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Prophet Inequality Matching Meets Probing with Commitment

Allan Borodin ∗ Calum MacRury † Akash Rakheja ‡

Abstract

Within the context of stochastic probing with commitment, we consider the online stochastic
matching problem for bipartite graphs where edges adjacent to an online node must be probed
to determine if they exist, based on known edge probabilities. If a probed edge exists, it must be
used in the matching (if possible). In addition to improving upon existing stochastic bipartite
matching results, our results can also be seen as extensions to multi-item prophet inequalities.
We study this matching problem for given constraints on the allowable sequences of probes
adjacent to an online node. Our setting generalizes the patience (or time-out) constraint which
limits the number of probes that can be made to edges. The generality of our setting leads to
some modelling and computational efficiency issues that are not encountered in previous works.
We establish new competitive bounds all of which generalize the standard non-stochastic setting
when edges do not need to be probed (i.e., exist with certainty). Specifically, we establish the
following competitive ratio results for a general formulation of edge constraints, arbitrary edge
weights, and arbitrary edge probabilities:

1. A tight 1
2 ratio when the stochastic graph is generated from a known stochastic type graph

where the π(i)th online node is drawn independently from a known distribution Dπ(i) and
π is chosen adversarially. We refer to this setting as the known i.d. stochastic matching
problem with adversarial arrivals.

2. A 1−1/e ratio when the stochastic graph is generated from a known stochastic type graph
where the π(i)th online node is drawn independently from a known distribution Dπ(i) and
π is a random permutation. This is referred to as the known i.d. stochastic matching
problem with random order arrivals.

We note that the known i.d. model generalizes the online stochastic matching model where
the stochastic graph (but not the edge probabilities nor the order of online arrivals) is known
to the algorithm. Our i.d. model also generalizes the prophet inequality and prophet secretary
models to the probing setting.

In deriving our results, we clarify and expand upon previous offline benchmarks, relative to
which one defines an appropriate definition of the competitive ratio. In particular, we introduce
a new LP relaxation which upper bounds the performance of “an optimum offline probing al-
gorithm”. This new LP allows us to overcome some previous negative results (i.e. stochasticity
gaps). While this LP has exponentially many variables, it has polynomially many constraints
and we show how it can be solved efficiently (i.e., in polynomial time) under some mild assump-
tions on the edge probing constraints.
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1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty and
more specifically, stochastic optimization. Unlike more standard forms of stochastic optimization,
it is not just that there is some stochastic uncertainty in the set of inputs, stochastic probing
problems involve inputs that cannot be determined without probing (at some cost and/or within
some constraint). Applications of stochastic probing occur naturally in many settings, such as in
matching problems where compatibility cannot be determined without some trial or investigation
(for example, in online dating and kidney exchange applications). There is by now an extensive
literature for stochastic matching problems. For space efficiency, we will give an extended overview
of related work in Appendix C. Research most directly relating to this paper will appear as we
proceed.

The stochastic matching problem1 was introduced by Chen et al. [20]. In this problem, we are
given an adversarially generated stochastic graph G = (V,E) with a probability pe associated with
each edge e and a patience (or timeout) parameter ℓv associated with each vertex v. An algorithm
probes edges in E within the constraint that at most ℓv edges are probed incident to any particular
vertex v ∈ V . The patience constraint can be viewed as a simple budgetary constraint, where
each probe has unit cost and the patience constraint is the budget. When an edge e is probed,
it is guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, then the
algorithm must commit to the edge – that is, it must be added to the current matching (if possible).
The goal is to maximize the expected size of a matching constructed in this way. This problem can
be generalized to offline vertices or edges having weights and then the objective is to maximize the
expected weight of the matching. Notably, in Chen et al., the algorithm knows the entire stochastic
graph in advance.

In addition to generalizing the setting of the results of Chen et al., Bansal et al. [9] introduced
an i.i.d. (one-sided) bipartite version of the problem where nodes on one side of the partition arrive
online and edges adjacent to that node are then probed. In their model, each online vertex (and
its adjacent edges) is drawn independently and identically from a known distribution. That is, the
possible “type” of each online node (i.e., the adjacent edge probabilities and edge weights) is known
and the input sequence is then determined i.i.d. from this known distribution, where the type of a
node is presented to the algorithm upon arrival. In the Bansal et al. model, each offline node has
unlimited patience, whereas each online node specifies its patience upon arrival. The match for an
online node must be made before the next online arrival. As in the Chen et al. model, if an edge is
probed and confirmed to exist, then it must be included in the current matching (if possible). This
problem is referred to as the online stochastic matching problem2 (with patience) and also referred
to as the stochastic rewards problem.

In more general settings, we will study the (one-sided) online bipartite stochastic matching
problem. More specifically, we generalize the patience constraint to apply to any downward-closed
set of constraints including a budget constraint3. We first consider the original stochastic matching
setting where the algorithm knows the stochastic graph, and the online vertices arrive either in

1Unfortunately, the term “stochastic matching” is also used to refer to more standard optimization where the
input (i.e., edges or vertices) are drawn from some known or unknown distributions but no probing is involved.

2The online stochastic matching problem is sometimes meant to imply unit patience but we will be interested in
results which hold for more general probing constraints.

3A budget constraint involves placing a budget Bv ≥ 0 on v ∈ V and costs (ce)e∈∂(v) on its adjacent edges. The
cost of the probed edges then cannot exceed Bv.
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adversarial order or in random order (i.e., the ROM model). We then consider the more general
i.d. distributional setting where the stochastic graph is generated from a known stochastic type
graph with each online vertex being generated independently from a known distribution; that is, we
consider independent but not (necessarily) identical distributions. When the online vertex order is
adversarial, our framework generalizes the prophet inequality matching problem of Alaei et al. [6].
When online vertices arrive in random order, we are generalizing the prophet secretary matching
problem of Ehsani et al. [27]. We note that prophet inequalities give rise to (and in some sense are
equivalent to) order oblivious posted price mechanisms, as first studied in Hajiaghayi et al. [38]
and further developed for multi-parameter settings in Chawla et al. [19] and recently in Correa et
al. [21].

We note that these stochastic matching models generalize the corresponding classical non-
stochastic worst case and i.i.d input models where edges adjacent to an online node are known
upon arrival and do not need to be probed. It follows that any inapproximation results in the
classical setting apply to the corresponding stochastic matching setting.

Amongst other applications, the online stochastic matching problem notably models online
advertising where the probability of an edge can correspond to the probability of a purchase in
online stores or to pay-per-click revenue in online searching. One may also consider a real estate
agent (or owner) of several properties working with individual clients each day and first looking
at properties online. Each buyer has a value for each property but will not purchase until she
has seen the house in person at which time she will decide whether or not to buy. You can only
probabilistically estimate the likelihood of the buyer being satisfied. But you have limited patience
(or time) to visit properties and usually want to do so in a reasonably efficient way. In these
examples, the objective is clearly (respectively) to maximize the revenue of actual sales or clicks
and (respectively) to maximize the value of the properties sold.

1.1 Our Results

We now informally point ahead to our main results. Our results will be stated more formally in
Section 2 following the relevant definitions. Proofs of the main results will be given in Sections 3
and 4. All of our results apply to general constraints on allowable probing sequences (generalizing
patience constraints) and the competitive ratios are with respect to an optimum offline probing
algorithm (the adaptive benchmark) which we define precisely in Section 2. Our results for the
case of a known stochastic graph are subsumed by the analogous results for the known i.d. model
but we state them here so as to relate these results to previous work.

1. Theorem 2.1 shows that Algorithm 4 is a non-adaptive algorithm with competitive ratio
1− 1/e in the following setting:

• There is a known edge-weighted stochastic graph.

• Online vertices are presented in random order.

Algorithm 4 is non-adaptive in the sense that its probes are a randomized function of the
stochastic graph it executes on. In particular, the probes of an arriving online node do
not depend on the probed edge states of the previous online nodes. Non-adaptive probing
algorithms were first studied in Dean et al. [23] for the stochastic knapsack problem, as they
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are conceptually simpler than adaptive probing algorithms, and require far less space to be
specified.

The work of Gamlath et al. [32] showed that a 1−1/e competitive ratio is possible when there
are no constraints on the online vertices. Our result can therefore be viewed as a extension
of their result to general probing constraints. Our result also shows that the Brubach et al.
[15] 0.544 inapproximation bound against the Bansal et al. [9] LP does not hold with respect
to our new LP relaxation.

In Theorem 2.2, we provide a negative result which shows that Theorem 2.1 is an optimum
result for non-adaptive online probing algorithms4. Roughly speaking, in our setting, we
define the adaptivity gap to be the worst case ratio of performance between the optimum
non-adaptive online probing algorithm, and the adaptive benchmark. We conclude that the
online stochastic matching has an adaptivity gap of precisely 1− 1/e. Adaptivity gaps were
initially studied by Dean et al., and have since received lots of attention (see [35, 7, 36, 37, 14]
for some of the latest results).

2. Theorem 2.6 shows that Algorithm 6 is a non-adaptive online algorithm with competitive
ratio 1 − 1

e in the following stochastic i.d. setting (improving upon the previously best i.i.d.
ratio of 0.46 in [15]).

• There is a known edge weighted stochastic (type) graph.

• Online vertices are drawn independently from distributions on the online vertices thereby
producing an edge-weighted stochastic graph.

• The instantiation of the stochastic graph from the type graph is not known to the
algorithm. Online vertices are in random order.

In the classical i.i.d. setting with non-integral arrival rates, Manshadi et al. [49] present an
example that shows that 1− 1/e is optimal for classically non-adaptive online algorithms.
Manshadi et al. [49] use the terminology non-adaptive to mean that a (classical) online
algorithm in the known i.i.d. setting uses only the type of the arriving node to determine
its matching decisions. Our definition of non-adaptivity for an online probing algorithm in
the known i.d. setting generalizes this classical definition (and well as our definition from the
known stochastic graph setting) as we discuss in Subsection 2.1. Since our probing algorithm
fits this classical definition, it has an optimal competitive ratio amongst this restricted class
of probing algorithms.

3. Theorem 2.7 shows that Algorithm 8 is an online algorithm with competitive ratio 1
2 in the

following stochastic i.d. setting:

• There is a known edge weighted stochastic (type) graph.

• Online vertices are drawn independently from distributions on the online vertices thereby
producing an edge-weighted stochastic graph.

• The instantiation of the stochastic graph from the type graph is not known to the
algorithm or the adversary who chooses the order of the online vertices.

4Our negative result on the adaptivity gap in fact applies to all offline non-adaptive probing algorithms.
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This is an optimal competitive ratio following from the inapproximation for the classic single
item prophet inequality result due to Krengel and Sucheston [44]. (See Lucier [47] for a
relatively recent review of the prophet inequalities problem and its extensions.)

1.2 Paper Roadmap

In Section 2 we provide the required definitions and precise statements of our main results. In
particular, we define the (offline) adaptive benchmark relative to which we state our competitive
bounds. We also define the oracles we use to ensure that our algorithms can efficiently abide by
the probing constraints.

Section 3 defines a new LP which we use to guide our algorithm for the known stochastic setting.
We provide a non-adaptive algorithm that establishes the 1− 1/e competitive ratio in the random
order model assuming that the new LP is a relaxation of the adaptive benchmark. Our algorithm
makes use of the random order contention scheme (RCRS) for rank 1 matroids utilized by Lee and
Singla [46].

Section 4 extends our LP and results to the known i.d. setting. We note that the known
i.d. setting subsumes the known stochastic graph setting when each distribution Di is a singleton
describing the ith online vertex vi. In this setting we establish a 1 − 1/e competitive ratio for
the random order model and a 1

2 ratio for adversarial input sequences. We again use the Lee and
Singla [46] RCRS for the ROM setting, and we use the recently studied online contention resolution
scheme (OCRS) of Ezra et al. [29] for the adversarial setting.

Section 5 completes the proof that our new LP is a relaxation of the adaptive benchmark
(upper bounds the benchmark’s value). Note that unlike previously used LP relaxations for probing
problems, this fact does not seem to have an easy proof, and thus is a technical contribution.

Finally, Section 6 shows that 1− 1/e is a tight competitive ratio for non-adaptive algorithms in
the random order model, even when the stochastic graph is known (as is the case in Theorem 2.1).
We do this by establishing an adaptivity gap between the optimal non-adaptive probing algorithm
and the adaptive benchmark we are using.

We conclude with a summary of our contributions and some open problems.

2 Models and Preliminaries

The online stochastic matching problem generalizes the classical online bipartite setting as
follows. An input to the problem consists of a bipartite stochastic graph, which is a (simple)
bipartite graph G = (U, V,E) with edge weights (we)e∈E and edge probabilities (pe)e∈E . We shall
refer to U as the offline vertices of G and V as its online nodes. For each e ∈ E of G = (U, V,E),
the fraction 0 ≤ pe ≤ 1 gives the probability of existence of the edge e. More precisely, each edge
e ∈ E is associated with an independent Bernoulli random variable of parameter pe, which we
denote by st(e), corresponding to the state of the edge. If st(e) = 1, then we say that e is active,
and otherwise we say that e is inactive.

A solution to the online stochastic matching problem is an online probing algorithm. In each
round, an online node v ∈ V arrives, and the online probing algorithm sees all the adjacent edges
of v, denoted ∂(v), as well as their associated probabilities, (pe)e∈∂(v), and weights, (we)e∈∂(v).
However, the edge states (st(e))e∈∂(v) initially remain hidden to the algorithm. Instead, given
e ∈ ∂(v), the algorithm must perform a probing operation on the edge to reveal/expose its
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state, st(e). As in the classical problem, an online algorithm must decide on a possible match
for an online node v before seeing the next online node. The algorithm can be non-greedy and
not match a given v ∈ V even though some u ∈ U is still unmatched. The arrival order of V is
either chosen adversarially, in which case we work in the adversarial order model (AOM), or
u.a.r. (uniformly at random), in which case we work in the random order model (ROM). The
online stochastic matching problem simplifies to the classical setting in the appropriate order model
provided pe = 1 for all e ∈ E.

Our probing algorithms function in the probe-commit model, in which there is a commit-
ment requirement upon probing an edge. Specifically, if an edge e = (u, v) is probed in the online
stochastic matching problem and turns out to be active, then the probing algorithm must make
an irrevocable decision as to whether or not to include e in its matching, prior to probing any
subsequent edges. IfM is the matching output by the online probing algorithm, then its goal is to
maximize E[w(M)], where w(M) :=

∑
e∈Mwe. Note that this definition of commitment is the one

considered by Gupta et al. [36] 5, and while seemingly less strict than the commitment requirement
of the Chen et al. [20] matching model, these definitions have equivalent power, as an algorithm
may simply pass on probing an edge if it doesn’t intend to add the edge to its matching. We
describe our positive results in the Gupta et al. [36] model, as it simplifies both the presentation of
our probing algorithms as well as the definition of non-adaptivity. All our results can be restated
without loss while satisfying the Chen et al. commitment requirement, albeit with a very small
change to the definition of non-adaptive.

In past works, each online node v of G is additionally associated with a known patience
parameter (also called timeout parameter) ℓv which bounds the number of probes that can be
made to ∂(v). In this work, we provide a generalization of the patience framework. Specifically,
for each v ∈ V , suppose that ∂(v)(∗) corresponds to the collection of strings (tuples) formed from
distinct edges of ∂(v). Upon the arrival of v, an online probing constraint Cv ⊆ ∂(v)(∗) is
presented to the algorithm, which specifies which sequences of edges of ∂(v) can be probed. We
make the minimal assumption that Cv is substring-closed; that is, if e ∈ Cv, then so is any
substring of e (thus, the empty string λ is in Cv by convention). Observe that Cv is a general
enough definition to encode any collection downward-closed constraints one may wish to place on
the feasible edge probes incident to v. In particular, it includes the case when v has a patience
value ℓv, and more generally, when Cv corresponds to a matroid or budget constraint on ∂(v). That
being said, allowing for inputs which impose order on the probes of ∂(v) is clearly desirable, as it
allows for precedence relations. For instance, perhaps one wishes to ensure that if distinct edges
e1, e2 ∈ ∂(v) are each probed, then e1 is always probed before e2.

The classical online bipartite matching problems (unweighted, vertex weighted, or edge weighted)
for adversarial, ROM, and i.i.d. online vertex arrivals all generalize to the online stochastic match-
ing setting. We emphasize that the appropriate online stochastic matching problem generalizes
the corresponding classical online problem, even when restricted to the simplest possible probing
constraints; for instance, when each v ∈ V has unit patience (i.e., ℓv = 1 for all v ∈ V ).

Clearly, in the classical adversarial or ROM settings, if the algorithm knew the input graph
G, the online algorithm could compute an optimal solution before seeing the online sequence and
use that optimal solution to determine an optimal matching online. But similar to knowing the

5Gupta et al. [36] refer to probing algorithms which are required to make irrevocable decisions in this way as
“executing online”. We reserve the term “online” to refer to the requirement that the probing algorithm must process
the vertices of V one by one, and has no control on their arrival order.
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type graph in the classical setting with i.i.d. inputs, an algorithm still lacks the ability to know
the states of the edges of G, namely (st(e))e∈E , so the stochastic matching problem is interesting,
whether the stochastic graph G is known or unknown to the algorithm. We are left then with a
wide selection of problems, depending on whether or not the stochastic graph is known, how input
sequences are determined, and whether or not edges or vertices are weighted. To illustrate our
techniques, we first focus on the setting of a known stochastic graph with ROM inputs. We then
generalize to the known i.d. setting and consider the cases of both adversarial as well as ROM
arrivals.

For stochastic probing problems, it is easy to see we cannot hope to obtain a non-trivial com-
petitive bound against the expected value of an optimum matching of the stochastic graph6. The
standard approach in the literature is to instead benchmark against an optimum offline probing
algorithm.

A solution to the offline stochastic matching problem on the stochastic graph G is an
offline probing algorithm A, which is given access to the stochastic graph G = (U, V,E) (and
thus (pe)e∈E , (we)e∈E , and (Cv)v∈V ), yet does not initially have access to the edges states (st(e))e∈E .
Observe then that (Cv)v∈V induces an offline probing constraint C ⊆ E(∗) in the natural way.
For a tuple e ∈ E(∗), let e

v be the substring of e formed by restricting the coordinates of e to
those edges which contain v. We define C from (Cv)v∈V , where e is included in C if and only if
e
v ∈ Cv for each v ∈ V . In each step t ≥ 1, A may perform a probing operation to reveal the state

of an edge et = (ut, vt) ∈ E, subject to the constraint that if (e1, . . . , et−1) were the previously
probed edges, then (e1, . . . , et−1, et) ∈ C. The probing algorithm A may be adaptive; that is, in
addition to all the information regarding G, the decision on whether to probe et may depend on
all the previously probed edges e1, . . . , et−1, and their revealed states, st(e1), . . . , st(et−1). It must
also respect commitment, in that upon probing st(et) and revealing st(et) = 1, it must irrevocably
decide whether to include et in its matching. Note that an online probing algorithm with access to
G is a special case of an offline probing algorithm.

We say that an offline probing algorithm is non-adaptive, provided the probes of E are a
(randomized) function of G. Equivalently, an offline probing algorithm is non-adaptive if its probes
are statistically independent from the edge states of G. Note that a non-adaptive probing algorithm
necessarily must still use the previously revealed edge probes to determine which edges to add to
its matching. However, it may possibly waste edge probes.

We define the adaptive benchmark on the input G as an offline probing algorithm which
returns a matching whose expected weight is as large as possible, and denote this value by OPT(G).
More precisely, if A(G) is the matching returned by an offline probing algorithm A, then OPT(G) :=
supA E[w(A(G))], where the supremum is over all offline probing algorithms.

Our first result is a non-adaptive online probing algorithm which attains a competitive ratio
against the adaptive benchmark, provided it is given full access to G = (U, V,E), and the vertices
of V arrive u.a.r.

Theorem 2.1. Suppose G = (U, V,E) is an arbitrary stochastic graph and Algorithm 4 returns
the matching M when given full access to G. In this case, if the vertices of V arrive u.a.r., then
E[w(M)] ≥

(
1− 1

e

)
OPT(G). Moreover, Algorithm 4 is non-adaptive.

6Consider a single online vertex with patience 1, and n offline (unweighted) vertices where each edge e has
probability 1

n
of being present. The expectation of an online probing algorithm will be at most 1

n
while the expected

size of an optimal matching (over all instantiations of the edge probabilities) will be 1 − (1 − 1
n
)n → 1 − 1

e
. This

example also clearly shows that no constant ratio is possible if the patience is sub-linear (in n = |U |).
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The competitive ratio of Algorithm 4 is optimum amongst all non-adaptive online probing
algorithms in the known stochastic graph setting with ROM arrivals. In fact, in Section 6 we prove
a hardness result which applies to all non-adaptive probing algorithms (even probing algorithms
which execute offline, and thus do not respect the arrival order of V ):

Theorem 2.2. No non-adaptive offline probing algorithm can attain an approximation ratio against
the adaptive benchmark which is greater than 1− 1/e.

Not only does Algorithm 4 attain a competitive ratio against the adaptive benchmark, it can also
be implemented efficiently under some mild assumptions. Given the stochastic graph G = (U, V,E),
observe that the size of Cv for v ∈ V may be exponentially large in the size of U . On the other hand,
if we denote |G| as the amount of space needed to represent the information associated with G after
excluding the constraints (Cv)v∈V , then we wish to find online probing algorithms which execute
in time poly(|G|). Since the probing algorithm must interact with (Cv)v∈V , we either need to work
with constraint systems which have representations of size poly(|G|) (such as patience constraints),
or we need to work in an oracle model. We take the latter approach, as it allows us to prove
more general results.

We consider two oracle models. In the first model, which we refer to as the membership
model, a probing algorithm may make a membership query to any string e ∈ ∂(v)(∗) for
v ∈ V . More precisely, in a single operation the probing algorithm may determine whether or not
e ∈ ∂(v)(∗) is included in Cv.

The second model, which we refer to as the demand oracle model, allows the probing algo-
rithm far more power. In particular, for any v ∈ V and any selection of real values, (αu)u∈N(v), the
algorithm may determine in a single operation a solution to the following maximization problem:

maximize

|e|∑

i=1

(wei − αui) · pei ·
i−1∏

j=1

(1− pej) (2.1)

subject to e ∈ Cv (2.2)

Observe that this definition is closely related to the demand oracle model in the context of the
iterative auctions, as originally studied by Blumrosen and Nisan [11, 12]. More precisely, ignoring
the edge probabilities (pe)e∈∂(v) for now (i.e. pe = 1 for all e), let us suppose a seller is trying
to allocate the items of U to a number of buyers. We view the vertex v as a buyer who wishes
to purchase a subset of items S ⊆ N(v), based on their valuation function f(S). Assume that
v has unit demand, that is f(S) := maxs∈S ws,v. The values (αs)s∈N(v) are viewed as prices
the buyer must pay7, and the demand oracle returns a solution to maxS⊆N(v)(f(S) −∑s∈S αs),
thereby maximizing the utility of v. Clearly, for the simple case of a unit-demand buyer, an
optimum assignment is the item u ∈ N(v) for which wu,v − αu is maximized, and so the notion of
a demand oracle is unnecessary. However, often v is not a unit-demand buyer, and so f is a much
more general valuation function. In this case, a solution to maxS⊆N(v)(f(S) −∑s∈S αs,v) may be
computationally difficult to find, so the demand oracle assumption is convenient to make.

Even the case of a unit-demand buyer is a non-trivial optimization problem in the stochastic
probing framework,. Observe that we may view the edge probabilities (pe)e∈E as modeling the
setting when there is uncertainty in whether or not the purchase proposals will succeed; that is,

7See Eden et al. [26] for a buyer/seller interpretation of the classical Ranking algorithm [42] for bipartite matching.
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st(u, v) = 1, provided the seller agrees to sell item u to buyer v. In this interpretation, (2.1) is the
expected utility of the unit-demand buyer v which commits to the first item u ∈ N(v) such that
st(u, v) = 1, at which point v gains utility wu,v − αu. The relevancy of a demand oracle depends
on whether or not it is reasonable to assume that each buyer’s optimum greedy probing strategy is
readily available. In Section 3, we introduce a new LP to design probing algorithms whose efficient
solvability is closely tied to the existence of a demand oracle. More precisely, the demand oracle
yields a separation oracle for the dual of LP-new, thus allowing the ellipsoid algorithm [53, 33] to
run in polynomial time [59, 57, 2, 46].

We say that Cv is closed under permutations, provided if e ∈ Cv, then any permutation of
e is also in Cv. Observe then that since Cv is substring-closed by assumption, this is condition is
equivalent to requiring that Cv corresponds to a downward-closed family of subsets of ∂(v). We
observe then the following reduction:

Proposition 2.3. If Cv is both substring-closed and permutation-closed, then for any selection of
values (αu)u∈N(v), (2.1) can be solved efficiently, assuming access to a membership query oracle for
Cv.

The proof of Proposition 2.3 builds upon the work of Brubach et al. [15] as well as Purohit et
al. [52]:

Proof of Proposition 2.3. Compute w̃e := we − αu for each e = (u, v) ∈ ∂(v), and define P := {e ∈
∂(v) : w̃e ≥ 0}. First observe that if P = ∅, then (2.1) is maximized by the empty-string λ.

Thus, for now on assume that P 6= ∅. Since Cv is closed under substrings, it suffices to consider
those e ∈ Cv whose edges all lie in P . As such, for notational convenience, let us hereby assume
that ∂(v) = P .

Now, for any e ∈ Cv, let e
r be the rearrangement of e, based on the non-increasing order of the

weights (w̃e)e∈e. Since Cv is closed under permutations, we know that e
r is also in Cv. Moreover,

the evaluation of er in (2.1) is at least as large as that of e. Hence, let us order the edges of ∂(v) as
e1, . . . , ek, such that w̃e1 ≥ . . . ≥ w̃ek , where k := |∂(v)|. Observe then that it suffices to maximize
(2.1) over those strings within Cv which respect the ordering on ∂(v). Stated differently, let us denote
Iv as the family of subsets of ∂(v) induced by Cv, and define the set function f : 2∂(v) → [0,∞).

where f(S) :=
∑|S|

i=1 w̃si ·psi ·
∏i−1
j=1(1−psj ) for S = {s1, . . . , s|S|} ⊆ ∂(v) (where w̃s1 ≥ . . . ≥ w̃s|S|

).
Our goal is then to efficiently maximize f over the set-system (∂(v),Iv). Observe that since Cv
is both substring-closed and permutation-closed, Iv is downward-closed. Moreover, clearly we can
simulate oracle access to Iv, based on our oracle access to Cv.

For each i = 0, . . . , k−1, denote ∂(v)>i := {ei+1, . . . , ek}, and ∂(v)>k := ∅. Moreover, define the
family of subsets I>iv := {S ⊆ ∂(v)>i : S ∪ {ei} ∈ Iv} for each 2 ≤ i ≤ k, and I>0

v := Iv. Observe
then that (∂(v)>i,I>iv ) is a downward-closed set system, as Iv is downward-closed. Moreover, we
may simulate oracle access to I>iv based on our oracle access to Iv.

Denote OPT(I>iv ) as the maximum value of f over constraints I>iv . Observe then the following
recursion:

OPT(Iv) := max
i∈[k]

(pei · w̃ei + (1− pei) ·OPT(I>iv )) (2.3)

Hence, given access to the values OPT(I>1
v ), . . . ,OPT(I>kv ), we can compute OPT(Iv) efficiently.

In fact, it is clear that we can use (2.3) to recover an optimum solution to f , and so the proof
follows by an inductive argument on |∂(v)|.
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As we shall see in Sections 3 and 4, solving (2.1) is the key subroutine needed to execute our
online probing algorithms efficiently. In particular, we have the following statement in regards to
the efficiency of Algorithm 4:

Theorem 2.4. Suppose that G = (U, V,E) is a stochastic graph with (substring-closed) probing
constraints (Cv)v∈V .

• In the demand oracle model, Algorithm 4 executes in time poly(|G|).

• In the membership oracle model, Algorithm 4 executes in time poly(|G|), provided for each
v ∈ V , Cv is also permutation-closed.

2.1 Known I.D. Arrivals

We now introduce the technical definitions necessary to precisely describe the online stochastic
matching problem with known i.d. arrivals. We first describe the randomized procedure
for generating the input the online probing algorithm operates on. Afterwards, we indicate which
information the online algorithm has access to, and the precise benchmark it is compared against.

Let us suppose that Htyp = (U,B,F ) where F ⊆ U × B is an arbitrary stochastic graph with
edge weights (wf )f∈F , edge probabilities (pf )f∈F , and online probing constraints (Cb)b∈B . In the
known i.d. setting, we refer to Htyp as the stochastic type graph (or type graph when clear),
and the vertices of B as the online type nodes of Htyp. The online probing algorithm does
not execute on Htyp. Instead, the online algorithm operates on an (unknown) stochastic graph
G = (U, V,E). Here, each arriving online vertex v ∈ V , together with (pe)e∈∂(v), (we)e∈∂(v), and Cv,
is chosen by selecting v from B. In this work, we are interested in the case when these selections
are done randomly according to known distributions on B.

More precisely, the adversary fixes parameter n ≥ 1, indicating the size of V , and thus the
number of rounds or arrivals to occur. The adversary also fixes a sequence of distributions
denoted (Di)ni=1, which are each supported on B. Using Htyp, and (Di)ni=1, we construct the
instantiated stochastic graph G = (U, V,E) by executing the following randomized procedure.
Note that technically V and E are each multi-sets, as a type node b ∈ B may appear multiple
times.

• For i = 1, . . . , n: draw vi ∈ B independently using Di, and add a copy of vi to G, with the
relevant edge probabilities, edge weights and online probing constraint.

Remark 2.5. We say that vi is has type b ∈ B, provided vi = b. Note that once G is constructed,
the edge states (st(e))e∈E are drawn independently of each other, where in particular, (st(e))e∈∂(vi)
and (st(e))e∈∂(vj ) are independent, provided i 6= j (even if vi and vj have the same type).

We denote that the instantiated stochastic graph G = (U, V,E) is drawn from (Htyp, (Di)ni=1) in
this way, by writing G ∼ (Htyp, (Di)ni=1).

An online probing algorithm is given access to Htyp and the distributions (Di)ni=1, yet initially
does not have access to G. Instead, a permutation π : [n] → [n] is chosen upon, and for each
t = 1, . . . , n, vertex vπ(t), along with its edge weights, probabilities, and probing constraint are
presented to the algorithm. Using all past available information regarding the outcomes of the
probes involving vπ(1), . . . , vπ(t−1), together with the edge probabilities and weights adjacent to
vπ(t), the algorithm may probe the edges of ∂(vπ(t)), subject to the probing constraint Cvπ(t)

. Once
again, the algorithm must operate in the probe-commit model.
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The permutation π is either generated u.a.r., independently of all other randomization, or by an
adversary. In either case, π is unknown to the online probing algorithm. We emphasize that we work
with an oblivious adversary, in that π must be depend solely upon the input (Htyp, (Di)ni=1).
In particular, it cannot depend on the generation of G, nor the decisions of the online probing
algorithm. This is the more standard assumption in prophet problems8 as recently discussed by
Ezra et al. [29].

Suppose that A(Htyp, (Di)ni=1, π) is the matching constructed by an online probing algorithm
A when presented the online vertices of G ∼ (Htyp, (Di)ni=1) in order π. The goal of the online
probing algorithm is to maximize the expected weight of A(Htyp, (Di)ni=1, π). Specifically, it aims
to maximize

E[w(A(Htyp, (Di)ni=1, π))],

where the expectation is over the construction of G, the edge states (st(e))e∈E , as well as any
randomized decisions made by the algorithm. We benchmark against the expected performance
of adaptive benchmark on G ∼ (Htyp, (Di)ni=1), which we denote by OPT(Htyp, (Di)ni=1). More
precisely,

OPT(Htyp, (Di)ni=1) := E[OPT(G)],

where the expectation is solely over the randomness in generating G.
The standard in the literature (see [3, 9, 17]) is to prove competitive ratios against OPT(Htyp, (Di)ni=1).

That is, in the adversarial order model, the goal is to find an online probing algorithm A for which
the (strict) competitive ratio

inf
(Htyp,(Di)ni=1,π)

E[w(A(Htyp, (Di)ni=1, π))]

OPT(Htyp, (Di)ni=1)

is as close to 1 as possible. An analogous definition holds in the random order model. We say
that an online probing algorithm is non-adaptive, provided for each t ∈ [n], the probes of ∂(vπ(t))
are a (randomized) function of Htyp, and the type of arrival vπ(t). In particular, when probing
edges adjacent to the online node vπ(t), the algorithm does not make use of the previously probed
edge states of the online nodes vπ(1), . . . , vπ(t−1) (nor the matching decisions made thus far). The
algorithm will therefore possibly waste some probes to edges (u, vπ(t)) but will not violate the
matching constraint. Note that this definition is consistent with the definition considered in the
known stochastic graph case. It also generalizes the classical definition of Manshadi et al. [49]. We
now present our main results:

Theorem 2.6. Suppose (Htyp, (Di)ni=1) is a known i.d. input, which Algorithm 6 is given full
access to. If M is the matching returned by the algorithm when presented the online vertices of
G ∼ (Htyp, (Di)ni=1) in random order, then E[w(M)] ≥

(
1− 1

e

)
OPT(Htyp, (Di)ni=1). Moreover,

Algorithm 6 is non-adaptive.

Theorem 2.7. Suppose (Htyp, (Di)ni=1) is a known i.d. input, which Algorithm 8 is given full
access to. IfM(π) is the matching returned by the algorithm when presented the online vertices of
G ∼ (Htyp, (Di)ni=1) in an adversarial order π : [n]→ [n], then E[w(M(π))] ≥ 1

2OPT(Htyp, (Di)ni=1).

8Other works, for instance Feldman et al. [31], consider an almighty adversary which has access to the in-
stantiations of all the random variables when generating π. This definition is far too strong for stochastic probing
problems, as it allows the benchmark to forgo making edge probes.
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Remark 2.8. This is a tight bound since the problem generalizes the classical single item prophet
inequality for which 1

2 is an optimal competitive ratio.

Theorem 2.9. Suppose that (Htyp, (Di)ni=1) is a known i.d. input, where Htyp = (U,B,F ) has
(substring-closed) probing constraints (Cb)b∈B . If |Htyp| is the size of Htyp (excluding (Cb)b∈B), and
|Di| is the amount of space needed to encode the distribution Di, then the following claims holds:

• In the demand oracle model, Algorithms 6 and 8 execute in time poly(|Htyp|, (|Di|)ni=1).

• In the membership oracle model, Algorithms 6 and 8 execute in time poly(|Htyp|, (|Di|)ni=1),
provided for each b ∈ B, Cb is also permutation-closed.

Remark 2.10. |Htyp| may be exponentially large in the size of G ∼ (Htyp, (Di)ni=1), however for
each ε > 0, our results can be made to run in time poly(|G|, log(1/ε)) using Monte Carlo simulation
(at a loss of (1−ε) in performance), assuming we have oracle access to samples drawn from (Di)ni=1.

3 Online Probing with a Known Stochastic Graph

In order to prove our positive results, we require a means to devise online probing algorithms which
do reasonably well compared to the adaptive benchmark, and yet are efficient. In this section, we
develop the tools needed to devise such algorithms. We focus on the known stochastic graph setting
of Theorem 2.1. In the following section, we generalize our techniques to handle the more general
problem of known i.d. arrivals.

Our goal is to find an online probing algorithm A, such that for each stochastic graph G =
(U, V,E), we have that E[w(A(G))] ≥ (1−1/e)OPT(G), provided the vertices of V arrive in random
order. Towards this goal, we introduce some notation which allows us to derive a new configuration

LP. For each e = (e1, . . . , e|e|) ∈ E(∗), define g(e) :=
∏|e|
i=1(1 − pei). Notice that g(e) corresponds

to the probability that all the edges of e are inactive, where g(λ) := 1 for the empty string λ. We
also define e<ei := (e1, . . . , ei−1) for each 2 ≤ i ≤ |e|, which we denote by e<i when clear. By

convention, e<1 := λ. Observe then that val(e) :=
∑|e|

i=1 peiwei ·g(e<i) corresponds to the expected
weight of the first active edge revealed if e is probed in order of indices.

For each v ∈ V , we introduce a decision variable denoted xv(e). With this notation, we can
express the following LP:

maximize
∑

v∈V

∑

e∈Cv

val(e) · xv(e) (LP-new)

subject to
∑

v∈V

∑

e∈Cv:
(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (3.1)

∑

e∈Cv

xv(e) = 1 ∀v ∈ V, (3.2)

xv(e) ≥ 0 ∀v ∈ V,e ∈ Cv (3.3)

Crucially, LP-new is a relaxation of the adaptive benchmark. Moreover, it can be solved efficiently
under the assumptions of Theorem 2.1, however we defer the discussion on how this can be done
to the end of the section (Theorem 3.10).
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Theorem 3.1. For any stochastic graph G = (U, V,E) with substring-closed probing constraints,
OPT(G) ≤ LPOPT(G).

In order to prove Theorem 3.1, the natural approach is to define xv(e) to be the probability that
the adaptive benchmark probes the edges of e in order, where v ∈ V and e ∈ Cv. Let us suppose
that hypothetically we could make the following assumption regarding the adaptive benchmark:

(P1) If e = (u, v) is probed and st(e) = 1, then e is included in the matching, provided v is currently
unmatched.

(P2) For each v ∈ V , the edge probes involving ∂(v) are made independently of the edge states
(st(e))e∈∂(v).

Observe then that (P1) and (P2) would imply the expected weight of the edge assigned to v is∑
e∈Cv

val(e) · xv(e). Moreover, the left-hand side of (3.1) would correspond to the probability
u ∈ U is matched, so (xv(e))v∈V,e∈Cv corresponds to a feasible solution to LP-new, and so we could
upper bound OPT(G) by LPOPT(G). Now, if we knew that the adaptive benchmark adhered to
some adaptive vertex ordering π on V (i.e., it chooses vπ(i) based on vπ(1), . . . vπ(i−1), and probes
the edges of vπ(i) before moving to vπ(i+1)), then it is clear that one could assume (P1) and (P2)
simultaneously9 w.l.o.g.. However, clearly a probing algorithm with this restriction is in general
less powerful than the adaptive benchmark. As such, the natural interpretation of the variables of
LP-new does not seem to easily lend itself to a proof of Theorem 3.1.

In order to get around these issues and prove Theorem 3.1, we do not directly compare the
adaptive benchmark to LPOPT(G). Instead, we introduce a combinatorial relaxation of the
offline stochastic matching problem, which we define to be a new stochastic probing problem on G
whose optimum probing algorithm has value no worse than OPT(G). Specifically, given a stochastic
graph G = (U, V,E), we define the relaxed stochastic matching problem. A solution to
this problem is a relaxed probing algorithm A, which operates in the previously described
framework of an (offline) probing algorithm. That is, A is firstly given access to a stochastic graph
G = (U, V,E). Initially, the edge states (st(e))e∈E are unknown to A, and A must adaptivity probe
these edges to reveal their states, while respecting the substring-closed probing constraints (Cv)v∈V .
Once again, A returns a subset A(G) of its active probes, and its goal is to maximize E[w(A(G))],
where w(A(G)) :=

∑
e∈A(G) we. However, unlike before where the output of the probing algorithm

was required to be a matching of G, we relax the required properties of A(G):

1. Each v ∈ V appears in at most one edge of A(G).

2. If Nu counts the number of edges of ∂(u) which are included in A(G), then E[Nu] ≤ 1 for
each u ∈ U .

We refer to A(G) as a one-sided matching of the online nodes. In constructing A(G), A must
operate in the previously described probe-commit model. We define the relaxed benchmark as
an optimum relaxed probing algorithm, and denote its evaluation on G by OPTrel(G). Observe
that since any offline probing algorithm is a relaxed probing algorithm, we have that

OPT(G) ≤ OPTrel(G). (3.4)

9It is clear that we may assume the adaptive benchmark satisfies (P1) w.l.o.g., but not (P2).
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We say that A is non-adaptive, provided the probes are a (randomized) function of G. Equiva-
lently, A is non-adaptive if the probes of A are statistically independent from (st(e))e∈E . Unlike
the offline stochastic matching problem, there exists a relaxed probing algorithm which is optimum,
and yet non-adaptive:

Lemma 3.2. For any stochastic graph G = (U, V,E) with (substring-closed) probing constraints
(Cv)v∈V , there exists an optimum relaxed probing algorithm B which satisfies the following proper-
ties:

(Q1) If e = (u, v) is probed and st(e) = 1, then e is included in B(G), provided v is currently
unmatched.

(Q2) B is non-adaptive on G.

We defer the proof of Lemma 3.2 to Section A. Observe that by considering B of Lemma 3.2,
and defining xv(e) as the probability that B probes the edges of e in order for v ∈ V and e ∈ Cv,
properties (Q2) and (Q1) ensure that (xv(e))v∈V,e∈Cv is a feasible solution to LP-new, such that

E[w(B(G))] =
∑

v∈V

∑

e∈Cv

val(e) · xv(e).

Thus, the optimality of B implies that OPTrel(G) ≤ LPOPT(G), and so together with (3.4),
Theorem 3.1 follows.

In fact, we claim the following equivalence between LP-new and the relaxed stochastic matching
problem, whose proof we defer to Appendix A:

Theorem 3.3. For any stochastic graph G with substring-closed probing constraints, OPTrel(G) =
LPOPT(G).

We shall now show how to use LP-new to design online probing algorithms which have access
to the stochastic graph G = (U, V,E). Suppose that we are presented a feasible solution, say
(xv(e))v∈V,e∈Cv , to LP-new for G. For each e ∈ E, define

x̃e :=
∑

e
′∈Cv :
e∈e′

g(e′<e) · pe · xv(e′). (3.5)

In order to simplify our notation in the later sections, we refer to the values (x̃e)e∈E as the (in-
duced) edge variables of the solution (xv(e))v∈V,e∈Cv . Observe that constraint (3.1) ensures that∑

e∈∂(u) x̃e ≤ 1 for each u ∈ U .
If we now fix s ∈ V , then we can easily leverage constraint (3.2) to argue that each edge of ∂(s)

can be matched with probability exactly equal to x̃s. Specifically, we may execute a fixed vertex
probing algorithm, which we refer to as VertexProbe. We describe its inputs in general notation,
as we also use the algorithm in the known i.d. setting of Section 4.
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Algorithm 1 VertexProbe

Input: an online vertex s of a stochastic graph, ∂(s), and probabilities (z(e))e∈Cs such that∑
e∈Cs

z(e) = 1.
Output: an active edge N of ∂(s).
1: Initialize N ← ∅.
2: Draw e

′ from Cs with probability z(e′).
3: if e

′ = λ then ⊲ the empty string is drawn.
4: return N .
5: else
6: Denote e

′ = (e′1, . . . , e
′
k) for k := |e′| ≥ 1.

7: for i = 1, . . . , k do ⊲ probe the edges of e′ in order and return the first active edge
8: Probe the edge e′i.
9: if st(e′i) = 1, and s is not matched by N then

10: Add e′i to N .
11: end if
12: end for
13: end if
14: return N .

Observe the following claim, which follows immediately from the definition of the edge variables,
(x̃e)e∈E :

Lemma 3.4. Let G = (U, V,E) be a stochastic graph with LP-new solution (xv(e))v∈V,∂(v), and
whose induced edge variables we denote (x̃e)e∈E. If the VertexProbe algorithm is passed a fixed
node s ∈ V , then each e ∈ ∂(s) is returned by the algorithm with probability x̃e.

Remark 3.5. We say that VertexProbe commits to the edge e, provided the algorithm outputs
this edge when executing on the fixed node s ∈ V .

To clearly illustrate how we use LP-new in conjunction with VertexProbe to design probing
algorithms, we first consider a simpler algorithm which attains a competitive ratio of 1/2, provided
the vertices of G = (U, V,E) arrive in random order. Afterwards, we modify this algorithm via a
non-greedy contention resolution scheme considered by Lee and Singla [46], allowing us to improve
the competitive ratio to 1− 1/e, thus proving Theorem 2.1

Algorithm 2 Known Stochastic Graph

Input: a stochastic graph G = (U, V,E).
Output: a matching M of active edges of G.
1: M← ∅.
2: Compute an optimum solution of LP-new for G, say (xv(e))v∈V,e∈Cv
3: for s ∈ V in u.a.r. order do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs).
5: if e = (u, s) for some u ∈ U , and u is unmatched then ⊲ rule out when e = ∅
6: Add e to M.
7: end if
8: end for
9: returnM.
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Remark 3.6. Technically, line (6) should occur within the VertexProbe subroutine to adhere
to the probe-commit model, however we express our algorithms in this way for brevity.

Proposition 3.7. IfM is the matching returned by Algorithm 2 when executing on the stochastic
graph G = (U, V,E), then E[w(M)] ≥ 1

2OPT(G), provided the vertices of V arrive u.a.r.. Moreover,
the analysis of Algorithm 2 is tight.

In order to prove Proposition 3.7, and to later derive the 1− 1/e-competitive ratio of Theorem
2.1, we review contention resolution schemes, restricted to the simplest case of rank 1 matroids.
Given k ≥ 1, consider the ground set [k] := {1, . . . , k}. Fix z ∈ [0, 1]k, and let R(z) ⊆ [k] denote
the random set, where each i ∈ [k] is included in R(z) independently with probability zi. Let us
denote P := {z ∈ [0, 1]k :

∑k
i=1 zi ≤ 1}. Note that P is the convex relaxation of the constraint

imposed by the rank 1 matroid on [k] (i.e., at most one element of [k] may be selected).

Definition 1 (Contention Resolution Scheme – Rank 1 Matroid). A contention resolution
scheme (CRS) for the rank 1 matroid on [k] is a (randomized) algorithm ψ, which given z ∈ P
and S ⊆ [k] as inputs, returns a single element ψz(S) of S. Given c ∈ [0, 1], ψ is said to be
c-selectable, provided for all i ∈ [k] and z ∈ P,

P[i ∈ ψz(R(z)) | i ∈ R(z)] ≥ c, (3.6)

where the probability is over the generation of R(z), and the potential randomness used by ψ.

Remark 3.8. Observe that if f : 2[k] → R is a monotone linear function, then for any z ∈ P,
executing a c-selectable CRS ψ yields an element ψz(R(z)) ∈ R(z), such that E[f(ψz(R(z)))] ≥
c ·E[f(R(z))]. Thus, c-selectable CRS are useful for designing approximation algorithms, in which
one works with a convex relaxation of the constraint system on [k] (in our case, a rank 1 matroid).
Much more general results hold, and we refer the reader to the seminal paper by Chekuri, Vondrak,
and Zenklusen [57].

Feldman et al. [31] considered a more restricted class of contention resolution schemes, called
online contention resolution schemes (OCRS). These are schemes in which R(z) is not known
to the scheme ahead of time. Instead, the elements of [k] are presented to the scheme ψ in adversarial
order, where in each step, an arriving i ∈ [k] reveals if it is in R(z), at which point ψ must make an
irrevocable decision as to whether it wishes to return i as its output. Lee and Singla [46], as well
as Adamczyk and Wlodarczyk [4], considered an extension of this definition to the setting where
the elements of [k] arrive in random order, thus defining random order contention resolution
schemes (RCRS). Both order variants continue to allow ψ to depend on z, and the notion of
selectability extends, where in the case of a RCRS, the random order is incorporated into the
probabilistic computation of (3.6).

We can view Algorithm 2 as executing a concurrent contention resolution scheme on each of the
offline vertices. More precisely, given a fixed u ∈ U , observe that Algorithm 2 commits to each edge
e = (u, v) ∈ ∂(u), independently with probability x̃e. Thus, from the perspective of u, Algorithm
2 can be viewed as executing a greedy RCRS in which the edges of ∂(u) are considered uniformly
at random, and the first one which commits to u is included in M. This greedy RCRS is 1/2-
selectable, which thereby proves Proposition 3.7. We improve the competitive ratio of Algorithm
2 by executing a more sophisticated contention resolution scheme, as considered by Lee and Singla
[46]. Given the ground set [k] = {1, . . . k}, draw Yi ∼ [0, 1] u.a.r and independently for i = 1, . . . , k.
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Algorithm 3 RCRS – Lee and Singla [46]

Input: z ∈ P, where P ⊆ [0, 1]k.
Output: at most one element of [k].
1: for i ∈ [k] in increasing order of Yi do
2: if i ∈ R(z) then
3: return i independently with probability exp(−Yi · zi)
4: end if
5: end for
6: return ∅. ⊲ pass on returning an element of [k].

Theorem 3.9 (Lee and Singla [46]). Algorithm 3 is a 1 − 1/e-selectable RCRS for the case of a
rank 1 matroid.

We are now ready to modify Algorithm 2 to attain the desired competitive ratio. For each
v ∈ V , draw Ỹv ∈ [0, 1] independently and uniformly at random. We assume the vertices of V are
presented to Algorithm 2 in non-decreasing order, based upon the values (Ỹv)v∈V .

Algorithm 4 Known Stochastic Graph – Modified

Input: a stochastic graph G = (U, V,E).
Output: a matching M of G of active edges.
1: M← ∅.
2: Compute an optimum solution of LP-new for G, say (xv(e))v∈V,e∈Cv .

3: for s ∈ V in increasing order of Ỹs do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs).
5: if e = (u, s) for some u ∈ U , and u is unmatched then
6: Add e to M independently with probability exp(−Ỹs · x̃u,s).
7: end if
8: end for
9: returnM.

Proof of Theorem 2.1. Given u ∈ U , letM(u) denote the edge matched to u byM, whereM(u) :=
∅ if no such edge exists.

Observe now that if C(e) corresponds to the event in which VertexProbe commits to e ∈ ∂(u),
then P[C(e)] = x̃e by Lemma 3.4. Moreover, the events (C(e))e∈∂(u) are independent, and satisfy

∑

e∈∂(u)

P[C(e)] =
∑

e∈∂(u)

x̃e ≤ 1, (3.7)

by constraint (3.1) of LP-new. As such, denote z := (ze)e∈∂(u) where ze := x̃e, and observe that
(3.7) ensures that z ∈ P, where P is the convex relaxation of the rank 1 matroid on ∂(u). Let us
denote R(z) as those those e ∈ ∂(u) for which C(e) occurs.

For each e = (u, v) ∈ ∂(u), define Yu,v := Ỹv. Observe then that the random variables (Ye)e∈∂(u)
are independent and drawn u.a.r. from [0, 1]. Thus, if ψ is the RCRS defined in Algorithm 3, then
we may pass z to ψ, and process the edges of ∂(u) in non-increasing order based on (Ye)e∈∂(u).
Denote the resulting output by ψz(R(z)). By coupling the random draws of lines (3) and (6) of
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Algorithms 3 and 4, respectively, we get that

w(M(u)) =
∑

e∈∂(u)

we · 1[e∈R(z)] · 1[e∈ψz(R(z))]

Thus, after taking expectations,

E[w(M(u))] =
∑

e∈∂(u)

we · P[e ∈ ψz(R(z)) | e ∈ R(z)] · P[e ∈ R(z)].

Now, Theorem 3.9 ensures that for each e ∈ ∂(u), P[e ∈ ψz(R(z)) | e ∈ R(z)] ≥
(
1− 1

e

)
. It follows

that E[w(M(u))] ≥
(
1− 1

e

)∑
e∈∂(u) wex̃e, for each u ∈ U . Thus,

E[w(M)] =
∑

u∈U

E[w(M(u))]

≥
(

1− 1

e

) ∑

e∈∂(u)

wex̃e =

(
1− 1

e

)
LPOPT(G),

where the equality follows since (xv(e))v∈V,e∈Cv is an optimum solution to LP-new. On the other
hand, LPOPT(G) ≥ OPT(G) by Theorem 3.1, and so the proof is complete.

We conclude the section by showing how LP-new be solved efficiently under the assumptions of
Theorem 2.4. Since the remaining steps of Algorithm 4 can clearly be implemented efficiently, this
will prove Theorem 2.4.

Theorem 3.10. Suppose that G = (U, V,E) in a stochastic graph with (substring-closed) probing
constraints (Cv)v∈V .

• In the demand oracle model, LP-new is efficiently solvable in |G|.

• In the membership oracle model, LP-new is efficiently solvable in |G|, provided for each v ∈ V ,
Cv is also permutation-closed.

We prove Theorem 3.10 by first considering the dual of LP-new. Note, that in the below LP
formulation, if e = (e1, . . . , ek) ∈ Cv, then we set ei = (ui, v) for i = 1, . . . , k for convenience.

minimize
∑

u∈U

αu +
∑

v∈V

βv (LP-new-dual)

subject to βv +

|e|∑

j=1

pej · g(e<j) · αuj ≥
|e|∑

j=1

pej · wej · g(e<j) ∀v ∈ V,e ∈ Cv (3.8)

αu ≥ 0 ∀u ∈ U (3.9)

βv ∈ R ∀v ∈ V (3.10)

Observe that to prove Theorem 3.10, it suffices to show that LP-new-dual has a (deterministic)
polynomial time separation oracle, as a consequence of how the ellipsoid algorithm [53, 33] executes
(see [59, 57, 2, 46] for more detail).
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Suppose that we are presented a particular selection of dual variables, say (αu)u∈U and (βv)v∈V ,
which may or may not be a feasible solution to LP-new-dual. Our separation oracle must determine
efficiently whether these variables satisfy all the constraints of LP-new-dual. In the case in which
the solution is infeasible, the oracle must additionally return a constraint which is violated.

It is clear that we can accomplish this for the non-negativity constraints, so let us fix a particular
v ∈ V in what follows. We wish to determine whether there exists some e = (e1, . . . , e|e|) ∈ Cv,
such that if ei = (ui, v) for i = 1, . . . , k, then

f(e) :=

|e|∑

j=1

(wej − αuj ) · pej · g(e<j) > βv, (3.11)

where f(e) := 0 if e = λ. In order to make this determination, it clearly suffices to maximize
the function f efficiently. The complexity of this problem depends on whether we are working in
demand oracle model or the membership oracle model.

Lemma 3.11. In the demand oracle model, there exists an efficient deterministic algorithm for
checking whether f(e′) > βv for some e

′ ∈ Cv provided Cv is substring-closed. Moreover, if such a
tuple exists, then it can be found efficiently. The same result holds in the membership oracle model,
provided Cv is also permutation-closed.

Proof. We first consider the case of the demand oracle model. In this setting, we can pass the
values (αu)u∈N(v) to the oracle, and it will return a string e

′ ∈ Cv for which

f(e′) =

|e′|∑

j=1

(wej − αuj) · pe′j · g(e
′
<j) (3.12)

is maximized over Cv. Thus, if f(e′) > βv , then we have found a string e ∈ Cv which satisfies
f(e) > βv. On the other hand, if f(e′) ≤ βv, then no such string e exists, as

f(e) ≤ f(e′) ≤ βv

for all e ∈ Cv.
Let us now consider the membership oracle model when Cv is also permutation-closed. Observe

that by Proposition 2.3, the demand oracle model can be simulated by the membership oracle
model, and so an optimum solution to (3.12) can be found efficiently. The remainder of the proof
thus follows as above.

Lemma 3.11 guarantees the existence of efficient separation oracles for LP-new-dual in the
appropriate query oracle models, and so the cases of Theorem 3.10 follow immediately.

4 Online Probing with Known I.D. Arrivals

Suppose that (Htyp, (Dt)nt=1) is a known i.d. input, where Htyp = (U,B,F ) has online probing
constraints (Cb)b∈B . For each t ∈ [n], denote rt(b) as the probability that a vertex drawn from
Dt is equal to b ∈ B. Recall the definition of the instantiated graph G ∼ (Htyp, (Dt)nt=1), where
G = (U, V,E) has vertices V = {v1, . . . , vn}, and P[vt = b] = rt(b) for each t ∈ [n] and b ∈ B.
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As in LP-new, let g(e) :=
∏|e|
i=1(1 − pei) for e ∈ F (∗) (where g(λ) := 1). Similarly, let val(e)

correspond to the expected weight of the first active edge amongst e (where val(e) := 0). We
can now generalize LP-new to account for the distributions (Dt)nt=1. For each t ∈ [n], b ∈ B and
e ∈ Cb, we introduce a decision variable xt(e || b) to encode the probability that vt has type b and
e corresponds to the edges of ∂(vt) which are probed in order by the relaxed benchmark.

maximize
∑

t∈[n],b∈B

∑

e∈Cb

val(e) · xt(e || b) (LP-new-id)

subject to
∑

t∈[n],b∈B

∑

e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) · xt(e || b) ≤ 1 ∀u ∈ U (4.1)

∑

e∈Cb

xt(e || b) = rt(b) ∀b ∈ B, t ∈ [n] (4.2)

xt(e || b) ≥ 0 ∀b ∈ B,e ∈ Cb, t ∈ [n] (4.3)

Let us denote LPOPT(Htyp, (Dt)nt=1) as the value of an optimum solution to LP-new-id. We claim
that LPOPT(Htyp, (Dt)nt=1) upper bounds OPT(Htyp, (Dt)nt=1). One way to see this is to use Lemma
3.2 and the above interpretation of the decision variables to show that LPOPT(Htyp, (Dt)nt=1) is
equal to E[OPTrel(G)], where OPTrel(G) is the value of the relaxed benchmark onG ∼ (Htyp, (Di)ni=1).
Alternatively, this follows by considering an optimum solution of LP-new with respect to G. The
claim then follows via a conditioning argument in conjunction with an application of Theorem 4.1,
and so we defer the proof to Appendix B.

Theorem 4.1. For any known i.d instance (Htyp, (Dt)nt=1), it holds that OPT(Htyp, (Dt)nt=1) ≤
LPOPT(Htyp, (Dt)nt=1).

Now, given a feasible solution to LP-new-id, say (xt(e || b))t∈[n],b∈B,e∈Cb , for each u ∈ U, t ∈ [n]
and b ∈ B define

x̃u,t(b) :=
∑

e∈Cb:
(u,b)∈e

g(e<(u,b)) · pu,b · xt(e || b). (4.4)

Suppose now that we fix t ∈ [n] and b ∈ B, and consider the variables, (xt(e || b))e∈Cb . Observe
that (4.2) ensures that ∑

e∈Cb
xt(e || b)

rt(b)
= 1.

Hence, if vt is drawn from Dt, then VertexProbe may be passed the input
(vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt ), no matter which type node vt is instantiated as. As such, if we
define C(u, vt) as the event in which VertexProbe outputs the edge (u, vt), then observe the
following extension of Lemma 3.4:

Lemma 4.2. If VertexProbe is passed (vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt ), then

P[C(u, vt) | vt = b] =
x̃u,t(b)

rt(b)

Remark 4.3. As in Lemma 3.4, if C(u, vt) occurs, then we say that VertexProbe commits to
the edge (u, vt).
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Suppose now that each vertex vt has an arrival time, say Yt ∈ [0, 1], drawn u.a.r. and indepen-
dently for t ∈ [n]. The values (Yt)

n
t=1 again indicate the increasing order in which the vertices of

G ∼ (Htyp, (Dt)nt=1) arrive. We first consider the following online probing algorithm, without any
sophisticated CRS:

Algorithm 5 Known I.D. – ROM

Input: a known i.d. input (Htyp, (Dt)nt=1).
Output: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).
1: M← ∅.
2: Compute an optimum solution of LP-new-id for (Htyp, (Dt)nt=1), say (xt(e || b))t∈[n],b∈B,e∈Cb .
3: for t ∈ [n] in increasing order of Yt do
4: Set e← VertexProbe(vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt ).
5: if e = (u, vt) for some u ∈ U , and u is unmatched then
6: Add e to M.
7: end if
8: end for
9: returnM.

Similarly, to Algorithm 2 of Proposition 3.7, one can show that Algorithm 5 attains a competitive
ratio of 1/2. Interestingly, if the distributions (Dt)nt=1 are identical – that is, we work in the known
i.i.d. model – then it is easy to show that this algorithm’s competitive ratio improves to 1− 1/e.

Proposition 4.4. If Algorithm 5 is presented a known i.i.d. input, say the type graph Htyp together
with the (fixed) distribution D, then E[w(M)] ≥ (1− 1/e)OPT(Htyp,D).

In order to prove Theorems 2.6 and 2.7, we again must apply more sophisticated forms of
contention resolution. Observe that for each u ∈ U , in the execution of Algorithm 5, the probability
that VertexProbe(vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt ) commits to the edge (u, vt) is precisely,

zu,t :=
∑

b∈B

x̃u,t(b) =
∑

b∈B

∑

e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) · xt(e || b) (4.5)

Moreover, the events (C(u, vt))
n
t=1 are independent. Thus, it is again natural to again apply con-

tention resolution on each vertex u ∈ U , as done in Algorithm 4.

Algorithm 6 Known I.D. – ROM – Modified

Input: a known i.d. input (Htyp, (Dt)nt=1).
Output: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).
1: M← ∅.
2: Compute an optimum solution of LP-new-id for (Htyp, (Dt)nt=1), say (xt(e || b))t∈[n],b∈B,e∈Cb .
3: for t ∈ [n] in increasing order of Yt do
4: Set e← VertexProbe(vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt ).
5: if e = (u, vt) for some u ∈ U , and u is unmatched then
6: Add e to M independently with probability exp(−Yt · zu,t).
7: end if
8: end for
9: returnM.
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Proof of Theorem 2.6. Analyzing Algorithm 6 follows in the same way as in the proof of Theo-
rem 2.1, with the only change being that the performance of Algorithm 6 is compared against
LPOPT(Htyp, (Di)ni=1), and thus the adaptive benchmark OPT(Htyp, (Di)ni=1) via an application
of Theorem 4.1.

More interesting is how we can adapt Algorithm 5 in the case of adversarial arrivals. For this,
we again make use of existing contention resolution schemes. In particular, we adapt the OCRS
used by Ezra et al. [29].

Given the ground set [k] = {1, . . . k}, suppose the elements of [k] are presented according to
some permutation π : [k] → [k] (i.e., π(1), . . . , π(k)), and z ∈ [0, 1]k satisfies

∑k
i=1 zi ≤ 1. Upon

the arrival of element π(t) ∈ [k], compute

qt :=
1

2−∑t−1
i=1 zπ(i)

.

Observe that 0 ≤ qt ≤ 1, as 0 ≤∑k
i=1 zi ≤ 1.

We consider the scheme of Ezra et al. [29], restricted to the case of a rank 1 matroid. Note that
this scheme is similar to the OCRS considered by Lee and Singla [46], however it has the benefit
of not requiring the adversary to present the arrival order of [k] to the algorithm upfront.

Algorithm 7 OCRS – Ezra et al. [29]

Input: z ∈ P, where P ⊆ [0, 1]k. ⊲ P is the convex relaxation of the rank 1 matroid
Output: at most one element of [k].
1: for t = 1, . . . , k do
2: if π(t) ∈ R(z) then ⊲ π(t) is in R(z) with probability zπ(t)
3: Compute qt, based on the arrivals π(1), . . . , π(t− 1).
4: return π(t) independently with probability qt.
5: end if
6: end for
7: return ∅. ⊲ pass on returning an element of [k]

Theorem 4.5 (Ezra et al. [46]). Algorithm 7 is an OCRS for a rank 1 matroid which is 1/2-
selectable.

We return to the problem of designing a modification of Algorithm 5 that works for adversarial
vertex arrivals. Assume vertices v1, . . . , vn are presented to the online probing algorithm using the
permutation π : [n]→ [n] (i.e., vπ(1), . . . vπ(n)). For each t ∈ [n] and u ∈ U , define

qu,t :=
1

2−∑t−1
i=1 zu,π(i)

, (4.6)

where we recall zu,j :=
∑

b∈B x̃u,j(b). Clearly,
∑

j∈[n] zu,j ≤ 1, by constraint (4.1) of LP-new-id,
and so we get the following online probing algorithm:
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Algorithm 8 Known I.D. – AOM – Modified

Input: a known i.d. input (Htyp, (Di)ni=1).
Output: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).
1: M← ∅.
2: Compute an optimum solution of LP-new-id for (Htyp, (Di)ni=1), say (xi(e || b))i∈[n],b∈B,e∈Cb .
3: for t = 1, . . . , n do
4: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .
5: Set e← VertexProbe(vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt ).
6: if e = (u, vt) for some u ∈ U , and u is unmatched then
7: Add e to M independently with probability qu,t.
8: end if
9: end for

10: returnM.

Proof of Theorem 2.7. Analysing Algorithm 8 follows the proof of Theorem 2.1.

We conclude the section by noting that LP-new-id can be solved in time poly(|Htyp|, (rt(b))t∈[n],b∈B)
in both the membership and demand oracle models, under the assumptions of Theorem 2.9. The
argument follows as in the proof of Theorem 3.10, with a slight adjustment to handle the values
(rt(b))t∈[n],b∈B and so we defer the details. The efficiency of Algorithms 6 and 8 thereby follows, as
claimed in Theorem 2.9.

5 Relaxing the Adaptive Benchmark: Proving Lemma 3.2

Let us suppose that G = (U, V,E) is a stochastic graph with substring-closed probing constraints
(Cv)v∈V . In order to prove Lemma 3.2, we must show that there exists an optimum relaxed probing
algorithm which is non-adaptive and satisfies (Q1). Our high level approach is to consider an opti-
mum relaxed probing algorithm A which satisfies (Q1), and then to construct a new non-adaptive
algorithm B by stealing the strategy of A, without any loss in performance. More specifically, we
construct B by writing down for each v ∈ V and e ∈ Cv the probability that A probes the edges
of e in order. These probabilities necessarily satisfy certain inequalities which we make use of in
designing B. In order to do so, we need a technical randomized rounding procedure whose precise
relevance will become clear in the proof of Lemma 3.2.

Suppose that e ∈ E(∗), and for each j ≥ 0, denote ej as the jth edge of ej , where ej := λ
if j = 0 or j > |e| (recall that λ is the empty-string). Let us now assume that (yv(e))e∈Cv is a
collection of values which satisfies yv(λ) = 1, and

∑

e∈∂(v):
(e′,e)∈Cv

yv(e
′, e) ≤ yv(e′), (5.1)

for each e
′ ∈ Cv.

Proposition 5.1. Given a collection of values (yv(e))e∈Cv which satisfy (5.1), there exists a dis-
tribution Dv supported on Cv, such that if Y ∼ Dv, then for each e ∈ Cv with k := |e| ≥ 1, it holds
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that
P[(Y1, . . . ,Yk) = (e1, . . . ,ek)] = yv(e), (5.2)

where Y1, . . . ,Yk are the first k edges of Y .

Proof. Observe first that for each e
′ ∈ E(∗), we have that

∑

e∈∂(v):
(e′,e)∈Cv

yv(e
′, e)

yv(e′)
≤ 1 (5.3)

as a result of (5.1) (recall that yv(λ) := 1). We thus define for each e
′ ∈ Cv,

zv(e
′) := 1−

∑

e∈∂(v):
(e′,e)∈Cv

yv(e
′, e)

yv(e′)
, (5.4)

which we observe has the property that 0 ≤ zv(e
′) ≤ 1. This leads to the following random-

ized rounding algorithm, which we claim outputs a random string Y which satisfies the desired
properties:

Algorithm 9 VertexRound

Input: a collection of values (yv(e))e∈Cv satisfying (5.1).
Output: a random string Y = (Y0, Y1, . . . , Y|U |) supported on Cv.
1: Set e

′ ← λ.
2: Initialize Yi = λ for each i = 0, . . . , |U | − 1.
3: for i = 0, . . . , |U | do
4: Exit the “for loop” with probability zv(e

′). ⊲ pass with a certain probability – see (5.4)
5: Draw e ∈ ∂(v) satisfying (e′, e) ∈ Cv with probability yv(e

′, e)/(yv(e
′) (1− zv(e′))).

6: Set Yi = e.
7: e

′ ← (e′, e).
8: end for
9: return Y = (Y0, Y1, . . . , Y|U |). ⊲ concatenate the edges in order and return the resulting string

Clearly, the random string Y is supported on Cv, thanks to line 5 of Algorithm 9. We now show
that (5.2) holds. As such, let us first assume k = 1, and e ∈ ∂(v) satisfies (e) ∈ Cv. Observe that

P[Y1 = e] = (1− zv(λ))
yv(e)

1 − zv(λ)
= yv(e),

as the algorithm exits the “for loop” with probability zv(λ) = 1− yv(λ) = 0, and then draws e with
probability yv(e).

In general, take k ≥ 2, and assume that for each e
′ ∈ Cv with |e′| < k, it holds that

P[(Y1, . . . , Yk) = e
′] = yv(e

′).

If we now fix e = (e1, . . . , ek) ∈ Cv with |e| = k, observe that e<k := (e1, . . . , ek−1) ∈ Cv, as Cv is
substring-closed. Moreover,

P[(Y1, . . . , Yk) = e] = P[Yk = ek | (Y1, . . . , Yk−1) = e<k] · P[(Y1, . . . , Yk−1) = e<k]

= P[Yk = ek | (Y1, . . . , Yk−1) = e<k)] · yv(e<k),
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where the last line follows by the induction hypothesis since e<k ∈ Cv is of length k − 1. We know
however that

P[Yk = ek | (Y1, . . . , Yk−1) = e<k] = (1− zv(e<k))
yv(e<k, ek)

yv(e<k) (1− zv(e<k))
=
yv(e<k, ek)

yv(e<k)
.

This is because once we condition on the event (Y1, . . . , Yk−1) = e<k, we know that the algorithm
passes with probability 1− zv(e<k), and then selects ek ∈ ∂(v) with probability
yv(e<k, ek)/(yv(e<k) (1 − zv(e<k))) (provided a pass does not occur), since (e<k, ek) ∈ Cv by as-
sumption. As such, we have that

P[(Y1, . . . , Yk) = e] = yv(e),

and so the proof is complete.

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Suppose that A is an optimum relaxed probing algorithm which returns the
one-sided matching M after executing on the stochastic graph G = (U, V,E). In a slight abuse of
terminology, we say that e is matched by A, provided e is included in M. We shall also make the
simplifying assumption that pe < 1 for each e ∈ E, as the proof can be clearly adapted to handle
the case when certain edges have pe = 1.

Observe that since A is optimum, it is clear that we may assume the following properties hold
without loss of generality: For each e ∈ E,

1. e is probed only if e can be added to the currently constructed one-sided matching.

2. If e is probed and st(e) = 1, then e is included in M.

Thus, in order to prove the lemma, we must find an alternative algorithm B which is non-adaptive,
yet continues to remain optimum. To this end, we shall first express E[w(M(v))] in a convenient
form for each v ∈ V , where w(M(v)) is the weight of the edge matched to v (which is 0 if no match
occurs).

Given v ∈ V and 1 ≤ i ≤ |U |, we define Xv
i to be the ith edge which includes v that is probed

by A. This is set equal to λ by convention, provided no such edge exists. We may then define
X

v := (Xv
1 , . . . ,X

v
|U |). Moreover, given e = (e1, . . . , ek) ∈ E(∗), define S(e) to be the event in

which ek is the only active edge amongst e1, . . . , ek. Observe then that (1) and (2) ensure that

E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv

wekP[S(e) ∩ {Xv
≤k = e}],

where X
v
≤k := (Xv

1 , . . . ,X
v
k ). Moreover, (1) and (2) imply that if e = (e1, . . . , ek) ∈ Cv, then

P[{st(ek) = 1} ∩ {Xv
≤k = e}] = P[S(e) ∩ {Xv

≤k = e}]. (5.5)

Thus,

E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv

wekP[S(e) ∩ {Xv
≤k = e}]

=
∑

e=(e1,...,ek)∈Cv

wekP[{st(ek) = 1} ∩ {Xv
≤k = e}]

=
∑

e=(e1,...,ek)∈Cv

wekpekP[Xv
≤k = e],
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where the final equality holds since A must decide on whether to probe ek prior to revealing st(ek).
As a result, after summing over v ∈ V ,

E[w(M)] =
∑

v∈V

∑

e=(e1,...,ek)∈Cv

wekpekP[Xv
≤k = e]. (5.6)

Our goal is to find a non-adaptive relaxed probing algorithm which matches the value of (5.6).
Thus, for each v ∈ V and e = (e1, . . . , ek) ∈ Cv, define

xv(e) := P[Xv
≤k = e],

where xv(λ) := 1. This gives us a collection of values, namely (xv(e))e∈Cv , for which the following
conditions hold: For each e

′ ∈ Cv,
∑

e∈∂(v):
(e′,e)∈Cv

xv(e
′, e) ≤ (1− pe)xv(e′). (5.7)

Now, given e = (e1, . . . , ek) ∈ Cv, define

yv(e) :=
xv(e)

∏|e|−1
j=1 (1− pej)

. (5.8)

Observe that (5.7) ensures that for each e
′ ∈ Cv

∑

e∈∂(v):
(e′,e)∈Cv

yv(e
′, e) ≤ yv(e′). (5.9)

As a result, Proposition 5.1 implies that for each v ∈ V , there exists a distribution Dv such that if
Y
v ∼ Dv, then for each e ∈ Cv with |e| = k ≥ 1,

P[Y v
≤k = e] = yv(e). (5.10)

Moreover, Y v is drawn independently from the edge states, (st(e))e∈E . Consider now the following
algorithm B, which clearly satisfies the desired properties (Q1) and (Q2) of Lemma 3.2:

Algorithm 10 Algorithm B
Input: a stochastic graph G = (U, V,E).
Output: a one-sided matching N of G of active edges.
1: Set N ← ∅.
2: Draw (Y v)v∈V according to the product distribution

∏
v∈V Dv.

3: for v ∈ V do
4: for i = 1, . . . , |Y v| do
5: Set e← Y

v
i .

6: Probe the edge e, revealing st(e).
7: if st(e) = 1 and v is unmatched by N then
8: Add e to N .
9: end if

10: end for
11: end for
12: return N .
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Using (5.10) and the non-adaptivity of B, it is clear that for each v ∈ V ,

E[w(N (v))] =
∑

e=(e1,...,ek)∈Cv

wekP[S(e)] · P[Y v
≤k = e]

=
∑

e=(e1,...,ek)∈Cv

wekpek

|e|−1∏

j=1

(1− pej)yv(e)

=
∑

e=(e1,...,ek)∈Cv

wekpekxv(e)

= E[w(M(v))].

Thus, after summing over v ∈ V , it holds that E[w(N )] = E[w(M)] = OPTrel(G), and so in
addition to satisfying (Q1) and (Q2), B is optimum. Finally, it is easy to show that each u ∈ U
is matched by N at most once in expectation, and so B is a relaxed probing algorithm which is
optimum and satisfies the required properties of Lemma 3.2.

6 A Tight Adaptivity Gap

Similarly, to the definition of the adaptive benchmark, we define the non-adaptive benchmark,
as the optimum performance of a non-adaptive probing algorithm on G. That is, OPTn-adap(G) :=
supB E[w(B(G))], where the supremum is over all offline non-adaptive probing algorithms. The
upper bound (negative result) of Theorem 2.2 can thus be viewed a statement regarding the power
of adaptivity. More precisely, we define the adaptivity gap of the bipartite stochastic matching
problem, as the ratio

inf
G

OPTn-adap(G)

OPT(G)
, (6.1)

where the infimum is over all bipartite stochastic graphs G.
We can therefore restate Theorem 2.2 in the following terminology:

Theorem 6.1. The adaptivity gap of the bipartite stochastic matching problem is no smaller than
1− 1/e.

Theorem 6.1 follows by considering a sequence of stochastic graphs. In particular, given n ≥ 1,
consider functions p = p(n) and s = s(n) which satisfy the following:

1. p≪ 1/
√
n and s→∞ as n→∞.

2. s ≤ pn and s = (1− o(1))pn.

Consider now a an unweighted stochastic graph Gn = (U, V,E) with unit patience values, and
which satisfies |U | = s and |V | = n. Moreover, assume that pu,v = p for all u ∈ U and v ∈ V .
Observe that Gn corresponds to the bipartite Erdős–Rényi random graph G(s, n, p).

Lemma 6.2. The adaptive benchmark returns a matching of size asymptotically equal to s when
executing on Gn; that is, OPT(Gn) = (1 + o(1))s.
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We defer the proof of Lemma 6.2, as it is routine analysis of the Erdős–Rényi random graph
G(s, n, p). Instead, we focus on proving the following lemma, which together with Lemma 6.2
implies the upper bound of Theorem 6.1:

Lemma 6.3. The non-adaptive benchmark returns in expectation a matching of size at most (1 +
o(1))

(
1− 1

e

)
s when executing on Gn. That is,

OPTn-adp(G) ≤ (1 + o(1))

(
1− 1

e

)
s.

Proof. Let A be a non-adaptive probing algorithm, which we may assume is deterministic without
loss of generality. As the probes of A are determined independently of the random variables
(st(e))e∈E , we can define xe ∈ {0, 1} for each e ∈ E to indicate whether or not A probes the edge
e.

Now, if A(G) is the matching returned by A, then using the independence of the edge states
(st(e))e∈E , we get that

P[u matched by A(G)] = P

[
∪ v∈V :
xu,v=1

st(u, v) = 1

]
(6.2)

≥ 1−
∏

v∈V

(1− pxu,v) (6.3)

and so,

E[|A(G))|] ≤ s−
∑

u∈U

∏

v∈V

(1− pxu,v).

As such, if we can show that

∑

u∈U

∏

v∈V

(1− pxu,v) ≥ (1− o(1))
s

e
,

then this will imply that

E[|A(G)|] ≤ (1 + o(1))

(
1− 1

e

)
s.

To see this, first observe that since p(n)→ 0 as n→∞, we know that

1− pxu,v = (1 + o(1)) exp(−pxu,v)

for each v ∈ V . In fact, since pxu,v ≤ p for all v ∈ V , the asymptotics are uniform across V . More
precisely, there exists C > 0, such that for n sufficiently large,

1− pxu,v ≥ (1− Cp2) exp(−pxu,v)

for all v ∈ V . As a result,

∏

v∈V

(1− pxu,v) ≥ (1− Cp2)n exp

(
−
∑

v∈V

pxu,v

)

= (1 + o(1)) exp

(
−
∑

v∈V

pxu,v

)
,
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where the second line follows since p≪ 1/
√
n by assumption. On the other hand, Jensen’s inequality

ensures that
∑

u∈U

exp
(
−∑v∈V pxu,v

)

s
≥ exp

(
−
∑

u∈U,v∈V pxu,v

n

)
.

However,
∑

u∈U xu,v ≤ 1 for each v ∈ V . Thus,
∑

u∈U,v∈V pxu,v ≤ pn, and so

exp

(
−
∑

u∈U,v∈V pxu,v

s

)
≥ exp

(
−pn
s

)
≥ 1

e
,

where the last line follows since pn ≤ s. It follows that

∑

u∈U

∏

v∈V

(1− pxu,v) ≥ (1 + o(1))
s

e
,

and so

E[|A(G)|] ≤ (1 + o(1))

(
1− 1

e

)
s.

As the asymptotics hold uniformly across each deterministic non-adaptive algorithm A, this com-
pletes the proof.

Theorems 2.1 and 6.1 exactly characterize the adaptivity gap of the bipartite stochastic match-
ing problem:

Corollary 6.4. The adaptivity gap of the bipartite stochastic matching problem is 1− 1/e.

7 Conclusion and open problems

We have considered the stochastic bipartite matching problem (with probing constraints) in a few
settings. As discussed, our results generalize both the classical bipartite matching problem that
does not have probing constraints and the prophet inequality and prophet secretary problems. Our
algorithms are polynomial time assuming a mild assumption on the probing constraints which, in
particular, generalizes the standard patience constraints.

Our main results concern stochastic graphs generated from i.d. distributions for which we
obtain an optimal 1

2 competitive ratio for adversarial input sequences and a 1 − 1/e competitive
ratio for random order input sequences. While the i.d. setting subsumes the known stochastic
graph setting, this latter problem is of independent interest as this is the probing model studied by
Chen et al. [20]. Unlike the classical setting, it is not clear if the Karande et at. [41] result that
“ROM implies known (and unknown) i.i.d” holds in the known stochastic graph model.

There are some basic questions that are unresolved. Perhaps the most basic question which is
also unresolved in the classical setting is to bridge the gap between the positive 1−1/e competitive
ratio and inapproximations in the context of random order input sequences. In terms of the single
item prophet secretary problem (without probing), Correa et al. [22] obtain a .669 competitive
ratio following Azar et al. [8] who were the first to surpass the 1 − 1/e “barrier”. Note that
in an i.i.d. setting there is no difference between adversarial input sequences and random order
sequences. Correa et al. [22] also establish a .732 inapproximation. Our adaptivity gap proves the
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optimality of the 1 − 1/e competitive ratio for non-adaptive algorithms. Can we surpass 1 − 1/e
in the probing setting for i.d. input sequences or for the the special case of i.i.d. input sequences?
Is there a provable difference between stochastic bipartite matching (with probing constraints)
and the classical online settings? Can we obtain the same competitive results against an optimal
offline non-committal benchmark which respects the probing constraints but not the commitment
constraint.

One interesting extension of the probing model is to allow non-Bernoulli edge random variables
to describe edge uncertainty. Even for a single online vertex with full patience, this problem is
interesting and has been studied significantly less (see, ProblemMax in Segev and Singla [54]). A
general understanding of edge uncertainty suggests a possible relation between stochastic probing
and online algorithms with ML (untrusted) advice (see, for example, Lavastida et al. [45]).

References

[1] Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Inf.
Process. Lett., 111(15):731–737, 2011.

[2] Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michal Wlodarczyk. When the
optimum is also blind: a new perspective on universal optimization. In ICALP, 2017.

[3] Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. Improved approximation algo-
rithms for stochastic matching. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA
2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings,
volume 9294 of Lecture Notes in Computer Science, pages 1–12. Springer, 2015.

[4] Marek Adamczyk and Micha l W lodarczyk. Random order contention resolution schemes. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 790–
801. IEEE, 2018.

[5] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted
bipartite matching and single-bid budgeted allocations. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Califor-
nia, USA, January 23-25, 2011, pages 1253–1264, 2011.

[6] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online prophet-inequality
matching with applications to ad allocation. In Proceedings of the 13th ACM Conference
on Electronic Commerce, EC ’12, page 18–35, New York, NY, USA, 2012. Association for
Computing Machinery.

[7] Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone submodular func-
tions. Management Science, 62(8):2374–2391, 2016.

[8] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Prophet secretary: Surpassing the 1-1/e
barrier. In Éva Tardos, Edith Elkind, and Rakesh Vohra, editors, Proceedings of the 2018
ACM Conference on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018, pages
303–318. ACM, 2018.

30



[9] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri Rudra.
When LP is the cure for your matching woes: Improved bounds for stochastic matchings.
Algorithmica, 63(4):733–762, 2012.

[10] Alok Baveja, Amit Chavan, Andrei Nikiforov, Aravind Srinivasan, and Pan Xu. Improved
bounds in stochastic matching and optimization. Algorithmica, 80(11):3225–3252, Nov 2018.

[11] Liad Blumrosen and Noam Nisan. On the computational power of iterative auctions. In John
Riedl, Michael J. Kearns, and Michael K. Reiter, editors, Proceedings 6th ACM Conference
on Electronic Commerce (EC-2005), Vancouver, BC, Canada, June 5-8, 2005, pages 29–43.
ACM, 2005.

[12] Liad Blumrosen and Noam Nisan. On the computational power of demand queries. SIAM J.
Comput., 39(4):1372–1391, 2009.

[13] Allan Borodin, Calum MacRury, and Akash Rakheja. Greedy approaches to online stochastic
matching. CoRR, abs/2008.09260, 2020.

[14] Domagoj Bradac, Sahil Singla, and Goran Zuzic. (near) optimal adaptivity gaps for stochas-
tic multi-value probing. In Dimitris Achlioptas and László A. Végh, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, volume 145 of LIPIcs, pages 49:1–49:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[15] Brian Brubach, Nathaniel Grammel, and Aravind Srinivasan. Vertex-weighted online stochas-
tic matching with patience constraints. CoRR, abs/1907.03963, 2019.

[16] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. New al-
gorithms, better bounds, and a novel model for online stochastic matching. In 24th Annual
European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages
24:1–24:16, 2016.

[17] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. Attenu-
ate locally, win globally: Attenuation-based frameworks for online stochastic matching with
timeouts. Algorithmica, 82(1):64–87, 2020.

[18] Shuchi Chawla, Kira Goldner, Anna R. Karlin, and J. Benjamin Miller. Non-adaptive matroid
prophet inequalities. CoRR, abs/2011.09406, 2020.

[19] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Leonard J. Schulman, editor,
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 311–320. ACM, 2010.

[20] Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra. Ap-
proximating matches made in heaven. In Proceedings of the 36th International Colloquium on
Automata, Languages and Programming: Part I, ICALP ’09, pages 266–278, 2009.

31
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A Section 3 Additions

Suppose that we are given an arbitrary stochastic graph G = (U, V,E). Let us restate LP-new for
convenience:

maximize
∑

v∈V

∑

e∈Cv

val(e) · xv(e) (LP-new)

subject to
∑

v∈V

∑

e∈Cv :
(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (A.1)

∑

e∈Cv

xv(e) ≤ 1 ∀v ∈ V, (A.2)

xv(e) ≥ 0 ∀v ∈ V,e ∈ Cv (A.3)

Proof of Theorem 3.3. Suppose we are presented a feasible solution (xv(e))v∈V,e∈Cv to LP-new.
Consider then the following relaxed probing algorithm:

1. M← ∅.

2. For each v ∈ V , set e ← VertexProbe(v, ∂(v), (xv(e))e∈Cv ). If e 6= ∅, then let e = (u, v)
and set M(v) = u.

3. Return M.

Using Lemma 3.4, it is clear that

E[w(M)] =
∑

v∈V

∑

e∈Cv

val(e) · xv(e).

Moreover, each vertex u ∈ U is matched by M at most once in expectation, as a consequence of
constraint (A.1) of LP-new.

In order to complete the proof, it remains to show that if A is an optimum relaxed probing
algorithm, then there exists a solution to LP-new whose value is equal to E[w(A(G))]. Observe
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that w.l.o.g. we may assume that A satisfies properties (Q1) and (Q2) of Lemma 3.2. Now, for
each v ∈ V and e = (e1, . . . , ek) ∈ Cv with k := |e| we can define

xv(e) := P[A probes the edges (ei)
k
i=1 in order].

SettingM = A(G) for convenience, observe that if w(M(v)) corresponds to the weight of the edge
assigned to v (which is 0 if no assignment is made), then

E[w(M(v))] =
∑

e∈Cv

val(e) · xv(e),

by properties (Q1) and (Q2). Similarly, for each u ∈ U ,

∑

v∈V

∑

e∈Cv :
(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1

by once again using properties (Q2) and (Q1). The proof is therefore complete.

B Section 4 Additions

Proof of Theorem 4.1. Suppose that (Htyp, (Dt)nt=1) is a known i.d. instance, whereHtyp = (U,B,F ).
Recall that Cb corresponds to the online probing constraint of each type node b ∈ B. For conve-
nience, we denote I := ⊔b∈BCb. We can then define the following collection of random variables,
denoted (Xt(e))t∈[n],e∈I , based on the following randomized procedure:

• Draw the instantiated graphG ∼ (Htyp, (Dt)nt=1), whose vertex arrivals we denote by v1, . . . , vn.

• Compute an optimum solution of LP-new for G, which we denote by (xvt(e))t∈[n],e∈Cvt .

• For each t = 1, . . . , n and e ∈ I, set Xt(e) = xvt(e) if e ∈ Cvt , otherwise set Xt(e) = 0.

Observe then that since by definition (Xvt(e))t∈[n],e∈Cvt is a feasible solution to LP-new for G,
it holds that for each t = 1, . . . , n ∑

e∈I

Xt(e) = 1, (B.1)

and ∑

t∈[n],b∈B

∑

e∈I:
(u,b)∈e

pu,b · g(e<(u,b)) ·Xt(e) ≤ 1, (B.2)

for each u ∈ U . Moreover, (Xt(e))t∈[n],e∈Cvt is a optimum solution to LP-new for G, so Theorem
3.1 implies that

OPT(G) ≤ LPOPTnew(G) =
n∑

t=1

∑

e∈I

val(e) ·Xt(e). (B.3)

In order to make use of these inequalities in the context of the type graph Htyp, let us first fix
a type node b ∈ B and a string e ∈ Cb. For each t ∈ [n], we can then define

xt(e || b) := E[Xt(e) · 1[vt=b]], (B.4)
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where the randomness is over the generation of G. Observe that by definition of the (Xt(e))t∈[n],e∈I
values,

xt(e || b) = 0,

provided e /∈ Cb.
We claim that (xt(e || b))b∈B,t∈[n],e∈Cb is a feasible solution to LP-new-id. To see this, first

observe that if we multiply (B.1) by the indicator random variable 1[bt=v], then we get that

∑

e∈I

Xt(e) · 1[vt=b] = 1[vt=b].

As a result, if we take expectation over this inequality,

∑

e∈I

xt(e || b) =
∑

e∈I

E
[
Xt(e) · 1[vt=b]

]

= P[vt = b]

=: rt(b),

for each b ∈ B and t ∈ [n]. Let us now fix u ∈ U . Observe since Xt(e) · 1[vt=b] = Xt(e) for each
e ∈ Cb, (B.2) ensures that

∑

t∈[n],b∈B

∑

e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) ·Xt(e) · 1[vt=b] =
∑

t∈[n],b∈B

∑

e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) ·Xt(e) ≤ 1 (B.5)

Thus, after taking expectation over (B.5),

∑

t∈[n],b∈B

∑

e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) · xt(e || b) ≤ 1,

for each u ∈ U .
Since (xt(e || b))t∈[n],b∈B,e∈Cb satisfies these inequalities, and the variables are clearly all non-

negative, it follows that (xt(e || b))t∈[n],b∈B,e∈Cb is a feasible solution to LP-new-id.
In order to complete the proof, let us express the right-hand side of (B.3) as in (B.5) and take

expectations. We then get that

E[OPT(G)] ≤
∑

b∈B,t∈[n]

∑

e∈I

val(e) · xt(e || b).

Now, OPT(Htyp, (Di)ni=1 = E[OPT(G)] by definition, so since (xt(e || b))b∈B,t∈[n],e∈Cb is feasible, it
holds that

OPT(Htyp, (Di)ni=1) ≤ LPOPTnew−id(Htyp, (Di)ni=1),

thus completing the proof.
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C Extended Related Works

Our results pertain to the online stochastic matching problem which (loosely speaking) is online
bipartite matching where edges are associated with their probabilities of existence. There is a
substantial body of research pertaining to the “classical” (i.e. non stochastic) online bipartite model
in the fully adversarial online model, the random order model, and the i.i.d. input model. The ever
growing interest in various online bipartite matching problems is a reflection of the importance
of online advertising but there are many other natural applications. The literature concerning
competitive analysis10 of online bipartite matching is too extensive to do justice to many important
papers. We refer the reader to the excellent 2013 survey by Mehta [50] with emphasis on online
variants relating to ad-allocation. Given the continuing interest in ad-allocation, the survey is not
current but does describe the basic results.

The seminal result for unweighted online bipartite matching is due to Karp, Vazirani, and
Vazirani [42]. They gave the randomized Ranking algorithm that achieves competitive ratio 1−1/e
in the adversarial online setting which they show is the best possible ratio for any randomized
algorithm. There have been many proofs of this seminal result, such as the primal-dual approach
due to Devanur et al. [25]. Any greedy algorithm (i.e., one that always makes a match when
possible) has a 0.5 ratio, and this is the best possible a deterministic algorithm can attain. The
Ranking algorithm can also be viewed as a deterministic algorithm in the ROM input model. In
the ROM model, Madhian and Yan [48] show that the randomized Ranking algorithm achieves
competitive ratio 0.696. For the case of weighted offline vertices and adversarial input sequences,
Aggarwal et al. [5] were able to achieve a randomized 1− 1/e competitive ratio by their Perturbed
Ranking algorithm. Huang et al. [39] show that the Perturbed Ranking algorithm obtains a .6534
competitive ratio in the ROM input model.

Feldman et al. [30] introduced online bipartite matching in the i.i.d. model in which each online
vertex is independently and identically generated from some known distribution. In this model,
they were able to beat the 1− 1/e inapproximation for bipartite matching that applies to the fully
adversarial online model. The i.i.d. online bipartite model has been studied for the unweighted
and edge weighted models. The most recent competitive ratios for integral arrival rates are due
to Brubach et al. [16] in which they derive a 0.7299 ratio for the (offline) vertex weighted case
and a 0.705 ratio for edge weighted graphs. Karande et al. [41] show that any competitive ratio
for the ROM model applies to the unknown (and therefore known) i.i.d. models. It follows that
any inapproximation for the known i.i.d. model applies to the ROM model. Kesselheim et al.
[43] extend the classical secretary result and established the optimal 1/e ROM ratio for bipartite
matching with edge weights.

An early example of stochastic probing without commitment is the Pandora’s box problem
attributed to Weitzman [58]. In Weitzman’s Pandora’s box problem, a set of boxes is given, where
each box contains a stochastic value from a known distribution and a cost for opening (i.e., probing)
the box. The algorithm has the option at any time of accepting the value of any opened box and
pays the total cost of all opened boxes. This is an offline probing problem in that boxes can be
opened in any order. An online version of the Pandora’s box problem has recently been studied in

10Initially, competitive analysis refered to the relative performance (i.e., the competitive ratio) of an online algorithm
as compared to an optimal solution (in the worst case over all input sequences determined adversarially). We extend
the meaning of the competitive ratio to also refer to input sequences generated in the ROM model as well as sequences
generated i.i.d. from a known or unknown distribution; that is, whenever the algorithm has no control over the order
of input arrivals.
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Esfandiari et al. [28]. Stochastic probing with commitment has been studied for various packing
problems, most notably for the knapsack problem, as studied in Dean et al. [23, 24]. In the
stochastic knapsack setting, the stochastic inputs are items whose values are known but whose
sizes are stochastic and not known until the algorithm probes the item. As soon as the knapsack
capacity is exceeded by a probed item, the algorithm terminates. Dean et al. also introduced the
offline issue of measuring the benefit of adaptively choosing probes versus having a fixed order of
probes.

Turning back to matching problems, Chen et al. [20] introduced the stochastic matching prob-
lem assuming a known stochastic graph and algorithms that can probe any edge in any order. They
obtained a 4-approximation11 greedy algorithm in the unweighted case for arbitrary patience values.
They conjectured that their greedy algorithm was a 2-approximation. Subsequently, Adamczyk [1]
confirmed that the greedy algorithm is a 2-approximation for the unweighted problem and that this
approximation is tight. Bansal et al. [9] established a 4-approximation for the edge weighted case
with arbitrary patience and a 3-approximation for the special case of bipartite graphs. Adamczyk
et al. [3] improved the Bansal et al. bounds providing an approximation algorithm with a ratio
of 2.845 for bipartite graphs and an algorithm with a ratio of 3.709 for general graphs. Baveja
et al. [10] recently improved the analysis of the original algorithm of Bansal et al., yielding an
approximation ratio of 3.224 for general graphs.

Of particular importance to our paper is the known stochastic matching framework with ROM
arrivals, as defined precisely in Section 2. Gamlath et al. [32] presented a probing algorithm which
is a 1− 1

e -approximation for the bipartite case in the full patience setting ; that is, when there are no
patience restrictions for nodes on either side of the bipartition. The full patience setting is closely
related to the bipartite matching algorithm studied by Ehsani et al. [27], which they prove is a
1− 1

e -approximation as a corollary of their work in the more general combinatorial auctions prophet
secretary problem. While not explicitly stated in [27], their bipartite matching algorithm can be
interpreted as an adaptive probing algorithm in the known stochastic matching framework with
ROM arrivals, attaining the same 1− 1

e non-adaptive approximation ratio as Gamlath et al.. Very
recently, Tang et al. [55] provided an alternative algorithm also attaining the same approximation
ratio of 1− 1

e in the more general oblivious bipartite matching setting, however their algorithm does
not execute in an online fashion, and so is incomparable. See also Tang et al. [56] for an online
greedy algorithm achieving a 0.501 ratio for a known stochastic graph with edge weights.

Mehta and Panigrahi [51] adapted the stochastic matching problem to the online setting prob-
lem with unit patience where the stochastic graph is not known to the algorithm. They specifically
considered the unweighted case for unit patience (for the online nodes) and uniform edge probabil-
ities (i.e,, for every edge e, pe = p for some fixed probability p). They showed that every greedy
algorithm has competitive ratio 1

2 . In the same online setting, they provided a greedy algorithm

that achieves competitive ratio 1
2(1 + (1− p)2/p) which limits to 1

2(1 + e−2) ≈ 0.567 as p→ 0. They
also show that against a “standard linear programming (LP)” benchmark, that the best possible
ratio is 0.621 < 1− 1

e . However, this does not preclude a 1− 1
e competitive ratio for a stricter LP

bound on an optimal stochastic probing algorithm. Preceding the Mehta and Panigrahi work is a
result in Bansal et al. [9] where they consider a known stochastic (type) graph with a distribution
on the online nodes. This can be called the stochastic matching problem with known i.i.d. inputs.

11Unfortunately, approximation and competitive bounds for maximization problems are sometimes represented
both as ratios > 1 and as fractions < 1. We shall report these ratios as stated in the relevant papers. Our results
will be stated as fractions.
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Bansal et al. achieve a 7.92 competitive ratio (or approximately, 0.13 as a fraction) in this stochas-
tic i.i.d. model. This was improved to 0.24 by Adamczyk [3] and most recently, by Brubach et al.
[17] where they obtain a 0.46 competitive ratio and a 1− 1

e inapproximation against a standard LP.
Returning to the unknown stochastic graph setting, there are recent independent papers by

Goyal and Udwani [34] and Brubach et al. [15]. Goyal and Udwani consider the vertex weighted
unit patience problem and establish a (best possible) 1− 1

e competitive ratio against an LP that acts
as an upper bound on an optimum offline probing algorithm (the adaptive benchmark) under the
assumption that the edge probabilities are decomposable (i.e., pu,v = pu ·pv) and a .596 competitive
ratio for vanishingly small edge probabilities. In a recent paper, Huang and Zhang [40] provide a
randomized algorithm for unit patience and offline vertex weights in the online stochastic matching
framework. In the limit as edge probabilities decrease, their algorithm achieves a .572 competitive
ratio. Brubach et al. use and motivate the “ideal stochastic benchmark” (for arbitrary patience)
and an LP relaxation for that ideal benchmark. They establish a best possible deterministic 1

2
competitive ratio against their LP for the vertex weighted online stochastic matching problem. In
[13], the authors generalized the patience setting of Brubach et al. to the case of a downward-
closed set system on an online node’s allowable sequences of edge probes, thereby attaining the
same 1/2 competitive ratio. We also analysed the same algorithm in the vertex-weighted ROM
setting, achieving a competitive ratio of 1− 1/e for a number of settings. Finally, we showed that
an (optimal) asymptotic competitive ratio of 1/e holds for downward-closed set systems in the edge
weighted ROM setting.

40


	1 Introduction
	1.1 Our Results
	1.2 Paper Roadmap

	2 Models and Preliminaries
	2.1 Known I.D. Arrivals

	3 Online Probing with a Known Stochastic Graph
	4 Online Probing with Known I.D. Arrivals
	5 Relaxing the Adaptive Benchmark: Proving Lemma 3.2
	6 A Tight Adaptivity Gap
	7 Conclusion and open problems
	A Section 3 Additions
	B Section 4 Additions
	C Extended Related Works

