On the Power of Priority Algorithms for Facility Location and Set
Cover

Spyros Angelopoulos and Allan Borodin
Department of Computer Science
University of Toronto

Toronto, ON, Canada M5S 3G4
{spyros,bor }@cs.toronto.edu

May 28, 2003

Abstract

We apply and extend the priority algorithm framework introduced by Borodin, Nielsen and
Rackoff to define “greedy-like” algorithms for (uncapacitated) facility location problems and
set cover. These problems have been the focus of extensive research from the point of view of
approximation algorithms, and for both problems, greedy-like algorithms have been proposed
and analyzed. The priority algorithm definitions are general enough so as to capture a broad
class of algorithms that can be characterized as “greedy-like” while still possible to derive non-
trivial lower bounds on the approximability of the problems by algorithms in such a class. Our
results are orthogonal to complexity considerations, and hence apply to algorithms that are not
necessarily polynomial-time.

1 Introduction

Under the assumption that P # NP, N P-hard optimization problems do not admit polynomial-
time optimal algorithms. The natural question “how well can we approximate an N P-hard problem
by a polynomial-time algorithm” has been the motivation for extensive research over the last decade,
and the hardness of approximating a problem has developed into a a very prominent field within the
area of approximation algorithms. On the other hand, very little is known about the approximation
power of specific computational paradigms. For instance, what can we say about the hardness of
approximating a given optimization problem by an algorithm that we would intuitively characterize
as “greedy-like”?

The latter question was addressed by Borodin, Nielsen and Rackoff [5] who introduced the class
of so-called priority algorithms as a model for describing natural greedy-like algorithms. They also
proposed a framework for proving lower bounds on the approximability of a problem by such a class
of algorithms. To illustrate the techniques, they applied the framework to a number of well-known
scheduling problems, but claimed that the framework could become applicable to other problems
as well.

In this paper, we follow the priority-algorithm framework in [5] so as to to characterize “greedy
and greedy-like algorithms” for the uncapacitated facility location problem and the set cover prob-
lem. These well-studied and related N P-hard problems are central problems in the study of ap-
proximation algorithms. (See section 3 for further discussion of some of the relevant results.) The

best known polynomial time computable approximation ratio (essentially Inn, where n is the num-
ber of elements in the underlying universe) for the (weighted) set cover problem is achieved by a
most natural greedy algorithm [13] [15] [6] and quite good approximation ratios (namely, 1.61 [12]
and 1.861 [16]) have been derived by greedy-like algorithms for the metric uncapacitated facility
location problem. For these two optimization problems, we apply the priority-algorithm framework
and derive lower bounds on the approximation ratio for algorithms in this class. Informally, priority
algorithms are characterized by the following two properties:

1. The algorithm specifies an ordering of “the input items” and each input item is considered
in this order.

2. As each input item is considered, the algorithm must make an “irrevocable decision” con-
cerning the input input.

To make these concepts precise, (i.e., what precisely an “input item” and an “irrevocable de-
cision” are) one has to apply the framework to particular problems (see section 2.2). The goal
is to make the definitions sufficiently general and robust so as to capture known algorithms and
anything that would be classified as “greedy-like” while still being sufficiently restrictive that in-
teresting lower bounds can be derived. As in the competitive analysis of online algorithms, priority
algorithm lower bounds are orthogonal to complexity bounded approximation ratios. That is, al-
though greedy algorithms are highly desirable because they tend to be time efficient, the definition
of priority algorithms permits arbitrarily complex (in terms of computing time) computation while
deriving lower bounds by exploiting the structure of the algorithm.

Depending on whether the ordering changes throughout the execution of the algorithm, two
classes of priority algorithms can be defined:

e Algorithms in the class FIXED PRIORITY decide the ordering before any input item is con-
sidered and this ordering does not change throughout the execution of the algorithm.

e Algorithms in the more general class ADAPTIVE PRIORITY are allowed to specify a new
ordering after each input item is processed. The new ordering can thus depend on input
items already considered.

As argued in [5], a further distinction can be made for ADAPTIVE PRIORITY algorithms, de-
pending on the information the algorithm maintains on input items considered in the past. At one
extreme, the irrevocable decision in a memoryless ADAPTIVE PRIORITY algorithm depends only
on the “current configuration”; (e.g., for the facility location problem, only on facilities already
considered and opened in the solution being constructed). At the other extreme, the algorithm can
keep track of all input items considered in the past, and the corresponding decisions (e.g., in facility
location, the algorithm knows whether a facility is has already considered has been opened).

As in [5], “greedy algorithms” are (fixed or adaptive) priority algorithms, which satisfy an
additional property: the irrevocable decision is such that the objective function is locally optimized.
More specifically, the objective function must be optimized as if the the input currently being
considered is the last input. The definition suggests that it is the nature of the decision and not
the ordering that determines “greediness”.

Within this framework, we prove the following lower bounds:

1. The set cover problem over a universe of n elements.

(a) No ADAPTIVE PRIORITY algorithm can achieve a better approximation ratio than the
precise bound (Inn — Inlnn + ©(1)) obtained by Slavik [22] for the greedy algorithm
(see section 3). This lower bound applies to the uniform set cover problem in which all
set costs are the same. Note that Feige [7] shows that under a reasonable complexity
assumption (i.e., assuming that NP is not contained in DTTM E(n®Uo8l9g7))) it is not
possible to obtain a polynomial-time approximation of (1 — €) In n for any € > 0.

(b) For any € > 0, no FIXED PRIORITY algorithm can achieve an approximation ratio better
than (1 — €)n.

Since the set cover problem can be viewed as a special case of the facility location problem
(with distances in {0,00}), all lower bounds for the set cover problem hold for the facility
location problem when arbitrary distances are allowed.

2. The metric uncapacitated facility location problem. All of the following lower bounds will
apply to the unweighted case (i.e., each city has weight 1), with facilities having uniform (i.e.,
identical) opening costs, and where all distances are in {1,3}. The best known corresponding
greedy upper bounds apply to the weighted case and for an arbitrary metric distance function.

(a) No ADAPTIVE PRIORITY algorithm with unbounded memory can achieve an approxi-
mation ratio better than 4/3.

(b) For memoryless ADAPTIVE PRIORITY algorithms we show a lower bound of 1.463 on
the approximation ratio of the metric facility location problem, which matches the
complexity-based bound of Guha and Khuller [8] (under the same assumption used

by Feige [7]).

(c) For all € > 0, no FIxeEp PRIORITY GREEDY algorithm can achieve an approximation
ratio of 3 — € for the uniform metric facility location problem. This bound matches
the 3-approximation upper bound of Mettu and Plaxton [18] which applies to the non-
uniform case. For FIXED PRIORITY but not necessarily GREEDY algorithms, we show a
corresponding bound of 1.366 (with no memory restrictions).

It is interesting to note that certain primal-dual algorithms can be seen as priority algorithms,
or, more precisely, certain primal-dual algorithms have an alternative combinatorial statement as
a priority algorithm. For instance, the greedy algorithm for set cover [13] [15] [6] and the greedy-
like algorithms for facility location due to Mahdian et al [16] and Jain, Mahdian and Saberi [12]
can be stated as primal-dual algorithms. Of course, not every primal-dual algorithm is a priority
algorithm; for example, primal-dual algorithms that apply a reverse-delete (or, generally speaking,
reverse-reconstruction) step do not appear to belong in the class of priority algorithms. Hence,
a negative result concerning a priority algorithm suggests that a reverse-reconstruction phase is
needed if one wants to design a primal-dual algorithm with better performance.

Naturally, defining what precisely constitutes a “greedy-like” algorithm is very subjective. As
observed in [5], it is unlikely that priority algorithms can capture every possible algorithm that
intuition would classify as “greedy-like”; for instance, the one-pass Admission Algorithm of Bar-
Noy, Guha, Naor and Schieber [4] for a general version of a scheduling problem, requires that
certain decisions (in particular, the admission of a job in the schedule) are not irrevocable, but
only temporarily, and as such they can be revoked in the future. In other words, the above
algorithm applies some limited backtracking, which may or may not be a characteristic of a “greedy-
like” algorithm. On the other hand, a greedy-like algorithm may be allowed to maintain global

information that the priority-algorithm framework (or every natural model, for that matter) does
not or cannot model. Nevertheless, the framework does include well-known algorithms that have,
undoubtedly, greedy-like flavor (see section 3 for examples of such algorithms), and provides a solid
starting point towards a classification based on “greediness”.

2 Preliminaries

2.1 Problem statements

In the (uncapacitated, unweighted) facility location problem, the input consists of a set F of facilities
and a set C of cities with F NC = 0 1. Each facility i € F is associated with an opening cost f;
which reflects the cost that must be paid to utilize the facility. Furthermore, for every facility + € F
and city 7 € C, the non-negative distance or connection cost c;; is the cost that must be paid to
connect city j to facility ¢. The objective is to open a subset of the facilities in F and connect each
city in C to an open facility so that the total cost incurred, namely the sum of the opening costs
and the connection costs, is minimized. In the metric version of the problem, the connection costs
satisfy the triangle inequality.

We emphasize that we assume the model in which facilities and cities are disjoint sets. Even
though this assumption is not needed from the point of view of upper bounds (algorithms), the
arguments we will present rely strongly on it; in particular, the lower bounds we present do not
hold in the complete model, in which every node is both a facility and a city.

In the set cover problem, we are given a universe U of n elements, and a collection § of subsets
of U. Each set S € § is associated with a cost ¢(5). We seek a minimum-cost subcollection of §
that covers all elements of U; that is, a collection of sets &’ C & of minimum total cost such that
for every e € U there exists a set S € &’ with ¢ € 5.

2.2 Definitions of input items for priority algorithms

What precisely constitutes the input for the problems we study? For the uncapacitated facility
location problem the cost of a solution is determined by the set of facilities the algorithm decides
to open, since each city will be connected to the nearest open facility. Hence, we will assume that
the input items are the facilities themselves, where each facility is identified by a unique id, its
distance to every city and its opening cost. When considering a facility (of highest priority), the
algorithm must make an irrevocable decision as to whether or not to open this facility. The decision
is irrevocable, in the sense that once a facility is opened, its opening cost will count towards the
total cost that the algorithm incurs and if a facility is not opened when considered, it cannot be
opened at a later stage.

For the class of scheduling problems considered in [5], there is no issue as to what the “input
items” are. But for the facility location problem (and the set cover problem), there is at least one
other very natural way to view the input items. Namely, as in Meyerson [19], we can think of the
cities as being the input items, with each city being identified by its id, and its distance to each
facility. (We can treat the opening costs of all facilities as global information.) The irrevocable
decision would then be to assign each input city to some open facility, possibly opening a new
facility if desired 2. Indeed this model is very natural in the sense that one would expect the

'We assume that F N € = § noting that if + € F N C, then we can replace x by z; € F and =, € C with zero
connection cost between z; and z..
ZMeyerson’s algorithms apply to the complete model, as defined earlier in the section.

number of cities to be much larger than the number of facilities. We have chosen our model as
it abstracts several known O(1)-approximation greedy-like algorithms (see section 3). We note,
however, that it is possible to show negative results for priority algorithms in the model in which
the input items are the cities [1].

Similar to the facility location problem, there are two natural ways to represent the input for the
set cover problem. Perhaps the most natural representation is to think of the input as consisting of
sets, where each set is identified by an id, by its cost, and by the elements it covers. For such a model,
we impose the constraint that the priority algorithm must irrevocably select any set it considers
in case the set covers a new element, that is, an element not covered by the sets already selected.
This requirement is motivated by the observation that if the set that covers the new element is
the only set with this property, and the algorithm does not select it, the resulting solution will not
be feasible. In other words, the priority algorithm is oblivious of the sets to be considered in the
future, and cannot anticipate whether feasibility will be upheld by not selecting a particular set.
The well-known greedy algorithm for set cover [13] [15] observes the above requirement. It is worth
mentioning that in this context every priority set cover algorithm belongs in the class of GREEDY
algorithms 3. Alternatively, it is possible to represent the input as a set of elements, where each
element is described by a unique id and a collection of sets it is contained in; in this representation,
we can treat set costs as global information. For reasons similar to the ones given for the facility
location problem, in this paper we will consider the representation of the input as a collection of
sets, rather than elements.

2.3 Orderings and the role of the adversary

To show a lower bound on the approximation ratio we must evaluate the performance of every
priority algorithm for an appropriately constructed nemesis input. The construction of such a
nemesis input can be seen as a game between an adversary and the algorithm and is conceptually
similar to the construction of an adversarial input in competitive analysis. However, in the setting
of priority algorithms, it is the algorithm and not the adversary that chooses the ordering of the
inputs. But we do not want the algorithm to be able to chose an optimal ordering for each input
(e.g. chose the optimal set of facilities as those of highest priority). One possibility is to define the
“allowable orderings” to be those that are induced by functions mapping the set of all input items
into the non negative reals. The nature of the adversary described below provides a more inclusive
definition for what orderings are allowed.

We consider the basic framework where the priority algorithm has no additional global infor-
mation (such as the total number of input items * |the total “cost” of all items in the input, etc.)
beyond the input itself. In this setting, the game between the adversary and a FIXED PRIORITY
algorithm can be described as follows. The adversary presents a large set of potential input items
S. The algorithm determines a total ordering on this set. The adversary then selects a subset S’
of S as the actual input; that is, the adversary discards part of the potential input. We enforce the
condition that the removal of input items does not affect the priority of the remaining input items.
As an example of this, in our framework of a priority algorithm for facility location, a facility is not
defined in terms of other facilities; therefore, when the adversary removes a facility, the priority of
every other input item is unaffected®.

®In contrast, every solution for an instance of facility location in which at least one facility is open, is feasible.
Thus, not every priority facility location algorithm is necessarily greedy.

“For the problems considered in this paper, it is not hard to show that we can extend our lower bounds to the
case that the algorithm does know the number of input items.

5This explains why we need to restrict our attention to inputs in which the set of facilities and the set of cities

The situation is not much different for the class ADAPTIVE PRIORITY. Even though the algo-
rithm can determine a new ordering after considering each input item, the adversary can adaptively
remove input items from S (in each iteration) so as to derive the actual input 5.

Following the discussion in [5], we define memoryless (adaptive) facility location algorithms.
In general, an adaptive algorithm defines a new ordering at every iteration based on all the input
items (and hence the corresponding decisions) thus far considered. In contrast, the ordering of a
memoryless algorithm depends only on the current configuration. That is, in the context of the
facility location problem, the ordering in any iteration depends only on the set of facilities that
have been opened and not on any facilities that have been considered but not opened.

3 Related work

Facility location problems have been the focus of extensive research from the operations research
and the computer science communities for several decades. However, it was only recently that
Shmoys, Tardos and Aardal [21] gave the first O(1) polynomial time approximation algorithm.
The past several years have witnessed a steady series of improvements on the approximability of
metric facility location. The approaches used include LP-rounding, the primal-dual method, local
search, dual fitting, and combinations of the above. We refer the interested reader to the survey
of Shmoys [20], for a collection of recent developments in the area. Currently, the best-known
approximation ratio (1.52) for metric facility location is due to Mahdian, Ye and Zhang [17], and
is achieved by a non-priority algorithm. For the special case of connection costs in {1, 3}, the LP-
based (non-priority) algorithm of Guha and Khuller [8] provides a 1.463-approximation, matching
the complexity based hardness result presented in the same paper.

We identify algorithms that follow the paradigm of a priority algorithm, as defined in section 2.2.
Hochbaum [10] presented an algorithm in the class ADAPTIVE PRIORITY GREEDY which is an
O(logn) approximation for facility location in arbitrary spaces, and showed that the analysis for
the particular algorithm is tight. Mahdian, Markakis, Saberi and Vazirani [16] showed that a natural
ADAPTIVE PRIORITY algorithm, which is only a small modification of Hochbaum’s algorithm, is a
1.861 approximation algorithm for metric facility location; the analysis is performed by an elegant
application of the dual-fitting technique. In addition, this algorithm can be made into a memoryless
one with the same approximation ratio. To our knowledge, the best approximation achieved by a
priority algorithm is due to Jain, Mahdian and Saberi [12]: their algorithm belongs in the class
ADAPTIVE PRIORITY as well, and it is also analyzed by using the dual fitting technique. Mettu
and Plaxton [18] showed that an algorithm which belongs in the class FIXED PRIORITY GREEDY
yields a 3-approximation for metric facility location in the complete model.

Set cover is one of the oldest and most well-studied NP-hard problems. Johnson [13] and
Lovasz [15] proposed a simple greedy algorithm which they showed provides a H (n)-approximation,
where H(n) is the n-th harmonic number, and n = |U|. Chvatal [6] extended their results to the
weighted case. A tight analysis of the greedy algorithm due to Slavik [22] is of particular interest,
as discussed in section 4.2. This specific greedy algorithm iteratively selects the most cost-effective
set, i.e., the set that minimizes the average cost at which it covers new (i.e., currently uncovered)
elements. Clearly, the above algorithm belongs in the class ADAPTIVE PRIORITY: in every iteration,
the priority of a set is its cost-effectiveness. In this paper, we refer to this algorithm as the greedy
algorithm for set cover, to distinguish it from other (greedy) priority algorithms that one can define.

In terms of negative results, Feige [7] showed that it is not possible to obtain a polynomial-

are disjoint, as mentioned earlier.

time approximation of (1 — €)Inn for set cover, unless NP has slightly superpolynomial time
deterministic algorithms. On a similar vein, Arora and Sudan [3] showed that set cover is not
approximable within a factor of o(logn), under the weaker assumption that P # N P.

It must be mentioned that the priority-algorithm framework of Borodin, Nielsen and Rackoff [5]
does not seem to be directly applicable to graph optimization problems without certain modifica-
tions. In recent work, Impagliazzo and Davis [11] addressed this issue and proposed an extension
of the framework so as to capture greedy-like algorithms for this class of problems.

As one expects, the question “how well can a specific class of algorithms approximate a problem”
is not (or should not be) restricted to greedy-like algorithms only. Motivated by the lack of IP
formulations for the vertex cover problem having integrality gap better than 2 — ¢, Arora, Bolobés
and Lovész [2] recently showed that this bound is tight for three broad classes of IP formulations
for this problem. The results suggest that every linear relaxations for any IP formulation that falls
in one these classes will not yield any improvement on the approximation ratio of vertex cover. In
a similar flavor, Khanna, Motwani, Sudan and Vazirani [14] proved lower bounds for the so-called
class of oblivious local-search algorithms for problems such as MAX 2-SAT and MAX 2-CSP. The
above class contains local search algorithms which apply a greedy rule in the choice of the local
change. Finally, another limited computational paradigm that is close to priority algorithms is data
stream algorithms (see, e.g., [9]). Here, the algorithm is allowed to perform either a single pass, or
only a small number of passes over the data, and is also subject to constraints on the amount of
memory it can use. Both upper and lower bounds for algorithms in this class have been shown.

4 Adaptive priority algorithms

In this section we show lower bounds on the approximability of set cover and facility location
by adaptive priority algorithms. All our lower-bound constructions for metric facility location use
connection costs in {1, 3}, suggesting the following definitions. Let C'¢ be the set of cities at distance
1 from facility f. We say that f coversC'y. The complement of f with respect to C' where C'y C C'is
defined as the facility that covers all and only the cities in C'\ (', and has the same facility opening
cost as f. For simplicity, when ' is the set C of all cities, we say that f and f are complementary,
where f is the complement of f wrt C.

4.1 Adaptive priority facility location with unbounded memory

We first consider the most general case of an ADAPTIVE PRIORITY algorithm with unbounded mem-
ory (i.e., the algorithm has complete knowledge of the decisions made in the past). In section 4.3
we show how to derive improved bounds for priority algorithms which are memoryless.

Theorem 1 No priority algorithm for the uniform metric facility location problem can achieve an

approzimation ratio better than %.

Proof. Define an instance of the uniform metric facility location problem as follows. The set of
cities C consists of n cities. Each facility is identified with the set of cities it covers. More precisely,
for every C' C € with |C] = %, there exists a facility f that covers C' (and only cities in C) ©. For
every city in C \ C', the cost of connecting the city to f is equal to 3. Note that for every facility f
in the instance, the complement f of f is also in the instance.

SThroughout this paper we ignore floors and ceilings and assume that n is appropriately divisible.

Every time the algorithm considers a facility f it must decide whether to open it. If it opens f,
the adversary removes all facilities which do not cover exactly n/2 uncovered cities, where 7 is the
number of currently uncovered cities. The adversary also removes f unless f is the last remaining
facility in the input set. If the algorithm does not open f, the adversary removes all remaining
facilities except for f. Let all facility costs be equal to 7. The optimal algorithm will open a pair
of complementary facilities at an opening cost of 2 - %, and connect all cities at a cost of n, for a
total cost of %n Suppose that the algorithm opens k facilities, with & > 1. It is easy to see that
the union of these k facilities covers at most n Y., 277 = n(1 — 27%) cities. Hence the algorithm
pays a facility-opening cost of k- % and a connection cost of at least n(1— 2"“) +3n-27% and thus
a total cost of (1+ % + 2_k+1)n. This expression is minimized at either £k = 2 or k = 3, giving a %
ratio between the algorithm’s cost and the optimal cost. a

Using an argument along the same lines one can prove the following:

Theorem 2 The approximation ratio of every priority algorithm for facility location in arbitrary
spaces is Q(logn).

Proof. We consider the same set of cities C'y covered by a facility f except now any city not covered
by f (i.e. not at distance 1) has oo distance from f. In this case, any priority algorithm must open
any facility it considers. Hence it will consider and open log n facilities while the optimal algorithm
will again open two facilities. a

Note that the bound is tight, since Hochbaum [10] showed that a simple greedy-like algorithm,
which can be classified as ADAPTIVE PRIORITY, is an O(logn) approximation algorithm for the
problem.

4.2 Adaptive priority set cover

In this section we prove that no (adaptive) priority algorithm can perform better than the greedy
set-cover algorithm.

A remarkably tight analysis of the greedy set cover algorithm due to Slavik [22] shows that
its approximation ratio is exactly Inn — Inlnn + ©(1), where n = |U| is the size of the universe.
For the proof of the lower (as well as the upper) bound, Slavik considered an instance of set cover
with sets of uniform cost on a universe U of n > N(k,[) elements. Here, N(k,!) is defined as the
smallest size of U such that there is a set cover instance over U with the property that the cost of
the greedy algorithm is exactly k, while the cost of the optimal algorithm is exactly [, for given k, [
with k& > [. The collection of input sets for this specific instance consists of two subcollections, each
covering all n elements of U. The first subcollection, denoted by &y, contains ny, ng, ..., n, disjoint
sets of sizes sq, s9, ..., s, respectively, so that "'_; n;s; = n. The numbers n;’s and sizes s;’s of the
sets are selected in [22] appropriately, but for the purposes of our discussion it suffices to mention
the following: i) n; > 0, for all ¢ with 1 <7 < r, and r is a postitive integer; ii) > r_, n; = k; iii)
51 > 83 > ...> s, > 0;and iv) 51 > [7]. The second subcollection, denoted by S;, consists of [
sets of sizes in {[7],[7] — 1}. Slavik argued that the greedy algorithm must select all sets in Sy,
at a total cost of 3 i_; n;. In addition, the greedy algorithm selects the sets in &1 in non-increasing
order of sizes, breaking ties arbitrarily. On the other hand, the cost of the optimal algorithm is
the total cost of the subcollection &2, namely, [. Slavik showed that for every n sufficiently large,
one can find k,{ such that N(k,l) <n < N(k+1,1),and £ > Inn - Inlnn 4+ ©(1). We will show
that, for every such n (and then k& and [chosen as in Slavik’s analysis), there exists an instance of
set cover with |U| = n for which the cost of every priority algorithm is at least £ = >"'_; n;, while

the cost of the optimal algorithm is at most [. Then Slavik’s analysis carries over to yield the same
lower bound on the approximation ratio for every priority algorithm.

Consider an instance of set cover which consists of a universe U of size n and all () sets of size
d, where d = s; > [7]. All sets have identical costs. Given an adaptive priority algorithm for the
problem, we describe the actions of the adversary, which takes place in r phases. As we will show
in Lemma 3, it is feasible to define such an adversary. Phase 1 begins with the first set selected by
the algorithm; it terminates when the algorithm has selected exactly n; sets that cover at least one
new element each. If the number ¢; of elements covered by the algorithm in phase 1 is less than
n181, the adversary chooses any nys; — ¢; uncovered elements, which together with the ¢ covered
elements form a set of elements denoted by ;. Without loss of generality, we will consider all
elements in '] as being covered. The adversary removes all sets from the input except for sets that
contain at least d — s, elements of ', namely a set S remains in the input only if [SNCy| > d — s9
(recall that d = s; > s2). Phase 2 then begins. Likewise, phase ¢, with 1 <7 < r — 1 terminates
when the algorithm has selected exactly n; sets that cover at least one uncovered element each. If
the number ¢; of elements covered in phase 7 is less than n;s;, the adversary chooses any of the
remaining n;s; — ¢; elements, which together with the ¢; covered elements are the contents of a
set denoted by C;. (We again consider all elements in C; as being covered.) The adversary then
removes all input sets except for sets that contain at least d — s;41 elements of U;‘:1 C';, namely, a
set S remains in the input only if [S N U;Zl C;| > d — s;41. The adversary does not remove any
sets at the end of (the last) phase r. All sets not explicitly removed by the adversary comprise the
actual input that is presented to the algorithm.

We need to show that it is feasible to define an adversary as above. Denote by R; the collection
of sets that remain in the input at the beginning of phase 2, with 1 < < r. Note that every set in
R; can cover at most s; new (so far uncovered) elements.

Lemma 3 At the beginning of phase i, at least n;s; elements are uncovered, and the sets in R; can
cover these elements.

Proof. By induction on . Recall that 77 n;s; = n. Clearly, at the beginning of phase 1 there
are n > n1s; uncovered elements, and Ry consists of all (Z) sets, hence the nys; uncovered elements
can be covered by sets in Ry. Consider the beginning of phase ¢, with 1 < ¢ < r. In each phase j,
with 1 < j < 1, the algorithm covered |C;| = n;s; elements (by the definition of the adversary and
the induction hypothesis). Therefore, at the beginning of phase i, n — E;;ll njs; =) i njs; >
n;s; elements are uncovered. Let P be a set that contains exactly n;s; uncovered elements. Let
P, P, ..., P, be any disjoint partition of P in sets of size s;. We claim that for any m with
1 < m < n; there exists at least one set in R; that covers P,,. Define the set S as the set that
contains exactly sy — sp41 elements of Cp,, for every h with 1 < h < ¢ and also contains F,,. Since

the C'y’s with h < 7 and F,, are all disjoint, the set S has size
i—1

S (sh—sup1) +si=(s1—si)+si=s1=d
h=1

hence S belongs in Ry. It remains to show that S is in R;. To this end, note that for all j < 4,
J J
SN U Cyl = Z(Sh — Sh4l) = 51— Sjt1,
h=1 h=1

therefore S is in R;4q, for all j < ¢ (and in particular, for j = ¢ — 1). Thus the adversary will not
remove S before the end of phase . a

Denote by cost(ALG), cost(OPT) the cost of the priority algorithm and the cost of the optimal
algorithm, respectively. We then have:

Lemma 4 cost(ALG) > Y i_yn; = k.

Proof. This follows from Lemma 3. In particular, the algorithm will always select n; sets in phase
7, and thus will move to phase ¢ + 1, for all 7 < r. a

The following combinatorial lemma will be useful in upper-bounding the optimal cost.

Lemma 5 Suppose that there exists a collection of (not necessarily disjoint) sets Py, Py, ..., P C
U, each of size d, with the following properties:

o P ... P cover all elements of U, namely U2:1 P, =U.

o There exist disjoint sets G1,Ga,...,G, C U, with |G;| = n;s;, such that [P, N U;Zl Gj| >

d— siy1, foralle <r—1and all h with 1 < h <.
Then cost(OPT) < L.

Proof. From the description of the adversary we know that |C;| = n;s; and that the C}’s (j < r)
are disjoint sets. Then there exists a bijection ¢ : U — U such that for every e € U, ¢(e) € C;
if and only if e € (; this is because all sets C; and all sets G are disjoint, |C}| = |G|, for
all j, and J;_, C; = Uj2; G; = U. With a slight abuse of notation, denote by ¢(F) (h < 1)
the set {¢(e) | e € P,}. Note that |¢(Pn)| = d. In addition, note that for every i < r — 1,
lo(Py) N U;Zl C;| > d — s;41. Hence, ¢(P) defines a set which is not removed by the adversary in
any phase, and since the collection of sets {¢(Py),...,¢(F))} covers U, the cost of OPT is at most
L. a

We can now show that the cost of the optimal algorithm is upper-bounded by [, by showing
that the conditions of Lemma 5 are satisfied.

Lemma 6 cost(OPT) <.

Proof. Consider an instance of set cover, with a universe U of size n and the two subcollections of
sets §1 and 8o, as defined earlier in the section. Let GG; be the set of elements contained in the n;
sets of size s; in Sy, for ¢ < r. Clearly, all G;’s are disjoint.

We will assume that all sets in Sy are of size d. This is not a restrictive assumption, as will
become evident later. Let S consist of sets Py, ..., P,. We claim that |P, N U;‘:1 G| > d— s,
for all ¢ < r —1and h < [. To this end, we look at the choices of the greedy algorithm on the
set cover instance that consists of sets in §1US; over U. As argued by Slavik in [22] the greedy
algorithm selects only sets in &y in non-increasing order of size, breaking ties arbitrarily. Therefore,
the greedy algorithm covers all elements in (; prior to covering any element of Gi;/, for all 7 < ' < r.
Let the ¢-th phase of the greedy algorithm correspond to the selection of the n; sets (each of size
s;) that cover the elements in G;. Assume, by way of contradiction, that for one of the sets in Sa,
say Pp, |Pn N U;‘:1 G| < d — s;41. This implies that at the beginning of phase ¢ + 1 of the greedy
algorithm, P, covers at least d — (d — s;41) + 1 = s;41 + 1 new elements. Since every set in Sy
not yet selected by the greedy algorithm at the beginning of phase ¢ 4+ 1 covers exactly s;41 new
elements, the greedy algorithm must select a set from &5, a contradiction.

10

We now show how to waive the assumption that all sets in S have size d. To every set 5 € S5,
of size |S|, we append d — |S| elements from any set of size d that the greedy algorithm selects in
its first phase. It is easy to see that the argument described earlier goes through. a

The following lemma, although not needed for the purposes of the proof of Theorem &, will be
essential to the proof of Theorem 9.

Lemma 7 (Appendix A) For sufficiently large n, cost(OPT) = 1.

From Lemma 4 and Lemma 6, the approximation ratio of every priority algorithm for set cover
Doy k

is at least =#31— = 7. From Slavik’s analysis, this is precisely the approximation ratio of the
greedy set cover algorithm which shows:

Theorem 8 No priority algorithm for set cover performs better than the greedy algorithm. The
approzimation ratio for priority set cover is thus Inn —Inlnn + ©(1) and this bound is tight.

4.3 Adaptive priority metric facility location: memoryless algorithms

The result of Theorem 8 has important implications for the approximability of metric facility
location by priority algorithms. First, note that Guha and Khuller [8] established a polynomial
time reduction from set cover to metric facility location, shown in Figure 1 (we have modified their
notation for consistency with our paper.). For the set cover problem, U is the universe and § is the
collection of sets. The corresponding facility location problem (F,C) has the set of cities C = U
and for each set S € § there is a corresponding facility /7 € F where the distance ¢;; from facility
i to city j is set to 1 (respectively 3) if @; € S; (resp. z; ¢ S;).

Create a facility location instance (F,C) corresponding to (S, U)
Let [= ’yg % the cost of a facility
while C # 0 do
F' = Adaptive-Priority-Algorithm (F,C)
Let C' be the cities covered at distance 1
Let F=F—FandC=C-C'
Let f = 'y@ be the cost of a facility
endwhile

Figure 1: The Guha and Khuller reduction. The priority facility location algorithm returns a set
of opened facilities. Here + is an appropriately chosen constant and £ is the optimal cost for the
set cover instance.

Using the reduction, Guha and Khuller argued that if there exists a polynomial-time algorithm
for metric facility location with approximation ratio better than 1.463, then set cover can be
approximated (by some polynomial-time algorithm) with approximation ratio (1 —¢) In n, for ¢ > 0,
where n is the size of the universe. By Feige’s inapproximability result for set cover [7], this implies
that NP C DTIM E(n®U°81°87)) In fact, the Guha-Khuller reduction can be used to show that
one can derive a priority algorithm for set cover from any memoryless priority algorithm. In view
of this observation, we can interpret the argument of Guha and Khuller as follows: If there exists
a memoryless priority algorithm for metric facility location with approximation ratio better than

1.463, then set cover is (1—¢) In n-approximable by a priority algorithm for some € > 0, contradicting
Theorem 8.

11

As can be seen in Figure 1, the set cover algorithm consists of several “stages”; in each stage
the facility location algorithm is executed for an opening cost” which is uniform for this stage. We
can assume, from Lemma 7 that for sufficiently large n = |U|, the optimal cost [is known by the set
cover priority algorithm. For a given stage of the reduction, the facility location algorithm returns
a set of facilities to be opened. Given this set of open facilities, the stage ends by removing the
corresponding sets and also removing the corresponding elements of the set cover universe for each
city covered (i.e. at distance 1) by a facility opened during this stage. The stage ends by uniformly
resetting the opening cost for the facilities.

We first provide more details as to how one stage in this reduction is applied in the context of
priority algorithms. We note that similar to the discussion in [5], any adaptive memoryless facility
location algorithm A can be transformed to a memoryless greedy algorithm. For our purposes we
want a slightly different transformation, namely we want to transform A to an algorithm A’ that
opens the same set of facilities, and has the following property: if A’ considers a facility that it does
not open, none of the remaining (i.e. not yet considered) facilities will be opened. More precisely,
A’ simulates A, in the sense that every time A would open a facility, A’ will also consider and
open the facility in question. If, however A’ would not open a certain facility, then A’ will give this
facility the lowest priority thereby deferring its consideration. We also need to make sure that such
a facility, if it was considered (i.e. had highest priority in some iteration) and not opened by A, will
continue to receive lowest priority and never be opened in subsequent iterations of A’. This is easy
to do, since A is a memoryless algorithm: as A’ starts a new iteration, we can reconstruct the order
in which A has opened facilities before this iteration, say in the order Fi,..., F.. We consider each
of the configurations 0, {Fy}, {F1, F2},...,{F1,...F._1}. Then in determining the priority of any
facility F', we consider its priority given each of these configurations. For example, in configuration
{Fi,...Fi_1}, if A would have given F' higher priority than the facility F; that was next opened
but would not have opened F', then A’ will give lowest priority to facility F.

Assume, therefore, that the facility location algorithm has the property stated above. We can
now make each iteration of the facility location algorithm correspond to an iteration of a set cover
algorithm, and in particular describe how to order sets in each iteration. For definiteness, think of
the priority of a facility being given by a non-negative real number, with priority zero indicating
that the algorithm should not open this facility. Now we indicate how to give priorities to sets so
that each iteration of the facility location algorithm will correspond to a priority set cover iteration.
The priority of a set \S; (in each iteration of the facility location algorithm) will be given by a pair
(a;,b;) where a; is the priority that the facility location algorithm would give to the i facility
(that is, the facility to which S; corresponds) if we were not beginning a new stage and b; is the
priority that would be given to the i facility if we were beginning a new stage. In the latter case
these priorities depend upon the new opening costs as well as knowing what cities and facilities
have been removed. These pairs are then ordered lexicographically so that (0,b) indicates a lower
priority than (a,d’) for any @ > 0 and (0,b) indicates lower priority than (0,) if b < b’. Hence,
using this reduction, the set covering algorithm will not “consider” a set it would not open.

We thus established the following:

Theorem 9 Metric facility location cannot be approximated within a factor smaller than 1.463 by
any memoryless priority algorithm.

"To derive the 1.463 hardness result for facility location, the constant ~ is set to .463.

12

5 Fixed priority algorithms

In this section we first present a tight lower bound on the approximation ratio of algorithms in the
class FIXED PRIORITY, GREEDY for metric facility location. The construction behind the proof also
suggests strong lower bounds for FIXED PRIORITY set cover, and FIXED PRIORITY GREEDY facility
location in arbitrary spaces, as well as a lower bound that is better than 4/3 for FIXED PRIORITY
(but not necessarily GREEDY) metric facility location algorithms with unbounded memory.

Consider the following instance (F,C) of the metric facility location problem. Let C,Cy, ..., Cy
be a partition of the n cities into d (disjoint) sets of size % each, for some large constant d. For
every pair (k,[), with 1 < k,l < d, and k # [we identify the sets of facilities F}; and Fk,l as follows.
Denote by f;;’l the facility that covers every city in C}, except for city ¢ € (g, and also covers city
j € (. In addition, denote by f;;’l the facility that covers every city in C; with the exception of
city j € C, and also covers city ¢ € C. Fj; and Fk,l are defined as the sets {f;}’l |ieCr,jeC}
and {f;}’l | i € C,j € (1}, respectively. Note that by definition, the complement wrt C U C; of
a facility in Fj is in Fk,l (and vice versa). The cost for connecting every city in C not covered by
a facility in Fj; (respectively, Fk,l) to a facility in Fj; (respectively, Fk,l) is set to 3. The set of
potential facilities F is defined as the union of all F}; and FM, for all pairs k, [, with k£ # [. Every
facility is assigned an opening cost of 2 — . We emphasize that all connection costs are in {1,3}
and that the facilities have uniform opening costs.

Let o be the ordered sequence of facilities in F produced by a FiXED PRIORITY GREEDY
algorithm.

Lemma 10 For every pair k,l, with 1 < k,l < d and k # [, there exists a set Sy, of % pairs of
facilities (f1, f1),-- -, (fg,f%) € (Fii % Fk,l) U (Fk,l X I.1) such that: For every m with 1 < m < %,

the facilities f,, and f,, are complementary wrt Cj, U Cy, f,, precedes f,. in o, and at least one of
the following holds:

1. Fach f,, covers a city in C}, which is not covered by any facility of the form f,» € Sp; with
m' # m; or

2. Each f,, covers a city in C; which is not covered by any facility of the form f,» € Sy with
m' %+ m.

Proof. Fix k,l. Suppose that for every city j € C} there exists city ¢; € C}, such that f;j’]l precedes

f;j’]l in 0. Let Si; be the set of % pairs of facilities (Z’j’]l’,ﬁ]j’]l) for j € (Y}, then the lemma holds,
kI

since i and f;j’]l are complementary wrt C U (', and f;j’]l covers only j among the cities in Cj.
Otherwise, there exists city j' € C} such that for every city 7 € C}, f;}’,l precedes f;;’,l in 0. Let S,

be the set of % pairs of facilities (NZ»];’,I’, f;;’,l), then f;}’,l and f;;’,l are complementary wrt C, U], and

f»];’,l covers only ¢ among the cities in C}. a

Note that for every fixed pair k,/, either case (1) or case (2) of Lemma 10 (or possibly both)
apply. For the purposes of our proof we will assume, without loss of generality, that only one of
the cases applies, for every fixed pair k,[(if both cases apply, consider only one arbitrarily). We
use the notation C; — C, (resp. Cy — () to denote that case (1) (resp. case (2)) applies.

Define a digraph G = (V, F) on d vertices vy, ..., vq as follows: the directed edge (vg,v;), with
k # lis in Eiff Cy — C;. From Lemma 10, any two vertices in (G are adjacent to one common
directed edge, and thus G has exactly (;l) edges. The following lemma is straightforward.

13

Lemma 11 Let (G be defined as above. There exists a set V! C V of size at most logd that
dominates V' \ V'. Namely, for every v; € V \ V', there exists vi, € V' such that (v, v;) € F.

Lemma 11 implies that there exists a collection D of at most logd sets C,, ..., C}, such that
for every set C; ¢ D, there exists C, € D such that Cy, — C;. We now describe how the adversary
constructs the input that is presented to the algorithm. Recall from Lemma 10 that the set Sy, ; of
facilities satisfies C, — C}. For fixed [, with C; ¢ D, denote by I; the set Sy, ; with the property
that 7 is the minimum among all j’s for which Cy, — €}, and Cy, € D. Let I = U{[; |C; ¢ D}.
The input to the algorithm contains only facilities in I. In addition, for every f € I which belongs
in Sy, 1, the adversary removes f’s complement wrt C}, U C}, except for the case when f and its
complement are the last pair of complementary facilities wrt C%, U C}. Note that from Lemma 10,
f’s complement wrt Cj, U (] follows f in o, so the removal of the facilities by the adversary is
feasible. All facilities I’ C I which are not explicitly removed by the adversary comprise the actual
input.

It remains to bound the cost of the priority algorithm and the optimal algorithm. From the
construction of I’ and Lemma 10, it follows that the first facility that can cover a city j € C\ D
covers only j among the cities in C \ D. The greedy criterion dictates that when the algorithm
considers the facility in question, it will open it: the algorithm will pay a total of 3 — ¢ for opening
the facility and connecting j to the open facility, which improves upon the cost of 3 that must be
paid if the algorithm does not open the facility. Since there are %(d — | D) > %(d — logd) cities in
C\ D (where | D] is the size of D), we get

(d—|D)+n>(2—¢) -~ (d—logd) +n.

cost(ALG) = (2—¢) - y

n
d
The optimal algorithm, on the other hand, opens only pairs of facilities that are complementary
with respect to partitions of cities. The open facilities cover all cities in the instance, and hence
the total optimal cost is

cost(OPT) <2-(2—¢)-(d— |D))d+n <2-(2—¢€) -d* + n.

Observe that the ratio %% can be made arbitrarily close to 3, for large, albeit constant d. We

thus showed the following:

Theorem 12 The approximation ratio of every FIXED PRIORITY, GREEDY algorithm for metric
Jacility location is at least 3 — €, for arbitrarily small e.

Using an argument along the same lines, one can derive the following.

Theorem 13 The approzimation ratio of every FIXED PRIORITY, GREEDY algorithm for facility
location in arbitrary spaces (resp. FIXED PRIORITY algorithm for set cover) is at least (1 — €)n,
where n is the number of cities (resp. the size of the universe) in the input instance.

Proof sketch: For facility location in arbitrary spaces, apply the construction behind the proof
of Theorem 12, with every distance of 3 replaced by the infinite distance. We choose a uniform
facility cost that is sufficiently large, that is, much larger than n, but not infinite. Similarly, for set
cover, replace “facilities” by “sets” and “cities” by “elements”; an element is covered by a set if the
corresponding city is at distance 1 from the corresponding facility in the facility-location instance.
The proof of Theorem 12 shows that the algorithm will open (1 — €)n facilities (resp. sets). O

14

What can be said about FIXED PRIORITY algorithms for metric facility location that are not
necessarily greedy? While we are not aware of tight bounds for this class of algorithms, we show
how the construction behind the proof of Theorem 12 suggests a lower bound that is (slightly)
better than the 4/3 bound shown in Theorem 1 (and which applies to priority algorithms with
unbounded memory).

Recall the construction of the set of facilities I, as shown earlier in this section. Let g be
the uniform facility cost (that is, we replace the 2 — ¢ facility cost by ¢, to be determined later).
As in the case of GREEDY algorithms, the input to the FIXED PRIORITY algorithm contains only
facilities in I, and for every f € I which belongs in I;, the adversary removes f’s complement wrt
Ck;, U Cy (for some appropriate k;) except for the case f and its complement are the last pair of
complementary facilities wrt Cy; U C}. In the latter case, we call f critical wrt C}, because the
adversary’s decision on whether to remove f’s complement wrt C, U C} is made according to the
following rule. Let z; be the fraction of the |C}| = 2 facilities in Sg,; that the algorithm opened
right after f is considered. Then, the algorithm will not remove f’s complement wrt Cj, U Cy if
and only if

g - 2| Cif + 2| Gl + 3(1 — 2)|C] _ g - 2|l + | C (1)
glcil+ || - 2g+|G

Let us give some intuition about the actions of the adversary. The numerator of the LHS of (1)
is the cost that the algorithm will pay to accommodate cities in C}, in the case when the complement
wrt C, U C) of the critical facility wrt C} is removed; in such a case, the corresponding optimal
cost is given by the denumerator. On the other hand, the cost of the algorithm if the said facility
is not removed, is precisely the numerator of the RHS of (1) (and, likewise, the denumerator is the
corresponding optimal cost). Thus, if (1) holds, it makes sense for the adversary to not remove the
complement of the critical facility. Since a large fraction of cities (arbitrarily close to 1) belong to
some C7 ¢ D (where D is as defined earlier in the section), the total cost will be “dominated” by
the cost paid to accommodate such cities.

To lower-bound the cost of the algorithm, partition C'\ D into two disjoint collections of sets
of cities, denoted by Cj,,, Coys. Cp, contains all Cy ¢ D for which the last critical complement (wrt
C, U C) for some appropriate 7) in I; was not removed, while C,,; contains all C; ¢ D for which
the said complement was in fact removed by the adversary. Then, the cost of the algorithm can be

lower-bounded as follows:

cost(ALG) > Y (g-@|Cil+ |G +30—a)|Cl) + D (g-@lCl+Ci)). (2)
l:CleCout lcleczn

On the other hand, optimal cost is as follows:

n
cost(OPT) < So@lal+lch+ > e+ Ci)+ 3310g d, (3)
l:CleCout lcleczn

where the term 3% log d upper-bounds the connection cost of cities in D. To facilitate the exposition,
we can ignore this term, since for any arbitrarily small constant € > 0, we can find sufficiently large d
such that the term is smaller than e-n. (recall that the optimal cost, is, by comparison, considerably
larger than this term, namely at least n). The definition of our adversary, along with inequalities
(2) and (3) imply that the approximation ratio is minimized if, for every [, a; is such as

g - z|Cl| 4+ z|Ci| + 3(1 = 2)|CY] _g- z|Ch + |CY]
glCi| + ¢ 29+ Cil

(4)

15

Since at the end we will select ¢ to be a small constant, for large n we will have that g << |(/],
which means that we can ignore the term 2¢ in the denumenator of the RHS of (4), thus (4) gives
X = g22__|_g2. Substituting in (4), we have that the approximation ratio is at least giﬁg,
maximized for g = 0.7321, giving an approximation ratio of 1.366.

which is

Theorem 14 The approximation ratio of every FIXED PRIORITY algorithm for metric facility
location is at least 1.366 — ¢, for arbitrarily small €.

6 Future directions and open problems

Several interesting issues and open problems are left to investigate. A natural direction is to improve
the lower bound for adaptive-priority metric facility location, if this is indeed possible. Can the
memoryless assumption be removed in the 1.463 lower bound? Similarly, although the 3 — € bound
we showed is tight for the class FIXED PRIORITY GREEDY, we do not know whether a bound
better than 1.366 can be obtained for FIXED PRIORITY (not necessarily greedy) metric facility
location algorithms. Our lower-bound constructions use a {1,3} cost metric, and all instances are
unweighted. Can we improve the results by considering arbitrary metric distances or weighted
instances, where each city has a weight and the connection cost from a city is the product of the
distance and the weight?

As already discussed, there is another natural way to model facility location priority algo-
rithms, namely by letting the cities be the input items. Meyerson [19] gives a randomized O(1)-
approximation priority algorithm in this model where both the ordering and the irrevocable deci-
sions use randomization. Does there exist a deterministic O(1)-approximation priority algorithm
in this setting? More generally, we need to study the power of randomization in the context of
priority algorithms (see [1] for a more elaborate discussion).

There are a number of variants of the facility location problem as well as the related k-median
problem that can be studied within our framework. For example, the capacitated facility location
problem where each facility has a capacity bound on the number (weight) of the cities it can serve.
Of course, our lower bounds apply to the capacitated version; that is, by setting all capacities to
exceed the sum of all city weights. But can we derive better results for this variant? As in the set
cover problem, it seems appropriate to only consider greedy priority algorithms since not opening a
facility may result in an infeasible solution. We are also considering the k-facility location problem
in which a feasible solution allows at most k opened facilities, generalizing the facility location and
k-median problems.

Acknowledgments

This work began in discussions with Yuval Rabani and our first result, namely Theorem 1, was a
result of that collaboration. We also thank Eva Tardos and David Williamson for their suggestions
and references, as well as Joan Boyar and Kim Larsen for their very helpful comments on Theorem 9.

References

[1] S. Angelopoulos. Randomized priority algorithms. Manuscript, 2003.

[2] S. Arora, B. Bollobas, and L. Lovasz. Proving integrality gaps without knowing the linear
program. In Proceedings of the 43rd Annual IFEFE Conference on Foundations of Computer
Science, pages 313-322, 2002.

16

[3] S. Arora and M. Sudan. Improved low degree testing and its applications. In Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, pages 485-495, 1997.

[4] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating throughput in real-time
scheduling. STAM Journal of Computing, 31(2):331-352, 2001.

[5] A. Borodin, M. Nielsen, and C. Rackoff. (Incremental) priority algorithms. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 752-761, 2002.

[6] V. Chvatal. A greedy heuristic for the set covering problem. Mathematics of Operations
Research, 4(3):233-235, 1979.

[7] U. Feige. A threshold of In n for approximating set cover. Journal of the ACM, 45(4):634-652,
1998.

[8] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. In
Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, pages 649-657, 1998.

[9] S. Guha, N. Mishra, R. Motwahl, and L. O’Callaghan. Clustering data streams. In Proceedings
of the 41th Annual IFFE Conference on Foundations of Computer Science, pages 359-366,
2000.

[10] D. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Programming,
22:148-162, 1982.

[11] R. Impagliazzo and S. Davis. models of greedy algorithms for graph problems. Manuscript,
2002.

[12] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computation, pages 731-740,
2002.

[13] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9(3):256-278, 1974.

[14] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views
of approximability. SIAM Journal on Computing, 28(1):164-191, 1999.

[15] L. Lovész. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383-390, 1975.

[16] M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. A greedy facility location algorithm
analyzed using dual fitting. In Proceedings of the Jth International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages 127-137, 2001.

[17] M. Mahdian, J. Ye, and J. Zhang. Improved approximation algorithms for metric facility loca-
tion problems. In Proceedings of the 5th International Workshop on Approzimation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 229-242, 2002.

[18] R. R. Mettu and C. G. Plaxton. The online median problem. In Proceedings of the 41st Annual
IFEEE Symposium on Foundations of Computer Science, pages 339-348, 2000.

17

[19] A. Meyerson. Online facility location. In Proceedings of the 42nd Annual IEEE Symposium
on Foundations of Computer Science, pages 426-431, 2001.

[20] D.B. Shmoys. Approximation algorithms for facility location problems. In K. Jansen and
S. Khuller, editors, Approzimation Algorithms for Combinatorial Optimization, volume 1913
of Lecture Notes in Computer Science. Springer, Berlin, 2000.

[21] D.B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility location prob-
lems (extended abstract). In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 265274, 1997.

[22] P. Slavik. A tight analysis of the greedy algorithm for set cover. Journal of Algorithms,
25:237-254, 1997.

18

Appendix

A Proofs of Some Lemmas
Proof of Lemma 7.

Given Lemma 6, suffices to show that cost(OPT') > [, since it follows that cost(OPT) = I. We can
assume that n = N(k,[), since the lower-bound construction in [22] holds for all n > N(k,{). In
this case, the size of the largest set in & U Sy (denoted by ¢; in [22]) is exactly [7] (this follows
from (4), (5) and (11) in [22]). Suppose, by way of contradiction, that cost(OPT) < I. Since [7}] is
an upper bound on the largest size of a set in the instance (as constructed by the adversary), this
would imply [[?Tﬂ <l — 1, which implies that n”—_lfl <[—1, or equivalently n < [? —[. However, n
grows exponentially with [(see Eq.(36) in [22]), which leads to a contradiction for sufficiently large
n. a

Proof of Lemma 11. We show how to construct V', Initially V' = (). Let v; be a vertex of largest
d

outdegree in G; clearly, the outdegree of v; is at least [%Z} = [4L]. Place v; in V' and repeat the
process in the digraph induced by V \ {N*(v1) Uv;}, where NT(v;) is the out-neighborhood of v;.

Note that any two vertices of the induced digraph are adjacent to one common directed edge, and

that the induced graph has at most d —1— {d—le < d;—l vertices. It is easy to see that by repeating

the process at most logd times, one can find a set V' of size at most log d that dominates V' \ V.
O

19

