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ABSTRACT
Result diversification has many important applications in
databases, operations research, information retrieval, and
finance. In this paper, we study and extend a particular
version of result diversification, known as max-sum diversi-
fication. More specifically, we consider the setting where we
are given a set of elements in a metric space and a set valua-
tion function f defined on every subset. For any given subset
S, the overall objective is a linear combination of f(S) and
the sum of the distances induced by S. The goal is to find
a subset S satisfying some constraints that maximizes the
overall objective.

This problem is first studied by Gollapudi and Sharma
in [17] for modular set functions and for sets satisfying a
cardinality constraint (uniform matroids). In their paper,
they give a 2-approximation algorithm by reducing to an
earlier result in [20]. The first part of this paper considers an
extension of the modular case to the monotone submodular
case, for which the algorithm in [17] no longer applies. Inter-
estingly, we are able to maintain the same 2-approximation
using a natural, but different greedy algorithm. We then
further extend the problem by considering any matroid con-
straint and show that a natural single swap local search
algorithm provides a 2-approximation in this more general
setting. This extends the Nemhauser, Wolsey and Fisher ap-
proximation result [29] for the problem of submodular func-
tion maximization subject to a matroid constraint (without
the distance function component).

The second part of the paper focuses on dynamic updates
for the modular case. Suppose we have a good initial approx-
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imate solution and then there is a single weight-perturbation
either on the valuation of an element or on the distance be-
tween two elements. Given that users expect some stability
in the results they see, we ask how easy is it to maintain a
good approximation without significantly changing the ini-
tial set. We measure this by the number of updates, where
each update is a swap of a single element in the current solu-
tion with a single element outside the current solution. We
show that we can maintain an approximation ratio of 3 by
just a single update if the perturbation is not too large.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Selection process

General Terms
Algorithm, Design, Performance, Theory

Keywords
Diversification, information retrieval, ranking, submodular
functions, matroids, greedy algorithm, local search, approx-
imation algorithm, dynamic update

1. INTRODUCTION
The objective in many optimization problems is to find

the “best” subset amongst a set of given items. While the
definition of “best” is often vague, one common approach is
to quantify the desired property for each element in the set
and then select a subset of elements accordingly. Although
this is a viable approach for many problems, for some ap-
plications, this does not yield good results. For example, in
portfolio management, allocating equities only according to
their expected returns might lead to a large potential risk as
the portfolio is not diversified. A similar situation occurs in
databases, for example, query result handling. When knowl-
edge of the user’s intent is not fully available, it is actually
better for a database system to diversify its displayed query
results to improve user satisfaction. In many such scenarios,
diversity is a necessary criterion.

We focus on a particular form of result diversification:
max-sum diversification. We design algorithms for comput-
ing a “quality” subset, while also taking into account diver-
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sity which is defined as the sum of pairwise distances be-
tween elements of the set being returned. We also show how
to gradually change such a set in a dynamically changing
environment.

We consider the case where quality is measured by a mono-
tone submodular function f(S) of the returned set S. In
this way, we are extending beyond the linear (i.e., modular)
case considered in [17]. Submodular functions have been
extensively considered since they model many natural phe-
nomena. For example, in terms of keyword based search
in database systems, it is well understood that users begin
to gradually (or sometimes abruptly) lose interest the more
results they have to consider [37, 38]. But on the other
hand, as long as a user continues to gain some benefit, ad-
ditional query results can improve the overall quality but
at a decreasing rate. As in [17], we consider the case of
maximizing a linear combination of the quality f(S) and
the (distance based) diversity subject to a cardinality con-
straint (i.e., |S| ≤ p for some given p). We present a greedy
algorithm that is somewhat unusual in that it does not try
to optimize the objective in each iteration but rather opti-
mizes a closely related potential function. We show that our
greedy approach matches the 2-approximation [17] obtained
for the modular case.

Our next result continues with the submodular case but
now we go beyond a cardinality constraint (i.e., the uni-
form matroid) on S and allow the constraint to be that
S is independent in a given matroid. This allows a sub-
stantial increase in generality. For example, while diversity
might represent the distance between retrieved database tu-
ples under a given criterion (for instance, a kernel based
diversity measure called answer tree kernel is used in [43]),
we could use a partition matroid to insure that (for exam-
ple) the retrieved database tuples come from a variety of
different sources. That is, we may wish to have ni tuples
from a specific database field i. This is, of course, another
form of diversity but one orthogonal to diversity based on
the given criterion. Similarly in the stock portfolio exam-
ple, we might wish to have a balance of stocks in terms
of say risk and profit margins (using some statistical mea-
sure of distances) while using a partition matroid to insure
that different sectors of the economy are well represented.
Another important class of matroids (relevant to our appli-
cation) is that of transversal matroids. Suppose we have
a collection {C1, C2, . . . , Cm} of (possibly) overlapping sets
(i.e., the collection is not a partition) of database tuples (or
stocks). Our goal might be to derive a set S such that the
database tuples in S form a set of representatives for the
collection; that is, every database tuple in S represents (and
is in) a unique set Ci in the collection. The set S is then
an independent set in the transversal matroid induced by
the collection. We also note [35] that the intersection of any
matroid with a uniform matroid is still a matroid so that in
the above examples, we could further impose the constraint
that the set S has at most p elements.

Our final theoretical result concerns dynamic updates.
Here we restrict attention to a modular set function f(S);
that is, we now have weights on the elements and f(S) =∑

u∈S
w(u) where w(u) is the weight of element u. This al-

lows us to consider changes to the weight of a single element
as well as changes to the distance function. We also men-
tion some preliminary experiments on synthetic data that in
the modular set function case suggest that our greedy and

local search algorithms may perform significantly better in
practice than the proven worst case bounds.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related work in result diversification. We
formulate the problem into a combinatorial optimization
problem and show its connection to the dispersion prob-
lem in location theory in Section 3. In Section 4, we dis-
cuss max-sum diversification with monotone submodular set
functions and give a simple greedy algorithm that achieves
a 2-approximation when the set is of bounded cardinality.
We extend the problem to the matroid case in Section 5 and
discuss dynamic updates in Section 6. Section 7 carries out
two preliminary experiments and Section 8 concludes the
paper.

2. RELATED WORK
With the proliferation of today’s social media, database

and web content, ranking becomes an important problem as
it decides what gets selected and what does not, and what to
be displayed first and what to be displayed last. Many early
ranking algorithms, for example in web search, are based on
the notion of “relevance”, i.e., the closeness of the object to
the search query. However, there has been a rising interest
to incorporate some notion of “diversity” into measures of
quality.

One early work in this direction is the notion of “Maxi-
mal Marginal Relevance” (MMR) introduced by Carbonell
and Goldstein in [6]. More specifically, MMR is defined as
follows:

MMR = max
Di∈R\S

[λ·sim1(Di, Q)−(1−λ) max
Dj∈S

sim2(Di, Dj)],

where Q is a query; R is the ranked list of documents re-
trieved; S is the subset of documents in R already selected;
sim1 is the similarity measure between a document and a
query, and sim2 is the similarity measure between two doc-
uments. The parameter λ controls the trade-off between
novelty (a notion of diversity) and relevance. The MMR al-
gorithm iteratively selects the next document with respect to
the MMR objective function until a given cardinality con-
dition is met. The MMR heuristic has been widely used,
but to the best of our knowledge, it has not been theoreti-
cally justified. Our paper provides some theoretical evidence
why MMR is a legitimate approach for diversification. The
greedy algorithm we propose in this paper can be viewed as
a natural extension of MMR.

There is extensive research on how to diversify returned
ranking results to satisfy multiple users. Namely, the re-
sult diversity issue occurs when many facets of queries are
discovered and a set of multiple users expect to find their
desired facets in the first page of the results. Thus, the chal-
lenge is to find the best strategy for ordering the results such
that many users would find their relevant pages in the top
few slots.

Rafiei et al. [32] modeled this as a continuous optimization
problem. They introduce a weight vector W for the search
results, where the total weight sums to one. They define the
portfolio variance to be W TCW , where C is the covariance
matrix of the result set. The goal then is to minimize the
portfolio variance while the expected relevance is fixed at a
certain level. They report that their proposed algorithm can
improve upon Google in terms of the diversity on random
queries, retrieving 14% to 38% more aspects of queries in



top five, while maintaining a precision very close to Google.
Bansal et al. [2] considered the setting in which various

types of users exist and each is interested in a subset of
the search results. They use a performance measure based
on discounted cumulative gain, which defines the usefulness
(gain) of a document as its position in the resulting list.
Based on this measure, they suggest a general approach to
develop approximation algorithms for ranking search results
that captures different aspects of users’ intents. They also
take into account that the relevance of one document cannot
be treated independent of the relevance of other documents
in a collection returned by a search engine. They consider
both the scenario where users are interested in only a single
search result (e.g., navigational queries) and the scenario
where users have different requirements on the number of
search results, and develop good approximation solutions
for them.

The database community has recently studied the query
diversification problem, which is mainly for keyword search
in databases [27, 40, 12, 38, 43, 37, 10]. Given a very large
database, an exploratory query can easily lead to a vast an-
swer set. Typically, an answer’s relevance to the user query
is based on top-k or tf-idf. As a way of increasing user satis-
faction, different query diversification techniques have been
proposed including some system based ones taking into ac-
count query parameters, evaluation algorithms, and dataset
properties. For many of these, a max-sum type objective
function is usually used.

Other than those discussed above, there are many recent
papers studying result diversification in different settings,
via different approaches and through different perspectives,
for example [42, 9, 44, 41, 30, 1, 3, 34, 11, 36]. The reader is
referred to [1, 13] for a good summary of the field. Most rele-
vant to our work is the paper by Gollapudi and Sharma [17],
where they develop an axiomatic approach to characterize
and design diversification systems. Furthermore, they con-
sider three different diversification objectives and using ear-
lier results in facility dispersion, they are able to give algo-
rithms with good approximation guarantees. This paper is
a continuation of research along this line.

Recently, Minack et al. [28] have studied the problem of
incremental diversification for very large data sets. Instead
of viewing the input of the problem as a set, they consider
the input as a stream, and use a simple online algorithm to
process each element in an incremental fashion, maintaining
a near-optimal diverse set at any point in the stream. Al-
though their results are largely experimental, this approach
significantly reduces CPU and memory consumption, and
hence is applicable to large data sets. Our dynamic update
algorithm deals with a problem of a similar nature, but in-
stead of relying on experimental results, we prove theoretical
guarantees. To the best of our knowledge, our work is the
first of its kind to obtain a near-optimality condition for re-
sult diversification in a dynamically changing environment.

3. PROBLEM FORMULATION
Although the notion of “diversity” naturally arises in the

context of databases, social media and web search, the un-
derlying mathematical object is not new. As presented in [17],
there is a rich and long line of research in location theory
dealing with a similar concept; in particular, one objective
is the placement of facilities on a network to maximize some
function of the distances between facilities. The situation

arises when proximity of facilities is undesirable, for exam-
ple, the distribution of business franchises in a city. Such
location problems are often referred to as dispersion prob-
lems; for more motivation and early work, see [15, 16, 23].

Analytical models for the dispersion problem assume that
the given network is represented by a set V = {v1, v2, . . . , vn}
of n vertices with metric distance between every pair of ver-
tices. The objective is to locate p facilities (p ≤ n) among
the n vertices, with at most one facility per vertex, such that
some function of distances between facilities is maximized.
Different objective functions are considered for the disper-
sion problems in the literature including: the max-sum cri-
terion (maximize the total distances between all pairs of fa-
cilities) in [39, 15, 33], the max-min criterion (maximize the
minimum distance between a pair of facilities) in [23, 15, 33],
the max-mst (maximize the minimum spanning tree among
all facilities) and many other related criteria in [18, 8]. The
general problem (even in the metric case) for most of these
criteria is NP-hard, and approximation algorithms have been
developed and studied; see [8] for a summary of known re-
sults. Most relevant to this paper is the max-sum dispersion
problem. The problem is known to be NP-hard [19], but it
is not known whether or not it admits a PTAS. In [33], Ravi,
Rosenkrantz and Tayi give a greedy algorithm and show it
has an approximation ratio within a factor of 4. This is later
improved by Hassin, Rubinstein and Tamir [20], who show
a different algorithm with an approximation ratio of 2. This
is the best known ratio today.

The dispersion problem is related to the diversification
problem as both are trying to select a subset of elements
which are element-wise far apart. The difference is that the
diversification problem also considers vertex weight, so it is
a bi-criteria optimization problem.

Problem 1. Max-Sum Diversification

Let U be the underlying ground set, and let d(·, ·) be a met-
ric distance function on U . For any subset of U , let f(·) be
a non-negative set function measuring the value of a subset.
Given a fixed integer p, the goal of the problem is to find a
subset S ⊆ U that:

maximizes f(S) + λ
∑

{u,v}:u,v∈S
d(u, v)

subject to |S| = p,

where λ is a parameter specifying a desired trade-off between
the two objectives.

The max-sum diversification problem is first proposed and
studied in the context of result diversification in [17] 1, where
the function f(·) is modular. In their paper, the value of
f(S) measures the relevance of a given subset to a search
query, and the value

∑
{u,v}:u,v∈S

d(u, v) gives a diversity

measure on S. The parameter λ specifies a desired trade-off
between diversity and relevance. They reduce the problem
to the max-sum dispersion problem, and using an algorithm
in [20], they obtain an approximation ratio of 2.

In this paper, we first study the problem with more general
valuation functions: normalized, monotone submodular set
functions. For notational convenience, for any two sets S,
T and an element e, we write S ∪ {e} as S + e, S \ {e} as
S − e, S ∪ T as S + T , and S \ T as S − T . A set function

1In fact, they have a slightly different but equivalent formu-
lation.



f is normalized if f(∅) = 0. The function is monotone if for
any S, T ⊆ U and S ⊆ T ,

f(S) ≤ f(T ).

It is submodular if for any S, T ⊆ U , S ⊆ T with u ∈ U ,

f(T + u)− f(T ) ≤ f(S + u)− f(S).

In the remainder of paper, all functions considered are nor-
malized.

We proceed to our first contribution, a greedy algorithm
(different than the one in [17]) that obtains a 2-approximation
for monotone submodular set functions.

4. SUBMODULAR FUNCTIONS
Submodular set functions can be characterized by the

property of a decreasing marginal gain as the size of the set
increases. As such, submodular functions are well-studied
objects in economics, game theory and combinatorial op-
timization. More recently, submodular functions have at-
tracted attention in many practical fields of computer sci-
ence. For example, Kempe et al. [21] study the problem
of selecting a set of most influential nodes to maximize the
total information spread in a social network. They have
shown that under two basic diffusion models, the amount of
influence of a set is submodular, hence the problem admits
a good approximation algorithm. In natural language pro-
cessing, Lin and Bilmes [26, 24, 25] have studied a class of
submodular functions for document summarization. These
functions each combine two terms, one which encourages
the summary to be representative of the corpus, and the
other which positively rewards diversity. Their experimen-
tal results show that a greedy algorithm with the objective of
maximizing these submodular functions outperforms the ex-
isting state-of-art results in both generic and query-focused
document summarization.

Both of the above mentioned results are based on the fun-
damental work of Nemhauser, Wolsey and Fisher [29], which
has shown an e

e−1
-approximation for maximizing monotone

submodular set functions over a uniform matroid; and this
bound is known to be tight even for a general matroid [5].
Our max-sum diversification problem with monotone sub-
modular set functions can be viewed as an extension of that
problem: the objective function now not only contains a sub-
modular part, but also has a supermodular part: the sum
of distances.

Since the max-sum diversification problem with modular
set functions studied in [17] admits a 2-approximation al-
gorithm, it is natural to ask what approximation ratio is
obtainable for the same problem with monotone submodu-
lar set functions. Note that the algorithm in [17] does not
apply to the submodular case. In what follows we assume
(as is standard when considering submodular function) ac-
cess to an oracle for finding an element u ∈ U − S that
maximizes f(S+u)−f(S). When f is modular, this simply
means accessing the element u ∈ U − S having maximum
weight.

Theorem 1. There is a simple linear time greedy algo-
rithm that achieves a 2-approximation for the max-sum di-
versification problem with monotone submodular set func-
tions satisfying a cardinality constraint.

Before giving the proof of Theorem 1, we first introduce
our notation. We extend the notion of distance function

to sets. For disjoint subsets S, T ⊆ U , we let d(S) =∑
{u,v}:u,v∈S d(u, v), and d(S, T ) =

∑
{u,v}:u∈S,v∈T d(u, v).

Now we define various types of marginal gain. For any
given subset S ⊆ U and an element u ∈ U − S: let φ(S) be
the value of the objective function, du(S) =

∑
v∈S

d(u, v) be
the marginal gain on the distance, fu(S) = f(S + u)− f(S)
be the marginal gain on the weight, and φu(S) = fu(S) +
λdu(S) be the total marginal gain on the objective function.
Let f ′

u(S) = 1
2
fu(S), and φ′

u(S) = f ′
u(S) + λdu(S). We

consider the following simple greedy algorithm:

Greedy Algorithm
S = ∅
while |S| < p

find u ∈ U − S maximizing φ′
u(S)

S = S + u

end while
return S

Note that the above greedy algorithm is “non-oblivious”
(in the sense of [22]) as it is not selecting the next element
with respect to the objective function φ(·). This might be
of an independent interest. We utilize the following lemma
in [33].

Lemma 1. Given a metric distance function d(·, ·), and
two disjoint sets X and Y , we have the following inequality:

(|X| − 1)d(X,Y ) ≥ |Y |d(X).

Now we are ready to prove Theorem 1.

Proof. Let O be the optimal solution, and G, the greedy
solution at the end of the algorithm. Let Gi be the greedy
solution at the end of step i, i < p; and let A = O ∩ Gi,
B = Gi − A and C = O − A. By lemma 1, we have the
following three inequalities:

(|C| − 1)d(B,C) ≥ |B|d(C) (1)

(|C| − 1)d(A,C) ≥ |A|d(C) (2)

(|A| − 1)d(A,C) ≥ |C|d(A) (3)

Furthermore, we have

d(A,C) + d(A) + d(C) = d(O) (4)

Note that the algorithm clearly achieves the optimal so-
lution if p = 1. If |C| = 1, then i = p− 1 and Gi ⊂ O. Let v
be the element in C, and let u be the element taken by the
greedy algorithm in the next step, then φ′

u(Gi) ≥ φ′
v(Gi) for

all v ∈ U − S. Therefore,

1

2
fu(Gi) + λdu(Gi) ≥

1

2
fv(Gi) + λdv(Gi),

which implies

φu(Gi) = fu(Gi) + λdu(Gi)

≥
1

2
fu(Gi) + λdu(Gi)

≥
1

2
fv(Gi) + λdv(Gi)

≥
1

2
φv(Gi);

and hence φ(G) ≥ 1
2
φ(O).

Now we can assume that p > 1 and |C| > 1. We apply
the following non-negative multipliers to equations (1), (2),



(3), (4) and add them: (1) ∗ 1
|C|−1

+ (2) ∗ |C|−|B|
p(|C|−1)

+ (3) ∗
i

p(p−1)
+ (4) ∗ i|C|

p(p−1)
; we then have

d(A,C)+ d(B,C)−
i|C|(p − |C|)

p(p− 1)(|C| − 1)
d(C) ≥

i|C|

p(p− 1)
d(O).

Since p > |C|,

d(C,Gi) ≥
i|C|

p(p− 1)
d(O).

By submodularity and monotonicity of f ′(·), we have
∑

v∈C

f
′
v(Gi) ≥ f

′(C ∪Gi)− f
′(Gi) ≥ f

′(O)− f
′(G).

Therefore,
∑

v∈C

φ
′
v(Gi) =

∑

v∈C

[f ′
v(Gi) + λd({v}, Gi)]

=
∑

v∈C

f
′
v(Gi) + λd(C,Gi)

≥ [f ′(O)− f
′(G)] +

λi|C|

p(p− 1)
d(O).

Let ui+1 be the element taken at step (i+ 1), then we have

φ
′
ui+1

(Gi) ≥
1

p
[f ′(O)− f

′(G)] +
λi

p(p− 1)
d(O).

Summing over all i from 0 to p− 1, we have

φ
′(G) =

p−1∑

i=0

φ
′
ui+1

(Gi) ≥ [f ′(O)− f
′(G)] +

λ

2
d(O).

Hence,

f
′(G) + λd(G) ≥ f

′(O)− f
′(G) +

λ

2
d(O),

and

φ(G) = f(G) + λd(G) ≥
1

2
[f(O) + λd(O)] =

1

2
φ(O).

This completes the proof.
The greedy algorithm runs in linear time when p is a fixed

constant. Note that the approximation ratio of two is tight
for this particular greedy algorithm. To see this, considering
the special case where f(S) = 0 for any subset S of U . Let
A, B be a bipartition of U , each having size p. The distance
between any two elements in A is one, and the distance
between any two elements in B is two. The distance between
an element in A and an element in B is one. It is not hard to
see that this distance function is a metric and it is possible
for the greedy algorithm to return A as a solution while the
optimal solution is B.

5. MATROIDS AND LOCAL SEARCH
Theorem 1 provides a 2-approximation for max-sum diver-

sification when the set function is submodular and the set
constraint is a cardinality constraint, i.e., a uniform matroid.
It is natural to ask if the same approximation guarantee can
be obtained for an arbitrary matroid. In this section, we
show that the max-sum diversification problem with mono-
tone submodular function admits a 2-approximation subject
to a general matroid constraint.

Matroids are well studied objects in combinatorial opti-
mization. A matroid M is a pair < U,F >, where U is a

set of ground elements and F is a collection of subsets of U ,
called independent sets, with the following properties :

• Hereditary: The empty set is independent and if S ∈
F and S′ ⊂ S, then S′ ∈ F .

• Augmentation: If A,B ∈ F and |A| > |B|, then
∃e ∈ A−B such that B ∪ {e} ∈ F .

The maximal independent sets of a matroid are called bases
ofM. Note that all bases have the same number of elements,
and this number is called the rank of M. The definition of a
matroid captures the key notion of independence from linear
algebra and extends that notion so as to apply to many com-
binatorial objects. We have already mentioned two classes
of matroids relevant to our results, namely partition ma-
troids and transversal matroids. In a partition matroid, the
universe U is partitioned into sets C1, . . . , Cm and the inde-
pendent sets S satisfy S = ∪1≤i≤mSi with |Si| ≤ ki for some
given bounds ki on each part of the partition. A uniform
matroid is a special case of a partition matroid with m = 1.
In a transversal matroid, the universe U is a collection of
(possibly) non-intersecting sets C = C1, . . . , Cm and a set S
is independent if there is an injective function φ from S into
C with say φ(si) = Si and φ(s) ∈ Ci. That is, S forms a
set of representatives for each set Ci. (Note that a given si
could occur in other sets Cj .)

Problem 2. Max-Sum Diversification for Matroids

Let U be the underlying ground set, and F be the set of
independent subsets of U such that M =< U,F > is a ma-
troid. Let d(·, ·) be a (non-negative) metric distance function
measuring the distance on every pair of elements. For any
subset of U , let f(·) be a non-negative monotone submod-
ular set function measuring the weight of the subset. The
goal of the problem is to find a subset S ∈ F that:

maximizes f(S) + λ
∑

{u,v}:u,v∈S
d(u, v)

where λ is a parameter specifying a desired trade-off be-
tween the two objectives. As before, we let φ(S) be the
value of the objective function. Note that since the func-
tion φ(·) is monotone, S is essentially a basis of the matroid
M. The greedy algorithm in Section 4 still applies, but it
fails to achieve any constant approximation ratio. This is
in contrast to the greedy algorithm of Nemhauser, Wolsey
and Fisher, which achieves 2-approximation for general ma-
troids.

Note that the problem is trivial if the rank of the matroid
is less than two. Therefore, without loss of generality, we
assume the rank is greater or equal to two. Let

{x, y} = argmax
{x,y}∈F

[f({x, y}) + λd(x, y)].

We now consider the following oblivious local search algo-
rithm:

Local Search Algorithm
let S be a basis of M containing both x and y

while there is an u ∈ U−S and v ∈ S such that S+u−v ∈ F
and φ(S + u− v) > φ(S)

S = S + u− v

end while
return S



Theorem 2. The local search algorithm achieves an ap-
proximation ratio of 2 for max-sum diversification with a
matroid constraint.

Note that if the rank of the matroid is two, then the al-
gorithm is clearly optimal. From now on, we assume the
rank of the matroid is greater than two. Before we prove
the theorem, we first give several lemmas. All the lemmas
assume the problem and the underlying matroid without ex-
plicitly mentioning it. Let O be the optimal solution, and
S, the solution at the end of the local search algorithm. Let
A = O ∩ S, B = S −A and C = O − A.

Lemma 2. For any two sets X,Y ∈ F with |X| = |Y |,
there is a bijective mapping g : X → Y such that X − x +
g(x) ∈ F for any x ∈ X.

This is a known property of a matriod and its proof can be
found in [4]. Since both S and O are bases of the matroid,
they have the same cardinality. Therefore, B and C have the
same cardinality. By Lemma 2, there is a bijective mapping
g : B → C such that S − b + g(b) ∈ F for any b ∈ B. Let
B = {b1, b2, . . . , bt}, and let ci = g(bi) for all i. Without loss
of generality, we assume t ≥ 2, for otherwise, the algorithm
is optimal by the local optimality condition.

Lemma 3. f(S)+
∑t

i=1 f(S−bi+ci) ≥ f(S−
∑t

i=1 bi)+∑t

i=1 f(S + ci).

Proof. Since f is submodular,

f(S)− f(S − b1) ≥ f(S + c1)− f(S + c1 − b1)

f(S − b1)− f(S − b1 − b2) ≥ f(S + c2)− f(S + c2 − b2)

...

f(S −
t−1∑

i=1

bi)− f(S −
t∑

i=1

bi) ≥ f(S + ct)− f(S + ct − bt).

Summing up these inequalities, we have

f(S)− f(S −
t∑

i=1

bi) ≥
t∑

i=1

f(S + ci)−
t∑

i=1

f(S − bi + ci),

and the lemma follows.

Lemma 4.
∑t

i=1 f(S+ci) ≥ (t−1)f(S)+f(S+
∑t

i=1 ci).

Proof. Since f is submodular,

f(S + ct)− f(S) = f(S + ct)− f(S)

f(S + ct−1)− f(S) ≥ f(S + ct + ct−1)− f(S + ct)

f(S+ct−2)−f(S) ≥ f(S+ct+ct−1+ct−2)−f(S+ct+ct−1)

...

f(S + c1)− f(S) ≥ f(S +
t∑

i=1

ci)− f(S +
t∑

i=2

ci)

Summing up these inequalities, we have

t∑

i=1

f(S + ci)− tf(S) ≥ f(S +
t∑

i=1

ci)− f(S),

and the lemma follows.

Lemma 5.
∑t

i=1 f(S − bi + ci) ≥ (t− 2)f(S) + f(O).

Proof. Combining Lemma 3 and Lemma 4, we have

f(S) +
t∑

i=1

f(S − bi + ci)

≥ f(S −
t∑

i=1

bi) +
t∑

i=1

f(S + ci)

≥ (t− 1)f(S) + f(S +

t∑

i=1

ci)

= (t− 1)f(S) + f(S + C)

≥ (t− 1)f(S) + f(O).

Therefore, the lemma follows.

Lemma 6. If t > 2, d(B,C)−
∑t

i=1 d(bi, ci) ≥ d(C).

Proof. For any bi, cj , ck, we have

d(bi, cj) + d(bi, ck) ≥ d(cj , ck).

Summing up these inequalities over all i, j, k with i 6= j,
i 6= k, j 6= k, we have each d(bi, cj) with i 6= j is counted
(t− 2) times; and each d(ci, cj) with i 6= j is counted (t− 2)
times. Therefore

(t− 2)[d(B,C) −
t∑

i=1

d(bi, ci)] ≥ (t− 2)d(C),

and the lemma follows.

Lemma 7.
∑t

i=1 d(S − bi + ci) ≥ (t− 2)d(S) + d(O).

Proof.

t∑

i=1

d(S − bi + ci)

=
t∑

i=1

[d(S) + d(ci, S − bi)− d(bi, S − bi)]

= td(S) +
t∑

i=1

d(ci, S − bi)−
t∑

i=1

d(bi, S − bi)

= td(S) +

t∑

i=1

d(ci, S)−
t∑

i=1

d(ci, bi)−
t∑

i=1

d(bi, S − bi)

= td(S) + d(C,S)−
t∑

i=1

d(ci, bi)− d(A,B)− 2d(B).

There are two cases. If t > 2 then by Lemma 7, we have

d(C,S)−
t∑

i=1

d(ci, bi)

= d(A,C) + d(B,C)−
t∑

i=1

d(ci, bi)

≥ d(A,C) + d(C).

Furthermore, since d(S) = d(A) + d(B) + d(A,B), we have



2d(S)− d(A,B)− 2d(B) ≥ d(A). Therefore

t∑

i=1

d(S − bi + ci)

= td(S) + d(C,S)−
t∑

i=1

d(ci, bi)− d(A,B)− 2d(B)

≥ (t− 2)d(S) + d(A,C) + d(C) + d(A)

≥ (t− 2)d(S) + d(O).

If t = 2, then since the rank of the matroid is greater than
two, A 6= ∅. Let z be an element in A, then we have

2d(S) + d(C,S)−
t∑

i=1

d(ci, bi)− d(A,B)− 2d(B)

= d(A,C) + d(B,C)−
t∑

i=1

d(ci, bi) + 2d(A) + d(A,B)

≥ d(A,C) + d(c1, b2) + d(c2, b1) + d(A) + d(z, b1) + d(z, b2)

≥ d(A,C) + d(A) + d(c1, c2)

≥ d(A,C) + d(A) + d(C)

= d(O).

Therefore

t∑

i=1

d(S − bi + ci)

= td(S) + d(C,S)−
t∑

i=1

d(ci, bi)− d(A,B)− 2d(B)

≥ (t− 2)d(S) + d(O).

This completes the proof.
Now with the proofs of Lemma 5 and Lemma 7, we are

ready to complete the proof of Theorem 2.

Proof. Since S is a locally optimal solution, we have
φ(S) ≥ φ(S − bi + ci) for all i. Therefore, for all i we have

f(S) + λd(S) ≥ f(S − bi + ci) + λd(S − bi + ci).

Summing up over all i, we have

tf(S) + λtd(S) ≥
t∑

i=1

f(S − bi + ci) + λ

t∑

i=1

d(S − bi + ci).

By Lemma 5, we have

tf(S) + λtd(S) ≥ (t− 2)f(S) + f(O) + λ

t∑

i=1

d(S − bi + ci).

By Lemma 7, we have

tf(S)+λtd(S) ≥ (t−2)f(S)+ f(O)+λ[(t−2)d(S)+d(O)].

Therefore,

2f(S) + 2λd(S)) ≥ f(O) + λd(O).

φ(S) ≥
1

2
φ(O),

this completes the proof.
Theorem 2 shows that even in the more general case of a

matroid constraint, we can still achieve the approximation
ratio of 2. As is standard in such local search algorithms,

with a small sacrifice on the approximation ratio, the algo-
rithm can be modified to run in polynomial time by requiring
at least an ǫ-improvement at each iteration rather than just
any improvement. Note that the approximation ratio of two
is tight for the local search algorithm by a similar example
shown at the end of Section 4 with a small modification.

6. DYNAMIC UPDATE
In this section, we discuss dynamic updates for the max-

sum diversification problem with modular set functions. The
setting is that we have initially computed a good solution
with some approximation guarantee. The weights are chang-
ing over time, and upon seeing a change of weight, we want
to maintain the quality (the same approximation ratio) of
the solution by modifying the current solution without com-
pletely recomputing it. We use the number of updates to
quantify the amount of modification needed to maintain the
desired approximation. An update is a single swap of an ele-
ment in S with an element outside S, where S is the current
solution. We ask the following question:

Can we maintain a good approximation ratio with
a limited number of updates?

Since the best known approximation algorithm achieves ap-
proximation ratio of 2, it is natural to ask whether it is pos-
sible to maintain that ratio through local updates. And if it
is possible, how many such updates it requires. To simplify
the analysis, we restrict to the following oblivious update
rule. Let S be the current solution, and let u be an element
in S and v be an element outside S. The marginal gain v

has over u with respect to S is defined to be

φv→u(S) = φ(S \ {u} ∪ {v})− φ(S).

Oblivious (single element swap) Update Rule
Find a pair of elements (u, v) with u ∈ S and v 6∈ S max-
imizing φv→u(S). If φv→u(S) ≤ 0, do nothing; otherwise
swap u with v.

Since the oblivious local search in Theorem 2 uses the
same single element swap update rule, it is not hard to see
that we can maintain the approximation ratio of 2. However,
it is not clear how many updates are needed to maintain
that ratio. We conjecture that the number of updates can
be made relatively small (i.e., constant) by a non-oblivious
update rule and carefully maintaining some desired configu-
ration of the solution set. We leave this as an open question.

However, we are able to show that if we relax the re-
quirement slightly, i.e., aiming for an approximation ratio
of 3 instead of 2, and restrict slightly the magnitude of the
weight-perturbation, we are able to maintain the desired ra-
tio with a single update. Note that the weight restriction is
only used for the case of a weight decrease (Theorem 4).

We divide weight-perturbations into four types: a weight
increase (decrease) which occurs on an element, and a dis-
tance increase (decrease) which occurs between two elements.
We denote these four types: (i), (ii),(iii), (iv); and we have
a corresponding theorem for each case.

Before getting to the theorems, we first prove the follow-
ing two lemmas. After a weight-perturbation, let S be the
current solution set, and O be the optimal solution. Let S∗

be the solution set after a single update using the oblivi-
ous update rule, and let ∆ = φ(S∗) − φ(S). We again let
Z = O ∩ S, X = O \ S and Y = S \O.



Lemma 8. There exists z ∈ Y such that

φz(S \ {z}) ≤
1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Proof. If we sum up all marginal gain φy(S \{y}) for all
y ∈ Y , we have

∑

y∈Y

φy(S \ {y}) = f(Y ) + 2λd(Y ) + λd(Z, Y ).

By an averaging argument, there must exist z ∈ Y such that

φz(S \ {z}) ≤
1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Lemma 8 ensures the existence of an element in S such
that after removing it from S, the objective function value
does not decrease much. The following lemma ensures that
there always exists an element outside S which can increase
the objective function value substantially if we bring it in.

Lemma 9. If φ(S∗) < 1
3
φ(O), then for all y ∈ Y , there

exists x ∈ X such that

φx(S \ {y}) >
1

|X|
[2φ(Z) + 3φ(Y ) + 3λd(Z, Y ) + 3∆].

Proof. For any y ∈ Y , and by Lemma 1, we have

f(X) + λd(S \ {y}, X)

= f(X) + λd(Z,X) + λd(Y \ {y}, X)

≥ f(X) + λd(Z,X) + λd(X).

Note that since φ(S∗) = φ(S) + ∆ < 1
3
φ(O), we have

φ(O) = φ(Z) + f(X) + λd(X) + λd(Z,X)

> 3φ(Z) + 3φ(Y ) + 3λd(Z, Y ) + 3∆.

Therefore,

f(X) + λd(S \ {y}, X)

≥ f(X) + λd(Z,X) + λd(X)

> 2φ(Z) + 3φ(Y ) + 3λd(Z, Y ) + 3∆.

This implies there must exist x ∈ X such that

φx(S \ {y}) >
1

|X|
[2φ(Z) + 3φ(Y ) + 3λd(Z, Y ) + 3∆].

Combining Lemma 8 and 9, we can give a lower bound for
∆. We have the following corollary.

Corollary 1. If φ(S∗) < 1
3
φ(O), then we have |Y | > 3

and furthermore

∆ >
1

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )].

Proof. By Lemma 8, there exists y ∈ Y such that

φy(S \ {y}) ≤
1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Since φ(S∗) < 1
3
φ(O), by Lemma 9, for this particular y,

there exists x ∈ X such that

φx(S \ {y}) >
1

|X|
[2φ(Z) + 3φ(Y ) + 3λd(Z, Y ) + 3∆].

Since |X| = |Y |, we have

∆ >
1

|Y |
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y ) + 3∆].

If |Y | ≤ 3, then it is a contradiction. Therefore |Y | > 3.
Rearranging the inequality, we have

∆ >
1

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )].

Corollary 2. If p ≤ 3, then for any weight or distance
perturbation, we can maintain an approximation ratio of 3
with a single update.

Proof. This is an immediate consequence of Corollary 1
since p ≥ |Y |.

Given Corollary 2, we will assume p > 3 for all the re-
maining results in this section. We first discuss weight-
perturbations on elements.

Theorem 3. [type (i)] For any weight increase, we can
maintain an approximation ratio of 3 with a single update.

Proof. Suppose we increase the weight of s by δ. Since
the optimal solution can increase by at most δ, if ∆ ≥ 1

3
δ,

then we have maintained a ratio of 3. Hence we assume
∆ < 1

3
δ. If s ∈ S or s 6∈ O, then it is clear the ratio of 3

is maintained. The only interesting case is when s ∈ O \ S.
Suppose, for the sake of contradiction, that φ(S∗) < 1

3
φ(O),

then by Corollary 1, we have |Y | > 3 and

∆ >
1

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )].

Since ∆ < 1
3
δ, we have

δ >
1

|Y | − 3
[6φ(Z) + 6f(Y ) + 3λd(Y ) + 6λd(Z, Y )].

On the other hand, by Lemma 8, there exists y ∈ Y such
that

φy(S \ {y}) ≤
1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Now considering a swap of s with y, the loss by removing
y from S is φy(S \ {y}), while the increase that s brings to
the set S \ {y} is at least δ (as s is increased by δ, and the
original weight of s is non-negative). Therefore the marginal
gain of the swap of s with y is φs→y ≥ δ − φy(S \ {y}) and
hence

φs→y(S) ≥ δ −
1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

However, φs→y(S) ≤ ∆ < 1
3
δ. Therefore, we have

1

3
δ > δ −

1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

This implies

δ <
1

|Y |
[
3

2
f(Y ) + 3λd(Y ) +

3λ

2
d(Z, Y )],

which is a contradiction.



Theorem 4. [type (ii)] For a weight decrease of magni-
tude δ, we can maintain an approximation ratio of 3 with

⌈log p−2

p−3

w

w − δ
⌉

updates, where w is the weight of the solution before the
weight decrease. In particular, if δ ≤ w

p−2
, we only need a

single update.

Proof. Suppose we decrease the weight of s by δ. With-
out loss of generality, we can assume s ∈ S. Suppose, for the
sake of contradiction, that φ(S∗) < 1

3
φ(O), then by Corol-

lary 1, we have |Y | > 3 and

∆ >
1

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )]

≥
1

p− 3
φ(S).

Therefore

φ(S∗) >
p− 2

p− 3
φ(S).

This implies that we can maintain the approximation ratio
with

⌈log p−2

p−3

w

w − δ
⌉

number of updates. In particular, if δ ≤ w
p−2

, we only need
a single update.

We now discuss the weight-perturbations between two el-
ements. We assume that such perturbations preserve the
metric condition. Furthermore, we assume p > 3 for other-
wise, by Corollary 1, the ratio of 3 is maintained.

Theorem 5. [type (iii)] For any distance increase, we
can maintain an approximation ratio of 3 with a single up-
date.

Proof. Suppose we increase the distance of (x, y) by δ,
and for the sake of contradiction, we assume that φ(S∗) <
1
3
φ(O), then by Corollary 1, we have |Y | > 3 and

∆ >
1

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )].

Since ∆ < 1
3
δ, we have

δ >
3

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )]

≥
3

p− 3
φ(S).

If both x and y are in S, then it is not hard to see that the
ratio of 3 is maintained. Otherwise, there are two cases:

1. Exactly one of x and y is in S, without loss of general-
ity, we assume y ∈ S. Considering that we swap x with
any vertex z ∈ S other than y. Since after the swap,
both x and y are now in S, by the triangle inequality
of the metric condition, we have

∆ ≥ (p− 1)δ − φ(S) > (
2

3
p− 2)δ.

Since p > 3, we have

∆ > (
2

3
p− 2)δ ≥

2

3
δ > 2∆,

which is a contradiction.

2. Both x and y are outside in S. By Lemma 8, there
exists z ∈ Y such that

φz(S \ {z}) ≤
1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Consider the set T = {x, y} with S \ {z}, by the
triangle inequality of the metric condition, we have
d(T, S \ {z}) ≥ (p − 1)δ. Therefore, at least one of x
and y, without loss of generality, assuming x, has the
following property:

d(x,S \ {z}) ≥
(p− 1)δ

2
.

Considering that we swap x with z, we have:

∆ ≥
(p− 1)

2
δ −

1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Since ∆ < 1
3
δ, we have

1

3
δ >

(p− 1)

2
δ −

1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

This implies that

δ <
6

3p− 5
·

1

|Y |
[f(Y ) + 2λd(Y ) + λd(Z, Y )].

Since p > 3, we have

δ <
1

|Y |
[
6

7
f(Y ) +

12λ

7
d(Y ) +

6λ

7
d(Z, Y )],

which is a contradiction.

Therefore, φ(S∗) ≥ 1
3
φ(O); this completes the proof.

Theorem 6. [type (iv)] For any distance decrease, we
can maintain an approximation ratio of 3 with a single up-
date.

Proof. Suppose we decrease the distance of (x, y) by δ.
Without loss of generality, we assume both x and y are
in S, for otherwise, it is not hard to see the ratio of 3 is
maintained. Suppose, for the sake of contradiction, that
φ(S∗) < 1

3
φ(O), then by Corollary 1, we have |Y | > 3 and

∆ >
1

|Y | − 3
[2φ(Z) + 2f(Y ) + λd(Y ) + 2λd(Z, Y )]

≥
1

p− 3
φ(S).

If ∆ ≥ δ, then the ratio of 3 is maintained. Otherwise,

δ > ∆ ≥
1

p− 3
φ(S).

By the triangle inequality of the metric condition, we have

φ(S) ≥ (p− 2)δ >
p− 2

p− 3
φ(S) > φ(S),

which is a contradiction.
Combining Theorem 3, 4, 5, 6, we have the following corol-

lary.

Corollary 3. If the initial solution achieves approxima-
tion ratio of 3, then for any weight-perturbation of type (i),
(iii), (iv); and any weight-perturbation of type (ii) that is
no more than 1

p−2
of the current solution for p > 3 and arbi-

trary for p ≤ 3, we can maintain the ratio of 3 with a single
update.



7. EXPERIMENTS
In this section, we present the results of some prelimi-

nary experiments. Note that all our results in this paper are
of theoretical nature, and the purpose of the experiments in
this section are to provide additional insights about our algo-
rithms. They shall not be treated as experimental evidences
for the performance of our algorithms.

We consider the max-sum diversification problem with
modular set functions. In order to have gradual control of
the parameters, we use the following different, but equiva-
lent form of the objective function:

αf(S) + (1− α)
∑

u,v∈S

d(u, v),

where α is a real number in [0, 1]. We conduct two sets of
experiments:

1. We compare the performance (the approximation ra-
tio) of the greedy algorithm proposed in [17] with the
greedy algorithm that we propose in this paper.

2. We simulate three different dynamically changing en-
vironments, and record the worst approximation ratio
occurring with a single application of the oblivious up-
date rule.

Note that both experiments use synthetic data which is gen-
erated uniformly at random within a given range, and in
order to compute the optimal solution (to evaluate the ap-
proximation ratio), we restrict the size of the input data.
Therefore, our experiments are not representative for real
data sets and large input cases, but nevertheless, they shed
some light on the behavior of the proposed algorithm and
the dynamic update rule.

7.1 Comparing Two Greedy Algorithms
The first experiment is designed to compare the greedy

algorithm proposed in [17] with the greedy algorithm that
we propose in this paper. We generate input instances of 50
vertices, with vertex weights chosen uniformly at random
from [0, 1] and distances chosen uniformly at random from
[1, 2] to ensure the triangle inequality. The target set size is
chosen to be five. These instances are small enough that we
can determine the optimal solution. We run both the greedy
algorithm of [17], denoted as Greedy A, and our greedy al-
gorithm, denoted as Greedy B, on the same instance for dif-
ferent values of α. This is repeated 100 times for each value
of α and both approximation ratios are recorded for every
instance. These approximation ratios are then averaged to
represent the performance of the algorithm for each α value.
The results are shown in Fig. 1; the horizontal axis measures
α values, and the vertical axis measures the approximation
ratio (the smaller the bar height, the better the ratio).

Although both algorithms have the same provable theo-
retical approximation ratio of 2, we observe the following
phenomena:

1. Greedy B significantly outperforms Greedy A for every
value of α. The worst case for each algorithm occurs
at α = 0 (i.e., no element weight), where Greedy A
has an approximation ratio of 1.26 while Greedy B is
still well below 1.05.

2. Both algorithms performs well below the theoretical
approximation bound of 2.

Figure 1: A Comparison of Two Greedy Algorithms

3. As α increase, both algorithms tend to perform bet-
ter. Note that Greedy B achieves the optimum when
α = 1 as it then becomes the “standard” greedy al-
gorithm [31, 14]; however, this is not the case for
Greedy A.

Despite the fact that the experiment is only conducted for
very limited cases, it gives some evidence that our greedy
algorithm outperforms the one proposed in [17].

7.2 Approximation Ratio in Dynamic Updates
For dynamic update, we use the same type of random

instance in the previous experiment. We have three different
dynamically changing environments:

1. vperturbation: each perturbation is a weight change
on an element.

2. eperturbation: each perturbation is a weight change
between two elements.

3. mperturbation: each perturbation is one of the above
two with equal probability.

For each of the environments above and every value of α, we
start with a greedy solution (a 2-approximation) and run 20
steps of simulation, where each step consists of a weight
change of the stated type, followed by a single application
of the oblivious update rule. We repeat this 100 times and
record the worst approximation ratio occurring during these
100 updates. The results are shown in Fig. 2; again the hori-

Figure 2: Approximation Ratio in Dynamic Updates

zontal axis measures α values, and the vertical axis measures
the approximation ratio.



We have the following observations:

1. In any dynamic changing environment, the maintained
ratio is well below the provable ratio of 3. The worst
observed ratio is about 1.11.

2. The maintained ratios are decreasing to 1 for increas-
ing α ≥ 0.6 approximately.

From the experiment, we see that oblivious update rule
seems effective for maintaining a good approximation ratio
in a dynamically changing environment.

8. CONCLUSION
We study the max-sum diversification with monotone sub-

modular set functions and give a natural 2-approximation
greedy algorithm for the problem. We further extend the
problem to matroids and give a 2-approximation local search
algorithm for the problem. We examine the dynamic update
setting for modular set functions, where the weights and
distances are constantly changing over time and the goal
is to maintain a solution with good quality with a limited
number of updates. We propose a simple update rule: the
oblivious (single swap) update rule, and show that if the
weight-perturbation is not too large, we can maintain an
approximation ratio of 3 with a single update.

The diversification problem has many important applica-
tions and there are many interesting future directions. Al-
though in this paper we restricted ourselves to the max-sum
objective, there are many other well-defined notion of diver-
sity that can be considered, see for example [7]. The max-
sum case can be also viewed as the ℓ1-norm; what about
other norms?

Another important open question is to find the tight ap-
proximation ratio for max-sum diversification with mono-
tone submodular set functions (for both the uniform matroid
case and the general matroid case). We know the ratio can-
not be better than e

e−1
assuming P is not equal to NP [29]

and an approximation ratio of 2 is obtained in this paper. Is
it possible to beat 2? In the general matroid case, the greedy
algorithm given in Section 4 fails to achieve any constant ap-
proximation ratio, but how about other greedy algorithms?
What if we start with the best pair?

In a dynamic update setting, we only considered the obliv-
ious single swap update rule. It is interesting to see if it is
possible to maintain a better ratio than 3 with a limited
number of updates, by larger cardinality swaps, and/or by
a non-oblivious update rule. We leave this as an interesting
open question of the paper.

Finally, a crucial property used throughout our results is
the triangle inequality. For a relaxed version of the trian-
gle inequality can we relate the approximation ratio to the
parameter of a relaxed triangle inequality?
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