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Abstract. After the seminal paper of Kleinberg[1] and the introduction of PageRank[2], there has been
a surge of research activity in the area of web mining using link analysis algorithms. Subsequent to the
first generation of algorithms, a significant amount of improvements and variations appeared. However,
the issue of stability has received little attention in spite of its practical and theoretical implications.
For instance, the issue of “link spamming” is closely related to stability: is it possible to boost up the
rank of a page by adding/removing few nodes to/from it? In this paper, we study the stability aspect
of various link analysis algorithms concluding that some algorithms are more robust than others. Also,
we show that those unstable algorithms may become stable when they are properly “randomized”.
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1 Introduction

The use of link analysis algorithms for different web mining purposes became quite popular after the first
introduction of algorithms to identify authoritative sources in the web[1, 2]. Different attempts [6, 7, 3, 9, 10,
12–14] to improve these algorithms were taken. A simple evaluation of query results using human judgement
is normally employed to measure the performance of algorithms. A. Ng. et al.[4] and A. Borodin et al.[3]
take a slightly different path from other papers: A. Ng. et al. study the stability aspect of some link analysis
algorithms like PageRank and HITS, providing some insight into ways of designing stable link analysis
methods. A. Borodin et al. introduce some formal definitions of stability and rank stability along with the
analysis of some algorithms.

Stability is an important feature to consider in a such highly dynamic environment as World Wide
Web. The World Wide Web is continuously evolving, so if a link analysis is to provide a robust notion
of authoritativeness of pages, then it is natural to ask for a link analysis algorithm to be stable under
small perturbations on the web topology. Intuitively, a small change of the web topology should not affect
the overall link structure, and a proper definition of stability should reflect this intuition properly. The
stability issue also has some practical implications such as that of “link spamming”, i.e. a good link analysis
algorithm should be robust to any malicious attempt of web designers to promote the rank of their pages by
adding/removing few links to/from them.

The current link analysis algorithms can be classified into two categories. The first class of algorithms are
algebraic methods such as HITS[1],PageRank [2], SALSA[6] and various hybrid algorithms of the first two[3, 9,
11]. These methods essentially compute principal eigenvectors of particular matrices related to the adjacency
matrix of a certain web graph to identify the most relevant pages on that web graph. The second class of
algorithms are probabilistic methods such as PHITS[10] and Bayesian [3] algorithms. These algorithms, using
some probabilistic assumptions and techniques, estimate the rank of pages on a specific topic. Algebraic
methods are the most popular ones, thus in this paper we only concentrate on the analysis of algebraic
methods. More specifically, after introducing our revised definition of stability, we show the following results
regarding the stability of algebraic methods: 1) PageRank is stable on the class of all directed graphs. 2)
SALSA is stable on the class of authority connected graphs but not stable on the class of all directed graphs.
3) HITS is not stable on the class of authority connected graphs. Finally, we introduce randomized versions
of HITS and SALSA showing stability for these algorithms.



2 Overview of algorithms

We begin by reviewing some algebraic link analysis algorithms, the reader familiar with this material may
wish to skip ahead to Section 3.

2.1 HITS

Created by Kleinberg[1], HITS is the first link analysis algorithm used for web mining. In contrast to
PageRank, it was never implemented in a commercial search engine until a new search engine Teoma1

integrated a variation of HITS2 as part of its ranking system. First, this algorithm constructs a Root Set of
pages consisting of a short list of webpages returned by the search engine. Later, this Root Set is augmented
by pages that are pointed to by pages in the Root Set, and also by pages that point to pages in the Root
Set to form a larger set called Base Set, which makes HITS a query dependent method. With the Base set,
HITS forms the adjacency matrix A where Aij = 1 if there is a link from i to j and 0 otherwise. Next, it
assigns to each page i an authority weight ai and a hub weight hi, then the equations a(t+1)

i =
∑
j→i h

(t)
j

and h(t)
i =

∑
i→k a

(t)
k are iterated until a(t)

i and h(t)
i converge to the fixed points a∗i and h∗i respectively (with

the vectors renormalized to unit length at each iteration). Also, it is easily seen than the fixed points a∗ and
h∗ are principal eigenvectors of AtA and AAt respectively. The authority value of a page i is taken to be a∗i ,
and the hub value of page i is taken to be h∗i in a similar manner.

2.2 PageRank

The popularity of PageRank is due to the commercial success search engine Google 3 created by Brin and
Page[2]. PageRank simulates a random surfer who jumps to a randomly chosen web page with probability ε,
and follows one of the forward-links on the current page with probability 1−ε. This process defines a markov
chain on the web pages. The transition probability matrix of this markov chain is given by (εU+(1−ε)Arow)
where Arow is constructed by renormalizing each row of the adjacency matrix A to sum to 1 4 and U is the
transition matrix of uniform transition probabilities. The vector p that represents PageRank scores of pages
is then defined to be the stationary distribution of this markov chain. PageRank does not make distinction
between hub values and authority values, rather it assigns a single value(PageRank) to each page. In this
paper, the PageRank score pi of page i is taken to be both authority and hub values of the page for the sake
of our analysis.

2.3 SALSA

As an alternative algorithm to HITS(an algorithm to avoid “topic-drift”), SALSA is proposed by Lempel and
Moran[6]. SALSA performs two random walks on web pages; a random walk by following a backward-link
and then a forward-link alternately, and another one by following a forward-link and then a backward-link
alternately. The authority weights are defined to be the stationary distribution of the former random walk,
and the hub weights are defined to be the stationary distribution of the latter random walk. Thus, SALSA
assigns separate hub and authority scores to each page. The transition probability matrices of the markov
chains for the authorities and hubs are given by Ã = AtcolArow , H̃ = ArowA

t
col, where Acol is constructed by

renormalizing each column of the adjacency matrix A to sum to 1, and Arow is constructed by renormalizing
each row of the adjacency matrix A to sum to 1. One attractive aspect of SALSA is that its stationarity
distributions have explicit forms [6].

1 http://www.teoma.com
2 teoma vs. Google, Round Two, Siliconvalley.internet.com, April 2,2002
3 http://www.google.com
4 It is not clear from the original definition how to deal with the situation where the current page has no forward-link

from it. In this paper, we use the simplest approach, i.e. when a page has no forward-link(a row of A has all zero
entries), then the corresponding row of Arow is constructed to have all entries equal to 1/n.



3 Definitions and notations

In this section, we introduce some basic definitions and notations used throughout the rest of paper. Given
G=(V,E) a directed graph representing a set of pages and their interconnecting links, we define the co-
citation graph of G as an undirected graph Ga = (V ′, E′) such that V’=V and E’={(p,q)| if there exists a
node r that links to both p and q }. A directed graph G=(V,E) is called authority connected if its co-citation
graph is connected. The edge distance de between two graphs G1 = (V,E1) and G2 = (V,E2) is defined as
de(G1, G2) = |(E1 ∪ E2)\(E1 ∩ E2)|. We define a link analysis algorithm T as a pair of functions that map
a directed graph G of size N to a N-dimensional vector 5. We call the vector aT (G) the authority weight
vector of algorithm T on graph G and hT (G) the hub weight vector of algorithm T on graph G. The value
of the entry aTi (G) of vector aT (G) denotes the authority weight assigned by the algorithm T to the page i.
Similarly, the value of the entry hTi (G) of vector hT (G) denotes the hub weight assigned by the algorithm T
to the page i. If the algorithm T does not make distinction between hub and authority values, then we treat
the single weight of page as both hub and authority weights. If it is clear in the context, then we simply
use a instead of aT (G) to denote the authority vector of algorithm on graph G, and ai instead of aTi (G) to
denote the authority weight assigned by the algorithm T to the page i. Similar approach is used for the hub
vector. Given a graph G, we can view a perturbation on graph G, as an operation ∂ on graph G, that adds
and/or removes links to produce a new graph G′ = ∂ G. We denote by ãT (G) = aT (∂G) the new authority
vector of the perturbed graph ∂G, and by ãTi its respective new authority weight assigned by the algorithm
T to page i.
Let BP and FP denote the set of pages whose backward-links are perturbed and the set of pages whose
forward-links are perturbed respectively. Let BU denote the set of pages whose backward-links remain un-
perturbed even after the perturbation, and let FU be the set of pages whose forward-links remain unperturbed
even after the perturbation. Let G̃ be the set of all directed graphs, let GN be the class of all directed graphs
of size N, let GAC be the class of all authority connected graphs, and let GNAC be the class of authority con-
nected graphs of size N. Therefore, GAC ⊂ G̃, GN ⊂ G̃ and GNAC ⊂ GAC hold. It is our particular interest to
study the stability issues of link analysis algorithms on the class GAC because an authority connected graph
can be viewed as representation of topical web graphs (set of pages that pertain to the same topic).
Before introducing our definition of stability, the original definition of stability will be introduced, so that
the reader who is not familiar with [3] can understand the motivation driving a new definition.

Definition 1. We say that an algorithm T is L1-stable if for every fixed K, we have

lim
N→∞

max
G1∈GN ,de(G,∂G)≤K

min
γ1,γ2≥1

||γ1a
T (G)− γ2a

T (∂G)||1 = 0

Based on this definition, A. Borodin et al. show 1) HITS is not stable on GN . 2) SALSA is not stable on
GNAC but it is stable on GN .
We think this definition of stability is not sufficiently robust to reflect the realistic stability of link analysis
algorithms, i.e. the impact of perturbation depends on both the number and the weights of perturbed nodes,
but rather, the definition only considers the number of perturbed links. Thus, motivated by [4] which bounds
the magnitude of perturbation for PageRank by a linear function of the aggregated PageRank scores of all
perturbed pages, we define our notion of stability.

Definition 2. Let ci be the number of backward-links of page i that are perturbed. We say that an algorithm
T is stable on S ⊆ G̃ if we have a fixed constant value k such that for any G ∈ S and ∂G ∈ S

||aT (G)− aT (∂G)||1 ≤ k

∑

i∈BP
ciai +

∑

j∈FP
hj




holds.
The intuitive idea behind this definition is as follows. Each time we add/remove a link there are two pages

5 Notice that if the algorithm T does not make distinction between hubs and authorities, then T will be defined as
single mapping
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Fig. 1. Stability of SALSA and HITS

involved with this action, namely a page(call it j) whose forward-link is perturbed and another page(call
it i) whose backward-link is perturbed. Roughly speaking, the “cost” of this addition/removal is ai + hj .
Both ai and hj will contribute to the magnitude of perturbation, but the contribution of hj would not be
as considerable as that of ai since the authority weight of a page is mainly due to backward-links rather
than forward-links. Thus, ai is more heavily weighted than hj in our definition. Although it is also possible
to have a definition in terms of the eigengap of particular matrix related to the link analysis algorithm, it
presents some difficulties. For some link analysis algorithms like probabilistic ones, there is no natural way
of formalizing eigengap since its role in the algorithm is obscure.

4 Results

In this section, we present our results regarding the stability of Pagerank, SALSA, and HITS.

4.1 Stability of PageRank

It is proven in [4] that ||p̃ − p||1 ≤ 2/ε · (∑i∈P pi
)
, where P denotes the set of perturbed nodes. Slightly

adapting this result to our definiton of stability, the following proposition is obtained.

Proposition 1. PageRank is stable on the class of all directed graphs G̃. Specifically, given a graph G=(V,E)
∈ G̃, G is perturbed producing a new graph ∂G. Let p be the original PageRank score, then the new PageRank
score p̃ satisfies:

||p̃− p||1 ≤ 2(1− ε)
ε

·
(∑

i∈FP
pi

)

Note that our proposition only focuses on the set FP rather than the entire set of perturbed nodes.

4.2 Stability/Instability of SALSA

Proposition 2 (Appendix). Let G, G’ ∈ GAC, s the original SALSA authority vector, and ci the number
of perturbed backward-links of page i, then the new SALSA authority vector s̃ obtained after the perturbation
satisfies:

||s− s̃||1 ≤ 2

(∑

i∈BP

ci
w

)

where w denotes the number of links (edges) in G. Moreover, if we only perturb those pages whose |B(i)| > 0
(†), then

||s− s̃||1 ≤ 2

(∑

i∈BP
cisi

)



Note that proposition 2 states that SALSA is stable on the class of authority connected graphs GAC under the
assumption (†).

Proposition 3. SALSA is not stable on the class of all directed graphs G̃
Proof: Consider a graph that consists of complete graphs C1 and C2 of size 2 and n respectively (see Figure
1a). Also, there exists an extra hub h that points to two authority nodes p and q of the component C1 and C2

respectively. Now, we perturb the graph removing the link from hub h to authority p. Then, we observe that
for the node s ∈ C1 \p, we have as = 1/(n(n−1) + 4) , ãs = (2/(n+ 2))(1/2) = 1/(n+ 2), and for p, we have
ap = 2

n(n−1)+4 , ãp = (2/(n+2))(1/2) = 1/(n+2). Moreover, hh = 2/(n(n−1)+4). Thus,|ap−ãp|+|as−ãs| =
(2n2−5n+2)/((n+2)(n(n−1)+4)) > (n−6)/4 ·(2/(n(n−1)+4)+2/(n(n−/1)+4)) = (n−6)/4 ·(ap+hh).
Consequently ||a− ã||1 > (n− 6)/4 · (ap + hh) which proves the proposition.

4.3 Instability of HITS

To illustrate the high sensitivity of HITS to the topology of graph, we start with an example.

Example 1. Consider a graph G=(V,E) that consists of n nodes that form a cycle (See Figure 1b). More
precisely, G has links {1 → 2, 2 → 3, . . . , n − 1 → n, n → 1}. Next, G is perturbed by removing 1 → 2 and
adding 1 → 3. The weight is evenly distributed among all nodes in G, i.e. for all i ∈ V, we have ai = 1/n,
hi = 1/n. On the other hand, we have ã3 = 1 and ãi = 0 for the rest of nodes. Moreover, we have h̃1 = 1/2,
h̃2 = 1/2 and h̃i = 0 for the rest of nodes. Hence, ||a− ã||1 = (n− 1)/n+ 1− 1/n > 1 = n/3(a2 + a3 + h1).

Note that this example shows that HITS fails to be stable even under small perturbation of a connected
graph 6. Therefore, the following proposition is not surprising.

Proposition 4. HITS is not stable on the class of authority connected graphs GAC
Proof: Consider the graphs G and ∂G that consist of 2n+1 nodes. Let A = {1, . . . , n} denote the first n
nodes, let B = {n+ 1, . . . , 2n} denote the next n nodes, and let s denote the last node. Both graphs contain
the links {s → i|i ∈ B} and {i → j|i ∈ A, j ∈ B}. The perturbed graph ∂G additionally contains links
{j → i|j ∈ B, i ∈ A} and {s→ i : i ∈ A}. G and ∂G are authority connected graphs. For all i ∈ A, we have
ai = 0, hi = 1/(n+ 1), ãi = 1/(2n). For all j ∈ B, we have aj = 1/n, hj = 0, ãj = 1/(2n). Finally, we have
as = 0, hs = 1/(n+1), ãs = 0. Therefore, ||a− ã|| ≥∑i∈A ||ai− ãi|| = 1/2 > n/2(

∑
i∈A 2 ·ai+

∑
j∈B∪{s} hj)

proving instability.

Example 1 and Proposition 4 show some extreme scenarios where HITS fails to be stable. Apparently,
addition/removal of even small number of links may alternate substantially the whole weight distribution
under HITS, and the experimental study about the stability of HITS appears in Section 6.

5 Improvement of algorithms

In the previous section, some limitations of SALSA and HITS in terms of stability were shown. In this
section, we explore how the randomization of the algorithms can eliminate their instability.

5.1 Randomized HITS

The first version of randomized HITS is introduced in [9] under the name of two-level reputation rank. Also,
a slightly different version is proposed by A. Ng et al.[7] This randomization of HITS consists of the following
random surfer model: the random surfer picks uniformly a random page with probability ε and follows a link
with probability 1− ε. If he decides to follow a link then he checks if it is odd time step or even time step.
If it is odd time step, then he follows uniformly at random a forward-link. If it is even time step, then he
6 It is not answered in [3] whether HITS is stable or not when the perturbed graph remains connected after the

perturbation.



follows uniformly at random a backward-link. Note that this process defines a random walk on pages which
is similiar in spirit to HITS. The stationary distribution on odd time steps is defined to be the authority
weights of pages and the stationary distribution on even time steps is defined to be the hub weights of pages.
Formally, the authority weights and hub weights of pages are calculated by updating the following equations:

a(t+1) = ε · U + (1− ε) ·Atrowh(t) , h(t+1) = ε · U + (1− ε) ·Acola(t+1) (1)

where each entry of U is 1/n, Arow is the same as the adjacency matrix of the graph A with its rows normalized
to sum to 1, Acol is the the same as the adjancency matrix of the graph A with its rows normalized to sum to
1. 7 The equations in (1) are iterated until they converge to the fixed points a∗ and h∗. The convergence of
these iterations is proved in [9]. We refer this version of HITS as randomized HITS or simply RHITS. Under
RHITS each node is treated as both authority and hub. Next, we investigate stability aspect of RHITS.

Proposition 5. RHITS is stable on the class of all directed graphs G̃. Specifically, given a graph G=(V,E)
∈ G̃,the graph G is perturbed producing a new graph ∂G, then we have

||ã− a||1 ≤ 2(1− ε)
ε

·

∑

j∈FP
hi +

1
2− ε

∑

i∈BP
ai




By analogy to the proof of Pagerank, it is not very hard to show the stability.

5.2 Randomized SALSA

In a similar manner as that of HITS, it is possible to overcome the limitation of SALSA by randomizing the
algorithm. Let call this algorithm Randomized SALSA or simply RSALSA. Let be two random surfers; The
first random surfer picks uniformly a random page with probability ε, and it follows a backward-link then a
foward link with probability 1−ε. This random surfer model defines the random walk on the authority nodes.
The second random surfer picks uniformly a random page with probability ε, and it follows a forward-link
then a backward-link with probability 1− ε, defining a random walk on the hub nodes. More precisely, the
markov chain for the authorities and hubs have following transition probabilities

Pa(i, j) =
ε

n
+ (1− ε)

∑

{k:k∈B(i)∩B(j)}

1
|B(i)|

1
|F (k)| , Ph(i, j) =

ε

n
+ (1− ε)

∑

{k:k∈F (i)∩F (j)}

1
|F (i)|

1
|B(k)|

The convergence of markov chains to unique distributions are guaranteed from the fact that a markov chain
that has transition probabilities P(x,y) of the form P (x, y) = εµ(y) + (1− ε)Q(x, y) for some distributions µ
and Q is uniformly ergodic [16]. Hence, the powers of transition probabilities converge geometrically to the
unique distributions. Similar to RHITS, RSALSA treats each page as both authority and hub.

Proposition 6 (Appendix). RSALSA is stable on the class of all directed graphs G̃. Specifically, given a
graph G=(V,E) ∈ G̃ representing a web subgraph,the graph G is perturbed producing a new graph ∂G, then
we have

||ã− a||1 ≤ 4(1− ε)
ε

·
(∑

i∈BP
ai

)

7 When a row of Arow has all zero entries, then the corresponding row of Arow is constructed to have all entries
equal to 1/n. Similarly, if a col of Acol has all zero entries, then the corresponding col of Acol is constructed to
have all entries equal to 1/n.
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Fig. 2. Sensitivity Analysis

6 Experimental Results

Although the study of stability from the previous sections gives some useful theoretical insight about the
robustness of algebraic link analysis algorithms, the notion of stability introduced in this paper is a worst-case
notion. Hence, the theoretical analysis from previous sections will be complemented with some experimental
studies to evaluate the robustness of algorithms in practice. Also, we study the performance of RHITS
and RSALSA relative to some queries. From this study we show that RHITS can be, for instance, a way
to overcome the limitation of HITS while being robust to perturbations since both RHITS and RSALSA
outperform HITS specially on those queries in which HITS fails because of “Topic Drift” [6]. Stability results
will be presented in Section 6.1 while the performance of algorithms relative to various queries will be
presented in Section 6.2

6.1 Stability result

Given four sets of web pages produced as results of queries on “Genetic”, “Abortion”, “Movies” and “Net
Censorship”, we randomly perturbed each set by removing 25%, 50% and 75% of pages from each set of web
pages. We ran five cycles of perturbation on each set to construct fifteen datasets in total for each topic.
In order to measure the stability, we compared the magnitude of perturbation ||a − ã||1 to the weights of
perturbed pages. More precisely, we defined our sensitivity measure of link analysis algorithm T as K =
||a − ã||1/(

∑
i∈BP ciai +

∑
j∈FP hj) where ci denotes the number of backward-links that are perturbed.

Recall from our definition of stability that when the algorithm is not stable then K would be unbounded.
Thus, volatile K values would be a possible indication of instability of the algorithm. In fact, HITS seems
to present this kind of behavior as shown later on. We computed K for each dataset respect to all algebraic
algorithms considered in this paper8. We divided each K by the smallest K on each series of datasets which
is represented as the Y axis in Figure 2. For instance, All of K values computed from fifteen datasets on
the query “Abortion” were divided by the smallest K,which is denoted by min(K), out of fifteen K values.
One can observe from Figure 2 the high sensitivity of HITS from its volatile K/min(K) values on different
queries. On the other hand, the stability of PageRank is remarkable showing a stable behavior regardless
of the dataset. Finally, the sensitivity of SALSA, RSALSA and RHITS are shown to be between HITS and
PageRank.
8 Notice that when ε→ 1, the stability of PageRank, RHITS and RSALSA is increased as the algorithms are reduced

into simple uniform random jumps. Thus, the value of ε = 0.1 was chosen to minimize the influence of ε on the
stability of algorithms even though 0.1 < ε < 0.2 is the most widely used value of ε for PageRank



HITS SALSA RHITS RSALSA PageRank

1165 717 717 717 1984
1193 962 962 962 1983
1184 1769 1769 1769 2375
1188 719 719 719 1985
1191 925 0 925 2382
1189 0 925 0 46
1187 666 1461 666 2501
1192 718 718 718 717
1190 1325 666 1325 1139
1948 2262 2 2262 368

precision 0.1 1 1 1 0.3

HITS SALSA RHITS RSALSA PageRank

HITS 10 0 0 0 0
SALSA 0 10 8 10 0
RHITS 0 8 10 8 0

RSALSA 0 10 8 10 0
Pagerank 0 0 0 0 10

Index URL Title Index URL Title

(1165) DimeClicks.com -...
http://www5.dime
clicks.com (368) Current Events - Law http://law.miningco.com

(1193) HitBox.com - ... http://rd1.hitbox.com/ (1769) Priests for Life Index http://www.priestsforlife.org

(1184-92) Amazon.com-... http://www.amazon.com/ (0)
Abortion
Clinics OnLine http://www.gynpages.com

(1948) Politics1: Hot Politics... http://www.politics1.com/ (925)
Pregnancy
Centers Online

http://www.pregnancy
centers.org

(962) ProlifeInfo
http://www.proli
fe.org/ultimate (1461)

Planned Parenthood
Federation

http://www.planned
parenthood.org

(1769)
Priests for
Life Index

http://www.priests
forlife.org (666) RoevWade.org http://www.roevwade.org

(719)
Abortion and
reprod. Res. http://www.naral.org (2)

The Abortion
Rights Activist

http://www.cais.com
/agm/main

(925)
Pregnancy
Centers Online

http://www.pregnanc
ycenters.org (1984)

The John Birch
Society http://www.jbs.org

(0)
Abortion
Clinics OnLine http://www.gynpages.com (1983)

American Opinion
Book Service http://www.aobs-store.com

(666) RoevWade.org http://www.roevwade.org (2375) About http://home.about.com

(718)
Human Life
International http://www.hli.org (1985) TRIMonline http://www.trimonline.org

(1325) Feminists For Life of A.
http://www.serve.com
/fem4life (2382) AllExperts.com http://www.allexperts.com

(2262)
The Ultimate
Pro-Life Resources http://www.prolifeinfo.org (46) Project Rachel,.. http://manaco.simplenet.com/

(717)
National Right
to Life Organization http://www.nrlc.org (2501)

The March For
Life Fund http://www.marchforlife.org

(1139) Simple Catholicism http://www.geocities.com/

Table 1. Top 10 pages on “Abortion” (ε=0.1, Base Set Size=2293)

6.2 Performance Evaluation

In this section, we report results of series of experiments that we conducted to evaluate the ranking quality
of algebraic link analysis algorithms considered in this paper. We ran each algorithm on four different
queries using the same datasets as those of [3]. For the sake of brevity, we only present top 10 pages
on the query “Abortion” (Table 1). The full set of experimental results can be found at the web page
http://www.cs.toronto.edu/ leehyun/experiment.htm. The “Tightly Knit Community(TKC)” [6] effect for
HITS is clearly observed with this particular query since its returned pages contain many irrelevant pages
from “Amazon.com” in its top 10 pages. All top 10 pages produced by RSALSA and RHITS, in contrast, are
relevant to the topic “Abortion”. We can neglect the apparent similarity of ranking output between SALSA
and RSALSA since a more careful study of low ranked pages revealed substantial difference between these
algorithms.

7 Conclusions

We studied the stability aspect of different algebraic link analysis algorithms. We gave a new definition of
stability motivated by the definition of stability given in [3] and some bounds for ||a − ã||1 found in [4].
In this paper, we showed that PageRank is stable, HITS is not stable, and SALSA is stable under certain
circumstances according to our new definition of stability. Also, we reexamined Randomized HITS introduced
in [9, 7] showing that the algorithm is stable. Also, we proposed Randomized SALSA as a way to overcome
the limitation of SALSA. Finally, stability of link analysis algorithms were analyzed in practice. Our work
leads toward some practical and theoretical open questions to be attacked for future work. Above all, more
detailed studies about the real stability aspect of link analysis algorithms will be required. Also, it would be



interesting to extend/refine the notion of similarity between two link analysis algorithms in [3], and apply
this revised notion to study the similarity among link analysis algorithms.
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8 Appendix

Proof of proposition 2
We start the proof with the introduction of some additional notation and definitions. Extending notations
from Section 2, let |B(i)| denote the number of backward-links of page i, and let |B̃(i)| denote the number
of backward-links of page i after the perturbation. Denote by w the sum of all backward-links, and by w̃
the sum of all backward-links after the perturbation. Note that a page is perturbed by the addtion/removal
of backwar-links to it. Thus, depending on the number of added/removed links, total number of backward-
links to the page is either increased or decreased or remains the same. Let X denote the set of pages whose
number of backward-links remains the same even after the perturbation. Let IBP denote the set of pages
whose number of backward-links is increased. Moreover, for each node i ∈ IBP, let Ki = |B̃(i)| − |B(i)| be
its increase in the number of backward-links. Similarly, let DBP denote the set of pages whose number of
backward-links is decreased. For each node i ∈ DBP, let Ci = |B(i)| − |B̃(i)| be its decrease in the number
of backward-links. From [6],

∑

i∈BP

|B(i)|
w

+
∑

i∈X

|B(i)|
w

=
∑

i∈V

|B(i)|
w

=
∑

i∈V

|B̃(i)|
w̃

=
∑

i∈BP

|B̃(i)|
w̃

+
∑

i∈X

|B̃(i)|
w̃

(‡) (2)

holds on the class of authority connected graphs GAC . We have

||a− ã||1 =
∑

i∈V

∣∣∣∣∣
|B(i)|
w
− |B̃(i)|

w̃

∣∣∣∣∣ =
∑

i∈IBP

∣∣∣∣∣
|B(i)|
w
− |B̃(i)|

w̃

∣∣∣∣∣+
∑

i∈X
|B(i)|

∣∣∣∣
1
w
− 1
w̃

∣∣∣∣+
∑

i∈DBP

∣∣∣∣∣
|B(i)|
w
− |B̃(i)|

w̃

∣∣∣∣∣



To evaluate ||a− ã||1, we consider two separate cases.

– Case 1 (w̃ ≥ w): since 1/w̃ ≤ 1/w, the expression becomes
∑
i∈IBP ||B̃(i)|/w̃−|B(i)|/w|+∑i∈X |B(i)|(1/w̃−

1/w)+
∑
i∈DBP (|B(i)|/w−|B̃(i)|/w̃). From (2), we know

∑
i∈X |B(i)|(1/w−1/w̃) =

∑
i∈BP (|B̃(i)|/w̃−

|B(i)|/w). Thus, the expression is simplified into ||a−ã||1 =
∑
i∈IBP ||B(i)|/w−| ˜B(i)|/w̃|+∑i∈IBP (|B̃(i)|/w̃−

|B(i)|/w). We split up the set IBP into two subsets IBP+ and IBP−. Let IBP+ be the set of
nodes in IBP such that |B(i)|/w > |B̃(i)|/w̃, and let IBP− be the set of nodes in IBP such that
|B(i)|/w < |B̃(i)|/w̃. Therefore, the expression is further simplified into

∑
i∈IBP+(|B(i)|/w−|B̃(i)|/w̃)+∑

i∈IBP−(|B̃(i)|/w̃ − |B(i)|/w) +
∑
i∈IBP (|B̃(i)|/w̃ − |B(i)|/w) = 2

∑
i∈IBP−(|B̃(i)|/w̃ − |B(i)|/w) ≤

2
∑
i∈IBP−(|B(i)|+Ki − |B(i)|)/w = 2

∑
i∈IBP− Ki/w ≤ 2

∑
i∈BP ci/w.

– Case 2 (w̃ ≤ w) is analogous to that of case 1, so its proof is skipped and the first part of proposition
follows.

Furthermore, if for all i ∈ BP , |B(i)| > 0 is held, then 2
∑
i∈BP ci/w ≤ 2

∑
i∈BP ci ·|B(i)|/w ≤ 2

∑
i∈BP ci ·ai

which proves the rest of proposition 2.

Proof for proposition 6
The proof is based on the coupling method (see [8] for details). First, some notations are introduced. Given
i ∈ FP, we denote by W(i) the set of those nodes that became pointed to by i just after the perturba-
tion(added nodes), by Z(i) the set of nodes that are not pointed any more after the perturbation(removed
nodes), and finally by N(i) the set of nodes that remain pointed even after the perturbation (unperturbed
nodes). Note |F (i)| = |N(i)|+ |Z(i)| and |F̃ (i)| = |N(i)|+ |W (i)|. Now, we construct coupled markov chains
{(Xt, Yt) : t ≥ 0} over pairs of web pages. X0 = Y0 is drawn according to the probability vector a of RSALSA
on graph G. On step t, we “reset” both chains with probability ε, in which case we reset both Xt and Yt
to the same page chosen uniformly at random. If “no reset” occurs at time t with probability 1 − ε,and
Xt−1 = Yt−1,Xt−1 ∈ FP, then normal SALSA steps are performed independently on each graph to choose
Xt and Yt, i.e. follow uniformly at random a backward-link, then a forward-link on G to select Xt. Similarly,
follow uniformly at random a backward-link,then a forward-link on G′ to select Yt. If “no reset” occurs at
time t, and Xt−1 = Yt−1, Xt−1 ∈ BU , then the selection of Xt and Yt is made in two steps: 1) follow
uniformly at random a common backward-link that point to Xt−1 = Yt−1, say i. 2) if i ∈ FU, then follow
uniformly at random a forward-link setting Xt = Yt. Otherwise, if i ∈ FP, then we consider several subcases
to select Xt and Yt according to the following rules. 1) (set selection): in this step, we select pair of sets before
the actual selection of nodes for Xt and Yt. The pair N(i) ⊂ G and N(i) ⊂ G′ are chosen with probability
|N(i)|2/|F (i)||F̃ (i)|. The pair N(i) ⊂ G and W(i) ⊂ G̃ are chosen with probability |N(i)||W (i)|/|F (i)||F̃ (i)|.
The pair Z(i) ⊂ G and N(i) ⊂ G′ are chosen with probability |Z(i)||N(i)|/|F (i)||F̃ (i)|. The pair Z(i) ⊂ G

and W(i) ⊂ G′ are chosen with probability |Z(i)||W (i)|/|F (i)||F̃ (i)|. 2) (node selection): if N(i) ⊂ G and
N(i) ⊂ G′ are selected, then we choose uniformly at random a node l ∈N(i) setting Xt = Yt = l. In other
cases, Xt will be selected uniformly at random either from Z(i) if Z(i) ∈ G was selected in the first step or
from N(i) if N(i) ∈ G was selected in the first step. Similarly, Yt will be selected uniformly at random either
from W(i) if W(i) ∈ G′ was selected in the previous step or from N(i) ∈ G′ if N(i) was selected in the first
step.
By this construction, two coupled markov chains Xt and Yt are created with (a, ã ) as their asymp-
totic distributions. With little bit of work, it is possible to show that P (Xt+1 6= Yt+1, Xt = Yt, Xt ∈
BU |no reset at t+1) ≤ ∑i∈BP ciai (§) where ci denotes the number of perturbed backward-links that are
pointing to i. Then, we have

P (Xt+1 6= Yt+1) = (1− ε) · P (Xt+1 6= Yt+1, Xt 6= Yt|nr(t+1)) + (1− ε) · P (Xt+1 6= Yt+1, Xt = Yt|nr(t+1))
≤ (1− ε) · ((P (Xt 6= Yt|nr(t+1) + P (Xt+1 6= Yt+1, Xt = Yt, Xt ∈ BU |nr(t+1)) + P (Xt+1 6= Yt+1, Xt = Yt

, Xt ∈ BP |nr(t+1))) ≤ (1− ε) · (P (Xt 6= Yt) + P (Xt+1 6= Yt+1, Xt = Yt, Xt ∈ BU |nr(t+1))
+ P (Xt ∈ BP |nr(t+ 1)))

Using (§), we have P (Xt 6= Yt) ≤ (1 − ε) · (P (Xt 6= Yt) +
∑
i∈BP ciai +

∑
i∈BP ai) ≤ (1 − ε) · (P (Xt 6=

Yt) + 2 ·∑i∈BP ciai). From P (X0 6= Y0) = 0, P (X∞ 6= Y∞) ≤ 2·(1−ε)
ε

∑
i∈BP ciai is obtained, and applying

the coupling lemma the proposition follows.


