(S)
(called hypercube in [Conitzer et al. 2005]) representation. Functions in which the only
non zero elements h(S) in the hypergraph representation are positive and further sat-
isfy |S| ≤ k are called PH-k functions. A monotone function is in the class MPH-k if
it can be expressed as maximum over a finite collection of PH-k functions. Feige et al
establish a number of significant results amongst which (most relevant to our results)
are the facts that all monotone functions of supermodular degree k − 1 are in MPH-k
for k ≥ 1 and that using demand oracles and given the hypergraph representation of
agent set functions, the welfare maximization problem for agents with MPH-k valua-
tions can be solved by an LP-rounding algorithm with approximation ratio k + 1. As
a special case, we note that the sum dispersion problem is a MPH-2 function (even
for non metric distances). As they show (in their appendix L), the expressiveness of
the MPH-k framework may require some simple functions (even in MPH-1) to require
exponentially many hypergraphs to be so represented. While functions in any MPH-
k are closed under linear combinations, maximizing such functions to a cardinality
constraint (and hence to matroid constraints) would require a breakthrough for the
densest subgraph problem since the densest subgraph problem subject to a cardinal-
ity constraint can be reduced to the MPH-2 non metric dispersion problem (see [Feige
et al. 2001], [Andersen and Chellapilla 2009] and [Khuller and Saha 2009]).

Finally, we mention the related classes of weakly submodular and quasi submodular
functions as (respectively) defined and studied by [Wild 2008] and [Mei et al. 2015]). A
function f is said to be weakly submodular if it satisfies the following condition:

f(S ∩ T ) = f(S)⇒ f(S ∪ T ) = f(T )

.
A function is quasi submodular if the following two conditions are satifisfied:

f(S ∩ T ) ≥ f(S)⇒ f(T ) ≥ f(S ∪ T )

f(S ∩ T ) > f(S)⇒ f(T ) > f(S ∪ T )
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.
Both classes generalize the concept of submodular functions. It is easy to see that

for monotone functions these classes are equivalent, and moroever, every strictly in-
creasing monotone function is weakly submodular (and hence quasi submodular). We
note that the monotone function f2 as defined in Proposition 3.9 is not quasi submod-
ular. From an algorithmic point of view, these classes seem to be mainly of interest
in the non-monotone case and Mei et al study approximations for the unconstrained
maximization problem for such functions.

5. PROPORTIONALLY SUBMODULAR FUNCTION MAXIMIZATION SUBJECT TO A
CARDINALITY CONSTRAINT

We emphasize again that we restrict attention to monotone, non-negative and nor-
malized functions. In this section, we discuss a greedy approximation algorithm for
maximizing proportionally submodular functions subject to a uniform matroid (i.e. a
cardinality constraint). In section 6 we consider an arbitrary matroid constraint.

Given an underlying set U and a proportionally submodular function f(·) defined
on every subset of U , the goal is to select a subset S maximizing f(S) subject to a
cardinality constraint |S| ≤ p. We consider the following standard greedy algorithm
that achieves an approximation ratio of e

e−1 for monotone submodular maximization
by a classic result of Nemhauser, Fisher and Wolsey [Nemhauser et al. 1978]. [Feige
1998] showe the By a result of [Birnbaum and Goldman 2009], it is known that the
same greedy algorithm 4 is a 2-approximation for the metric dispersion problem subject
to a cardinality constraint.

GREEDY ALGORITHM FOR PROPORTIONALLY SUBMODULAR FUNCTION MAXIMIZATION
WHILE |S| < p

Find u ∈ U \ S maximizing f(S ∪ {u})− f(S)
S = S ∪ {u}

ENDWHILE

THEOREM 5.1. For all p, the standard greedy algorithm achieves a constant ap-
proximation ratio.

In particular, the approximation ratio is 3.74 (resp. 5.62) when p = 10 (resp. when
p = 100). Computer evaluations suggest that the approximation ratio converges to 5.95
as p tends to∞.

Before getting into the proof of Theoren 5.1, we first prove two algebraic identities.

LEMMA 5.2.
n∑

j=1

(
i+ 1

i
)j−1 = i(

i+ 1

i
)n − i.

4While greedy algorithms are conceptually simple to state and understand operationally, it can be the case
that the analysis of an approximation ratio is not at all simple. For example, the Birnbaum and Goldman
proof that the greedy algorithm is a 2-approximation for the cardinality constrained metric sum dispersion
problem is such a proof. Their proof answered an explicit 12 year old conjecture by [Hassin et al. 1997]
following the 4-approximation by [Ravi et al. 1994]. In fact, one can view the Ravi et al paper as an implicit
conjecture given their example showing that the greedy algorithm was no better than a 2-approximation for
the dispersion problem.
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PROOF. Note that the expression on the left-hand side is a geometric sum. There-
fore, we have

n∑
j=1

(
i+ 1

i
)j−1 =

( i+1
i )n − 1
i+1
i − 1

= i(
i+ 1

i
)n − i.

LEMMA 5.3.
n∑

j=1

j(
i+ 1

i
)j−1 = ni2(

i+ 1

i
)n+1 − (n+ 1)i2(

i+ 1

i
)n + i2.

PROOF. Consider the function f(x) =
∑n

j=1 x
j with x 6= 1, its derivative f ′(x) =∑n

j=1 jx
j−1. Since f(x) is a geometric sum and x 6= 1, we have

f(x) =
xn+1 − 1

x− 1
− 1.

Taking derivatives on both sides we have

f ′(x) =
(n+ 1)xn(x− 1)− xn+1 + 1

(x− 1)2
=
nxn+1 − (n+ 1)xn + 1

(x− 1)2
.

Therefore, we have
n∑

j=1

jxj−1 =
nxn+1 − (n+ 1)xn + 1

(x− 1)2
.

Substituting x with i+1
i , we have

n∑
j=1

j(
i+ 1

i
)j−1 =

n( i+1
i )n+1 − (n+ 1)( i+1

i )n + 1

( i+1
i − 1)2

= ni2(
i+ 1

i
)n+1− (n+ 1)i2(

i+ 1

i
)n + i2.

Now we proceed to the proof to Theorem 5.1.

PROOF. Let Si be the greedy solution after the ith iteration; i.e., |Si| = i. Let O be an
optimal solution, and let Ci = O \ Si. Let mi = |Ci|, and Ci = {c1, c2, . . . , cmi

}. By the
proportionally submodularity definition, we get the following mi inequalities for each
0 < i < p:

(i+mi − 1)f(Si ∪ {c1}) + (i+ 1)f(Si ∪ {c2, . . . , cmi
}) ≥ (i)f(Si ∪ {c1 . . . , cmi

}) + (i+mi)f(Si)

(i+mi − 2)f(Si ∪ {c2}) + (i+ 1)f(Si ∪ {c3, . . . , cmi}) ≥ (i)f(Si ∪ {c2 . . . , cmi}) + (i+mi − 1)f(Si)

...
(i+ 1)f(Si ∪ {cmi−1}) + (i+ 1)f(Si ∪ {cmi}) ≥ (i)f(Si ∪ {cmi−1, cmi}) + (i+ 2)f(Si)

(i)f(Si ∪ {cmi
}) + (i+ 1)f(Si) ≥ (i)f(Si ∪ {cmi

}) + (i+ 1)f(Si).

Multiplying the jth inequality by ( i+1
i )j−1, and summing all of them up (noting that

the second term of the left hand side of the jth inequality then cancels the first term of
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the j + 1st inequality), we have

mi∑
j=1

(i+mi − j)(
i+ 1

i
)j−1f(Si ∪ {cj}) + (i+ 1)(

i+ 1

i
)mi−1f(Si)

≥ (i)f(Si ∪ {c1, . . . , cmi
}) +

mi∑
j=1

(i+mi − j + 1)(
i+ 1

i
)j−1f(Si).

By monotonicity, we have f(Si ∪ {c1, . . . , cmi
}) ≥ f(O). Rearranging the inequality,

mi∑
j=1

(i+mi − j)(
i+ 1

i
)j−1f(Si ∪ {cj}) ≥ (i)f(O) +

mi−1∑
j=1

(i+mi − j + 1)(
i+ 1

i
)j−1f(Si).

By the greedy selection rule, we know that f(Si+1) ≥ f(Si ∪ {cj}) for any 1 ≤ j ≤ mi,
therefore we have

mi∑
j=1

(i+mi − j)(
i+ 1

i
)j−1f(Si+1) ≥ (i)f(O) +

mi−1∑
j=1

(i+mi − j + 1)(
i+ 1

i
)j−1f(Si).

For the ease of notation, we let

ai =

mi∑
j=1

(i+mi − j)(
i+ 1

i
)j−1 bi =

mi−1∑
j=1

(i+mi − j + 1)(
i+ 1

i
)j−1

so that we have aif(Si+1)− bif(Si) ≥ (i)f(O)

We first simplify ai and bi.

ai =

mi∑
j=1

(i+mi − j)(
i+ 1

i
)j−1

=

mi∑
j=1

(i+mi)(
i+ 1

i
)j−1 −

mi∑
j=1

j(
i+ 1

i
)j−1.

By Lemma 5.2 and 5.3, we have

ai = (i+mi)[i(
i+ 1

i
)mi − i]−mii

2(
i+ 1

i
)mi+1 + (mi + 1)i2(

i+ 1

i
)mi − i2

= [i2 + imi −mi(i
2 + i) + (mi + 1)i2](

i+ 1

i
)mi − 2i2 − imi

= 2i2(
i+ 1

i
)mi − 2i2 − imi.
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Similarly, we have

bi =

mi−1∑
j=1

(i+mi − j + 1)(
i+ 1

i
)j−1

=

mi−1∑
j=1

(i+mi + 1)(
i+ 1

i
)j−1 −

mi−1∑
j=1

j(
i+ 1

i
)j−1

= (i+mi + 1)[i(
i+ 1

i
)mi−1 − i]− (mi − 1)i2(

i+ 1

i
)mi +mii

2(
i+ 1

i
)mi−1 − i2

= [i2 + imi + i− (mi − 1)(i2 + i) +mii
2](
i+ 1

i
)mi−1 − 2i2 − imi − i

= 2i(i+ 1)(
i+ 1

i
)mi−1 − 2i2 − imi − i

= 2i2(
i+ 1

i
)mi − 2i2 − imi − i.

Now let

a∗i =

p∑
j=1

(i+ p− j)( i+ 1

i
)j−1 b∗i =

p−1∑
j=1

(i+ p− j + 1)(
i+ 1

i
)j−1

The simplication of ai and bi makes it clear that ai − bi = i for any value of mi. Since
a∗i (resp. b∗i ) can be thought of as ai (resp. bi) with mi = p, we have

a∗i − ai = b∗i − bi ≥ 0

Therefore,
a∗i f(Si+1)− b∗i f(Si) = aif(Si+1)− bif(Si) + (a∗i − ai)[f(Si+1)− f(Si)].

Since f(·) is monotone, we have f(Si+1)− f(Si) ≥ 0. Therefore,
a∗i f(Si+1)− b∗i f(Si) ≥ aif(Si+1)− bif(Si) ≥ if(O).

Then we have the following set of inequalities:
a∗1f(S2) ≥ 1f(O) + b∗1f(S1)

a∗2f(S3) ≥ 2f(O) + b∗2f(S2)

...
a∗p−2f(Sp−1) ≥ (p− 2)f(O) + b∗p−2f(Sp−2)

a∗p−1f(Sp) ≥ (p− 1)f(O) + b∗p−1f(Sp−1).

Multiplying the ith inequality by
∏i−1

j=1 a∗
j∏i

j=2 b∗j
, summing all of them up and ignoring the

term b∗1f(S1), ∏p−1
j=1 a

∗
j∏p−1

j=2 b
∗
j

f(Sp) ≥
p−1∑
i=1

i
∏i−1

j=1 a
∗
j∏i

j=2 b
∗
j

f(O).

Therefore the approximation ratio

f(O)

f(Sp)
≤

∏p−1
j=1 a∗

j∏p−1
j=2 b∗j∑p−1

i=1

i
∏i−1

j=1 a∗
j∏i

j=2 b∗j

=

(
p−1∑
i=1

i
∏p−1

j=i+1 b
∗
j∏p−1

j=i a
∗
j

)−1
=

p−1∑
i=1

 i

a∗i
·

p−1∏
j=i+1

b∗j
a∗j

−1 .
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Note that the approximation ratio is simply a function of p. As stated in the theorem
statement, this ratio converges5 to 5.95 as p tends to∞.

In terms of hardness of approximation, [Nemhauser et al. 1978] showed that in the
value oracle model, e

e−1 is the best approximation possible for monotone the value or-
acle model; that is, to achieve a better ratio would require exponentially many oracle
calls. Feige [Feige 1998] showed the same inapproximation holds for the explictly de-
fined max coverage problem (an example of monotone submodular maximization sub-
ject to a cardinality constraint) subject to the conjecture that P 6= NP . The max-sum
dispersion problem is known to be NP-hard by an easy reduction from Max-Clique, and
as noted by Alon [Alon 2014], there is evidence that the problem is hard to compute in
polynomial time with approximation 2 − ε for any ε > 0 when p = nr for 1/3 ≤ r < 1.
(See the discussion in Section 3 of [Borodin et al. 2014].)

6. PROPORTIONALLY SUBMODULAR FUNCTION MAXIMIZATION SUBJECT TO AN
ARBITRARY MATROID CONSTRAINT

It is natural to consider a general matroid constraint for the problem of proportion-
ally submodular function maximization. For this more general problem, the greedy
algorithm in the previous section no longer achieves any constant approximation ra-
tio. See the example presented in the Appendix of [Borodin et al. 2014]. Following the
result for max-sum diversification subject to a matroid constraint in [Borodin et al.
2012], we will analyze the following oblivious local search algorithm:

LOCAL SEARCH ALGORITHM FOR PROPORTIONALLY SUBMODULAR FUNCTION MAXIMIZATION
Let S be a basis of matroidM = (U,F) where F denotes the independent sets of the matroid.
WHILE ∃u ∈ U \ S and v ∈ S such that S ∪ {u} \ {v} ∈ F and f(S ∪ {u} \ {v}) > f(S)
S = S ∪ {u} \ {v}

ENDWHILE

We first state and prove a purely technical lemma:

LEMMA 6.1. Given three non-increasing non-negative sequences:

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0,

β1 ≥ β2 ≥ · · · ≥ βn ≥ 0,

x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Then we have
n∑

i=1

αixi

n∑
i=1

βi ≥
n∑

i=1

βixn+1−i

n∑
i=1

αi.

5This number is obtained by a computer program.
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PROOF. Consider the following:

n

n∑
i=1

αixi = nα1x1 + nα2x2 + · · ·+ nαnxn

=

n∑
i=1

αix1 + (nα1 −
n∑

i=1

αi)x1 + nα2x2 + · · ·+ nαnxn

≥
n∑

i=1

αix1 + (nα1 + nα2 −
n∑

i=1

αi)x2 + · · ·+ nαnxn

=

n∑
i=1

αix1 +

n∑
i=1

αix2 + (nα1 + nα2 − 2

n∑
i=1

αi)x2 + · · ·+ nαnxn

...

≥
n∑

i=1

αix1 +

n∑
i=1

αix2 + · · ·+
n∑

i=1

αixn + (nα1 + nα2 + · · ·+ nαn − n
n∑

i=1

αi)xn

=

n∑
i=1

αi

n∑
i=1

xi

Similarly, we have

n

n∑
i=1

βixn+1−i = nβ1xn + nβ2xn−1 + · · ·+ nβnx1

=

n∑
i=1

βixn + (nβ1 −
n∑

i=1

βi)xn + nβ2xn−1 + · · ·+ nβnx1

≤
n∑

i=1

βixn + (nβ1 + nβ2 −
n∑

i=1

βi)xn−1 + · · ·+ nβnx1

=

n∑
i=1

βixn +

n∑
i=1

βixn−1 + (nβ1 + nβ2 − 2

n∑
i=1

βi)xn−1 + · · ·+ nβnx1

...

≤
n∑

i=1

βixn +

n∑
i=1

βixn−1 + · · ·+
n∑

i=1

βix1 + (nα1 + nβ2 + · · ·+ nβn − n
n∑

i=1

βi)x1

=

n∑
i=1

βi

n∑
i=1

xi

Therefore the lemma follows.

The following lemma on the exchange property of matroid bases was first stated in
[Brualdi 1969].

LEMMA 6.2 (BRUALDI). For any two setsX,Y ∈ F with |X| = |Y |, there is a bijective
mapping g : X → Y such that X ∪ {g(x)} \ {x} ∈ F for any x ∈ X.

Before we prove the theorem, we need to establish several lemmas related to this
bijective mapping. Let O be the optimal solution, and S, the solution at the end of
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the local search algorithm. Let s be the size of a basis; let A = O ∩ S, B = S \ A
and C = O \ A. By Lemma 6.2, there is a bijective mapping g : B → C such that
S ∪ {b} \ {g(b)} ∈ F for any b ∈ B. Let B = {b1, b2, . . . , bt}, and let ci = g(bi) for all i =
1, . . . , t. We reorder b1, b2, . . . , bt in different ways. Let b′1, b′2, . . . , b′t be an ordering such
that the corresponding c′1, c′2, . . . , c′t maximizes the sum

∑t
i=1(s− i)( s+1

s )i−1f(S ∪ {c′i});
and let b′′1 , b′′2 , . . . , b′′t be an ordering such that the corresponding c′′1 , c′′2 , . . . , c′′t minimizes
the sum

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i }).

LEMMA 6.3.
t∑

i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i})

≤ sf(S) +
t∑

i=1

(s+ 1− i)(s+ 1

s
)i−1f(S ∪ {c′i} \ {b′i})− (s+ 1)(

s+ 1

s
)t−1f(S \ {b′1, . . . , b′t}).

PROOF. By the definition of proportionally submodular, we have

sf(S) + sf(S ∪ {c′1} \ {b′1}) ≥ (s− 1)f(S ∪ {c′1}) + (s+ 1)f(S \ {b′1})
sf(S \ {b′1}) + (s− 1)f(S ∪ {c′2} \ {b′2}) ≥ (s− 2)f(S ∪ {c′2}) + (s+ 1)f(S \ {b′1, b′2})

...
sf(S \ {b′1, . . . , b′t−1}) + (s− t+ 1)f(S ∪ {c′t} \ {b′t}) ≥ (s− t)f(S ∪ {c′t}) + (s+ 1)f(S \ {b′1, . . . , b′t})

Multiplying the ith inequality by ( s+1
s )i−1, and summing all of them up to get

sf(S) +

t∑
i=1

(s+ 1− i)(s+ 1

s
)i−1f(S ∪ {c′i} \ {b′i})

≥
t∑

i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i}) + (s+ 1)(

s+ 1

s
)t−1f(S \ {b′1, . . . , b′t}).

After rearranging the inequality, we get
t∑

i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i})

≤ sf(S) +

t∑
i=1

(s+ 1− i)(s+ 1

s
)i−1f(S ∪ {c′i} \ {b′i})− (s+ 1)(

s+ 1

s
)t−1f(S \ {b′1, . . . , b′t}).

LEMMA 6.4.
t∑

i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i })−

t∑
i=1

(s+ t+ 1− i)(s+ 1

s
)i−1f(S)

≥ sf(S ∪ {c′′1 , . . . , c′′t })− (s+ 1)(
s+ 1

s
)t−1f(S)
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PROOF. By the definition of proportionally submodular, we have

(s+ t− 1)f(S ∪ {c′′1}) + (s+ 1)f(S ∪ {c′′2 , . . . , c′′t }) ≥ sf(S ∪ {c′′1 , . . . , c′′t }) + (s+ t)f(S)

...
(s+ 1)f(S ∪ {c′′t−1}) + (s+ 1)f(S ∪ {c′′t }) ≥ sf(S ∪ {c′′t−1, c′′t }) + (s+ 2)f(S)

sf(S ∪ {c′′t }) + (s+ 1)f(S) ≥ sf(S ∪ {c′′t }) + (s+ 1)f(S).

Multiplying the ith inequality by ( s+1
s )i−1, and summing all of them up, we have

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i }) + (s+ 1)(

s+ 1

s
)t−1f(S)

≥ sf(S ∪ {c′′1 , . . . , c′′t }) +

t∑
i=1

(s+ t+ 1− i)(s+ 1

s
)i−1f(S).

Therefore, we have
t∑

i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i })

≥ sf(S ∪ {c′′1 , . . . , c′′t }) +

t∑
i=1

(s+ t+ 1− i)(s+ 1

s
)i−1f(S)− (s+ 1)(

s+ 1

s
)t−1f(S).

Let

W =

t∑
i=1

(s− i)(s+ 1

s
)i−1, X =

t∑
i=1

(s+ 1− i)(s+ 1

s
)i−1,

Y =

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1, Z =

t∑
i=1

(s+ t+ 1− i)(s+ 1

s
)i−1.

LEMMA 6.5.

Y Big[

t∑
i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i})Big] ≥WBig[

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i })Big].

PROOF. Let {c∗i } be an ordering of the {ci} such that f(S ∪ {c∗1}) ≥ f(S ∪ {c∗2}) . . . ≥
f(S ∪ {c∗1}). We then have:

Y Big[

t∑
i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i})Big] ≥ Y Big[

t∑
i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c∗i })Big]

by definition of the {c′i}

≥WBig[

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c∗t+1−i})Big]
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by applying Lemma 6.1 with αi = (s − i)( s+1
s )i−1, βi = (s + t − i)( s+1

s )i−1, and xi =
f(S ∪ {c∗i }

≥W [

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i })Big].

by definition of the {c′′i }.

THEOREM 6.6. Let s be the size of a basis, the local search algorithm achieves an
approximation ratio bounded by a function ρ(s). For all s, ρ(s) ≤ 14.5 and ρ(s) converges
to 10.22 as s tends to∞.

PROOF. Since S is a locally optimal solution, we have

f(S) ≥ f(S ∪ {c′i} \ {b′i}).

Since f(S \ {b′1, . . . , b′t}) ≥ 0, by Lemma 6.3, we have
t∑

i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i}) ≤ sf(S) +

t∑
i=1

(s+ 1− i)(s+ 1

s
)i−1f(S).

Therefore,
t∑

i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i}) ≤ (s+X)f(S).

On the other hand, we have O ⊆ S ∪ {c′′1 , . . . , c′′t }, by monotonicity, we have f(O) ≤
f(S ∪ {c′′1 , . . . , c′′t }). By Lemma 6.4, we have

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i }) ≥ sf(O) + [Z − (s+ 1)(

s+ 1

s
)t−1]f(S).

By Lemma 6.5, we have

Y

t∑
i=1

(s− i)(s+ 1

s
)i−1f(S ∪ {c′i}) ≥W

t∑
i=1

(s+ t− i)(s+ 1

s
)i−1f(S ∪ {c′′i }).

Therefore

Y (s+X)f(S) ≥Wsf(O) +X[Z − (s+ 1)(
s+ 1

s
)t−1]f(S)

Hence the approximation ratio:

f(O)

f(S)
≤
Y X −WZ + Y s+W (s+ 1)( s+1

s )t−1

Ws
=
Y X −WZ + Y s

Ws
+ (

s+ 1

s
)t.

Simplifying the notation, we have

f(O)

f(S)
≤
∑t

i=1(s2 + st+ ti− si)( s+1
s )i−1 +

∑2t−1
i=t+1 t(2t− i)(

s+1
s )i−1∑t

i=1 s(s− i)(
s+1
s )i−1

+ (
s+ 1

s
)t.

Using Lemma 5.2 and 5.3 to simply it further, we have

f(O)

f(S)
≤

2s( s+1
s )2t − 2t( s+1

s )t − 2s

(2s− t)( s+1
s )t − 2s

.
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Let x = ( s+1
s )s and r = t

s , we study the continuous version of the above function

g(x, r) =
2x2r − 2rxr − 2

(2− r)xr − 2
.

Since S is a local optimum with respect to the swapping of any single element and by
the definition of x, s and t, we have 2 ≤ t ≤ s and hence 2.25 ≤ x ≤ e and 0 < r ≤ 1. Our
goal then is to establish an upper bound on g(x, r) for 2.25 ≤ x ≤ e and 0 < r ≤ 1. We
will think of g(x, r) as implictly defining x as a function of r at points where g(x, r) can
possibly take on a maximum value, namely when when ∂g(x,r)

∂x = 0 and at the boundary
points for x.

Note that since x ≥ 2.25,

x >

(
2

2− r

) 1
r

,

for all 0 < r ≤ 1. Therefore, we have (2−r)xr−2 > 0 for given x and r. It is easy to verify
that function g(x, r) is continuous and differentiable. For any fixed r, the function has
two boundary points at x = 2.25 and x = e, and taking partial derivative with respect
to x, we have

∂g(x, r)

∂x
=

2rxr−1(xr − 1)[(2− r)xr − (2 + r)]

[(2− r)xr − 2]2
.

Therefore the only point where the partial derivative equals to zero is

x∗ = (
2 + r

2− r
)

1
r .

Plugging this into the original expression for g(x, r), we have

g(x∗, r) =
2r2 + 8

(r − 2)2
.

The function g(x∗, r) is monotonically increasing with respect to r ∈ (0, 1] and it has a
maximum value of 10 when r = 1.

Now it only remains to check the two boundary points x = 2.25 and x = e. Note that
these are fixed values. We now fix x, and take partial derivative with respect to r:

∂g(x, r)

∂r
=

2xr(xr − 1)[(2 lnx− r lnx+ 1)xr − (2 lnx+ r lnx+ 1)]

[(2− r)xr − 2]2
.

Since xr > 0, xr − 1 > 0 and [(2− r)xr − 2]2 > 0. If we can show that

(2 lnx− r lnx+ 1)xr − (2 lnx+ r lnx+ 1) > 0

then the function after fixing x is monotonically increasing with respect to r. We use
the Taylor expansion of xr at x = 0.

xr > 1 + r lnx+
1

2
r2 ln2 x.

Therefore,

(2 lnx− r lnx+ 1)xr − (2 lnx+ r lnx+ 1) > r lnx(2 lnx+ r ln2 x− 1

2
r2 ln2 x− 1

2
r lnx− 1).

Note that we only need to check for the case when x = e and x = 2.25.
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(1) Case x = e:

2 lnx+ r ln2 x− 1

2
r2 ln2 x− 1

2
r lnx− 1 = 1 +

1

2
r − 1

2
r2 > 0.

(2) Case x = 2.25:

2 lnx+ r ln2 x− 1

2
r2 ln2 x− 1

2
r lnx− 1 > 0.6 + 0.6r − 0.5r − 0.4r2 > 0.

Therefore (2 lnx−r lnx+1)xr−(2 lnx+r lnx+1) > 0, and hence ∂g(x,r)
∂r > 0 for x = 2.25

and x = e. Therefore the maximum is obtained when r = 1. Plug r = 1 into the original
formula, we have

g(x, 1) =
2x2 − 2x− 2

x− 2
.

Evaluating at x = e and x = 2.25, we have g(e, 1) = 10.22 and g(2.25, 1) = 14.5. We de-
fine the function ρ(s) (as in the theorem statement) to be maxx{g(x, 1)}. This completes
the proof.

While the function ρ(s) is decreasing in s, we are not claiming that the approxima-
tion ratio of the algorithm is decreasing in s; we are only providing an analysis that
yields ρ(s) as a bound on the approximation ratio.

7. CONCLUSION AND OPEN PROBLEM
Motivated by the max-sum diversification problem we are led to study a generalization
of monotone submodular functions that we call proportionally-submodular functions.
This class includes the supermodular max-sum dispersion problem.

There are several open problems regarding the class of proportionally submodular
functions. First we would like to find other natural functions that are monotone and
non-monotone proportionally submodular. As we have shown, our class does for exam-
ple contain some but not all functions with small supermodular degree as well as some
functions that do not have small submodular degree. Indeed, proportionally submod-
ular functions are incomparable with functions having small supermodular degree.
Another obvious question is whether there is an analogue of the marginal decreasing
property that characterizes submodular functions or at least analogues that would be
a consequence of weak submodularity and would be useful in analyzing algorithms.

In terms of computational problems regarding the optimization of monotone pro-
portionally submodular functions many interesting questions remain. Similar to the
maximization for an arbitrary matroid constraint using local search, we would like to
have a proof of the convergence of the greedy approximation bound for the cardinality
constraint. Another immediate open problem is to close the gap between the upper and
lower bounds we know for approximating an arbitrary monotone proportionally sub-
modular function subject to cardinality or matroid constraints. We note that although
all of our individual examples in section 3 can either be computed optimally or have
better approximation ratios than we can prove for the class of monotone proportionally
submodular functions, it does not follow that a sum of such functions can be computed
with such good polynomial time approximations. It would also be of interest to con-
sider an approximation for maximizing a proportionally submodular function subject
to a knapsack constraint. Finally, are the efficient constant appropximation algorithms
for maximizing non monotone proportionally submodular functions.
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