
On the Power of Priority Algorithms for Facility Location and SetCoverSpyros Angelopoulos and Allan BorodinDepartment of Computer ScienceUniversity of TorontoToronto, ON, Canada M5S 3G4fspyros,borg@cs.toronto.eduMay 28, 2003AbstractWe apply and extend the priority algorithm framework introduced by Borodin, Nielsen andRacko� to de�ne \greedy-like" algorithms for (uncapacitated) facility location problems andset cover. These problems have been the focus of extensive research from the point of view ofapproximation algorithms, and for both problems, greedy-like algorithms have been proposedand analyzed. The priority algorithm de�nitions are general enough so as to capture a broadclass of algorithms that can be characterized as \greedy-like" while still possible to derive non-trivial lower bounds on the approximability of the problems by algorithms in such a class. Ourresults are orthogonal to complexity considerations, and hence apply to algorithms that are notnecessarily polynomial-time.1 IntroductionUnder the assumption that P 6= NP , NP -hard optimization problems do not admit polynomial-time optimal algorithms. The natural question \how well can we approximate anNP -hard problemby a polynomial-time algorithm" has been the motivation for extensive research over the last decade,and the hardness of approximating a problem has developed into a a very prominent �eld within thearea of approximation algorithms. On the other hand, very little is known about the approximationpower of speci�c computational paradigms. For instance, what can we say about the hardness ofapproximating a given optimization problem by an algorithm that we would intuitively characterizeas \greedy-like"?The latter question was addressed by Borodin, Nielsen and Racko� [5] who introduced the classof so-called priority algorithms as a model for describing natural greedy-like algorithms. They alsoproposed a framework for proving lower bounds on the approximability of a problem by such a classof algorithms. To illustrate the techniques, they applied the framework to a number of well-knownscheduling problems, but claimed that the framework could become applicable to other problemsas well.In this paper, we follow the priority-algorithm framework in [5] so as to to characterize \greedyand greedy-like algorithms" for the uncapacitated facility location problem and the set cover prob-lem. These well-studied and related NP -hard problems are central problems in the study of ap-proximation algorithms. (See section 3 for further discussion of some of the relevant results.) The1



best known polynomial time computable approximation ratio (essentially lnn, where n is the num-ber of elements in the underlying universe) for the (weighted) set cover problem is achieved by amost natural greedy algorithm [13] [15] [6] and quite good approximation ratios (namely, 1:61 [12]and 1:861 [16]) have been derived by greedy-like algorithms for the metric uncapacitated facilitylocation problem. For these two optimization problems, we apply the priority-algorithm frameworkand derive lower bounds on the approximation ratio for algorithms in this class. Informally, priorityalgorithms are characterized by the following two properties:1. The algorithm speci�es an ordering of \the input items" and each input item is consideredin this order.2. As each input item is considered, the algorithm must make an \irrevocable decision" con-cerning the input input.To make these concepts precise, (i.e., what precisely an \input item" and an \irrevocable de-cision" are) one has to apply the framework to particular problems (see section 2.2). The goalis to make the de�nitions su�ciently general and robust so as to capture known algorithms andanything that would be classi�ed as \greedy-like" while still being su�ciently restrictive that in-teresting lower bounds can be derived. As in the competitive analysis of online algorithms, priorityalgorithm lower bounds are orthogonal to complexity bounded approximation ratios. That is, al-though greedy algorithms are highly desirable because they tend to be time e�cient, the de�nitionof priority algorithms permits arbitrarily complex (in terms of computing time) computation whilederiving lower bounds by exploiting the structure of the algorithm.Depending on whether the ordering changes throughout the execution of the algorithm, twoclasses of priority algorithms can be de�ned:� Algorithms in the class Fixed Priority decide the ordering before any input item is con-sidered and this ordering does not change throughout the execution of the algorithm.� Algorithms in the more general class Adaptive Priority are allowed to specify a newordering after each input item is processed. The new ordering can thus depend on inputitems already considered.As argued in [5], a further distinction can be made for Adaptive Priority algorithms, de-pending on the information the algorithm maintains on input items considered in the past. At oneextreme, the irrevocable decision in a memoryless Adaptive Priority algorithm depends onlyon the \current con�guration"; (e.g., for the facility location problem, only on facilities alreadyconsidered and opened in the solution being constructed). At the other extreme, the algorithm cankeep track of all input items considered in the past, and the corresponding decisions (e.g., in facilitylocation, the algorithm knows whether a facility is has already considered has been opened).As in [5], \greedy algorithms" are (�xed or adaptive) priority algorithms, which satisfy anadditional property: the irrevocable decision is such that the objective function is locally optimized.More speci�cally, the objective function must be optimized as if the the input currently beingconsidered is the last input. The de�nition suggests that it is the nature of the decision and notthe ordering that determines \greediness".Within this framework, we prove the following lower bounds:1. The set cover problem over a universe of n elements.2



(a) No Adaptive Priority algorithm can achieve a better approximation ratio than theprecise bound (lnn � ln ln n + �(1)) obtained by Slav��k [22] for the greedy algorithm(see section 3). This lower bound applies to the uniform set cover problem in which allset costs are the same. Note that Feige [7] shows that under a reasonable complexityassumption (i.e., assuming that NP is not contained in DTIME(nO(loglogn))), it is notpossible to obtain a polynomial-time approximation of (1� �) lnn for any � > 0.(b) For any � > 0, no Fixed Priority algorithm can achieve an approximation ratio betterthan (1� �)n.Since the set cover problem can be viewed as a special case of the facility location problem(with distances in f0;1g), all lower bounds for the set cover problem hold for the facilitylocation problem when arbitrary distances are allowed.2. The metric uncapacitated facility location problem. All of the following lower bounds willapply to the unweighted case (i.e., each city has weight 1), with facilities having uniform (i.e.,identical) opening costs, and where all distances are in f1; 3g. The best known correspondinggreedy upper bounds apply to the weighted case and for an arbitrary metric distance function.(a) No Adaptive Priority algorithm with unbounded memory can achieve an approxi-mation ratio better than 4=3.(b) For memoryless Adaptive Priority algorithms we show a lower bound of 1.463 onthe approximation ratio of the metric facility location problem, which matches thecomplexity-based bound of Guha and Khuller [8] (under the same assumption usedby Feige [7]).(c) For all � > 0, no Fixed Priority Greedy algorithm can achieve an approximationratio of 3 � � for the uniform metric facility location problem. This bound matchesthe 3-approximation upper bound of Mettu and Plaxton [18] which applies to the non-uniform case. For Fixed Priority but not necessarily Greedy algorithms, we show acorresponding bound of 1.366 (with no memory restrictions).It is interesting to note that certain primal-dual algorithms can be seen as priority algorithms,or, more precisely, certain primal-dual algorithms have an alternative combinatorial statement asa priority algorithm. For instance, the greedy algorithm for set cover [13] [15] [6] and the greedy-like algorithms for facility location due to Mahdian et al [16] and Jain, Mahdian and Saberi [12]can be stated as primal-dual algorithms. Of course, not every primal-dual algorithm is a priorityalgorithm; for example, primal-dual algorithms that apply a reverse-delete (or, generally speaking,reverse-reconstruction) step do not appear to belong in the class of priority algorithms. Hence,a negative result concerning a priority algorithm suggests that a reverse-reconstruction phase isneeded if one wants to design a primal-dual algorithm with better performance.Naturally, de�ning what precisely constitutes a \greedy-like" algorithm is very subjective. Asobserved in [5], it is unlikely that priority algorithms can capture every possible algorithm thatintuition would classify as \greedy-like"; for instance, the one-pass Admission Algorithm of Bar-Noy, Guha, Naor and Schieber [4] for a general version of a scheduling problem, requires thatcertain decisions (in particular, the admission of a job in the schedule) are not irrevocable, butonly temporarily, and as such they can be revoked in the future. In other words, the abovealgorithm applies some limited backtracking, which may or may not be a characteristic of a \greedy-like" algorithm. On the other hand, a greedy-like algorithm may be allowed to maintain global3



information that the priority-algorithm framework (or every natural model, for that matter) doesnot or cannot model. Nevertheless, the framework does include well-known algorithms that have,undoubtedly, greedy-like 
avor (see section 3 for examples of such algorithms), and provides a solidstarting point towards a classi�cation based on \greediness".2 Preliminaries2.1 Problem statementsIn the (uncapacitated, unweighted) facility location problem, the input consists of a set F of facilitiesand a set C of cities with F \ C = ; 1. Each facility i 2 F is associated with an opening cost fiwhich re
ects the cost that must be paid to utilize the facility. Furthermore, for every facility i 2 Fand city j 2 C, the non-negative distance or connection cost cij is the cost that must be paid toconnect city j to facility i. The objective is to open a subset of the facilities in F and connect eachcity in C to an open facility so that the total cost incurred, namely the sum of the opening costsand the connection costs, is minimized. In the metric version of the problem, the connection costssatisfy the triangle inequality.We emphasize that we assume the model in which facilities and cities are disjoint sets. Eventhough this assumption is not needed from the point of view of upper bounds (algorithms), thearguments we will present rely strongly on it; in particular, the lower bounds we present do nothold in the complete model, in which every node is both a facility and a city.In the set cover problem, we are given a universe U of n elements, and a collection S of subsetsof U . Each set S 2 S is associated with a cost c(S). We seek a minimum-cost subcollection of Sthat covers all elements of U ; that is, a collection of sets S0 � S of minimum total cost such thatfor every e 2 U there exists a set S 2 S 0 with e 2 S.2.2 De�nitions of input items for priority algorithmsWhat precisely constitutes the input for the problems we study? For the uncapacitated facilitylocation problem the cost of a solution is determined by the set of facilities the algorithm decidesto open, since each city will be connected to the nearest open facility. Hence, we will assume thatthe input items are the facilities themselves, where each facility is identi�ed by a unique id, itsdistance to every city and its opening cost. When considering a facility (of highest priority), thealgorithm must make an irrevocable decision as to whether or not to open this facility. The decisionis irrevocable, in the sense that once a facility is opened, its opening cost will count towards thetotal cost that the algorithm incurs and if a facility is not opened when considered, it cannot beopened at a later stage.For the class of scheduling problems considered in [5], there is no issue as to what the \inputitems" are. But for the facility location problem (and the set cover problem), there is at least oneother very natural way to view the input items. Namely, as in Meyerson [19], we can think of thecities as being the input items, with each city being identi�ed by its id, and its distance to eachfacility. (We can treat the opening costs of all facilities as global information.) The irrevocabledecision would then be to assign each input city to some open facility, possibly opening a newfacility if desired 2. Indeed this model is very natural in the sense that one would expect the1We assume that F \ C = ; noting that if x 2 F \ C, then we can replace x by xf 2 F and xc 2 C with zeroconnection cost between xf and xc.2Meyerson's algorithms apply to the complete model, as de�ned earlier in the section.4



number of cities to be much larger than the number of facilities. We have chosen our model asit abstracts several known O(1)-approximation greedy-like algorithms (see section 3). We note,however, that it is possible to show negative results for priority algorithms in the model in whichthe input items are the cities [1].Similar to the facility location problem, there are two natural ways to represent the input for theset cover problem. Perhaps the most natural representation is to think of the input as consisting ofsets, where each set is identi�ed by an id, by its cost, and by the elements it covers. For such a model,we impose the constraint that the priority algorithm must irrevocably select any set it considersin case the set covers a new element, that is, an element not covered by the sets already selected.This requirement is motivated by the observation that if the set that covers the new element isthe only set with this property, and the algorithm does not select it, the resulting solution will notbe feasible. In other words, the priority algorithm is oblivious of the sets to be considered in thefuture, and cannot anticipate whether feasibility will be upheld by not selecting a particular set.The well-known greedy algorithm for set cover [13] [15] observes the above requirement. It is worthmentioning that in this context every priority set cover algorithm belongs in the class of Greedyalgorithms 3. Alternatively, it is possible to represent the input as a set of elements, where eachelement is described by a unique id and a collection of sets it is contained in; in this representation,we can treat set costs as global information. For reasons similar to the ones given for the facilitylocation problem, in this paper we will consider the representation of the input as a collection ofsets, rather than elements.2.3 Orderings and the role of the adversaryTo show a lower bound on the approximation ratio we must evaluate the performance of everypriority algorithm for an appropriately constructed nemesis input. The construction of such anemesis input can be seen as a game between an adversary and the algorithm and is conceptuallysimilar to the construction of an adversarial input in competitive analysis. However, in the settingof priority algorithms, it is the algorithm and not the adversary that chooses the ordering of theinputs. But we do not want the algorithm to be able to chose an optimal ordering for each input(e.g. chose the optimal set of facilities as those of highest priority). One possibility is to de�ne the\allowable orderings" to be those that are induced by functions mapping the set of all input itemsinto the non negative reals. The nature of the adversary described below provides a more inclusivede�nition for what orderings are allowed.We consider the basic framework where the priority algorithm has no additional global infor-mation (such as the total number of input items 4 ,the total \cost" of all items in the input, etc.)beyond the input itself. In this setting, the game between the adversary and a Fixed Priorityalgorithm can be described as follows. The adversary presents a large set of potential input itemsS. The algorithm determines a total ordering on this set. The adversary then selects a subset S 0of S as the actual input; that is, the adversary discards part of the potential input. We enforce thecondition that the removal of input items does not a�ect the priority of the remaining input items.As an example of this, in our framework of a priority algorithm for facility location, a facility is notde�ned in terms of other facilities; therefore, when the adversary removes a facility, the priority ofevery other input item is una�ected5.3In contrast, every solution for an instance of facility location in which at least one facility is open, is feasible.Thus, not every priority facility location algorithm is necessarily greedy.4For the problems considered in this paper, it is not hard to show that we can extend our lower bounds to thecase that the algorithm does know the number of input items.5This explains why we need to restrict our attention to inputs in which the set of facilities and the set of cities5



The situation is not much di�erent for the class Adaptive Priority. Even though the algo-rithm can determine a new ordering after considering each input item, the adversary can adaptivelyremove input items from S (in each iteration) so as to derive the actual input S 0.Following the discussion in [5], we de�ne memoryless (adaptive) facility location algorithms.In general, an adaptive algorithm de�nes a new ordering at every iteration based on all the inputitems (and hence the corresponding decisions) thus far considered. In contrast, the ordering of amemoryless algorithm depends only on the current con�guration. That is, in the context of thefacility location problem, the ordering in any iteration depends only on the set of facilities thathave been opened and not on any facilities that have been considered but not opened.3 Related workFacility location problems have been the focus of extensive research from the operations researchand the computer science communities for several decades. However, it was only recently thatShmoys, Tardos and Aardal [21] gave the �rst O(1) polynomial time approximation algorithm.The past several years have witnessed a steady series of improvements on the approximability ofmetric facility location. The approaches used include LP-rounding, the primal-dual method, localsearch, dual �tting, and combinations of the above. We refer the interested reader to the surveyof Shmoys [20], for a collection of recent developments in the area. Currently, the best-knownapproximation ratio (1.52) for metric facility location is due to Mahdian, Ye and Zhang [17], andis achieved by a non-priority algorithm. For the special case of connection costs in f1; 3g, the LP-based (non-priority) algorithm of Guha and Khuller [8] provides a 1.463-approximation, matchingthe complexity based hardness result presented in the same paper.We identify algorithms that follow the paradigm of a priority algorithm, as de�ned in section 2.2.Hochbaum [10] presented an algorithm in the class Adaptive Priority Greedy which is anO(logn) approximation for facility location in arbitrary spaces, and showed that the analysis forthe particular algorithm is tight. Mahdian, Markakis, Saberi and Vazirani [16] showed that a naturalAdaptive Priority algorithm, which is only a small modi�cation of Hochbaum's algorithm, is a1.861 approximation algorithm for metric facility location; the analysis is performed by an elegantapplication of the dual-�tting technique. In addition, this algorithm can be made into a memorylessone with the same approximation ratio. To our knowledge, the best approximation achieved by apriority algorithm is due to Jain, Mahdian and Saberi [12]: their algorithm belongs in the classAdaptive Priority as well, and it is also analyzed by using the dual �tting technique. Mettuand Plaxton [18] showed that an algorithm which belongs in the class Fixed Priority Greedyyields a 3-approximation for metric facility location in the complete model.Set cover is one of the oldest and most well-studied NP-hard problems. Johnson [13] andLov�asz [15] proposed a simple greedy algorithm which they showed provides a H(n)-approximation,where H(n) is the n-th harmonic number, and n = jU j. Chv�atal [6] extended their results to theweighted case. A tight analysis of the greedy algorithm due to Slav��k [22] is of particular interest,as discussed in section 4.2. This speci�c greedy algorithm iteratively selects the most cost-e�ectiveset, i.e., the set that minimizes the average cost at which it covers new (i.e., currently uncovered)elements. Clearly, the above algorithm belongs in the classAdaptive Priority: in every iteration,the priority of a set is its cost-e�ectiveness. In this paper, we refer to this algorithm as the greedyalgorithm for set cover, to distinguish it from other (greedy) priority algorithms that one can de�ne.In terms of negative results, Feige [7] showed that it is not possible to obtain a polynomial-are disjoint, as mentioned earlier. 6



time approximation of (1 � �) lnn for set cover, unless NP has slightly superpolynomial timedeterministic algorithms. On a similar vein, Arora and Sudan [3] showed that set cover is notapproximable within a factor of o(logn), under the weaker assumption that P 6= NP .It must be mentioned that the priority-algorithm framework of Borodin, Nielsen and Racko� [5]does not seem to be directly applicable to graph optimization problems without certain modi�ca-tions. In recent work, Impagliazzo and Davis [11] addressed this issue and proposed an extensionof the framework so as to capture greedy-like algorithms for this class of problems.As one expects, the question \how well can a speci�c class of algorithms approximate a problem"is not (or should not be) restricted to greedy-like algorithms only. Motivated by the lack of IPformulations for the vertex cover problem having integrality gap better than 2� �, Arora, Bolob�asand Lov�asz [2] recently showed that this bound is tight for three broad classes of IP formulationsfor this problem. The results suggest that every linear relaxations for any IP formulation that fallsin one these classes will not yield any improvement on the approximation ratio of vertex cover. Ina similar 
avor, Khanna, Motwani, Sudan and Vazirani [14] proved lower bounds for the so-calledclass of oblivious local-search algorithms for problems such as MAX 2-SAT and MAX 2-CSP. Theabove class contains local search algorithms which apply a greedy rule in the choice of the localchange. Finally, another limited computational paradigm that is close to priority algorithms is datastream algorithms (see, e.g., [9]). Here, the algorithm is allowed to perform either a single pass, oronly a small number of passes over the data, and is also subject to constraints on the amount ofmemory it can use. Both upper and lower bounds for algorithms in this class have been shown.4 Adaptive priority algorithmsIn this section we show lower bounds on the approximability of set cover and facility locationby adaptive priority algorithms. All our lower-bound constructions for metric facility location useconnection costs in f1; 3g, suggesting the following de�nitions. Let Cf be the set of cities at distance1 from facility f . We say that f covers Cf . The complement of f with respect to C where Cf � C isde�ned as the facility that covers all and only the cities in C nCf , and has the same facility openingcost as f . For simplicity, when C is the set C of all cities, we say that f and f are complementary,where f is the complement of f wrt C.4.1 Adaptive priority facility location with unbounded memoryWe �rst consider the most general case of an Adaptive Priority algorithm with unbounded mem-ory (i.e., the algorithm has complete knowledge of the decisions made in the past). In section 4.3we show how to derive improved bounds for priority algorithms which are memoryless.Theorem 1 No priority algorithm for the uniform metric facility location problem can achieve anapproximation ratio better than 43 .Proof. De�ne an instance of the uniform metric facility location problem as follows. The set ofcities C consists of n cities. Each facility is identi�ed with the set of cities it covers. More precisely,for every C � C with jCj = n2 , there exists a facility f that covers C (and only cities in C) 6. Forevery city in C nC, the cost of connecting the city to f is equal to 3. Note that for every facility fin the instance, the complement f of f is also in the instance.6Throughout this paper we ignore 
oors and ceilings and assume that n is appropriately divisible.7



Every time the algorithm considers a facility f it must decide whether to open it. If it opens f ,the adversary removes all facilities which do not cover exactly ~n=2 uncovered cities, where ~n is thenumber of currently uncovered cities. The adversary also removes f unless f is the last remainingfacility in the input set. If the algorithm does not open f , the adversary removes all remainingfacilities except for f . Let all facility costs be equal to n4 . The optimal algorithm will open a pairof complementary facilities at an opening cost of 2 � n4 , and connect all cities at a cost of n, for atotal cost of 32n. Suppose that the algorithm opens k facilities, with k � 1. It is easy to see thatthe union of these k facilities covers at most nPki=1 2�i = n(1� 2�k) cities. Hence the algorithmpays a facility-opening cost of k � n4 and a connection cost of at least n(1� 2�k)+3n � 2�k , and thusa total cost of (1 + k4 + 2�k+1)n. This expression is minimized at either k = 2 or k = 3, giving a 43ratio between the algorithm's cost and the optimal cost. 2Using an argument along the same lines one can prove the following:Theorem 2 The approximation ratio of every priority algorithm for facility location in arbitraryspaces is 
(logn).Proof. We consider the same set of cities Cf covered by a facility f except now any city not coveredby f (i.e. not at distance 1) has 1 distance from f . In this case, any priority algorithm must openany facility it considers. Hence it will consider and open log n facilities while the optimal algorithmwill again open two facilities. 2Note that the bound is tight, since Hochbaum [10] showed that a simple greedy-like algorithm,which can be classi�ed as Adaptive Priority, is an O(logn) approximation algorithm for theproblem.4.2 Adaptive priority set coverIn this section we prove that no (adaptive) priority algorithm can perform better than the greedyset-cover algorithm.A remarkably tight analysis of the greedy set cover algorithm due to Slav��k [22] shows thatits approximation ratio is exactly lnn � ln lnn + �(1), where n = jU j is the size of the universe.For the proof of the lower (as well as the upper) bound, Slav��k considered an instance of set coverwith sets of uniform cost on a universe U of n � N(k; l) elements. Here, N(k; l) is de�ned as thesmallest size of U such that there is a set cover instance over U with the property that the cost ofthe greedy algorithm is exactly k, while the cost of the optimal algorithm is exactly l, for given k, lwith k � l. The collection of input sets for this speci�c instance consists of two subcollections, eachcovering all n elements of U . The �rst subcollection, denoted by S1, contains n1; n2; : : : ; nr disjointsets of sizes s1; s2; : : : ; sr, respectively, so thatPri=1 nisi = n. The numbers ni's and sizes si's of thesets are selected in [22] appropriately, but for the purposes of our discussion it su�ces to mentionthe following: i) ni > 0, for all i with 1 � i � r, and r is a postitive integer; ii) Pri=1 ni = k; iii)s1 > s2 > : : : > sr > 0; and iv) s1 � dnl e. The second subcollection, denoted by S2, consists of lsets of sizes in fdnl e; dnl e � 1g. Slav��k argued that the greedy algorithm must select all sets in S1,at a total cost ofPri=1 ni. In addition, the greedy algorithm selects the sets in S1 in non-increasingorder of sizes, breaking ties arbitrarily. On the other hand, the cost of the optimal algorithm isthe total cost of the subcollection S2, namely, l. Slav��k showed that for every n su�ciently large,one can �nd k; l such that N(k; l) � n < N(k + 1; l), and kl � ln n � ln lnn + �(1). We will showthat, for every such n (and then k and l chosen as in Slav��k's analysis), there exists an instance ofset cover with jU j = n for which the cost of every priority algorithm is at least k = Pri=1 ni, while8



the cost of the optimal algorithm is at most l. Then Slav��k's analysis carries over to yield the samelower bound on the approximation ratio for every priority algorithm.Consider an instance of set cover which consists of a universe U of size n and all �nd� sets of sized, where d = s1 � dnl e. All sets have identical costs. Given an adaptive priority algorithm for theproblem, we describe the actions of the adversary, which takes place in r phases. As we will showin Lemma 3, it is feasible to de�ne such an adversary. Phase 1 begins with the �rst set selected bythe algorithm; it terminates when the algorithm has selected exactly n1 sets that cover at least onenew element each. If the number c1 of elements covered by the algorithm in phase 1 is less thann1s1, the adversary chooses any n1s1 � c1 uncovered elements, which together with the c1 coveredelements form a set of elements denoted by C1. Without loss of generality, we will consider allelements in C1 as being covered. The adversary removes all sets from the input except for sets thatcontain at least d� s2 elements of C1, namely a set S remains in the input only if jS \C1j � d� s2(recall that d = s1 > s2). Phase 2 then begins. Likewise, phase i, with 1 � i � r � 1 terminateswhen the algorithm has selected exactly ni sets that cover at least one uncovered element each. Ifthe number ci of elements covered in phase i is less than nisi, the adversary chooses any of theremaining nisi � ci elements, which together with the ci covered elements are the contents of aset denoted by Ci. (We again consider all elements in Ci as being covered.) The adversary thenremoves all input sets except for sets that contain at least d� si+1 elements of Sij=1Cj , namely, aset S remains in the input only if jS \ Sij=1 Cj j � d � si+1. The adversary does not remove anysets at the end of (the last) phase r. All sets not explicitly removed by the adversary comprise theactual input that is presented to the algorithm.We need to show that it is feasible to de�ne an adversary as above. Denote by Ri the collectionof sets that remain in the input at the beginning of phase i, with 1 � i � r. Note that every set inRi can cover at most si new (so far uncovered) elements.Lemma 3 At the beginning of phase i, at least nisi elements are uncovered, and the sets in Ri cancover these elements.Proof. By induction on i. Recall that Prj=1 njsj = n. Clearly, at the beginning of phase 1 thereare n � n1s1 uncovered elements, and R1 consists of all �nd� sets, hence the n1s1 uncovered elementscan be covered by sets in R1. Consider the beginning of phase i, with 1 < i � r. In each phase j,with 1 � j < i, the algorithm covered jCj j = njsj elements (by the de�nition of the adversary andthe induction hypothesis). Therefore, at the beginning of phase i, n �Pi�1j=1 njsj = Prj=i njsj �nisi elements are uncovered. Let P be a set that contains exactly nisi uncovered elements. LetP1; P2; : : : ; Pni be any disjoint partition of P in sets of size si. We claim that for any m with1 � m � ni there exists at least one set in Ri that covers Pm. De�ne the set S as the set thatcontains exactly sh � sh+1 elements of Ch, for every h with 1 � h < i and also contains Pm. Sincethe Ch's with h < i and Pm are all disjoint, the set S has sizei�1Xh=1(sh � sh+1) + si = (s1 � si) + si = s1 = dhence S belongs in R1. It remains to show that S is in Ri. To this end, note that for all j < i,jS \ j[h=1Chj = jXh=1(sh � sh+1) = s1 � sj+1;therefore S is in Rj+1, for all j < i (and in particular, for j = i� 1). Thus the adversary will notremove S before the end of phase i. 29



Denote by cost(ALG), cost(OPT ) the cost of the priority algorithm and the cost of the optimalalgorithm, respectively. We then have:Lemma 4 cost(ALG) �Pri=1 ni = k.Proof. This follows from Lemma 3. In particular, the algorithm will always select ni sets in phasei, and thus will move to phase i+ 1, for all i < r. 2The following combinatorial lemma will be useful in upper-bounding the optimal cost.Lemma 5 Suppose that there exists a collection of (not necessarily disjoint) sets P1; P2; : : : ; Pl �U , each of size d, with the following properties:� P1 : : :Pl cover all elements of U , namely Slh=1 Ph = U .� There exist disjoint sets G1; G2; : : : ; Gr � U , with jGj j = njsj, such that jPh \ Sij=1Gj j �d� si+1, for all i � r � 1 and all h with 1 � h � l.Then cost(OPT ) � l.Proof. From the description of the adversary we know that jCj j = njsj and that the Cj 's (j � r)are disjoint sets. Then there exists a bijection � : U ! U such that for every e 2 U , �(e) 2 Cjif and only if e 2 Gj ; this is because all sets Cj and all sets Gj are disjoint, jCjj = jGjj, forall j, and Srj=1 Cj = Srj=1Gj = U . With a slight abuse of notation, denote by �(Ph) (h � l)the set f�(e) j e 2 Phg. Note that j�(Ph)j = d. In addition, note that for every i � r � 1,j�(Ph) \Sij=1 Cj j � d� si+1. Hence, �(Ph) de�nes a set which is not removed by the adversary inany phase, and since the collection of sets f�(P1); : : : ; �(Pl)g covers U , the cost of OPT is at mostl. 2We can now show that the cost of the optimal algorithm is upper-bounded by l, by showingthat the conditions of Lemma 5 are satis�ed.Lemma 6 cost(OPT ) � l.Proof. Consider an instance of set cover, with a universe U of size n and the two subcollections ofsets S1 and S2, as de�ned earlier in the section. Let Gi be the set of elements contained in the nisets of size si in S1, for i � r. Clearly, all Gi's are disjoint.We will assume that all sets in S2 are of size d. This is not a restrictive assumption, as willbecome evident later. Let S2 consist of sets P1; : : : ; Pl. We claim that jPh \ Sij=1Gj j � d � si+1,for all i � r � 1 and h � l. To this end, we look at the choices of the greedy algorithm on theset cover instance that consists of sets in S1[S2 over U . As argued by Slav��k in [22] the greedyalgorithm selects only sets in S1 in non-increasing order of size, breaking ties arbitrarily. Therefore,the greedy algorithm covers all elements in Gi prior to covering any element of Gi0 , for all i < i0 � r.Let the i-th phase of the greedy algorithm correspond to the selection of the ni sets (each of sizesi) that cover the elements in Gi. Assume, by way of contradiction, that for one of the sets in S2,say Ph, jPh \ Sij=1Gj j < d� si+1. This implies that at the beginning of phase i+ 1 of the greedyalgorithm, Ph covers at least d � (d � si+1) + 1 = si+1 + 1 new elements. Since every set in S1not yet selected by the greedy algorithm at the beginning of phase i + 1 covers exactly si+1 newelements, the greedy algorithm must select a set from S2, a contradiction.10



We now show how to waive the assumption that all sets in S2 have size d. To every set S 2 S2,of size jSj, we append d� jSj elements from any set of size d that the greedy algorithm selects inits �rst phase. It is easy to see that the argument described earlier goes through. 2The following lemma, although not needed for the purposes of the proof of Theorem 8, will beessential to the proof of Theorem 9.Lemma 7 (Appendix A) For su�ciently large n, cost(OPT ) = l.From Lemma 4 and Lemma 6, the approximation ratio of every priority algorithm for set coveris at least Pri=1 nil = kl . From Slav��k's analysis, this is precisely the approximation ratio of thegreedy set cover algorithm which shows:Theorem 8 No priority algorithm for set cover performs better than the greedy algorithm. Theapproximation ratio for priority set cover is thus lnn � ln lnn+ �(1) and this bound is tight.4.3 Adaptive priority metric facility location: memoryless algorithmsThe result of Theorem 8 has important implications for the approximability of metric facilitylocation by priority algorithms. First, note that Guha and Khuller [8] established a polynomialtime reduction from set cover to metric facility location, shown in Figure 1 (we have modi�ed theirnotation for consistency with our paper.). For the set cover problem, U is the universe and S is thecollection of sets. The corresponding facility location problem (F ; C) has the set of cities C = Uand for each set S 2 S there is a corresponding facility F 2 F where the distance cij from facilityi to city j is set to 1 (respectively 3) if xj 2 Si (resp. xj =2 Si).Create a facility location instance (F ; C) corresponding to (S; U)Let f = 
 jCjl % the cost of a facilitywhile C 6= ; doF 0 = Adaptive-Priority-Algorithm (F ; C)Let C 0 be the cities covered at distance 1Let F = F � F 0 and C = C � C 0Let f = 
 jCjl be the cost of a facilityendwhileFigure 1: The Guha and Khuller reduction. The priority facility location algorithm returns a setof opened facilities. Here 
 is an appropriately chosen constant and ` is the optimal cost for theset cover instance.Using the reduction, Guha and Khuller argued that if there exists a polynomial-time algorithmfor metric facility location with approximation ratio better than 1.463, then set cover can beapproximated (by some polynomial-time algorithm) with approximation ratio (1��) lnn, for � > 0,where n is the size of the universe. By Feige's inapproximability result for set cover [7], this impliesthat NP � DTIME(nO(log logn)). In fact, the Guha-Khuller reduction can be used to show thatone can derive a priority algorithm for set cover from any memoryless priority algorithm. In viewof this observation, we can interpret the argument of Guha and Khuller as follows: If there existsa memoryless priority algorithm for metric facility location with approximation ratio better than1.463, then set cover is (1��) lnn-approximable by a priority algorithm for some � > 0, contradictingTheorem 8. 11



As can be seen in Figure 1, the set cover algorithm consists of several \stages"; in each stagethe facility location algorithm is executed for an opening cost7 which is uniform for this stage. Wecan assume, from Lemma 7 that for su�ciently large n = jU j, the optimal cost l is known by the setcover priority algorithm. For a given stage of the reduction, the facility location algorithm returnsa set of facilities to be opened. Given this set of open facilities, the stage ends by removing thecorresponding sets and also removing the corresponding elements of the set cover universe for eachcity covered (i.e. at distance 1) by a facility opened during this stage. The stage ends by uniformlyresetting the opening cost for the facilities.We �rst provide more details as to how one stage in this reduction is applied in the context ofpriority algorithms. We note that similar to the discussion in [5], any adaptive memoryless facilitylocation algorithm A can be transformed to a memoryless greedy algorithm. For our purposes wewant a slightly di�erent transformation, namely we want to transform A to an algorithm A0 thatopens the same set of facilities, and has the following property: if A0 considers a facility that it doesnot open, none of the remaining (i.e. not yet considered) facilities will be opened. More precisely,A0 simulates A, in the sense that every time A would open a facility, A0 will also consider andopen the facility in question. If, however A0 would not open a certain facility, then A0 will give thisfacility the lowest priority thereby deferring its consideration. We also need to make sure that sucha facility, if it was considered (i.e. had highest priority in some iteration) and not opened by A, willcontinue to receive lowest priority and never be opened in subsequent iterations of A0. This is easyto do, since A is a memoryless algorithm: as A0 starts a new iteration, we can reconstruct the orderin which A has opened facilities before this iteration, say in the order F1; : : : ; Fr. We consider eachof the con�gurations ;; fF1g; fF1; F2g; : : : ; fF1; : : :Fr�1g. Then in determining the priority of anyfacility F , we consider its priority given each of these con�gurations. For example, in con�gurationfF1; : : :Fi�1g, if A would have given F higher priority than the facility Fi that was next openedbut would not have opened F , then A0 will give lowest priority to facility F .Assume, therefore, that the facility location algorithm has the property stated above. We cannow make each iteration of the facility location algorithm correspond to an iteration of a set coveralgorithm, and in particular describe how to order sets in each iteration. For de�niteness, think ofthe priority of a facility being given by a non-negative real number, with priority zero indicatingthat the algorithm should not open this facility. Now we indicate how to give priorities to sets sothat each iteration of the facility location algorithm will correspond to a priority set cover iteration.The priority of a set Si (in each iteration of the facility location algorithm) will be given by a pair(ai; bi) where ai is the priority that the facility location algorithm would give to the ith facility(that is, the facility to which Si corresponds) if we were not beginning a new stage and bi is thepriority that would be given to the ith facility if we were beginning a new stage. In the latter casethese priorities depend upon the new opening costs as well as knowing what cities and facilitieshave been removed. These pairs are then ordered lexicographically so that (0; b) indicates a lowerpriority than (a; b0) for any a > 0 and (0; b) indicates lower priority than (0; b0) if b < b0. Hence,using this reduction, the set covering algorithm will not \consider" a set it would not open.We thus established the following:Theorem 9 Metric facility location cannot be approximated within a factor smaller than 1.463 byany memoryless priority algorithm.7To derive the 1.463 hardness result for facility location, the constant 
 is set to .463.12



5 Fixed priority algorithmsIn this section we �rst present a tight lower bound on the approximation ratio of algorithms in theclass Fixed Priority, Greedy for metric facility location. The construction behind the proof alsosuggests strong lower bounds for Fixed Priority set cover, and Fixed Priority Greedy facilitylocation in arbitrary spaces, as well as a lower bound that is better than 4/3 for Fixed Priority(but not necessarily Greedy) metric facility location algorithms with unbounded memory.Consider the following instance (F ; C) of the metric facility location problem. Let C1; C2; : : : ; Cdbe a partition of the n cities into d (disjoint) sets of size nd each, for some large constant d. Forevery pair (k; l), with 1 � k; l � d, and k 6= l we identify the sets of facilities Fk;l and ~Fk;l as follows.Denote by fk;lij the facility that covers every city in Ck, except for city i 2 Ck, and also covers cityj 2 Cl. In addition, denote by ~fk;lij the facility that covers every city in Cl with the exception ofcity j 2 Cl, and also covers city i 2 Ck. Fk;l and ~Fk;l are de�ned as the sets ffk;lij j i 2 Ck; j 2 Clgand f ~fk;lij j i 2 Ck; j 2 Clg, respectively. Note that by de�nition, the complement wrt Ck [ Cl ofa facility in Fk;l is in ~Fk;l (and vice versa). The cost for connecting every city in C not covered bya facility in Fk;l (respectively, ~Fk;l) to a facility in Fk;l (respectively, ~Fk;l) is set to 3. The set ofpotential facilities F is de�ned as the union of all Fk;l and ~Fk;l, for all pairs k; l, with k 6= l. Everyfacility is assigned an opening cost of 2 � �. We emphasize that all connection costs are in f1; 3gand that the facilities have uniform opening costs.Let � be the ordered sequence of facilities in F produced by a Fixed Priority Greedyalgorithm.Lemma 10 For every pair k; l, with 1 � k; l � d and k 6= l, there exists a set Sk;l of nd pairs offacilities (f1; f1); : : : ; (fnd ; f nd ) 2 (Fk;l� ~Fk;l)[ ( ~Fk;l�Fk;l) such that: For every m with 1 � m � nd ,the facilities fm and fm are complementary wrt Ck [ Cl, fm precedes fm in �, and at least one ofthe following holds:1. Each fm covers a city in Ck which is not covered by any facility of the form fm0 2 Sk;l withm0 6= m; or2. Each fm covers a city in Cl which is not covered by any facility of the form fm0 2 Sk;l withm0 6= m.Proof. Fix k; l. Suppose that for every city j 2 Cl there exists city ij 2 Ck such that fk;lijj precedes~fk;lijj in �. Let Sk;l be the set of nd pairs of facilities (fk;l;ijj ; ~fk;lijj) for j 2 Cl, then the lemma holds,since fk;lijj and ~fk;lijj are complementary wrt Ck [ Cl, and fk;lijj covers only j among the cities in Cl.Otherwise, there exists city j0 2 Cl such that for every city i 2 Ck ~fk;lij0 precedes fk;lij0 in �. Let Sk;lbe the set of nd pairs of facilities ( ~fk;l;ij0 ; fk;lij0 ), then ~fk;lij0 and fk;lij0 are complementary wrt Ck [Cl, and~fk;lij0 covers only i among the cities in Ck. 2Note that for every �xed pair k; l, either case (1) or case (2) of Lemma 10 (or possibly both)apply. For the purposes of our proof we will assume, without loss of generality, that only one ofthe cases applies, for every �xed pair k; l (if both cases apply, consider only one arbitrarily). Weuse the notation Cl ! Ck (resp. Ck ! Cl) to denote that case (1) (resp. case (2)) applies.De�ne a digraph G = (V;E) on d vertices v1; : : : ; vd as follows: the directed edge (vk ; vl), withk 6= l is in E i� Ck ! Cl. From Lemma 10, any two vertices in G are adjacent to one commondirected edge, and thus G has exactly �d2� edges. The following lemma is straightforward.13



Lemma 11 Let G be de�ned as above. There exists a set V 0 � V of size at most log d thatdominates V n V 0. Namely, for every vl 2 V n V 0, there exists vk 2 V 0 such that (vk; vl) 2 E.Lemma 11 implies that there exists a collection D of at most log d sets Ck1 ; : : : ; Ckp such thatfor every set Cl =2 D, there exists Cki 2 D such that Cki ! Cl. We now describe how the adversaryconstructs the input that is presented to the algorithm. Recall from Lemma 10 that the set Ski ;l offacilities satis�es Cki ! Cl. For �xed l, with Cl =2 D, denote by Il the set Ski;l with the propertythat i is the minimum among all j's for which Ckj ! Cl, and Ckj 2 D. Let I = SfIl jCl =2 Dg.The input to the algorithm contains only facilities in I . In addition, for every f 2 I which belongsin Ski;l, the adversary removes f 's complement wrt Cki [ Cl, except for the case when f and itscomplement are the last pair of complementary facilities wrt Cki [ Cl. Note that from Lemma 10,f 's complement wrt Cki [ Cl follows f in �, so the removal of the facilities by the adversary isfeasible. All facilities I 0 � I which are not explicitly removed by the adversary comprise the actualinput.It remains to bound the cost of the priority algorithm and the optimal algorithm. From theconstruction of I 0 and Lemma 10, it follows that the �rst facility that can cover a city j 2 C nDcovers only j among the cities in C n D. The greedy criterion dictates that when the algorithmconsiders the facility in question, it will open it: the algorithm will pay a total of 3� � for openingthe facility and connecting j to the open facility, which improves upon the cost of 3 that must bepaid if the algorithm does not open the facility. Since there are nd (d� jDj) � nd (d� log d) cities inC nD (where jDj is the size of D), we getcost(ALG) = (2� �) � nd � (d� jDj) + n � (2� �) � nd � (d� log d) + n:The optimal algorithm, on the other hand, opens only pairs of facilities that are complementarywith respect to partitions of cities. The open facilities cover all cities in the instance, and hencethe total optimal cost iscost(OPT ) � 2 � (2� �) � (d� jDj)d+ n � 2 � (2� �) � d2 + n:Observe that the ratio cost(ALG)cost(OPT ) can be made arbitrarily close to 3, for large, albeit constant d. Wethus showed the following:Theorem 12 The approximation ratio of every Fixed Priority, Greedy algorithm for metricfacility location is at least 3� �, for arbitrarily small �.Using an argument along the same lines, one can derive the following.Theorem 13 The approximation ratio of every Fixed Priority, Greedy algorithm for facilitylocation in arbitrary spaces (resp. Fixed Priority algorithm for set cover) is at least (1 � �)n,where n is the number of cities (resp. the size of the universe) in the input instance.Proof sketch: For facility location in arbitrary spaces, apply the construction behind the proofof Theorem 12, with every distance of 3 replaced by the in�nite distance. We choose a uniformfacility cost that is su�ciently large, that is, much larger than n, but not in�nite. Similarly, for setcover, replace \facilities" by \sets" and \cities" by \elements"; an element is covered by a set if thecorresponding city is at distance 1 from the corresponding facility in the facility-location instance.The proof of Theorem 12 shows that the algorithm will open (1� �)n facilities (resp. sets). 214



What can be said about Fixed Priority algorithms for metric facility location that are notnecessarily greedy? While we are not aware of tight bounds for this class of algorithms, we showhow the construction behind the proof of Theorem 12 suggests a lower bound that is (slightly)better than the 4/3 bound shown in Theorem 1 (and which applies to priority algorithms withunbounded memory).Recall the construction of the set of facilities I , as shown earlier in this section. Let g bethe uniform facility cost (that is, we replace the 2 � � facility cost by g, to be determined later).As in the case of Greedy algorithms, the input to the Fixed Priority algorithm contains onlyfacilities in I , and for every f 2 I which belongs in Il, the adversary removes f 's complement wrtCki [ Cl (for some appropriate ki) except for the case f and its complement are the last pair ofcomplementary facilities wrt Cki [ Cl. In the latter case, we call f critical wrt Cl, because theadversary's decision on whether to remove f 's complement wrt Cki [ Cl is made according to thefollowing rule. Let xl be the fraction of the jClj = nd facilities in Ski ;l that the algorithm openedright after f is considered. Then, the algorithm will not remove f 's complement wrt Cki [ Cl ifand only if g � xljClj+ xljClj+ 3(1� xl)jCljgjClj+ jClj � g � xljClj+ jClj2g + jClj : (1)Let us give some intuition about the actions of the adversary. The numerator of the LHS of (1)is the cost that the algorithm will pay to accommodate cities in Cl, in the case when the complementwrt Cki [ Cl of the critical facility wrt Cl is removed; in such a case, the corresponding optimalcost is given by the denumerator. On the other hand, the cost of the algorithm if the said facilityis not removed, is precisely the numerator of the RHS of (1) (and, likewise, the denumerator is thecorresponding optimal cost). Thus, if (1) holds, it makes sense for the adversary to not remove thecomplement of the critical facility. Since a large fraction of cities (arbitrarily close to 1) belong tosome Cl =2 D (where D is as de�ned earlier in the section), the total cost will be \dominated" bythe cost paid to accommodate such cities.To lower-bound the cost of the algorithm, partition C nD into two disjoint collections of setsof cities, denoted by Cin, Cout. Cin contains all Cl =2 D for which the last critical complement (wrtCki [ Cl for some appropriate i) in Il was not removed, while Cout contains all Cl =2 D for whichthe said complement was in fact removed by the adversary. Then, the cost of the algorithm can belower-bounded as follows:cost(ALG) � Xl:Cl2Cout(g � xljClj+ xljClj+ 3(1� xl)jClj) + Xl:Cl2Cin(g � xljClj+ jClj): (2)On the other hand, optimal cost is as follows:cost(OPT ) � Xl:Cl2Cout(gjClj+ jClj) + Xl:Cl2Cin(2g + jClj) + 3nd log d; (3)where the term 3nd log d upper-bounds the connection cost of cities in D. To facilitate the exposition,we can ignore this term, since for any arbitrarily small constant � > 0, we can �nd su�ciently large dsuch that the term is smaller than ��n. (recall that the optimal cost, is, by comparison, considerablylarger than this term, namely at least n). The de�nition of our adversary, along with inequalities(2) and (3) imply that the approximation ratio is minimized if, for every l, xl is such asg � xljClj+ xljClj+ 3(1� xl)jCljgjClj+ jClj = g � xljClj+ jClj2g + jClj : (4)15



Since at the end we will select g to be a small constant, for large n we will have that g << jClj,which means that we can ignore the term 2g in the denumenator of the RHS of (4), thus (4) givesxl = 2�gg2+2 . Substituting in (4), we have that the approximation ratio is at least 2+2g2+g2 , which ismaximized for g = 0:7321, giving an approximation ratio of 1:366.Theorem 14 The approximation ratio of every Fixed Priority algorithm for metric facilitylocation is at least 1:366� �, for arbitrarily small �.6 Future directions and open problemsSeveral interesting issues and open problems are left to investigate. A natural direction is to improvethe lower bound for adaptive-priority metric facility location, if this is indeed possible. Can thememoryless assumption be removed in the 1.463 lower bound? Similarly, although the 3� � boundwe showed is tight for the class Fixed Priority Greedy, we do not know whether a boundbetter than 1.366 can be obtained for Fixed Priority (not necessarily greedy) metric facilitylocation algorithms. Our lower-bound constructions use a f1; 3g cost metric, and all instances areunweighted. Can we improve the results by considering arbitrary metric distances or weightedinstances, where each city has a weight and the connection cost from a city is the product of thedistance and the weight?As already discussed, there is another natural way to model facility location priority algo-rithms, namely by letting the cities be the input items. Meyerson [19] gives a randomized O(1)-approximation priority algorithm in this model where both the ordering and the irrevocable deci-sions use randomization. Does there exist a deterministic O(1)-approximation priority algorithmin this setting? More generally, we need to study the power of randomization in the context ofpriority algorithms (see [1] for a more elaborate discussion).There are a number of variants of the facility location problem as well as the related k-medianproblem that can be studied within our framework. For example, the capacitated facility locationproblem where each facility has a capacity bound on the number (weight) of the cities it can serve.Of course, our lower bounds apply to the capacitated version; that is, by setting all capacities toexceed the sum of all city weights. But can we derive better results for this variant? As in the setcover problem, it seems appropriate to only consider greedy priority algorithms since not opening afacility may result in an infeasible solution. We are also considering the k-facility location problemin which a feasible solution allows at most k opened facilities, generalizing the facility location andk-median problems.AcknowledgmentsThis work began in discussions with Yuval Rabani and our �rst result, namely Theorem 1, was aresult of that collaboration. We also thank �Eva Tardos and David Williamson for their suggestionsand references, as well as Joan Boyar and Kim Larsen for their very helpful comments on Theorem 9.References[1] S. Angelopoulos. Randomized priority algorithms. Manuscript, 2003.[2] S. Arora, B. Bollob�as, and L. Lov�asz. Proving integrality gaps without knowing the linearprogram. In Proceedings of the 43rd Annual IEEE Conference on Foundations of ComputerScience, pages 313{322, 2002. 16



[3] S. Arora and M. Sudan. Improved low degree testing and its applications. In Proceedings ofthe 29th Annual ACM Symposium on Theory of Computing, pages 485{495, 1997.[4] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating throughput in real-timescheduling. SIAM Journal of Computing, 31(2):331{352, 2001.[5] A. Borodin, M. Nielsen, and C. Racko�. (Incremental) priority algorithms. In Proceedings ofthe 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 752{761, 2002.[6] V. Chv�atal. A greedy heuristic for the set covering problem. Mathematics of OperationsResearch, 4(3):233{235, 1979.[7] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634{652,1998.[8] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. InProceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, pages 649{657, 1998.[9] S. Guha, N. Mishra, R. Motwahl, and L. O'Callaghan. Clustering data streams. In Proceedingsof the 41th Annual IEEE Conference on Foundations of Computer Science, pages 359{366,2000.[10] D. Hochbaum. Heuristics for the �xed cost median problem. Mathematical Programming,22:148{162, 1982.[11] R. Impagliazzo and S. Davis. models of greedy algorithms for graph problems. Manuscript,2002.[12] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. InProceedings of the 34th Annual ACM Symposium on Theory of Computation, pages 731{740,2002.[13] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computerand System Sciences, 9(3):256{278, 1974.[14] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational viewsof approximability. SIAM Journal on Computing, 28(1):164{191, 1999.[15] L. Lov�asz. On the ratio of optimal integral and fractional covers. Discrete Mathematics,13:383{390, 1975.[16] M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. A greedy facility location algorithmanalyzed using dual �tting. In Proceedings of the 4th International Workshop on ApproximationAlgorithms for Combinatorial Optimization Problems (APPROX), pages 127{137, 2001.[17] M. Mahdian, J. Ye, and J. Zhang. Improved approximation algorithms for metric facility loca-tion problems. In Proceedings of the 5th International Workshop on Approximation Algorithmsfor Combinatorial Optimization Problems (APPROX), pages 229{242, 2002.[18] R. R. Mettu and C. G. Plaxton. The online median problem. In Proceedings of the 41st AnnualIEEE Symposium on Foundations of Computer Science, pages 339{348, 2000.17



[19] A. Meyerson. Online facility location. In Proceedings of the 42nd Annual IEEE Symposiumon Foundations of Computer Science, pages 426{431, 2001.[20] D.B. Shmoys. Approximation algorithms for facility location problems. In K. Jansen andS. Khuller, editors, Approximation Algorithms for Combinatorial Optimization, volume 1913of Lecture Notes in Computer Science. Springer, Berlin, 2000.[21] D.B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility location prob-lems (extended abstract). In Proceedings of the 29th Annual ACM Symposium on Theory ofComputing, pages 265{274, 1997.[22] P. Slav��k. A tight analysis of the greedy algorithm for set cover. Journal of Algorithms,25:237{254, 1997.

18



AppendixA Proofs of Some LemmasProof of Lemma 7.Given Lemma 6, su�ces to show that cost(OPT ) � l, since it follows that cost(OPT ) = l. We canassume that n = N(k; l), since the lower-bound construction in [22] holds for all n � N(k; l). Inthis case, the size of the largest set in S1 [ S2 (denoted by q1 in [22]) is exactly dnl e (this followsfrom (4), (5) and (11) in [22]). Suppose, by way of contradiction, that cost(OPT ) < l. Since dnl e isan upper bound on the largest size of a set in the instance (as constructed by the adversary), thiswould imply d ndnl ee � l � 1, which implies that nln+l � l � 1, or equivalently n � l2 � l. However, ngrows exponentially with l (see Eq.(36) in [22]), which leads to a contradiction for su�ciently largen. 2Proof of Lemma 11. We show how to construct V 0. Initially V 0 = ;. Let v1 be a vertex of largestoutdegree in G; clearly, the outdegree of v1 is at least d(d2)d e = dd�12 e. Place v1 in V 0 and repeat theprocess in the digraph induced by V n fN+(v1)[ v1g, where N+(v1) is the out-neighborhood of v1.Note that any two vertices of the induced digraph are adjacent to one common directed edge, andthat the induced graph has at most d�1�dd�12 e � d�12 vertices. It is easy to see that by repeatingthe process at most log d times, one can �nd a set V 0 of size at most log d that dominates V n V 0.2

19


