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Abstract Greedy algorithms are simple, but their relative power is not well under-
stood. The priority framework (Borodin et al. in Algorithmica 37:295–326, 2003)
captures a key notion of “greediness” in the sense that it processes (in some locally
optimal manner) one data item at a time, depending on and only on the current knowl-
edge of the input. This algorithmic model provides a tool to assess the computational
power and limitations of greedy algorithms, especially in terms of their approxima-
bility. In this paper, we study priority algorithm approximation ratios for the Subset-
Sum Problem, focusing on the power of revocable decisions, for which the accepted
data items can be later rejected to maintain the feasibility of the solution. We first
provide a tight bound of α ≈ 0.657 for irrevocable priority algorithms. We then show
that the approximation ratio of fixed order revocable priority algorithms is between
β ≈ 0.780 and γ ≈ 0.852, and the ratio of adaptive order revocable priority algo-
rithms is between 0.8 and δ ≈ 0.893.

Keywords Greedy · Priority algorithm · Subset-sum · Approximation algorithm ·
Revocable acceptance

1 Introduction

Greedy algorithms are of great interest because of their simplicity and efficiency.
In many cases they produce reasonable (and sometimes optimal) solutions. Sur-
prisingly, it is not obvious how to formalize the concept of a greedy algorithm
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and given such a formalism how to determine its power and limitations with re-
gard to natural combinatorial optimization problems. Borodin et al. (2003) sug-
gested the priority model which provides a rigorous framework to analyze greedy-
like algorithms. In this framework, they define fixed order and adaptive (order) pri-
ority algorithms, both of which capture a key notion of greedy algorithms in the
sense that they process one data item at a time. For fixed order priority, the or-
dering function used to evaluate the priority of a data item is fixed before execu-
tion of the algorithm, while for adaptive priority, the ordering function can change
during every iteration of the algorithm. By restricting algorithms to this frame-
work, approximability results and limitations1 for many problems have been ob-
tained; for example, scheduling problems (Borodin et al. 2003; Regev 2002), facil-
ity location and set cover (Angelopoulos and Borodin 2004), job interval selection2

(JISP and WJISP) (Horn 2004), and various graph problems (Borodin et al. 2005;
Davis and Impagliazzo 2004). The original priority framework specified that deci-
sions (being made for the current input item) are irrevocable. Even within this re-
strictive framework, the gap between the best known algorithm and provable nega-
tive remains significant for most problems. Following Bar-Noy et al. (2001), Erlebach
and Spieksma (2003), Horn (2004) extended the priority framework to allow revoca-
ble acceptances when considering packing problems; that is, input items could be
accepted and then later rejected,3 the only restriction being that a feasible solution
is maintained at the end of each iteration. The revocable (decision) priority model
is intuitively more powerful and almost as conceptually simple as the irrevocable
model and it is perhaps surprising that it is not a more commonly used type of al-
gorithm. Erlebach and Spieksma (2003) and independently Bar-Noy et al. (2001)
provide a simple revocable priority approximation algorithm for the WJISP prob-
lem, and Horn (2004) formalizes this model and provides an approximation upper
bound4 of ≈ 1/(1.17) for the special case of the weighted interval scheduling prob-
lem. Moore’s (1968) “greedy algorithm” for the unweighted throughput maximiza-
tion problem without release times (i.e. 1||∑j Ūj in Graham’s scheduling notation)
solves the problem optimally, and it can also be viewed as a fixed order revocable
priority algorithm. So the notion of revocable decisions has been used in the previous
research, but it has not yet received much attention.

The Subset-Sum Problem (SSP) is one of the most fundamental NP-complete prob-
lems (Garey and Johnson 1979), and perhaps the simplest of its kind. Approximation
algorithms for SSP have been studied extensively in the literature. The first FPTAS
(for the more general knapsack problem) is due to Ibarra and Kim (1975), and the

1We note that similar to the study of online competitive analysis, negative priority results are in some sense
incomparable with hardness of approximation results as there are no explicit complexity considerations as
to how a priority algorithm can choose its next item and how it decides what to do with that item. Negative
results are derived from the structure of the algorithm.
2In the job interval selection problem (JISP), we are given a set of jobs with unit profit and each job consists
of a set of intervals. The objective is to maximize the total profit of scheduled jobs without conflicting
intervals such that there is at most one interval per job. WJISP is the weighted version of JISP.
3Once a data item is rejected, it cannot become part of the solution in the future.
4As we are considering maximization problems in this paper, all approximation ratios will be ≤ 1 so that
negative results become upper bounds on the ratio.
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best current approximation algorithm is due to Kellerer et al. (2003), having time and
space complexity O(min{n

ε
, n + 1

ε2 log 1
ε
}) and O(n + 1

ε
) respectively. Greedy-like

approximation algorithms have also been studied for SSP; an algorithm called greedy
but using multiple passes, has approximation ratio 0.75, see Martello and Toth (1990).
In this paper, we study priority algorithms for SSP. Although in some sense one may
consider SSP to be a “solved problem”, the problem still presents an interesting chal-
lenge for the study of greedy algorithms. We believe the ideas employed for SSP will
be applicable to the study of simple algorithms for other (say scheduling) problems
which are not well understood, such as the throughput maximization problem (with
release times) and some of its more tractable subcases. In particular, can we derive
priority approximation algorithms for throughput maximization when all jobs have
a fixed processing time (i.e. 1|rj ,pj = p|∑j wj Ūj )? (We note that Horn’s 2004
1/(1.17) bound also applies to this problem.) Baptiste (1999) optimally solves this
special case of throughput maximization using a dynamic programming algorithm
with time complexity O(n7). (See also Chuzhoy et al. 2001 and Chrobak et al. 2006
for additional throughput maximization results.)

In spite of the conceptual simplicity of the SSP problem and the priority frame-
work, there is still a great deal of flexibility in how one can design algorithms, both
in terms of the ordering and in terms of which items to accept and (for the revocable
model) which items to discard in order to fit in a new item. We give a tight bound
of α ≈ 0.657 for irrevocable priority algorithms showing that in this case adaptive
ordering does not help. For fixed order revocable algorithms, we can show that the
best approximation ratio is between β ≈ 0.780 and γ ≈ 0.852; for adaptive revocable
priority algorithms, the best approximation ratio is between 0.8 and δ ≈ 0.893.

In some sense, one should not be surprised at the flexibility within the priority
model. Indeed, even for the much more restricted class of online algorithms (where an
adversary dictates the ordering), there can be (at first) non-intuitive algorithms. As an
example, we remark that for Graham’s (1966) classic makespan problem for identical
machines, there is still an open problem as to the optimal online approximation ratio
(i.e. competitive ratio). Here, one improves upon the natural greedy algorithm by not
always making a greedy choice but instead saving some space for future potentially
large items. (For the current best competitive ratio 1.9201, see Fleisher and Wahl
(2000) following a series of results improving on Graham’s 2 − 1

m
bound for the

greedy algorithm on m machines.) In the related and unrelated machine models, the
natural greedy algorithm is not O(1) competitive and the best known competitive
algorithms for these models are not at all obvious (see Aspnes et al. 1997).

2 Definitions and notation

We use bold font letters to denote sets of data items. For a given set R of data items,
we use |R| to denote its cardinality and ‖R‖, its total weight. For a data item u,
we use u to represent the singleton set {u} and 2u, the multi-set {u,u}; we also use
u to represent the weight of u since it is the only attribute. The term u here is an
overloaded term, but the meaning will become clear in the actual context. For set
operations, we use ⊕ to denote set addition, and use � to denote set subtraction.
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2.1 The subset-sum problem

Given a set of n data items with positive weights and a capacity c, the maximization
version of SSP is to find a subset such that the corresponding total weight is max-
imized without exceeding the capacity c. Without loss of generality, we make two
assumptions. First of all, the weights are all scaled to their relative values to the ca-
pacity; hence we can use 1 instead of c for the capacity. Secondly, we assume each
data item has weight ∈ (0,1]. An instance σ of SSP is a set I = {u1, u2, . . . , un} of
n data items, where the set I is the input set, and u1, u2, . . . , un are the data items. A
feasible solution of σ is a subset B of I such that ‖B‖ ≤ 1. An optimal solution of σ

is a feasible solution with maximum weight. We can formulate SSP as a solution of
the following integer programming:

maximize
n∑

i=1

uixi (1)

subject to
n∑

i=1

uixi ≤ 1, (2)

where xi ∈ {0,1} and i ∈ [1, n]. Let A be an algorithm for SSP, for a given instance σ ,
we denote A(σ ) the solution achieved by A and OPT(σ ), the optimal solution, then
the approximation ratio of A on σ is denoted by

ρ(A, σ ) = ‖A(σ )‖
‖OPT(σ )‖ .

Let 	 be the set of all instances of SSP, then the approximation ratio of A over 	 is
denoted by

ρ(A) = inf
σ∈	

ρ(A, σ ).

In a particular analysis, the algorithm and the problem instance are usually fixed. For
convenience, we often use ALG, OPT and ρ to denote the algorithm’s solution, the
optimal solution and the approximation ratio respectively.

2.2 Priority model

We base our terminology and model on that of Borodin et al. (2003), and start with
the class of fixed order irrevocable priority algorithms for SSP. For a given instance, a
fixed order irrevocable priority algorithm maintains a feasible solution B throughout
the algorithm. The structure of the algorithm5 is as follows:

5We formalize the allowable (fixed) orderings by saying that the algorithm specifies a total ordering on all
possible input items. The items that constitute the actual input set I will then inherit this ordering. That
is, the priority model insists that the ordering satisfies Arrow’s Independence of Irrelevant Attributes (IIA)
Axiom (Arrow 1951). For adaptive orderings the algorithm can construct a new IIA ordering based on all
the items that it has already seen as well as those items it can deduce are not in the input set.
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FIXED ORDER IRREVOCABLE PRIORITY

Ordering: Determine a total ordering of all possible data items
while I is not empty

next := index of the data item in I that comes first in the ordering
Decision: Decide whether or not to add unext to B, and then remove unext from I

end while

An adaptive irrevocable priority algorithm is similar to a fixed order one, but in-
stead of looking at a data item according to some pre-determined ordering, the al-
gorithm is allowed to reorder the remaining data items in I at each iteration. This
gives the algorithm an advantage since now it can take into account the information
that has been revealed so far to determine which is the best data item to consider
next. The structure of an adaptive irrevocable priority algorithm is described as fol-
lows:

ADAPTIVE IRREVOCABLE PRIORITY

while I is not empty
Ordering: Determine a total ordering of all possible (remaining) data items
next := index of the data item in I that comes first in the ordering
Decision: Decide whether or not to add unext to B, and then remove unext from I

end while

The above defined priority algorithms are “irrevocable” in the sense that once a data
item is admitted to the solution it cannot be removed. We can extend our notion of
“fixed order” and “adaptive” to the class of revocable priority algorithms, where revo-
cable decisions on accepted data items are allowed. Accordingly, those algorithms are
called fixed order revocable and adaptive revocable priority algorithms respectively.
The extension6 to revocable acceptances provides additional power; for example, as
shown in Iwama and Taketomi (2002), online irrevocable algorithms for SSP cannot
achieve any constant bound approximation ratio, while online revocable algorithms

can achieve a tight approximation ratio of
√

5−1
2 ≈ 0.618.

2.3 Adversarial strategy

We utilize an adversary in proving approximation bounds. For a given priority algo-
rithm, we run the adversary against the algorithm in the following scheme. At the
beginning of the algorithm, the adversary first presents a set of data items to the al-
gorithm, possibly with some data items having the same weight. Furthermore, our
adversary promises that the actual input is contained in this set.7 Since weight is the
only input parameter, the algorithm give the same priority to all items having the
same weight.8 At each step, the adversary asks the algorithm to select one data item

6This extension applies to priority algorithms for packing problems.
7This assumption is optional. The approximation bounds clearly hold for a stronger adversary.
8Technically we can use an item number identifier to further distinguish items, but by providing sufficiently
many copies of an item the adversary can effectively achieve what the statement claims.
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in the remaining set and make a decision on that data item. Once the algorithm makes
a decision on the selected item, the adversary then has the power to remove any num-
ber of data items in the remaining set; this repeats until the remaining set is empty,
which then terminates the algorithm.

For convenience, we often use a diagram to illustrate an adversarial strategy. A di-
agram of an adversarial strategy is an acyclic directed graph, where each node rep-
resents a possible state of the strategy, and each arc indicates a possible transition.
Each state of the strategy contains two boxes. The first box indicates the current solu-
tion maintained by the algorithm, the second box indicates the remaining set of data
items maintained by the adversary. A state can be either terminal or non-terminal.
A state is terminal if and only if it is a sink, in the sense that the adversary no longer
need perform any additional action; we indicate a terminal state using bold boxes.
Each transition also contains two lines of actions. The first line indicates the action
taken by the algorithm and the second line indicates the action taken by the adversary.
Sometimes the algorithm may need to reject certain data items in order to accept a
new one, so an action may contain multiple operations which occur at the same time;
we use 	 to indicate no action. Note that to calculate a bound for the approximation
ratio of an algorithm, it is sufficient to consider the approximation ratios achieved in
all terminal states. We will see such diagrams in Sect. 4.

3 General simplifications

We first provide two simplifications for general priority algorithms, both of which are
based on the approximation ratio, say θ , we want to achieve.

3.1 Implicit terminal conditions

Since we are interested in approximation algorithms, we can terminate an algorithm
at any time if the approximation ratio of θ is achieved. This condition is called a
terminal condition.

– For a fixed irrevocable priority algorithm, the terminal condition is satisfied, if at
the beginning of some step of the algorithm, u is the next data item to be examined,
B′ = (B ⊕ u) and θ ≤ ‖B′‖ ≤ 1.

– For an adaptive irrevocable priority algorithm, the terminal condition is satisfied,
if at the beginning of some step of the algorithm, there exists some u ∈ I and
B′ = (B ⊕ u) such that θ ≤ ‖B′‖ ≤ 1. In this case, u is the next data item, and the
approximation ratio can be achieved.

– For a fixed revocable priority algorithm, the terminal condition is satisfied, if at the
beginning of some step of the algorithm, u is the next data item to be examined,
and there exists B′ ⊆ (B ⊕ u) such that θ ≤ ‖B′‖ ≤ 1.

– For an adaptive revocable priority algorithm, the terminal condition is satisfied,
if at the beginning of some step of the algorithm, there exists some u ∈ I and
B′ ⊆ (B ⊕ u) such that θ ≤ ‖B′‖ ≤ 1. In this case, u is the next data item, and the
approximation ratio can be achieved.
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It is clear that in all four cases, the algorithm can take B′ as the final solution and
immediately terminate. For any algorithm given in this paper, we will not explicitly
state the check of the terminal condition; we assume that the algorithm tests the con-
dition whenever it considers the next data item, and will terminate if the condition is
satisfied. Note that here we do not impose any time bound for checking the terminal
condition in the general model. But for all the algorithms studied in this paper, the
extra check for the terminal condition does not increase much for the time complexity
as the input against such test is highly restricted, and the running time is bounded by
a constant.

3.2 Exclusion of small and extra large data items

For the approximation ratio θ , a data item u is said to be in class S and X if 0 < u ≤
1 − θ and θ ≤ u ≤ 1 respectively. A data item is small if it is in S, and extra large if
it is in X; a data item is relevant if it is neither small nor extra large. It turns out it is
sufficient to consider only relevant data items as we will explain in this section. Let
	′ be the set of instances of SSP whose input contains only relevant data items, and
let A′ be a priority algorithm over 	′; we call A′ a restricted algorithm. For a given
instance σ ∈ 	 with input I, we let σ ′ ∈ 	′ be the instance with input I � S � X. An
algorithm A over 	 is a completion9 of A′ with respect to θ , if for any instance σ ,
either ρ(A, σ ) ≥ θ or A(σ ) � S = A′(σ ′) and A(σ ) ∩ S = S ∩ I. In other words,
it is either A achieves approximation ratio at least θ or A admits all the data items
admitted by A′ plus all the small data items.

Proposition 1 Let A be a completion of A′. If A′ achieves approximation ratio θ

over 	′, then A achieves approximation ratio θ over 	.

Proof Suppose that A′ achieves approximation ratio θ over 	′, but A achieves an
approximation ratio less than θ over 	, then for a given instance σ , A(σ ) � S =
A′(σ ′) and A(σ ) ∩ S = S ∩ I. Hence, we have

‖OPT(σ ) ∩ S‖ ≤ ‖S ∩ I‖ = ‖A(σ ) ∩ S‖.
Therefore, the approximation ratio of A on σ is given by

ρ(A, σ ) = ‖A(σ )‖
‖OPT(σ )‖ = ‖A(σ ) ∩ S‖ + ‖A(σ ) � S‖

‖OPT(σ ) ∩ S‖ + ‖OPT(σ ) � S‖ ≥ ‖A(σ ) � S‖
‖OPT(σ ) � S‖ .

On the other hand, since the algorithm A′ achieves approximation ratio of θ on σ ′,
we have

ρ(A′, σ ′) = ‖A′(σ ′)‖
‖OPT(σ ′)‖ ≥ θ.

Since A′(σ ′) = A(σ ) � S, and ‖OPT(σ ′)‖ ≥ ‖OPT(σ ) � S‖. Therefore,

ρ(A, σ ) ≥ ‖A(σ ) � S‖
‖OPT(σ ) � S‖ ≥ ‖A′(σ ′)‖

‖OPT(σ ′)‖ ≥ θ.

9This is only defined on valid algorithms, i.e., both solutions of A and A′ have to be feasible.
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Therefore, the algorithm A achieves approximation ratio of θ , which is a contradic-
tion. �

Proposition 1 shows that if we have a restricted algorithm which achieves approx-
imation ratio θ over 	′ and it has a completion, then the completion achieves approx-
imation ratio θ over 	. For a given class C of priority algorithms, a completion is
C-preserving if both algorithms are in C.

Proposition 2 Let C be the class of [fixed | adaptive] [irrevocable | revocable] pri-
ority algorithms, then there exists a C-preserving completion from a restricted algo-
rithm in C.

Proof Given a restricted algorithm A′ in C, the algorithm A is constructed from A′
with three phases:

– Phase 1: if there is an extra large data item then take that data item as the final
solution, and terminate the algorithm; otherwise go to Phase 2.

– Phase 2: run the algorithm A′ on σ ′, and then go to Phase 3.
– Phase 3: greedily fill the solution with small data items until either an overflow or

the exhaustion of small data items; terminate the algorithm.

It is clear that the above construction preserves the class of fixed irrevocable pri-
ority algorithms, which is the most restricted class among the four combinations.
Therefore, such construction is C-preserving. There are three possible ways for al-
gorithm A to terminate. If the algorithm A terminates in Phase 1, then it clearly
achieves approximation ratio of θ ; otherwise, it terminates in Phase 3. There are two
cases. If the termination is caused by an overflow of a small data item, then the total
weight of the solution is ≥ θ , hence the target approximation ratio is also achieved. If
the termination is caused by the exhaustion of small data items, then there exists no
extra large data item and the solution admits all the small data items. Furthermore, the
relevant data items kept in the solution by A on σ are the same as those in the solution
by A′ on σ ′. In all three cases, the definition of completion is satisfied. Therefore the
algorithm A is a C-preserving completion of A′. �

Corollary 1 Let C be the class of [fixed | adaptive] [irrevocable | revocable] priority
algorithms, then there exists a θ -approximation algorithm in C if and only if there
exists a θ -approximation restricted algorithm in C.

Proof This follows immediately by Propositions 1 and 2. �

Proposition 3 Let C be the class of [non-increasing10 | non-decreasing] order re-
vocable priority algorithms, then there exists a C-preserving completion from a re-
stricted algorithm in C.

10Non-increasing means items are ordered so that u1 ≥ u2 ≥ · · · ≥ un; non-decreasing means the opposite.
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Proof Given a restricted algorithm A′ in C, the algorithm A is constructed from A′
as follows:

– If encounters an extra large item, then the terminal condition is satisfied.
– If encounters a relevant data item, then it acts the same as A′ unless the terminal

condition is satisfied.
– If encounters a small data item, then that data item always stays in the solution

until the end of the algorithm or the terminal condition is satisfied.

It is clear that the above construction preserves the class of [non-increasing | non-
decreasing] order revocable priority algorithms. Therefore, it is C-preserving. There
are two possible ways for algorithm A to terminate. If the termination of the algo-
rithm is caused by a satisfaction of the terminal condition, then it clearly achieves
approximation ratio of θ ; otherwise, there exists no extra large data item and the so-
lution admits all the small data items. Furthermore, the relevant data items kept in the
solution by A on σ are the same as those in the solution by A′ on σ ′. In both cases,
the definition of completion is satisfied. Therefore the algorithm A is a C-preserving
completion of A′. �

Corollary 2 Let C be the class of [non-increasing | non-decreasing] order revocable
priority algorithms, then there exists a θ -approximation algorithm in C if and only if
there exists a θ -approximation restricted algorithm in C.

Proof This follows immediately by Propositions 1 and 3. �

Note that all the algorithms studied in this paper are covered by either Corollary 1
or 2, we can now safely assume the original input contains only relevant data items.

4 Priority algorithms and approximation bounds

We first define four constants that will be used for our results. Let α, β , γ and δ be
the real roots (respectively) of the equations 2x3 + x2 − 1 = 0, 2x2 + x − 2 = 0,
10x2 − 5x − 3 = 0 and 6x2 − 2x − 3 = 0 between 0 and 1. The corresponding values
are shown in Table 1.

We now give a tight bound for irrevocable priority algorithms. It is interesting that
there is no approximability difference between fixed order and adaptive irrevocable
priority algorithms.

Theorem 1 There is a fixed order irrevocable priority algorithm for SSP with ap-
proximation ratio α, and every irrevocable priority algorithm for SSP has approxi-
mation ratio at most α.

Table 1 Corresponding values
Name α β γ δ

Value ≈0.657 ≈0.780 ≈0.852 ≈0.893
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The case for revocable priority algorithms is more interesting. The ability to make
revocable acceptances gives the algorithm a certain flexibility to regret. The data
items admitted into the solution are never “safe” until the termination of the algo-
rithm. Therefore, if there is enough room, it never hurts to accept a data item no
matter how “bad” it is, as we can always reject it later at any time and with no cost.
For the rest of the paper, we assume our algorithms will take advantage of this prop-
erty. Besides this, the algorithm also assumes that the current set of accepted items B
operates in one of the following four modes:

1. Queue Mode: In this mode, accepted items are discarded in the FIFO order to
accommodate the new data item u.

2. Queue_1 Mode: In this mode, the first accepted item is never discarded, the
remainder data items are discarded in the FIFO order to accommodate the new
data item u.

3. Stack Mode: In this mode, accepted items are discarded in the FILO order to
accommodate the new data item u.

4. Optimum Mode: In this mode, accepted items are discarded to maximize ‖B‖;
the new data item u may also be discarded for this purpose.

We use Bmode to represent the operational mode of B. The algorithm can switch
among these four modes during the processing of data items; we do not explicitly
mention in the algorithm what data items are being discarded since it is well-defined
under its operational mode. Note that all the lower bounds in this paper are indepen-
dent of operational modes of B.

We start with fixed order revocable priority algorithms. For fixed order, two na-
ture ordering are non-increasing order and non-decreasing order. We give two tight
bounds for both cases.

Theorem 2 There is a non-increasing order revocable priority algorithm for SSP
that has approximation ratio α, and every such algorithm has approximation ratio at
most α. (Note that the simple ordering here is different from the fixed order irrevoca-
ble algorithm of Theorem 1.)

Theorem 3 There is a non-decreasing order revocable priority algorithm for SSP
that has approximation ratio β , and every such algorithm has approximation ratio at
most β .

The improvement using non-decreasing order is perhaps counter-intuitive11 as one
might think it is more flexible to fill in with small items at the end. Next, we give a
approximation bound for any fixed order revocable priority algorithm; this exhibits
the first approximation gap we are unable to close. The technique used in the proof
is based on a chain of possible item priorities. It turns out, in order to achieve certain
approximation ratio, some data items must be placed before some other data items.
This order relation is transitive and therefore, has to be acyclic.

11As another example, in the identical machines makespan problem, it is provably advantageous to con-
sider the largest items first.
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Theorem 4 No fixed order revocable priority algorithm of SSP can achieve approx-
imation ratio better than γ .

Proof Let u1 = 0.2, u2 = 1
2γ − 1

10 ≈ 0.326, u3 = 0.5, and u4 = 0.8. For a data
item u, we denote by rank(u) its priority. There are four cases:

1. If rank(u4) > rank(u3), then the adversarial strategy is shown in Fig. 1.
If the algorithm terminates via state s1, then

ρ = ‖ALG‖
‖OPT‖ = u3

u4
< γ.

If the algorithm terminates via state s2, then

ρ = ‖ALG‖
‖OPT‖ ≤ u4

2u3
= u4 < γ.

2. If rank(u3) > rank(u2), then the adversarial strategy is shown in Fig. 2.
If the algorithm terminates via state s1, then

ρ = ‖ALG‖
‖OPT‖ = 2u2

u2 + u3
= γ − 1

5
1
2 + 1

2γ − 1
10

= 10γ − 2

5γ + 4
< γ.

If the algorithm terminates via state s2, then

ρ = ‖ALG‖
‖OPT‖ ≤ u2 + u3

3u2
=

1
2 + 1

2γ − 1
10

3
2γ − 3

10

= 5γ + 4

15γ − 3
< γ.

3. If rank(u2) > rank(u1), then the adversarial strategy is shown in Fig. 3.
If the algorithm terminates via state s1, then

ρ = ‖ALG‖
‖OPT‖ ≤ 2u1 + u2

u1 + 2u2
=

2
5 + 1

2γ − 1
10

1
5 + γ − 1

5

=
1
2γ + 3

10

γ
= 5γ + 3

10γ
≤ γ.

Fig. 1 Adversarial strategy for rank(u4) > rank(u3)

Fig. 2 Adversarial strategy for rank(u3) > rank(u2)
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Fig. 3 Adversarial strategy for rank(u2) > rank(u1)

Fig. 4 Adversarial strategy for rank(u1) > rank(u2) > rank(u3) > rank(u4)

If the algorithm terminates via state s2, then

ρ = ‖ALG‖
‖OPT‖ ≤ u1 + 2u2

5u1
= u1 + 2u2 = 1

5
+ γ − 1

5
= γ.

4. If rank(u1) > rank(u2) > rank(u3) > rank(u4), then the adversarial strategy is
shown in Fig. 4.
If the algorithm terminates via state s1, then

ρ = ‖ALG‖
‖OPT‖ = u1 + u3

u2 + u3
=

1
5 + 1

2
1
2γ − 1

10 + 1
2

= 7

5γ + 4
< γ.

If the algorithm terminates via state s2, then

ρ = ‖ALG‖
‖OPT‖ ≤ u2 + u3

u1 + u4
= u2 + u3 = 1

2
γ − 1

10
+ 1

2
< γ.

As a conclusion, no fixed order revocable priority algorithm of SSP can achieve ap-
proximation ratio better than γ . This completes the proof. �

Finally, we study adaptive revocable priority algorithms. This is the strongest class
of algorithms studied in this paper and arguably represents the ultimate approxima-
tion power of greedy algorithms (for packing problems). We show that no such al-
gorithm can achieve an approximation ratio better than δ, and then we develop a rel-
atively subtle algorithm having approximation ratio 0.8 in Theorem 6, thus leaving
another gap in what is provably the best approximation ratio possible.

Theorem 5 No adaptive revocable priority algorithm of SSP can achieve approxi-
mation ratio better than δ.

Proof Let u1 = 1
3δ ≈ 0.298 and u2 = 0.5. For a given algorithm, we utilize the fol-

lowing adversary strategy shown in Fig. 5. If the algorithm terminates via state s1
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Fig. 5 Adversarial strategy for adaptive revocable priority algorithms

or s2, then

ρ = ‖ALG‖
‖OPT‖ ≤ 3u1

2u2
= 3u1 = δ.

If the algorithm terminates via state s3 or s4, then

ρ = ‖ALG‖
‖OPT‖ ≤ u1 + u2

3u1
=

1
3δ + 1

2

δ
= 2δ + 3

6δ
≤ δ.

If the algorithm terminates via state s5, then

ρ = ‖ALG‖
‖OPT‖ = 2u1

u1 + u2
=

2
3δ

1
3δ + 1

2

= 4δ

2δ + 3
< δ.

In all three cases, the adversary forces the algorithm to have approximation ratio no
better than δ; this completes the proof. �

We now show an adaptive revocable priority algorithm which achieves approxi-
mation ratio 0.8. The method of developing such an algorithm, or in more general
all the algorithms in this paper, is to simultaneously study adversaries and algorithms
for the same problem; by examining closely the boundary points of a lower bound, it
often enhances our understanding of underlying difficulties and in most cases gains
us valuable insights as of how to design good algorithms. The example in the lower
bound proof suggests that the most “troublesome” items are those near 0.3. This
makes sense since if a data item is bigger than 0.4, then we can almost always con-
sider it at a relatively late time since for any solution less than 0.8, we can have at
most one such item. Therefore the primary focus is given to data items in the range
of (0.2,0.4).

Our algorithm uses an ordering of data items which is determined by its distance
to 0.3, i.e., the closer a data item to 0.3, the higher its priority is, breaking tie arbitrar-
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ily. Note that this ordering does not make the algorithm fixed order priority, as this
ordering may be interrupted if at any point of time a terminal condition is satisfied.
The algorithm is described below.

Algorithm ADAPTIVE

1: Order data items determined by its distance to 0.3;
2: B := ∅;
3: if the first data item is in (0.2,0.35) then
4: Bmode := Queue;
5: else
6: Bmode := Queue_1;
7: end if
8: while I contains a data item ∈ (0.2,0.4] do
9: let u be the next data item in I;

10: I := I � u;
11: accept u;
12: end while
13: if B contains exactly three data items and all are ∈ (0.2,0.3] then
14: Bmode := Stack;
15: else
16: Bmode := Optimum;
17: end if
18: while I contains a data item ∈ (0.4,0.8) do
19: let u be the next data item in I;
20: I := I � u;
21: accept u;
22: end while

Theorem 6 Algorithm ADAPTIVE achieves approximation ratio 0.8 for SSP.

It is seemingly a small step from a 0.78 algorithm to a 0.8 algorithm, but the
latter algorithm requires a substantially more refined approach and detailed analysis.
The merit, we believe, in studying such a class of “simple algorithms” is that the
simplicity of the structure suggests algorithmic ideas and allows a careful analysis
of such algorithms. Limiting ourselves to simple algorithmic forms and exploiting
the flexibility within such forms may very well give us a better understanding of the
structure of a given problem and a better chance to derive new algorithms.

5 Conclusion

We analyze different types of priority algorithms for SSP leaving open two approx-
imability gaps, one for fixed order and one for adaptive revocable priority algorithms.
It is interesting that such gaps and non-trivial algorithms exist for such a simple class
of algorithms and such a basic problem as SSP. We optimistically believe that sur-
prisingly good algorithms can be designed within the revocable priority framework
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for problems which are currently not well understood. In particular, we believe it is
worth considering revocable priority algorithms for the time constrained scheduling
problem TCSP and the related job interval scheduling problem JISP (see Bar Noy
et al. 2001, Chuzhoy et al. 2001 and Erlebach and Spieksma 2003).

Appendix A: Proof of Theorem 1

Lemma 1 No adaptive irrevocable priority algorithm of SSP can achieve approxi-
mation ratio better than α.

Proof We show that for any irrevocable priority algorithm and every small ε > 0,
ρ < α + ε. Let

u1 = α ≈ 0.657, u2 = 2α3 + α2ε ≈ 0.568,

u3 = α2 ≈ 0.432, u4 = α2 − α2ε ≈ 0.432;
then for any algorithm, the adversary presents one copy of u1, u2, u4 and two copies
of u3 to the algorithm. Let u be the data item with highest priority among these four
types, then if the algorithm discards u on its first decision, then the adversary can
remove the rest of the data items and force infinite approximation ratio. We there-
fore assume that the algorithm always takes the first data item into its solution, then
depending on which is the first data item the algorithm selects, there are four cases:

1. If u = u1, then the adversary removes two copies of u3; since u1 + u2 > 1 and
u1 + u4 > 1, the algorithm can take neither of the two, hence ‖ALG‖ = u1. On the
other hand, u2 + u4 = 1, hence ‖OPT‖ = u2 + u4. Therefore, the approximation
ratio is

ρ = ‖ALG‖
‖OPT‖ = u1

u2 + u4
= α

2α3 + α2
= α.

2. If u = u2, then the adversary removes one copy of u1 and one copy of u4; since
u2 + u3 > 1, the algorithm can take neither of the two, hence ‖ALG‖ = u2. On the
other hand, u2 < 2u3 < 1, hence ‖OPT‖ = 2u3. Therefore, the approximation ratio
is

ρ = ‖ALG‖
‖OPT‖ = u2

2u3
= 2α3 + α2ε

2α2
= α + ε

2
.

3. If u = u3, then the adversary removes one copy of u2, u3 and u4; since u1 + u3 >

1, the algorithm cannot take u1, hence ‖ALG‖ = u3. On the other hand, u3 < u1 <

1, hence ‖OPT‖ = u1. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ = u3

u1
= α2

α
= α.

4. If u = u4, then the adversary removes two copies of u3; since u1 + u4 > 1, the
algorithm cannot take u1, hence ‖ALG‖ = u4. On the other hand, u4 < u1 < 1,
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Fig. 6 Classification for the
fixed irrevocable priority
algorithm

hence ‖OPT‖ = u1. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ = u4

u1
= α2 − α2ε

α
<

α2

α
= α.

Therefore, in all cases, ρ < α + ε; this completes the proof. �

We now give a fixed irrevocable priority algorithm that achieves approximation
of α. As justified earlier in Sect. 3, we only consider relevant data items for the input
set; we partition all possible relevant data items into two sets: M and L. A data item
u is said to be in class M and L if 1 − α < u ≤ α2 and α2 < u < α respectively;
see Fig. 6. We specify the ordering of data items for the fixed irrevocable priority
algorithm: it first orders data items in L non-decreasingly, and then data items in
M non-decreasingly. The algorithm, which is described below, uses this ordering to
achieve the approximation ratio α.

Lemma 2 There is a fixed order irrevocable priority algorithm, which uses the above
ordering, for SSP with approximation ratio α.

Proof It is sufficient to show that Algorithm 1 achieves this approximation ratio. Note
that if ALG contains more than one data item, the ‖ALG‖ > 2

3 > α; hence the algorithm
achieves approximation ratio α. Suppose now ALG contains only one data item uj . If
uj ∈ M, then |L ∩ I| = 0 and |M ∩ I| = 1. Therefore, we have ‖OPT‖ = ‖ALG‖ = uj ;
the algorithm achieves approximation ratio 1. Suppose now uj ∈ L, we then consider
data items in OPT. Note that OPT can contain at most two data items; there are five
cases:

1. If OPT contains exactly one data item ur ∈ M, then |L ∩ I| = 0 and hence uj ∈ M.
Since uj ∈ L, this is a contradiction; this case is impossible.

Algorithm 1
1: Order data items in L non-decreasingly and then M non-decreasingly;
2: B := ∅;
3: for i := 1 to n do
4: let ui be the next data item in I;
5: I := I � ui ;
6: if ‖B‖ + ui ≤ 1 then
7: B := B ⊕ ui ;
8: end if
9: end for



214 J Comb Optim (2008) 16: 198–228

2. If OPT contains exactly one data item ur ∈ L, then the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ = uj

ur

>
α2

α
= α.

3. If OPT contains two data items ur,us ∈ M with ur ≤ us , then we have uj +us > 1.
Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ = uj

ur + us

>
1 − us

ur + us

>
1 − α2

2α2
= 2α3

2α2
= α.

4. If OPT contains two data items ur,us with ur ∈ M and us ∈ L, then ALG should
have contained the smallest data item in M ∩ I and the smallest data item in L ∩ I,
or the smallest two data items in L ∩ I, and hence a contradiction; this case is
impossible.

5. If OPT contains two data items ur,us ∈ L with ur ≤ us , then ALG should have
contained the smallest two data items in L ∩ I, and hence a contradiction; this
case is impossible.

Therefore, Algorithm 1 achieves the approximation ratio α. �

Theorem 1 is immediate by Lemmas 1 and 2.

Appendix B: Proof of Theorem 2

Lemma 3 No non-increasing order revocable priority algorithm of SSP can achieve
approximation ratio better than α.

Proof We show that for any non-increasing order revocable priority algorithm and
every small ε > 0, ρ < α + ε. Let

u1 = α ≈ 0.657, u2 = 2α3 + α2ε ≈ 0.568,

u3 = α2 ≈ 0.432, u4 = α2 − α2ε ≈ 0.432;
we utilize the following adversarial strategy shown in Fig. 7.
If the algorithm terminates via state s1, then ‖ALG‖ ≤ u1. Since u2 +u4 = 2α3 +α2 =
1, we have ‖OPT‖ = u2 + u4. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ ≤ u1

u2 + u4
= α

2α3 + α2
= α.

If the algorithm terminates via state s2, then ‖ALG‖ ≤ u2 and ‖OPT‖ = 2u3. There-
fore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ ≤ u2

2u3
= 2α3 + α2ε

2α2
= α + 1

2
ε.
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Fig. 7 Adversarial strategy for fixed non-increasing order

Algorithm 2
1: Order data items non-increasingly;
2: B := ∅;
3: Bmode := Queue;
4: for i := 1 to n do
5: let ui be the next data item in I;
6: I := I � ui ;
7: if ‖B‖ + ui ≤ 1 then
8: accept ui ;
9: else if ui ∈ L then

10: accept ui ;
11: else
12: reject ui ;
13: end if
14: end for

If the algorithm terminates via state s3, then ‖ALG‖ = u3 and ‖OPT‖ = u1. Therefore,
the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ = u3

u1
= α2

α
= α.

In all three cases, the adversary forces the algorithm to have approximation ratio
ρ < α + ε; this completes the proof. �

We now give a non-increasing order revocable priority algorithm that achieves the
approximation ratio α. We use the same partition as shown in Fig. 6; the algorithm is
described below.

Lemma 4 There is a non-increasing order revocable priority algorithm of SSP with
approximation ratio α.

Proof It is sufficient to show that Algorithm 2 achieves this approximation ratio. We
prove this by induction on i. At the end of the ith iteration of the for loop, we let ALGi
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and OPTi be the algorithm’s solution and the optimal solution respectively; these are
solutions with respect to the first i data items {u1, . . . , ui}. We also let ρi to be the
current approximation ratio,

ρi = ‖ALGi‖
‖OPTi‖ .

It is clear that at the end of the first iteration, the algorithm has approximation ratio
ρ1 = 1 > α. Suppose there is no early termination and the α-approximation is main-
tained for the first k − 1 iterations, i.e., ‖ALGi‖ < α and ρi ≥ α for all i < k; we
examine the case for i = k, k ≥ 2. Note that |ALGi | = 1 for all i < k, for otherwise
‖ALGi‖ ≥ α. The algorithm examines data items in non-increasing order; for data
items in L, it always accepts the current one into the solution, no matter whether or
not the data item fits; for data items in M, it always rejects the current one if it does
not fit. In that sense, it tends to keep the smallest data item in L ∩ I and the largest
data item in M ∩ I. There are only three possibilities for uk during the kth iteration; it
must fall into one of the lines 6, 8 and 10:

1. Line 6: then the algorithm accepts uk into the solution without discarding any
accepted data item in the solution. Hence we have |ALGi | = 2, the terminal condi-
tion is satisfied. Therefore, the algorithm terminates and achieves approximation
ratio α.

2. Line 8: then at the end of (k−1)th iteration, ALGk−1 contains only uk−1. Since the
terminal condition is not satisfied during the kth iteration, we have uk−1 + uk > 1.
Therefore, the algorithm accepts uk into the solution by discarding uk−1. Note
that uk and uk−1 are the two smallest data items examined so far and uk−1 +
uk > 1, hence OPTk contains exactly one data item, say ur , in L. Therefore, the
approximation ratio is

ρk = ‖ALGk‖
‖OPTk‖ = uk

ur

≥ α2

α
= α.

3. Line 10: then uk ∈ M and the algorithm rejects uk , therefore ALGk = ALGk−1.
Furthermore, at the end of (k − 1)th iteration, ALGk−1 contains exactly one data
item. Observe that it cannot be a data item in M; for otherwise, the terminal con-
dition is satisfied. Therefore, ALGk−1 contains exactly one data item, say uj , in
L. Since the terminal condition is not satisfied during the kth iteration, we have
uk + uj > 1; therefore,

‖ALGk‖ = ‖ALGk−1‖ = uj > 1 − uk ≥ 1 − α2 = 2α3.

Note that for all the data items examined so far, uk is the smallest in M, uj is the
smallest in L, and uk + uj > 1, hence OPTk can either contain one data item in L
or two data items in M; in both cases ‖OPTk‖ < 2α2. Therefore, the approximation
ratio is

ρk = ‖ALGk‖
‖OPTk‖ >

2α3

2α2
= α.
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We now have shown that in all three cases, the algorithm maintains the approximation
ratio ρi ≥ α for i = k; this completes the induction. Therefore, Algorithm 2 achieves
approximation ratio α. �

Theorem 2 is immediate by Lemmas 3 and 4.

Appendix C: Proof of Theorem 3

Lemma 5 No non-decreasing order revocable priority algorithm of SSP can achieve
approximation ratio better than β .

Proof We show that for any non-decreasing order revocable priority algorithm and
every small ε > 0, ρ < β + ε. Let

u1 = 1 − β ≈ 0.220, u2 = 1

2
β + 1

4
ε ≈ 0.390, u3 = β ≈ 0.780;

we utilize the following adversarial strategy shown in Fig. 8.
If the algorithm terminates via state s1, then ‖ALG‖ = u1 +u2 and ‖OPT‖ = 2u2. Note
that u1 + u2 = 1 − 1

2β + 1
4ε = β2 + 1

4ε. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ = u1 + u2

2u2
= 1 − 1

2β + 1
4ε

β + 1
2ε

= β2 + 1
4ε

β + 1
2ε

< β.

If the algorithm terminates via state s2, then ‖ALG‖ ≤ 2u2. Since u1 + u3 = 2 = 1,
we have ‖OPT‖ = u1 + u3. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ ≤ 2u2

u1 + u3
= β + 1

2
ε.

In both cases, the adversary forces the algorithm to have approximation ratio ρ <

β + ε; this completes the proof. �

We now give a non-decreasing order revocable priority algorithm that achieves the
approximation ratio β . For all possible relevant data items, we partition them into two

Fig. 8 Adversarial strategy for
fixed non-decreasing order



218 J Comb Optim (2008) 16: 198–228

Fig. 9 Classification for
non-decreasing order

Algorithm 3
1: Order data items non-decreasingly;
2: B := ∅;
3: Bmode := Stack;
4: for i := 1 to n do
5: let ui be the next data item in I;
6: I := I � ui ;
7: accept ui ;
8: end for

sets: M and L. A data item u is said to be in class M and L if 1 − β < u ≤ 1
2β and

1
2β < u < β respectively; see Fig. 9.

The algorithm achieves this ratio is surprisingly simple; it basically set Bmode to
Stack mode, and accepts each data item in turn; see Algorithm 3.

Lemma 6 There is a non-decreasing order revocable priority algorithm of SSP with
approximation ratio β .

Proof It is sufficient to show that Algorithm 3 achieves this approximation ratio. We
prove this by induction on i. At the end of the ith iteration of the for loop, we let ALGi

and OPTi be the algorithm’s solution and the optimal solution respectively; and let ρi

be the current approximation ratio. It is clear that at the end of the first iteration, the
algorithm has approximation ratio ρ1 = 1 > β . Suppose there is no early termination
and the approximation ratio ρi ≥ β is maintained for all i < k, we examine the case
for i = k. There are two possibilities. The first case is that ‖B‖ + uk ≤ 1, then the
algorithm accepts uk into the solution without discarding any accepted data item in
the solution. Hence we have ‖OPTk‖ ≤ ‖OPTk−1‖ + uk ; for otherwise, we can take
OPTk � uk as OPTk−1, which leads to a contradiction. Therefore, the approximation
ratio is

ρk = ‖ALGk‖
‖OPTk‖ ≥ ‖ALGk−1‖ + uk

‖OPTk−1‖ + uk

≥ ‖ALGk−1‖
‖OPTk−1‖ = ρk−1 ≥ β.

This leaves the case when ‖B‖+uk > 1. Note that the algorithm examines data items
in non-decreasing order; u1 is the smallest data item in I and u2 is the second smallest.
These two data items are at the bottom of the stack, hence tend to stay in the stack
unless we see a data item with sufficient large weight:

– Observation 1: if at certain stage of the algorithm, after accepting uk , there is only
one data item uk �= u1 in the stack, then we have u1 + uk > 1; see Fig. 10.



J Comb Optim (2008) 16: 198–228 219

Fig. 10 Stack with one data
item

Fig. 11 Stack with two data
items

– Observation 2: if at certain stage of the algorithm, after accepting uk , there are
only two data items in the stack and the top of the stack is uk �= u2, then we have
u1 + u2 + uk > 1; see Fig. 11.

The above two inequalities are useful in our analysis. Now we consider data items in
OPTk ; there are six cases:

1. If |OPTk| = 1, then OPTk = {uk}. Since the algorithm always accepts the current
data item, we have uk ∈ ALGk , and hence ALGk = OPTk . Therefore, the approxi-
mation ratio is

ρk = ‖ALGk‖
‖OPTk‖ = 1.

2. If OPTk contains exactly two data items ur,us ∈ M with ur ≤ us , then we have
both u1 and u2 in M ; we now consider data items in ALGk .
(a) If |ALGk| = 1, then ALGk = {uk}; by Observation 1, we have

u1 + uk > 1.

Since ur + us ≤ β , we have 1 − u1 ≥ 1 − 1
2β = β2. Therefore, the approxi-

mation ratio is

ρk = ‖ALGk‖
‖OPTk‖ = uk

ur + us

>
1 − u1

ur + us

≥ β2

β
= β.

(b) If |ALGk| = 2, then ALGk = {u1, uk}; by Observation 2, we have

u1 + u2 + uk > 1.

Since ur + us ≤ β , we have 1 − u2 ≥ 1 − 1
2β = β2. Therefore, the approxi-

mation ratio is

ρk = ‖ALGk‖
‖OPTk‖ = u1 + uk

ur + us

>
1 − u2

ur + us

≥ β2

β
= β.
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(c) If |ALGk| ≥ 3, then {u1, u2, uk} ∈ ALG. Note that u1 +u2 > 2−2β . Therefore,
the approximation ratio is

ρk = ‖ALGk‖
‖OPTk‖ ≥ u1 + u2 + uk

ur + us

>
2 − 2β + us

1
2β + us

> 1,

which is a contradiction; this case is impossible.
3. If OPTk contains exactly two data items ur ∈ M and us ∈ L, then we have u1 in

M ; we now consider data items in ALGk .
(a) If |ALGk| = 1, then ALGk = {uk}; by Observation 1, we have

u1 + uk > 1. (3)

Note that u1 + us ≤ ur + us ≤ 1. When the algorithm considers us , u1 is
already in the solution. Since the terminal condition is not satisfied, we have

u1 + us < β. (4)

Combining (3) and (4), we have uk > 1 − β + us . Therefore,

ρk = ‖ALGk‖
‖OPTk‖ = uk

ur + us

>
1 − β + us

1
2β + us

> β.

(b) If |ALGk| = 2, then ALGk = {u1, uk}. Therefore

ρk = ‖ALGk‖
‖OPTk‖ = u1 + uk

ur + us

>
1 − β + us

1
2β + us

> β.

(c) If |ALGk| ≥ 3, then {u1, u2, uk} ∈ ALG. Note that u1 +u2 > 2−2β . Therefore,
the approximation ratio is

ρk = ‖ALGk‖
‖OPTk‖ ≥ u1 + u2 + uk

ur + us

>
2 − 2β + us

1
2β + us

> 1,

which is a contradiction; this case is impossible.
4. If OPTk contains exactly two data items ur,us ∈ L with ur ≤ us , then we have

β ≤ ur + ur+1 ≤ ur + us ≤ 1.

When the algorithm considers ur+1, ur is already in the solution; hence the termi-
nal condition is satisfied.

5. If OPTk contains exactly three data items ur,us, ut ∈ M with ur ≤ us ≤ ut , then
we have both u1 and u2 in M ; we now consider data items in ALGk .
(a) If |ALGk| = 1, then ALGk = {uk}; by Observation 1, we have

u1 + uk > 1. (5)

Note that u1 + ur + us ≤ u1 + us + us+1 ≤ ur + us + ut ≤ 1. When the
algorithm considers us+1, u1 and us are already in the solution. Since the
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terminal condition is not satisfied, we have u1 + us + us+1 < β . Therefore,

u1 + ur + us < β. (6)

Combining (5) and (6), we have uk > 1 − β + ur + us . Since both ur and us

are in M, we have ur + us > 2 − 2β > 1
2β. Therefore,

ρk = ‖ALGk‖
‖OPTk‖ = uk

ur + us + ut

>
1 − β + (ur + us)

1
2β + (ur + us)

> β.

(b) If |ALGk| = 2, then ALGk = {u1, uk}; by Observation 2, we have

u1 + u2 + uk > 1. (7)

– If r = 1, then u2 +ur +us ≤ u1 +u2 +us+1 ≤ ur +us +ut ≤ 1. When the
algorithm considers us+1, u1 and u2 are already in the solution. Since the
terminal condition is not satisfied, we have u1 + u2 + us+1 < β . Therefore,

u2 + ur + us < β. (8)

– If r > 1, then u2 +ur +us ≤ u2 +us +us+1 ≤ ur +us +ut ≤ 1. When the
algorithm considers us+1, u2 and us are already in the solution. Since the
terminal condition is not satisfied, we have u2 + us + us+1 < β . Therefore,
the inequality (8) is also satisfied.

Therefore, in both cases we have (8). Combining (7) and (8), we have u1 +
uk > 1 − β + ur + us . Since both ur and us are in M, we have ur + us >

2 − 2β > 1
2β. Therefore,

ρk = ‖ALGk‖
‖OPTk‖ = u1 + uk

ur + us + ut

>
1 − β + (ur + us)

1
2β + (ur + us)

> β.

(c) If |ALGk| ≥ 3, then {u1, u2, uk} ⊆ ALG. Note that u1 + ur + us ≤ u1 + us +
us+1 ≤ ur + us + ut ≤ 1. When the algorithm considers us+1, u1 and us are
already in the solution. Since the terminal condition is not satisfied, we have
u1 + us + us+1 < β . Therefore,

u1 + ur + us < β. (9)

Then we have ur +us < β −u1 < β − (1 −β) = 2β − 1. Note that u1 +u2 >

2 − 2β . Therefore,

ρk = ‖ALGk‖
‖OPTk‖ ≥ u1 + u2 + uk

ur + us + ut

>
2 − 2β + ut

2β − 1 + ut

> β.

6. If OPTk contains exactly three data items ur,us ∈ M and ut ∈ L with ur ≤ us , then
we have

β < 2 − 2β + 1

2
β < u1 + u2 + ut ≤ ur + us + ut ≤ 1.
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When the algorithm considers ut , u1 and u2 are already in the solution; hence the
terminal condition is satisfied.

We now have shown that in all six cases, the algorithm maintains the approximation
ratio ρi ≥ β for i = k; this completes the induction. Therefore, Algorithm 3 achieves
approximation ratio β . �

Theorem 3 is immediate by Lemmas 5 and 6.

Appendix D: Proof of Theorem 6

For notational convenience, we use the following symbols to denote data items in
different classes; see Table 2. The algorithm can be divided into two stages. In the
first stage (while loop) data items of type ♦ are processed; in the second stage
(while loop) data items of type � are processed. For a given instance, we now as-
sume that the algorithm ADAPTIVE achieves approximation ratio less than 0.8 and
try to derive a contradiction. First, we let S = u1, u2, . . . , un be the input sequence
of data items according to the algorithm’s ordering, and let S1 = u1, u2, . . . , um and
S2 = um+1, um+2, . . . , un be the input sequences of data items for the first stage and
second stage respectively.

Lemma 7 Let u be the next data item to be examined and B′ = (B⊕u). If B′ contains
three data items ui , uj , uk , with i < j < k, then (ui, uj , uk) cannot be any of the
following types:

(�,�,�), (�,�,�),

(�,�,�), (�,�,�);
Proof This is immediate as the total weight of those triples are in [0.8,1]. Since at
each step, the algorithm adaptively checks for a terminal condition, it can detect those
triples and terminate early. �

Lemma 8 The input sequence S is of one of the following sequence types:

1. �,�,�, . . . ,�,�,�;
2. �,�,�, . . . ,�,�,�;
3. �,�,�, . . . ,�,�,�;
4. �,�,�, . . . ,�,�,�;
assuming S1 = u1, . . . , um and each type has m data items.

Proof This clearly holds if S1 contains at most two data items. Suppose now S1
contains more than two data items; there are four cases:

Table 2 Corresponding
symbols Class (0.2,0.4] (0.4,0.8) (0.2,0.3] (0.3,0.4]

Symbol ♦ � � �
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1. If (u1, u2) = (�,�), then B is in Queue Mode for the first stage. Suppose �
occurs after u2, then let ui+1 be the first such occurrence; when the algorithm
considers ui+1, {ui−1, ui} ⊆ B. Since (ui−1, ui, ui+1) = (�,�,�), this contra-
dicts Lemma 7.

2. If (u1, u2) = (�,�), then B is in Queue Mode for the first stage. Suppose
� occurs after u2, then let ui+1 be the first such occurrence; when the algo-
rithm considers ui+1, {ui−1, ui} ⊆ B. Since either (ui−1, ui, ui+1) = (�,�,�),
or (ui−1, ui, ui+1) = (�,�,�), this contradicts Lemma 7.

3. If (u1, u2) = (�,�), then we have two cases:
(a) If u1 < 0.35, then B is in Queue Mode for the first stage. Suppose � oc-

curs after u2, then let ui+1 be the first such occurrence; when the algorithm
considers ui+1, {ui−1, ui} ⊆ B. Since either (ui−1, ui, ui+1) = (�,�,�), or
(ui−1, ui, ui+1) = (�,�,�), this contradicts Lemma 7.

(b) If u1 ≥ 0.35 then B is in Queue_1 Mode for the first stage. Suppose � oc-
curs after u2, then let ui+1 be the first such occurrence; when the algorithm
considers ui+1, {u1, ui} ⊆ B. Since (u1, ui, ui+1) = (�,�,�), this contra-
dicts Lemma 7.

4. If (u1, u2) = (�,�), then we have two cases:
(a) If u1 < 0.35, then B is in Queue Mode for the first stage. Suppose � occurs

after u2, then let ui+1 be the first such occurrence; when the algorithm consid-
ers ui+1, {ui−1, ui} ⊆ B. Since (ui−1, ui, ui+1) = (�,�,�), this contradicts
Lemma 7.

(b) If u1 ≥ 0.35, then B is in Queue_1 Mode for the first stage. Suppose � oc-
curs after u2, then let ui+1 be the first such occurrence; when the algorithm
considers ui+1, {u1, ui} ⊆ B. Since (u1, ui, ui+1) = (�,�,�), this contra-
dicts Lemma 7.

Therefore, S1 must be of one of the input sequence types above. �

Lemma 8 is useful as it eliminates many cases we need to consider. We now give
two observations:

– Observation I: for the input sequence types 1 and 2, the data items in S1 is non-
increasing, and the total weight of the first three data items of S1 is no greater
than 1.

– Observation II: for the input sequence types 3 and 4, the data items in S1 is non-
decreasing. and the total weight of the first three data items of S1 is greater than 0.8.

The data items in S2 is non-decreasing in both cases. For convenience, we denote
ALG′ the algorithm’s solution at the end of the first stage; we also suppose S is non-
empty; for otherwise, the problem becomes trivial.

Lemma 9 |OPT| > 1.

Proof Suppose now |OPT| = 1, there are two cases:

1. If S contains a data item of type �, then un is the largest data item in S and
OPT = {un}. No matter which operational mode B is in, un is always accepted into
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the solution. Since un is the last data item in S, the algorithm achieves the optimal
solution in this case, which is a contradiction.

2. If S does not contain a data item of type �, then the entire input sequence S contain
exactly one data item of type ♦, hence the algorithm easily achieves the optimal
solution, which is a contradiction.

Therefore, both cases are impossible, and hence |OPT| > 1. �

Lemma 10 No feasible solution contains two data items in S2.

Proof We prove this by contradiction. Suppose there is a feasible solution which
contains two data items in S2, then it is clear that 0.8 ≤ um+1 + um+2 ≤ 1, and
um+1 ≤ 0.5; we exam the beginning of the second stage when the algorithm con-
siders um+1. Note that the algorithm has to reject um+1, for otherwise, when the
algorithm considers the next data item um+2, the terminal condition is satisfied.

1. If |ALG′| < 2, then ‖ALG′‖ ≤ 0.4. Since ‖ALG′‖ + um+1 ≤ 1, the algorithm must
then accept um+1 into its solution, which is a contradiction.

2. If |ALG′| = 2, then B is in Optimum Mode for the second stage. Let ALG′ =
{ui, uj }, then we have ui + uj < uj + um+1 < um+1 + um+2 ≤ 1, the algorithm
must then accept um+1 into its solution, which is a contradiction.

3. If |ALG′| = 3, then we have S1 is of either input sequence type 1 or 2; for otherwise,
by Lemma 8, either ALG′ = {�,�,�} or ALG′ = {�,�,�}, and hence ‖ALG′‖ >

0.8, which is a contradiction.
(a) If ALG′ = {�,�,�}, then ALG′ = {u1, um−1, um}. Since u1 ≥ 0.3, we have

0.4 ≤ um−1 + um ≤ 0.5. (10)

If there exist a data item in [0.4,0.5], then combined with (10), that data item
will interrupt the ordering and the terminal condition is satisfied. Hence, there
exists no data item in [0.4,0.5], Therefore, No feasible solution contains two
data items in S2.

(b) If ALG′ = {�,�,�}, then during the second stage, B is in Stack Mode,
hence the algorithm must then accept um+1 into its solution, which is a con-
tradiction.

Therefore, no feasible solution contains two data items in S2. This completes the
proof. �

Lemma 11 |OPT| < 4 ⇒ ‖OPT‖ < 0.8.

Proof We prove this by contradiction. Suppose that |OPT| < 4 and ‖OPT‖ ≥ 0.8; by
Lemma 9, |OPT| > 1. There are two cases:

1. If |OPT| = 2, then let OPT = {ur,us} with ur ≤ us . Note that if (ur , us) = (�,�),
then it contradicts Lemma 10. Therefore (ur , us) = (♦,�), then ur always enters
the solution. This is because during the first stage, B is either in Queue_1 Mode
or Queue Mode, every data item in S1 gets a chance to enter the solution. Since
ur + us ≥ 0.8, us will interrupt the ordering and become the next data item to
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be examined when ur is in B, hence the terminal condition is satisfied; this is a
contradiction.

2. If |OPT| = 3, then let OPT = {ur,us, ut } with ur ≤ us ≤ ut , there are two possibil-
ities:
(a) If (ur , us, ut ) = (♦,♦,♦), then consider the first three elements in S. If S1 is

of either input sequence type 1 or 2, then by Observation I, we have

0.8 ≤ ur + us + ut ≤ u1 + u2 + u3 ≤ 1.

Therefore, the terminal condition is satisfied when the algorithm accepts the
first, second and third data item; this is a contradiction. If S1 is of either input
sequence type 3 or 4, then by Observation II, we have

0.8 ≤ u1 + u2 + u3 ≤ ur + us + ut ≤ 1.

Therefore, the terminal condition is satisfied when the algorithm accepts the
first, second and third data item; this is a contradiction.

(b) If (ur , us, ut ) = (♦,♦,�), then consider the input sequence S. If S1 is of ei-
ther input sequence type 1 or 2, then at the end of the first stage, {um−1, um} ⊆
ALG′. Since um−1 and um are the two smallest data items, we have

0.8 ≤ um−1 + um + ut ≤ ur + us + ut ≤ 1.

Therefore, the terminal condition is satisfied at the end of the first stage; this
is a contradiction. If S1 is of either input sequence type 3 or 4, then by Obser-
vation II, we have

0.8 ≤ u1 + u2 + u3 ≤ ur + us + ut ≤ 1.

Therefore, the terminal condition is satisfied when the algorithm accepts the
first, second and third data item; this is a contradiction.

Therefore, ‖OPT‖ < 0.8. This completes the proof. �

Lemma 12 Bmode = Optimum⇒ ‖ALG′‖ < 0.8‖OPT‖.

Proof Suppose that ‖ALG′‖ ≥ 0.8‖OPT‖, then since B in Optimum Mode during the
second stage, ‖B‖ is non-decreasing. Therefore ‖ALG′‖ ≤ ‖ALG‖, the approximation
ratio is

ρ = ‖ALG‖
‖OPT‖ ≥ ‖ALG′‖

‖OPT‖ ≥ 0.8,

which is a contradiction. �

Lemma 13 |ALG′| �= 0.

Proof Suppose that |ALG′| = 0, then S1 is empty. By Lemma 9, |OPT| > 1, hence
OPT contains at least two data items in S2; this contradicts Lemma 10. Therefore,
|ALG′| �= 0. �
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Lemma 14 |ALG′| �= 1.

Proof Suppose that |ALG′| = 1, then S1 contains only one data item. By Lemmas 9
and 10, |OPT| > 1, and OPT contains at most one data item in S2. Therefore OPT =
{u1, ui}. Since B is in Optimum Mode, then by Lemma 10, the algorithm achieves
the optimal solution, which is a contradiction. Therefore, |ALG′| �= 1. �

Lemma 15 |ALG′| �= 2.

Proof Suppose that |ALG′| = 2, then |OPT| < 4. This is because if |OPT| = 4, S1 is of
either input sequence type 1 or 2, and hence |ALG′| = 3, which is a contradiction. By
Lemma 9, |OPT| > 1. There are two cases:

1. If |OPT| = 2, then let OPT = {ur,us} with ur ≤ us . By Lemma 10 and 11, ur is in
S1 and ‖OPT‖ < 0.8; there are two possibilities:
(a) If (ur , us) = (♦,♦), then if m = 2, then ur and us are the only two data items

in S1 and ALG′ = {ur,us}. Since B is in Optimum Mode during the second
stage, the algorithm clearly achieves the optimal solution, which is a contra-
diction. If m > 2, then S1 is of either input sequence type 3 or 4; for otherwise,
|ALG′| > 2. Therefore ALG′ = {ui, um}, where ui > 0.3; hence we have

‖ALG′‖
‖OPT‖ = ui + um

ur + us

>
0.3 + um

2um

≥ 0.7

0.8
> 0.8.

Since B is in Optimum Mode during the second stage, by Lemma 12, we
have ‖ALG′‖ < 0.8‖OPT‖, which is contradiction.

(b) If (ur , us) = (♦,�), then ur must be the largest data item in S1. This is be-
cause ‖OPT‖ = ur +us < 0.8. If ur is not the largest data item in S1, we can al-
ways replace it with the largest data item in S1; the solution can only increase,
and the feasibility is still maintained. If m = 2, then ur ∈ ALG′. If m > 2, then
S belongs to either input sequence 3 or 4; for otherwise, |ALG′| > 2. There-
fore, we also have ur ∈ ALG′. Since B is in Optimum Mode during the sec-
ond stage, by Lemma 10, the algorithm achieves the optimal solution, which
is also a contradiction.

2. If |OPT| = 3, then let OPT = {ur,us, ut } with ur ≤ us ≤ ut , there are two possibil-
ities:
(a) If ALG′ = {�,�} or ALG′ = {�,�}, then S1 is of input sequence type 1, 2 or 4,

and S1 contains only two data items. We then have

0.8 ≤ u1 + u2 + u3 ≤ ur + us + ut ≤ 1.

Therefore, the terminal condition is satisfied, which is a contradiction.
(b) If ALG′ = {�,�}, then S1 is of either input sequence type 3 or 4, hence

|OPT| < 3, which is a contradiction.

Therefore, |ALG′| �= 2. �
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Lemma 16 |ALG′| �= 3.

Proof Suppose that |ALG′| = 3, then S1 is of either input sequence type 1 or 2; for
otherwise, by Lemma 8, either ALG′ = {�,�,�} or ALG′ = {�,�,�}, and hence
‖ALG′‖ > 0.8, the terminal condition is satisfied, which is a contradiction.

1. If ALG′ = {�,�,�}, then ALG′ = {u1, um−1, um}; there are two cases:
(a) If |OPT| < 4, then by Lemma 11, we have

‖OPT‖ < 0.8.

Since we have B in Optimum Mode during the second stage and

‖ALG′‖ = u1 + um−1 + um > 0.7,

this contradicts Lemma 12.
(b) If |OPT| = 4, then if B in Queue Mode during the first stage, then |ALG′| = 4,

which is a contradiction. Therefore, B in Queue_1 Mode during the first
stage. If u1 ∈ OPT, then |ALG′| = 4, which is a contradiction. Therefore, u1 �∈
OPT; by Observation I, ‖OPT‖ ≤ u2 + u3 + u4 + u5. Note that at the same
time, we have the following three inequalities:

u1 ≥ 0.35, (11)

u1 + u2 + u3 < 0.8, (12)

u2 + u3 ≥ u4 + u5. (13)

Combining (11) and (12), we have u2 + u3 < 0.45. Therefore, by (13),

‖OPT‖ ≤ u2 + u3 + u4 + u5 ≤ 2(u2 + u3) < 0.9.

Since we have B in Optimum Mode during the second stage and

‖ALG′‖ = u1 + um−1 + um > 0.75,

this contradicts Lemma 12.
2. If ALG′ = {�,�,�}, then ALG′ = {um−2, um−1, um}; there are two cases:

(a) If S2 is empty, then there two possibilities. If m = 3, then the algorithm
clearly achieves the optimal solution. If m > 3, then ‖ALG‖ > 0.65. Since
um−2, um−1 and um are the three smallest data items in S, we have |OPT| < 4.
By Lemma 11, ‖OPT‖ < 0.8. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ >

0.65

0.8
≥ 0.8,

which is a contradiction.
(b) If S2 is non-empty, then since um−2, um−1 and um are the three smallest

data items in S, we have |OPT| < 4. By Lemma 11, ‖OPT‖ < 0.8. Since B
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in Stack Mode during the second stage and um ≤ um−1 ≤ um−2 ≤ 0.3, we
then have ‖ALG‖ > 0.7. Therefore, the approximation ratio is

ρ = ‖ALG‖
‖OPT‖ >

0.7

0.8
≥ 0.8,

which is a contradiction.

Therefore, |ALG′| �= 3. �

Theorem 6 is immediate by Lemmas 13, 14, 15, and 16.
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