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Abstract.

We propose a model called priority branching trees (pBT ) for backtrack-
ing and dynamic programming algorithms. Our model generalizes both
the priority model of Borodin, Nielson and Rackoff, as well as a simple
dynamic programming model due to Woeginger, and hence spans a wide
spectrum of algorithms. After witnessing the strength of the model,
we then show its limitations by providing lower bounds for algorithms
in this model for several classical problems such as Interval Scheduling,
Knapsack and Satisfiability.
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1. Introduction

The “Design and Analysis of Algorithms” is a basic component of the Computer Science
Curriculum. Courses and texts for this topic are often organized around a toolkit of al-
gorithmic paradigms or meta-algorithms such as greedy algorithms, divide and conquer,
dynamic programming, local search, etc. Surprisingly (as this is often the main “theory
course”), these algorithmic paradigms are rarely, if ever, precisely defined. Instead, we
provide informal definitional statements followed by (hopefully) well chosen illustrative
examples. Our informality in algorithm design should be compared to computability the-
ory where we have a well accepted formalization for the concept of an algorithm, namely
that provided by Turing machines and its many equivalent computational models (i.e.
consider the almost universal acceptance of the Church-Turing thesis). While quantum
computation may challenge the concept of “efficient algorithm”, the benefit of having a
well defined concept of an algorithm and a computational step is well appreciated.

In contrast, consider the following representative informal definition of a greedy algo-
rithm in one of the standard texts Cormen et al. (2001): “Algorithms for optimization
problems typically go through a sequence of steps, with a set of choices at each step.
... A greedy algorithm always makes the choice that looks best at the moment.” For
pedagogical purposes this informal approach allows most students to understand the rel-
evant concepts and it may well be that any attempt to provide precise definitions would
be counter-productive. But what if we wanted to provably understand the extent to



which (say) greedy algorithms or dynamic programming can efficiently and optimally
solve problems such as weighted interval scheduling and maximum matching in a bipar-
tite graph? Clearly to prove any limitations of a particular algorithmic approach we must
have a precise definition. While it is probably not possible to achieve the universality of
a Church-Turing thesis for say greedy algorithms, we can certainly try to provide models
that capture many if not most examples that we have in mind.

This reserach direction has a substantial (albeit perhaps not that influential) history
as well as being the subject of some recent attention. We will review some of the relevant
work in Section 2 and Section 3. We continue this line of research by presenting a
model for backtracking algorithms as applied to combinatorial search and optimization
problems. Informally, in the priority branching tree (pBT ) model an algorithm creates
a tree of solutions, where each branch of the tree gradually builds a solution one item
at a time. We classify such algorithms according to the manner in which items are
considered resulting in fixed, adaptive and fully adaptive pBT algorithms. For fixed
and adaptive order pBT algorithms, the item order is the same on each branch, but for
adaptive pBT the item order depends on the actual set of input items whereas for fixed
order, the ordering is initially set and is independent of the actual set of input items.
In fully adaptive pBT algorithms the ordering can depend on the decisions made thus
far and can be different on each branch. We formally define the pBT model and its
variants in Section 3. Many well-known algorithms and algorithmic techniques can be
simulated within these models, both those that are usually considered backtracking (using
the strongly adaptive model), and some that would normally be classified as greedy or
“simple” dynamic programming (using even the fixed order model) as in the terminology
of Woeginger (2000). We prove several upper and lower bounds on the capabilities of
algorithms in our models in some cases proving that the known algorithms are essentially
the best possible within the model.

Our results The computational problems we consider are all well-studied; namely,
Interval Scheduling, Knapsack and Satisfiability. For m-machine Interval Scheduling
we show a tight Ω(nm)-width lower bound (for optimality) in the adaptive-order pBT
model, an inapproximability result in the fixed-order pBT model, and an approximability
separation between width-1 pBT and width-2 pBT in the adaptive-order model. For
Knapsack, we show an exponential lower bound (for optimality) on the width of adaptive-
order pBT algorithms, and for achieving an FPTAS in the adaptive-order model we show
upper and lower bounds polynomial in 1/ε. Knapsack also exhibits a separation between
width-1 and width-2 adaptive-order pBT : a width-1 pBT cannot approximate Knapsack
better than a factor of n−1/4, while a standard 1/2-approximation falls into width-2 pBT .
For SAT, we show that 2-SAT is solved by a linear-width adaptive-order pBT , but needs
exponential width for any fixed-order pBT , and also that MAX2SAT cannot be efficiently
approximated by any fixed-order pBT algorithm. (Using a similar argument we show an
inapproximation result for Vertex Cover with respect to fixed-order pBT algorithms.) We
then show that 3-SAT requires exponential width and exponential depth first size in the
fully-adaptive-order pBT model. A small extension to this width lower bound in turn
gives us an exponential bound on the width of fully-adaptive-order pBT algorithms for
Knapsack using a “pBT reduction.”
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2. Brief History of Related Work

We briefly mention some relevant work in the spirit of our results. Our pBT model and
the negative results we derive for the knapsack problem are very similar to the results
of Chvátal (1985) who proves an exponential lower bound for Knapsack in an algorith-
mic model that involves elements of branch-and-bound and dynamic programming (DP).
In Section 3.1 we will relate the branch and bound model to our model. Karp & Held
(1967) introduced a formal language approach for defining “decomposable” combinatorial
optimization problems and derived a formalism (based on finite automata) for dynamic
programming within this context. Helman & Rosenthal (1985) and Helman (1989) ex-
tended the Karp and Held approach to a non-associative analogue of regular expressions.
In this approach, the concatenation operation represents the concatenation of partial so-
lutions while the + operation represents the union of partial solutions. A main goal of
Helman & Rosenthal (1985) was to model “non-serial” DP applications for computing
optimal parenthesizations as in the matrix chain problem and constructing binary search
trees. (See, for example, the text by Cormen et al. (2001) for the definition of these
problems and the well-known DP algorithms that achieve optimal solutions.) Moreover,
by separating the syntax and the semantics (for a particular application), the formalism
in Helman & Rosenthal (1985) exposes an equivalence between these two well known
applications. In terms of complexity results, Helman and Rosenthal show that the well
known algorithms minimize complexity for oblivious programs (in terms of both the con-
catenation and + operations) where oblivious programs are essentially circuits where the
operations executed do not depend on the data. Hence such oblivious programs do not
distinguish between the Θ(n3) complexity bound for the basic DP algorithms in contrast
to Knuth’s (Knuth (1971)) Θ(n2) DP algorithm for computing an optimal binary search
tree. Helman (1989) extends the formalism in Helman & Rosenthal (1985) so as to be
able to provide a formalism capable of modelling both branch and bound and DP algo-
rithms. The complexity results here are also restricted to oblivious programs (applied to
the acyclic stage graph problem). A further distinction is made in terms of “data-based”
programs which are meant to model more “realistic” programs. These formal language
approaches provide very expressive formalisms but it is not clear to what extent one can
derive significant lower bounds within these formalisms. More recently, Khanna et al.
(1998) formalize various types of local search paradigms, and in doing so, provide a more
precise understanding of local search algorithms. Woeginger (2000) defines a class of
simple dynamic programming algorithms and provides conditions for when a dynamic
programming solution can be used to derive a FPTAS for an optimization problem. As
stated before, these simple dynamic programming algorithms can be modelled within our
fixed order pBT model. Achlioptas & Sorkin (2000) define myopic algorithms for the
purpose of analyzing the satisfiability of random 3CNF formulas. Borodin, Nielsen and
Rackoff (Borodin et al. (2003)) introduce priority algorithms as a model of greedy-like
algorithms. We will see that myopic SAT algorithms are (for the most part) priority
algorithms or small width pBT algorithms. The most popular methods for solving SAT
are DPLL algorithms—a family of backtracking algorithms whose complexity has been
characterized in terms of resolution proof complexity (see for example Cook & Mitchell
(1997); Davis et al. (1962); Davis & Putnam (1960); Gu et al. (1997)). The pBT model
encompasses DPLL in many situations where access to the input is limited to some extent.
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3. The pBT Model and its Relatives

We begin with some motivation and an informal description of priority branching trees
(pBT ). The starting point for the pBT model is the priority algorithm model of Borodin
et al. (2003). We assume that the input is represented as a set of data items, where
each data item is a small piece of information about the problem; it may be a time
interval representing a job to be scheduled, a vertex with its list of the neighbours in a
graph, a propositional variable 1 with all clauses containing it in a CNF formula. Priority
algorithms consider one item at a time and maintain a single partial solution (based on
the items considered thus far) that it continues to extend. What is the order in which
items are considered? A fixed-order algorithm initially orders the items according to some
criterion (e.g., in the case of Knapsack, sort the items by their weight to value ratio).
A more general (adaptive order) approach would be to change the ordering according to
the items seen so far. For example, in the greedy set cover algorithm, in every iteration
we order the sets according to the number of yet uncovered elements. (The distinction
between fixed and adaptive orderings has also been studied in Dean et al. (2004).) Rather
than imposing complexity constraints on the allowable orders, we require them to be
“localized”.2 By introducing branching, a priority branching tree (pBT ) can pursue a
number of different partial solutions. Given a specific input, a pBT algorithm then
induces a computation tree. Of course, it is possible to solve any properly formulated
search or optimization problem in this manner: simply branch on every possible decision
for every input item. In other words, there is a tradeoff between the quality of a solution
and the complexity of the pBT -algorithm. We view the maximum width of a pBT
program as the number of partial solutions that need to be maintained in parallel in
the worst case. As we will see, this extension allows us to model the simple dynamic
programming framework of Woeginger (2000). This branching extension can be applied
to either the fixed or adaptive order (fixed-order pBT and adaptive-order pBT ) and in
either case each branch (corresponding to a partial solution) considers the items in the
same order. For example, various DP based optimal and approximate algorithms for the
Knapsack problem can be seen as fixed- or adaptive-order pBT algorithms. In order to
model the power of backtracking programs (say as in DPLL algorithms for SAT)3 we
need to extend the model further. In a fully-adaptive-order pBT we allow each branch
to choose its own ordering of input items. Furthermore, we need to allow algorithms
to prioritize (using a depth first traversal of the induced computation tree) the order in
which the different partial solutions are pursued. In this setting, we can consider the
number of nodes traversed in the computation tree before a solution is found (which may
be smaller than the tree’s width).

1We note that by using this input representation for a CNF formula, myopic algorithms (Achlioptas
& Sorkin (2000)) can be viewed as priority algorithms (when only one variable is set) or as constant-
width pBT algorithms when a constant number of variables are set in a “free move” of the algorithm.
In hindsight, we see that the myopic requirement of iteratively and irrevocably setting propositional
variables (in their context of satisfying low density CNF formulas) further motivates the general priority
framework for making myopic decisions about input items.

2The precise sense in which we restrict the allowable orders to be localized will be formalized in
Definition 3.1. We note that, in hindsight, our fixed orders are those satisfying Arrow’s “independence
of irrelevant alternatives” axiom, as used in social choice theory (Arrow (1951)).

3The pBT model encompasses DPLL in many situations where access to the input is limited. If access
is unlimited, then proving superpolynomial lower bounds for DPLL amounts to proving P 6= NP .
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We now formalize these concepts. Let D be an arbitrary data domain that contains
objects Di called data items. Let H be a set, representing the set of allowable decisions
for a data item. For example, for the Knapsack problem, a natural choice for D would
be the set of all pairs (x, p) where x is a weight and p is a profit; the natural choice for H
is {0, 1} where 0 is the decision to reject an item and 1 is the decision to accept an item.

A search/optimization problem P is specified by a pair (DP , fP ) where DP is the
underlying data domain, and fP is a family of objective functions,

fn
P : (D1, . . . , Dn, a1, . . . , an) 7→ R,

where a1, ..., an is a set of variables that range over H , and D1, . . . , Dn is a set of variables
that range over D. On input I = D1, . . . , Dn ∈ D, the goal is to assign each ai a value
in H so as to maximize (or minimize) fn

P . A search problem is a special case where fn
P

outputs either 1 or 0.
For any domain S we write O(S) for the set of all orderings of elements of S. We are

now ready to define pBT algorithms.

Definition 3.1. A priority branching tree (pBT) algorithm A for problem P =
(D, {fn

P}) consists of the ordering functions

rk
A : Dk × Hk 7→ O(D)

and the choice functions 4

ck
A : Dk+1 × Hk 7→ O(H ∪ {⊥}).

We separate the following three classes of pBT algorithms

◦ Fixed-Order algorithms: rk
A does not depend upon k or any of its arguments.

◦ Adaptive-Order algorithms: rk
A depends on D1, D2, ..., Dk but not on a1, ..., ak.

◦ Fully-Adaptive-Order algorithms: rk
A depends on D1, D2, ..., Dk and a1, ..., ak.

The idea of the above specification of A is as follows. Initially, the set of actual data
items is some unknown set I of items from D. At each point in time, a subset of actual
data items, D1, . . . , Dk ⊆ S has been revealed, and decisions a1, . . . , ak have been made
about each of these items in turn. At the next step, the backtrack algorithm (possibly)
re-orders the set of all possible data items as specified by rk

A. Then as long as there are
still items from I left to be discovered, another data item from I is revealed with the
property that the one revealed next will be the first item in I, according to the ordering
rk
A, that has not already been revealed. When this new item, Dk+1 ∈ I has been revealed,

a set of possibilities are explored on this item, as specified by ck
A. Namely, the algorithm

can try any subset of choices from H on this new data item, including the choice to abort
(⊥). This is described more formally by the notion of a computation tree of program A
on input I, as defined below. We say that a rooted tree is oriented if it has an ordering
on its leaves from the left to the right.

4All of our lower bound results will apply to non-uniform pBT algorithms that know n, the number
of input items, and hence more formally, the ordering and choice functions should be denoted as r

n,k
A

and c
n,k
A

. A discussion regarding “precomputed” information can be found in Borodin et al. (2003).
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Definition 3.2. Assume that P is a search/optimization problem and A is a pBT
algorithm for P . For any instance I = (D1, ..., Dn), Di ∈ DP we define the computation
tree TA(I) as an oriented rooted tree in the following recursive way.

◦ Each node v of depth k in the tree is labelled by a tuple 〈Dv
1, ...D

v
k, a

v
1, ...a

v
k〉.

◦ The root node has the empty label.

◦ For every node v of depth k < n with a label 〈 ~Dv,~av〉, let Dv
k+1 be the data item

in I \ {Dv
1 , ..., D

v
k} that goes first in the list rk

A( ~Dv,~av). Assume that the output

ck
A( ~Dv, Dv

k+1,~a
v) has the form (c1, ..., cd,⊥, cd+1, . . . ), where ci ∈ H . If d = 0 then v

has no children. Otherwise it has d child nodes v1, ..., vd that go from left to right
and have labels (Dvi

1 , ..., Dvi
k+1, a

vi
1 , ..., avi

k+1) = (Dv
1 , ..., D

v
k, D

v
k+1, a

v
1, ..., a

v
k, ci) resp.

Each leaf node t of depth n contains a permuted sequence of the data items I (per-
muted by the ordering functions rk

A used on the path ending at t) with the corresponding
decisions in H (determined by the choice functions on this path). For a search problem
we say that a leaf is a solution for I = (D1, ..., Dn) iff fP (Dt

1, ..., D
t
n, at

1, ..., a
t
n) = 1 where

at
k is the decision for Dt

k. For an optimization problem every leaf determines a solution
and a value for the objective function on the instance I.

We can define the semantics so that the value of the objective function is −∞ for a
maximization problem and ∞ for a minimization problem if the solution is not feasible.
Similarly, if I is not a well-formed instance of the problem, then every solution should
attain the same value in the objective function.

Definition 3.3. We say that A is a correct algorithm for a pBT search problem P
iff for any YES instance I, TA(I) contains at least one solution. For an optimization
problem, the value of A(I) is the value of the leaf that optimally or best approximates
the value of the objective function on the instance I.

◦ For an algorithm A we define the width of the computation WA(I) as the
maximum of the number of nodes in any depth level of TA(I).

◦ We define the depth first search size Sdf
A (I) as the number of tree nodes that lie

to the left of the leftmost solution of TA(I).

Proposition 3.4. For any A and I Sdf
A (I) ≤ nWA(I).

Definition 3.5. For any A and any n, define WA(n), the width of A on instances of
size n as max{WA(I) : |I| = n}. Define Sdf

A (n) analogously.

The size Sdf
A (I) corresponds to the running time of the depth first search algorithm

on TA(I). We will be mainly interested in the width of TA(I) for two reasons. First, it
has a natural combinatorial meaning: the maximum number of partial solutions that we
maintain simultaneously during the execution. As such, the width is a measure of space
complexity (for a level by level implementation of the algorithm). Second, the width
provides a universal upper bound on the running time of any search style.
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While the fixed- and adaptive-order models are ostensibly less powerful than fully-
adaptive-order algorithms, they remain quite powerful. For example, the width 1 algo-
rithms in these classes are precisely the fixed- and adaptive-order priority algorithms,
respectively, that capture many well known greedy algorithms. In addition, we will see
that they can simulate large classes of dynamic programming algorithms; for example,
fixed-order pBT algorithms can simulate Woeginger’s DP-simple algorithms (Woeginger
(2000)).

The reader may notice some similarities between the pBT model and the online set-
ting. Like online algorithms, the input is not known to the algorithm in advance, but is
viewed as an input stream. However, there are two notable differences: First, the ordering
is given here by the algorithm and not by the adversary, and secondly, pBT algorithms
are allowed to branch, or try more than one possibility.5

A note on computational complexity: We do not impose any restrictions on the
functions rk

A and ck
A such as computability in polynomial time. This is because all lower

bounds in this model come from information theoretic constraints and hold for any (even
non-computable) rk

A and ck
A. However, if these functions are polytime computable then

there exists an efficient algorithm B that solves the problem6 in time Sdf
A (I)nO(1). In

particular, all upper bounds presented in this paper correspond to algorithms that are ef-
ficiently computable. Another curious aspect is that one has to choose the representation
model carefully in order to limit the information in each data item, because once a pBT
algorithm has seen all of the input (or can infer it), it can immediately solve the problem.
Hence, we should emphasize that there are unreasonable (or at least non-standard) input
models that will render the model useless; for example if a node in a graph contains the
information about its neighbours and their neighbours, then it contains enough informa-
tion that (using exponential time) the ordering function can summon the largest clique
as its first items, making an NP-hard problem solvable by a width-1 pBT algorithm. In
our discussion, we use input representations that seem to us the most natural.

3.1. pBT as an Extension of Dynamic Programming and other Algorithm
Models. How does our model compare to other models? As noted above, the width
1 pBT algorithms are exactly the priority algorithms, so many greedy algorithms fit
within the framework. Examples include Kruskal or Prim’s algorithms for spanning tree,
Dijkstra’s shortest path algorithm, and Johnson’s greedy 2-approximation for Vertex
Cover.

Secondly, which is also one of the main motivations of this work, the fixed-order model
captures an important class of dynamic programming algorithms defined by Woeginger
(2000) as simple dynamic-programming or DP-simple. Many (but certainly not all) al-
gorithms we call “DP algorithms” follow the schema formalized by Woeginger: Given

5A version of the online model in which many partial solutions may be constructed was studied by
Halldorsson et al. (2002). Their online model is a special case of a fixed-order pBT algorithm.

6In this regard, the depth first search measure has to be further clarified for the approximation of
optimization problems. Namely, in contrast to a search problem, it may not be known that (say) a
c-approximate solution has been found. One way to retain the claim that polynomial time functions rk

A

and ck
A

provide a polynomial time algorithm is by imposing a polynomial time constructible complexity
bound. That is, let T (n) be a constructible polynomial time complexity bound. We can then define the
output of a T (n) time bounded pBT algorithm to be the best solution found within the first T (n) nodes
of the depth first search of the pBT tree.
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an ordering of the input items, in the k-th phase the algorithm considers the k-th input
item Xk, and produces a set Sk of solutions to the problem with input {X1, . . . , Xk}.
Every solution in Sk must extend a solution in Sk−1. Knapsack (with small integer input
parameters), and Interval Scheduling with m machines, are two well studied problems
that have well known DP-simple algorithms. The standard DP algorithm for the string
edit distance problem can also be viewed as a DP-simple algorithm.

The simulation of these algorithms by a fixed-order pBT algorithm is straightforward
once one makes the following observation. Since all parallel runs of a fixed- or adaptive-
order pBT algorithm view the same input, each run can simulate all other runs. Thus,
width w(n)-algorithms in both of these models are equivalent to sequential algorithms that
maintain a set Tk of at most w(n) partial solutions for the partial instance (representing
each of the up to w(n) active runs at this level) with the following restriction. Since
the solution found must extend one of the partial solutions for the runs, any solution
in Tk+1 must extend a solution in Sk. For concreteness, consider the simulation of a
well known DP algorithm to solve Interval Scheduling on one machine. This algorithm
orders intervals by their ending time (earliest first). It then calculates T [j] = the intervals
among the first j that give maximal profit and that schedule the j’th interval; of course
T [j] extends T [i] for some i < j. We can now think of a pBT algorithm that in the j-th
level has partial-solutions corresponding to T [0], T [1], . . . , T [j]. To calculate the partial
solutions for the first j + 1 intervals we take T [j + 1] extending one of the T [i]’s and also
take T [0], T [1], . . . , T [j] so as to extend the corresponding partial solutions with a ’reject’
decision on the j + 1st interval.

Note that for many dynamic programming algorithms, the size of the number of
solutions maintained is determined by an array where each axis has length at most n.
Thus, the size of Tk typically grows as some polynomial nd. In this case, we call d the
dimension of the algorithm. Note that we have d = log w(n)/ log n, so a lower bound on
width yields a lower bound on this dimension.

While powerful, there are also some restrictions of the model that seem to indicate
that we cannot simulate all (intuitively understood as) back-tracking or branch-and-
bound algorithms. That is, our decision to abort a run can only depend (although in
an arbitrary way) on the partial instance, whereas many branch-and-bound methods
use a global prunning criterion such as the value of an LP relaxation. These types of
algorithms are incomparable with our model. Since locality is the only restriction we put
on computation, it seems difficult to come up with a meaningful relaxation to include
branch and bound that does not trivialize our model.

3.2. General Lower bound strategy. Since most of our lower bounds are for the
fixed- and adaptive-order models, we present a general framework for achieving these
lower bounds. The fully-adaptive-order lower bound for SAT (that yields the fully-
adaptive-order Knapsack lower bound by reduction) is more specialized.

Below is a 2-player game for proving these lower bounds for adaptive-order pBT. This
is similar to the lower bound techniques for priority algorithms from Borodin et al. (2003);
Davis & Impagliazzo (2009). The main difference is that there is a set of partial solutions
rather than a single partial solution. We will later describe how to simplify the game for
fixed-order pBT.

The game is between the Solver and the Adversary and proceeds in phases. The

8



problem is known to both parties, but the instance of the problem is revealed over the
course of the game. The goal of the Solver is to construct a small set of proposed solutions
such that, at the end of the game when the full instance of the problem is finally revealed,
there is a solution to this instance contained in the Solver’s set. The goal of the Adversary
is to force the Solver to use as big a set as possible. Throughout we will be tracking three
quantities: P , the set of data items from the universe of all possible items, P0, whose
membership in the problem instance is still uncertain; PI, the items known to be in the
instance; and T , a set of partial solutions constructed by the Solver based on P and PI.
In each phase, the Solver will add to PI and T , and the Adversary will remove from P .
At any point in time, it holds that PI is a subset of the universe P0 minus the uncertain
items, P , and that each partial solution in T is a subset of PI. At the end of the game,
P will be empty, PI will be the full instance of the problem and the Solver hopes that T
will contain a solution to the instance PI.

We now give a more detailed, technical description. Initially, the Adversary presents
to the Solver some finite set of possible input items, P0. Initially, partial instance PI0 is
empty, and T0 is the set consisting of the null partial solution. The game consists of a
series of phases. At any phase i, there is a set of possible data items Pi, a partial instance
PIi and a set Ti of partial solutions for PIi. In phase i, i ≥ 1, the Solver picks any
data item a ∈ Pi−1, adds a to obtain PIi = PIi−1 ∪ {a}, and chooses a set Ti of partial
solutions, each of which must extend a solution in Ti−1. The Adversary then removes a
and some further items to obtain Pi.

Let n be the first point where Pn is empty. The Solver wins if |Ti| ≤ w(n) for all 1 ≤
i ≤ n, and there is a PSn ∈ Tn that is a valid solution, optimal solution, or approximately
optimal solution for PIn (if we are trying for a search algorithm, exact optimization
algorithm, or approximation algorithm, respectively). Otherwise, the Adversary wins.
Note that if PIn is not a well-formed instance for any reason (for example, if we are
dealing with a node model for graphs and the item for node j claims that k is a neighbor,
but the item for node k does not list j as a neighbor), then it is easy for the Solver to
achieve a good solution since the optimization function will always return some default
value. Any pBT algorithm of width w(n) gives a strategy for the Solver in the above
game. Thus, a strategy for the Adversary gives a lower bound on pBT algorithms.

Our Adversary strategies will usually have the following form. The number of rounds,
n, will be fixed in advance. We will maintain the following invariant: For many partial
solutions PS to PIi, there is an extension of PIi to an instance A ⊆ PIi ∪ Pi so that all
valid/optimal/ approximately optimal solutions to A contain PS. We’ll call such a partial
solution indispensable, since if PS 6∈ Ti, the Adversary can set Pi so that PIi ∪ Pi = A,
ensuring victory. Hence the Solver must keep all indispensable partial solutions in Ti,
which results in large width.

For the fixed-order pBT game, the Solver must order all items before the game starts.
The Solver must pick the first item in Pi in this ordering as its next data item. Other
than that, the game is identical.

4. Interval Scheduling

Interval scheduling is the classical problem of selecting, among a set of intervals each
associated with a profit, a subset of pairwise disjoint intervals so as to maximize their
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total profits. This can be thought of as scheduling a set of jobs with time-intervals on one
machine. When there is more than one machine the task is to schedule jobs to machines
so that the jobs scheduled on any particular machine are disjoint; here too, the goal is to
maximize the overall profit of the scheduled jobs.

In terms of our formal pBT definitions in Section 3, the m machine weighted interval
selection problem can be represented as follows. A domain or input item Di = (si, fi, wi)
where si (respectively, fi, wi) is the start time (respectively, finishing time, profit) of the
ith input item. A decision ai ∈ H = {0, 1, 2, . . . , m} ∪ {0} indicates the machine j ≥ 1
on which interval i is to be scheduled or that the interval is not to be schedule denoted
by ai = 0. The objective function fn

P sums the profits of scheduled intervals; that is,
fn

P =
∑

i:ai 6=0 wi if the scheduled jobs constitute a feasible schedule and −∞ if not feasible

where a solution is feasible if ∀j ≥ 1[ai = ak = j implies i = k or [si, fi) ∩ [sk, fk) = ∅. 7

When all the profits are the same, a straight-forward greedy algorithm (in the sense
of Borodin et al. (2003)) solves the problem. For arbitrary profits the problem is solvable
by a simple dynamic programming algorithm of dimension m, and hence runtime O(nm).
The way to do this is to order intervals in increasing order of their finishing points, and
then compute an m-dimensional table T where T [i1, i2, i3, . . . , im] is the maximum profit
possible when no intervals later (in the ordering) than ij are scheduled to machine j; it
is not hard to see that entries in this table can be computed by a simple function of the
previous entries.

As mentioned earlier, such an algorithm gives rise to an O(nm)-width, fixed-order
pBT algorithm. A completely different approach that uses min cost flows achieves a
running time of O(n2 log n) (Arkin & Silverberg (1987)). An obvious question, then, is
whether Dynamic Programming, which might seem like the natural approach, is really
inferior to other approaches. Perhaps it is the case that there is a more sophisticated way
to get a Dynamic Programming algorithm that achieves a running time which is at least
as good as the flow algorithm. In this section we prove that there is no better simple
Dynamic Programming algorithm than the obvious one, and, however elegant, the simple
DP approach is inferior here.

It has been shown in Borodin et al. (2003) that there is no constant approximation
ratio to the general problem using priority algorithms. Our main result in this section
is proving that any adaptive-order pBT , even for the special case of proportional profit
(i.e. profit = length of interval) Interval Scheduling, requires width Ω(nm); thus in
particular any simple-DP algorithm requires at least m dimensions. We will first present
lower bounds in the fixed-order model where we have constant inapproximability results,
and then we will prove a lower bound for the adaptive case, which is considerably more
involved.

4.1. Interval Scheduling in the Fixed-Order Model.

Theorem 4.1. A width γ <
(n−3

2
m

)

fixed-order pBT for interval scheduling with propor-
tional profit on m machines and n intervals cannot achieve a better approximation ratio
than 1 − 1

m(4γ1/m+1)
.

Proof. We begin with the special case of m = 1. The set of possible inputs are

7For a < b < c, we do not consider [a, b) to intersect with [b, c).
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intervals in [0, 1] of the form [a/W, b/W ) or [b/W, 1] where 0 ≤ a < b < W are integers
and W is a function of γ that will be fixed later. More specifically, the set of intervals
will be the union L ∪ M ∪ R where L = {[0, q)|q < 1

2
}, M = {[q, s)|q < 1

2
< s} and

R = {[s, 1)|s > 1
2
} where q, s are of the form a/W as above.

A set of three intervals of the form [0, q), [q, s), [s, 1], 0 < q ≤ s < 1, is called a
complete triplet. An interval of the form [0, q) is called a zero-interval, and an interval of
the form [s, 1] is called a one-interval. We say that a set of complete triplets is unsettled
with respect to an ordering of all of the underlying intervals if either all zero-intervals are
before all one-intervals, or vice versa.

We claim that for any ordering of the above intervals and for every t such that W ≥
2(2t− 1)+2, there is a set of t complete triplets that is unsettled. Let S be the sequence
induced by the ordering on L∪R. Each of L and R has size at least 2t− 1. If we look at
the first 2t − 1 elements of S, say the majority of them are (without loss of generality)
from L. Select t of these L-intervals and select t R-intervals from the last 2t−1 elements
of S and match the two sets. This matching, along with the t distinct middle intervals
needed to connect each pair of the matching, constitutes a set of t unsettled complete
triplets.

Now, consider a pBT program of width γ and let W = 2(2γ+1)+2 so as to guarantee
there are γ + 1 unsettled complete triplets. Throw out all intervals not involved in these
triplets. Assume, without loss of generality, that all of the zero-intervals come before
the one-intervals. Since no two zero-intervals can be accepted simultaneously, and since
the width is γ, there is a zero-interval that is not accepted on any path. The adversary
will remove all one-intervals except the one belonging to the same triplet as the missing
zero-interval. We then have exactly 2(γ + 1) + 1 intervals. With this input set, it is
easy to get a solution with profit 1 by simply picking the complete triplet. But with
the decisions made thus far it is obviously impossible to get such a profit, and since the
next best solution has profit at most 1− 1/W and we can thus bound the approximation
ratio. Since we have 2(γ + 1) + 1, rather than n input items, we add n − (2(γ + 1) + 1)
“dummy” intervals of length δ/n for arbitrarily small δ. These dummy intervals can
contribute at most δ to the non optimal solution, which gives an inapproximation bound
of 1 + δ − 1/W = 1+ δ−1/2(2γ +1) for any δ > 0. For simplicity we ignore this neglible
δ term.

The same approach as above works for m > 1 machines. That is, if W is large
enough so that we have t unsettled triplets, then γ must be at least

(

t
m

)

in order to
get optimality. Therefore, given width γ, let t be minimal such that γ <

(

t
m

)

. Then

we achieve profit at most m − 1/W and our approximation ratio is at most m−1/W
m

≤
1 − 1/(m(2(2t− 1) + 2 + 1)) ∼ 1 − 1/m(4γ

1
m + 1). �

Remark 4.2. Certain known algorithms (see Erlebach & Spieksma (2002); Horn (2004)),
that could intuitively be called greedy, allow semi-revocable decisions. We can consider
this additional strength in the context of pBT algorithms. This means that at any
point we can revoke previous accept decisions. We insist only that any partial solution is
feasible (e.g. for the Interval Scheduling problem, we do not accept overlapping intervals).
This extension applies only to packing problems; that is, where changing accept decisions
to rejections does not make a feasible solution infeasible. In contrast to the priority
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model (with irrevocable decisions), there is a 1
4
-approximation width 1 algorithm when

acceptances can be revoked. The proof of Theorem 4.1 immediately applies to the model
with revocable acceptances. Setting γ = 1 and m = 1 in Theorem 4.1 slightly improves
an inapproximation bound of Horn (2004) although the bound in Horn (2004) applies to
adaptive orderings.

4.2. Interval Scheduling in the Adaptive Model.

Theorem 4.3. The width of an optimal adaptive pBT for interval scheduling with pro-
portional profits on m machines and n intervals is at least

(

4n/10m2

m

)

.

Proof. We set a parameter N = 4n/m. The initial set of data items are the intervals
8 of size less than 1/2N in [0, 1] with endpoints i/W where W = 5mN2. We associate
a directed acyclic graph G(I) with a set of intervals I in the following way: the vertices
of the graph are the endpoints of I ∈ I and there is an edge from node s to node t if
[s, t) ∈ I for t < 1 or [s, t] ∈ I for t = 1. We say that a point s is zero connected if
there is a path from 0 to s, and similarly s is one connected if there is a path from s to
1. Notice that s is zero connected if and only if there is a set of disjoint intervals whose
union is [0, s). An interval with endpoints in (0, 1) is called an internal interval.

In the first N phases the adversary applies the following two elimination rules (for
eliminating future intervals).

1. Cancel all internal intervals both of whose endpoints are endpoints of previous inter-
vals. (For example, if [0, .3), [.2, .3) and [.21, .23) were revealed, then the intervals
[.2, .21), [.2, .23), [.21, .3) and [.23, .3) must be cancelled, but [0, .2) and [.2, .35)
should not. Note that this rule guarantees that the graph G(I) associated with the
intervals after N phases has the property that any undirected cycle must contain
either 0 or 1.

2. Cancel all intervals ending (starting) at r if r ∈ (0, 1/3) (r ∈ (2/3, 1)) and there are
m intervals ending (starting) in r.

Our goal now is to show that after N intervals are observed, there must be many
indispensable classes of solutions. We let P be the set of N intervals that have been
revealed so far. J will be an interval that is not overlapping any of the intervals in P.
Since there are N intervals of length at most 1/2N in P, there must be such intervals.
We now claim that we can choose J such that at least half of the intervals in P are
contained in [0, 2/3) and are left of J or at least half the intervals in P are contained in
(1/3, 1] and are right of J . If there is an uncovered interval in (1/3, 2/3) then let that
be J and taking (by majority) either the intervals to the left or to the right of J will
do. Otherwise there must be uncovered intervals in both [0, 1/3] as well as [2/3, 1] (recall
their total lengths amount to 1/2). Now, there are at least as many as N/2 intervals
contained in [0, 2/3) or that are contained in (1/3, 1], and these intervals will do. We
now may assume, without loss of generality, the existence of a subset P ′ of P with N/2
intervals that are contained in [0, 2/3) and that are to the left of an uncovered interval J .
The following lemma guarantees certain useful combinatorial guarantees about G(P ′).

8As in Theorem 4.1 our intervals are of the form [s, t) for t < 1 or of the form [s, 1].
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Lemma 4.4. At least one of the following holds

I. There are N/5m vertices of G(P ′) in (0, 2/3) with left degree (i.e. indegree) at least
1.

II. There are N/10 vertices of G(P ′) with indegree 0 having an immediate successor
that is not 0 connected.

Proof. Assume that the first case doesn’t hold. Let G be the set of intervals in P ′

whose right endpoints are in (0, 1/3), and let |G| = g. Similarly let H be the set of
intervals in P ′ whose right endpoints are in [1/3, 2/3), and let |H| = h. Denote by
degL(v) the left degree of v. Then because of elimination rule 2, we have:

g =
∑

r∈(0,1/3]

degL(r) ≤ m · |{r ∈ (0, 1/3] : degL(r) > 0}| ≤ m · N/5m = N/5.

Now, since g + h = |P ′| ≥ N/2 it follows that h ≥ N/2−N/5 = 3N/10. Now because of
elimination rule 1, there are at least 3N/10 distinct vertices mentioned in the intervals
in H . Call these vertices V (H).

Let VL(H) ⊂ V (H) be those vertices in V (H) that have indegree 0. First, we observe
that the size of VL(H) is at least 3N/10 − N/5m ≥ N/10, since if is not, then there
are too many vertices in G(P ′) with indegree at least 1, violating our assumption that
the first case doesn’t hold. Notice that all vertices in VL(H) must be left endpoints of
some interval in H . It is left to argue that for each v ∈ VL(H), right(v) cannot be zero
connected, where right(v) is the matching right endpoint of v in H . To see this, recall
that for each v ∈ VL(H), right(v) is in (1/3, 2/3). Thus in order for right(v) to be 0
connected, there would need to be a path from 0 to right(v); but this would involve more
than 2N/3 intervals that have indegree at least 1, thus again violating the fact that the
first case doesn’t hold.

Hence we have shown that whenever case (I) doesn’t hold, case (II) must. �

We now show that in any of the cases guaranteed by the lemma, the algorithm must
maintain a large set of solutions in order to allow for an optimal (complete) solution.

Case I. We define a projection function π from partial solutions (namely, an assignment
of the first N intervals to the different machines or to none) into subsets of R as follows.

r ∈ π(PS) iff there is a machine M such that r is the rightmost location assigned to M

(Notice that by definition |π(PS)| ≤ m.) Call the set of points with positive indegree
guaranteed by Case I S. Let PS be the set of all partial solutions after the first N intervals
are revealed. We claim that any algorithm must maintain

(

S
m

)

partial solutions, one
corresponding to every subset of S of size m. Specifically, for every subset {u1, u2, . . . , um}
of S, a partial solution in which the rightmost points covered by the m machines are
{u1, u2, . . . , um} must be considered.

To prove this, fix a particular subset {u1, u2, . . . , um} of S. We create the following
remaining input Q. For each j we connect uj to 1 using intervals of length at least 1/3N ;
we call this set of intervals γj. We additionally require that the endpoints of γj avoid
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all endpoints of P and of γ1, . . . , γj−1 (except for uj and 1). This is possible as long as
W as large enough. Notice that there are at most 3mN intervals used in ∪jγj and so if
W = 5mN this requirement can be satisfied. (It is important to note that the fact that
uj /∈ (2/3, 1) is used here as otherwise elimination rule 2 may have removed intervals that
are essential to the construction.)

For each uj, j ∈ [1, m], let vj be a left neighbour of uj. Our goal is now to connect
each vj to 0 by m edge-disjoint paths δ1, . . . , δm, possibly using additional valid intervals
that will be part of Q. We now need the simple fact that there is a way to add intervals
to P so that the following two conditions hold.

◦ First, all vj will be connected to 0 (in order to have a complete solution).

◦ Secondly, if a point had ` left neighbours in P, then no more than m − ` left
neighbours will be added by the new intervals. This second condition is necessary
in order to be consistent with elimination rule 2.

To see that the above two conditions can be satisfied, assume, without loss of gener-
ality, that v1 < v2 < ... < vm. For j in 1, 2, ..., m, build a path from vj to 0 using intervals
from P that have not been used in δ1, ..., δj−1. At the first point where there is no such
interval, construct a path from that point to 0 using intervals of size at least 1/3N whose
intermediate endpoints avoid all endpoints in P and in δ1, ..., δi−1 (similarly to how the
γj’s were constructed).

It is now clear that there is a partial solution from P that can be extended to a
complete solution. It is left to show that every such partial solution must have projection
u1, ..., um (up to permutations of the machines). First, notice that γ1, γ2, . . . , γm must
all be used in their entirety in order to get a complete solution as otherwise the interval
J would not be covered m times (intervals from P cannot be used in combination with
intervals from any γj since their endpoints do not coincide).

Therefore, if π(PS) were not u1, ..., um, there must be some machine that gets as-
signed γj, but where the rightmost endpoint selected from P is u′

j < uj. The only way
to complete this solution is to cover [u′

j, uj) with intervals from Q, but this is clearly
impossible since any such intervals would avoid the point u′

j.

Case II. Let L be the set of points as is guaranteed in case 2. For each pi ∈ L pick
some interval with pi as the left endpoint and qi as the right endpoint, where qi is not
zero connected. Call the produced set of intervals I. We now argue that for any subset
J = {[pj , qj)}j=1,...m, the solution containing these intervals on the m machines (one per
machine) and nothing else, is indispensable. For each j we connect pj to zero and qj to
1 using intervals of length at least 1/3N ; we call this set of intervals Fj . We additionally
require that the endpoints of Fj avoid all endpoints of I and of F1, . . . , Fj−1 (except for
pj and qj), just as we did in Case I.

If we accept exactly [pj , qj) and Fj on machine j, we get a complete solution. We next
show that there is no complete solution other than this one (modulo permutations of the
machines) over P ′∪F . Consider the graph G(P ′ ∪F ). Then there is a complete solution
to all m machines exactly when there are m edge-disjoint paths from 0 to 1. Our goal is
therefore to show that the existence of such paths implies that all edges [pj, qj) are used.
As we observed in the previous case, the only way to get m disjoint paths crossing over
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the gap J is to pick all edges corresponding to the connections in F from the qis to 1.
Therefore a complete solution must contain m edge-disjoint paths from 0 to q1, . . . , qm.

None of the qj ’s is connected to 0 in G(P ′), hence in connecting all of them to 0
we must use the only points that were made zero connected when adding Fj’s, namely
p1, . . . , pm. It is left to show that this requires using the intervals [pj , qj]. There is one
subtle point that is left to argue. Suppose that the intervals I are [p1, q1) and [p2, q2),
but that in the graph G(P ′), there are edges (p1, q1), (p1, q2), (p2, q1), (p2, q2). We need
to argue that any complete solution must use the intervals [p1, q1), [p2, q2) (and not the
intervals [p2, q1), [p1, q2).) In order to argue this, suppose for sake of contradiction that
there is a second matching between the pi’s and the qi’s that allows us to obtain a complete
solution. Then the union of the two matchings forms an undirected cycle in G(P ′). But
this is not possible since it violates elimination rule 1.

�

5. The Knapsack and Subset-Sum problems

The Knapsack problem takes as input n non-negative integer pairs denoting the weight
and profit of n items, {(x1, p1), . . . , (xn, pn)} and another number N , and returns a subset
S ⊆ [n] that maximizes

∑

i∈S pi subject to
∑

i∈S xi ≤ N . This is a well known NP-hard
problem that, on the positive side, has an FPTAS. In this section we study the width-
approximation tradeoff for pBT algorithms for the problem.

Narrow pBT algorithms As a warmup, we start by observing that width-1 and width-
2 pBT algorithms for Knapsack behave dramatically differently. Recall the simple 1/2-
approximation algorithm that either accepts or rejects the highest profit item, and then
greedily chooses items when ordered by their decreasing profit to weight ratio. This
algorithm can be clearly captured by an adaptive order width 2 pBT that orders the
highest profit item first, and orders the rest by their profit to weight ratio as above9 .

We next show an n1/4 inapproximability result for Knapsack for width-1 pBT (ie,
priority algorithms), where n is the number of items.10 The initial input contains big
items of weight 1 and profit 1, medium items of weight 1/n and profit n−1/2 and small
items of weight 1/n2 and profit 1/n. Each appears n times. We let N = 1. The adversary
waits until either an item is accepted or n − n3/4 items are rejected. If a big item was
accepted then the adversary leaves only medium items. The algorithm then achieves
profit 1, while the optimum is at least n3/4 · n−1/2 = n1/4. If a medium or small item
was chosen, the adversary leaves only big items. Now the algorithm achieves at most
n−1/2 profit while the optimum is 1. In the case where n − n3/4 items were rejected, the
adversary will leave only small items. The algorithm can then get at most n3/4/n = n−1/4

while optimum is attained by accepting all items totalling to a profit of at least 1.

9At the expense of introducing yet another term, we might call such an algorithm “weakly adaptive”
in that the ordering function rk

A
depends on k but not on the arguments of rk

A
as defined in Definition 3.1.

We could also modify the definition of fixed-order priority and pBT algorithms to allow such dependence
on k but that would seem to violate the spirit of the intended definition.

10We note, however, that there is an adaptive-order width-1 pBT with revocable acceptances that
achieves a 1/2 approximation.
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Wide pBT algorithms We now move to the other side of the spectrum of the width-
approximation tradeoff, i.e, we consider the width needed for exact solution or for a very
good approximation of the problem. There are well-known simple-DP algorithms solving
the Knapsack problem in time polynomial in n and N , or in time polynomial in n and
Π = maxn

i=1 pi. Therefore, with that much width the problem is solvable by a pBT .
We prove that it is not possible to solve the problem with an adaptive-order pBT

algorithm that is subexponential in n (and does not depend on N or Π). Further, we
provide an almost tight bound for the width needed for an adaptive-order pBT that
approximates the optimum to within 1−ε. We present an upper bound (due to Marchetti-
Spaccamela) of (1/ε)2 based on a modification of the algorithms of Ibarra & Kim (1975)
and Lawler (1977) that uses dynamic programming and a lower bound of Ω((1/ε)1/3.17).
We notice that both our lower bounds in this section hold for the Subset-Sum problem,
the proportional profit variant of the Knapsack problem where for each item the profit is
equal to its weight.

Theorem 5.1. The width of an optimal adaptive-order pBT for the Subset-Sum prob-
lem is at least

(

n/2
n/4

)

= Ω(2n/2/
√

n).

Proof. We are tempted to try to argue that having seen only part of the input, all
possible subsets of the current input must be maintained as partial solutions or else an
adversary has the power to present remaining input items that will lead to an optimal
solution extending a partial solution that the algorithm failed to maintain. For an online
algorithm, when the order is adversarial, such a simple argument can be easily made to
work. However, the ordering (and more so the adaptive ordering) power of the algorithm
requires a more subtle approach.

Let N be some large number which will be fixed later. (Since a simple DP of size
poly(n,N) exists, it is clear that N must be exponential in n.) Our initial set of items
are integers in I = [0, 8

3
· N/n]. Take the first n/2 items, and following each one, apply

the following “general-position” rule to remove certain items from future consideration:
remove all items that are the difference of the sums of two subsets already seen; also
remove all items that complete any subset to exactly N (i.e. all items with value N −
∑

i∈S ai where a1, a2, . . . are the numbers revealed so far, and S is any subset). These
rules guarantee that at any point, no two subsets will generate the same sum, and that
no subset will sum to N . Also notice that this eliminates at most 3n/2 numbers so we
never exhaust the range from which we can pick the next input provided that 3n/2 << N .

Call the set of numbers seen so far P and consider any subset Q contained in P of
size n/4. Our goal is to show that Q is indispensable; that is, we want to construct a
set R = RQ of size n/2 consisting of numbers in the feasible input with the following
properties.

1. P ∪ R does not contain two subsets that have the same sum.

2.
∑

i∈Q ai +
∑

i∈R ai = N

The above properties indeed imply that Q is indispensable since obviously there is a
unique solution with optimal value N and, in order to get it, Q is the subset that must
be chosen among the elements of P . We thus get a lower bound on the width which is
the number of subsets of size n/4 in P ; namely

(

n/2
n/4

)

= Ω(2n/2/
√

n).
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How do we construct the set R? We need it to sum to N −∑

i∈Q ai, while preserving
property 1. The elements in R must be among the numbers in I that were not eliminated
thus far. If R is to sum to N −∑

i∈Q ai, then the average of the numbers in R should be

a = 2
n
· (N − ∑

i∈Q ai). Since 0 ≤ ∑

i∈Q ai ≤ (n/4)(8N/3n) = 2N/3, we get 2
3
N/n ≤ a ≤

2N/n. This is good news since the average is not close to the extreme values of I, owing
to the fact that the cardinality of R is bigger than that of Q. We now need to worry
about avoiding all the points that were eliminated in the past and the ones that must be
eliminated from now on to maintain property 1. The total number of such points, U , is
at most the number of ways of choosing two disjoint subsets out of a set of n elements,
namely U ≤ 3n.

Let J = [a−U, a+U ]. We later make sure that J ⊂ I. We first pick n/2−2 elements in
J that (i) avoid all points that need to be eliminated, and (ii) sum to a number w so that
|w − a · (n/2 − 2)| ≤ U . This can be done by iteratively picking numbers bigger/smaller
than a according to whether they average to below/above a. To complete we need to
pick two points b1, b2 ∈ I that sum to v = n

2
a − w and so that b1, b2, b1 − b2 are not the

difference of sums of two subsets of the n − 2 items picked so far. Assume for simplicity
that v/2 is an integer. Of the 2U + 1 pairs (v/2 − i, v/2 + i), where i = 1 . . . 2U + 1, at
least one pair b1, b2 will have all the above conditions. All that is left to check is that we
never violated the range condition, ie we always chose items in [0, 8

3
· N/n]. We can see

that the smallest number we could possibly pick is a − U − (2U + 1) ≥ 2
3
N/n − 3U − 1.

Similarly the biggest number we might take is a + 3U + 1 ≤ 2N/n + 3U + 1. These
numbers are in the valid range as long as 2

3
N/n ≥ 3U + 1. Since U ≤ 3n we get that

N = 5n3n suffices. �

More careful analysis of the preceding proof yields the following width-approximability
tradeoff.

Theorem 5.2. For any ε, Knapsack can be (1 − ε)-approximated by a width (1/ε)2

adaptive-order pBT algorithm. For any ε ≥ 2−δn for some universal constant δ, Knapsack
cannot be (1− ε)-approximated by any such algorithm of width less than (1/ε)1/3.17. The
lower bound holds even for the Subset-Sum problem.

Proof. Lower Bound. We take the existing lower bound for the exact problem and
convert it to a width lower bound for getting a 1 − ε approximation. Recall that the
resolution parameter N in that proof had to be 5n3n for getting a width lower bound of
(

n/2
n/4

)

= Ω(2n/2/
√

n). For a given width γ, we might hope to lower the necessary resolution
in order to achieve an inapproximability result. We consider a Knapsack instance with
u items that require exponential width (as is implied by Theorem 5.1), and set N , the
parameter for the range of the numbers to 5u3u. If u is such that γ < 2u/2/

√
u then this

problem cannot be solved optimally by a width-γ pBT algorithm. Recall, the optimum
is N , and the next best is N − 1, and so the best possible approximation we can get is

(N − 1)/N ∼ 1 − 1/(5u3u) ∼ 1 − Õ(γ−2 log2 3).

Therefore Ω((1/ε)1/3.17) width is required to get a 1−ε approximation. To make the lower
bound work for any number of items, we simply add n−u 0-items to the adversarial input.

Upper Bound (Marchetti-Spaccamela). We first sketch Lawler’s algorithm (built
upon that of Ibarra and Kim) to approximate Knapsack. We call the solution that takes
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items by nonincreasing order of their profit/weight as long as possible “the canonical
solution”. Given parameters K and T : Round all items of profit at least T down to the
closest multiple of K. Let τ be the optimum and τ(T ) be the optimum restricted to
items of profit at least T . For each one of the possible τ(T )/K different profits, find the
lowest weight bundle of large-profit items attaining it using dynamic programming. Now
supplement each such solution with the canonical solution for the remaining items (with
the remaining size of Knapsack). Simple calculations done in Lawler (1977) show that
the additive error in this solution is at most Kτ/T + T . This would have been enough,
if only the algorithm knew a good estimator τ ′ to τ(T ) in advance. Specifically, suppose
τ(T )/2 ≤ τ ′ ≤ τ(T ), then we can set K = ε2τ ′/4 and T = ετ ′/2 to get an additive error
of at most ετ(T ) ≤ ετ . We now show that an adaptive-order pBT algorithm can achieve
this balance of parameters using width 8/ε2: Start with τ ′ = maxi pi; set K = ε2τ ′/4 and
T = ετ ′/2. As long as there are items with profit at least T take them (in any order) and
keep solutions for all possible profits up to 2τ ′ in multiples of K. If there is a solution that
is at least 2τ ′ update τ ′ = 2τ ′. Set K, T again by the above relation to τ ′. Notice that
since the scaling factors double when we reset them, we are halving the resolution and
removing possible items from the first stage of the algorithm. This means that whatever
partial solutions we were maintaining before the parameter adjustment encompass those
we want to maintain afterwards. We continue until all items have profit at most T .
At this point we have maintained all solutions of the high-profit items in resolution K
(notice the invariant τ(T ) ≤ 2τ ′). From this point on, each one of the 2τ ′/K = 8/ε2

partial solutions is completed greedily with items of profit smaller than T . �

Remark 5.3. We can extend the proof of Theorem 5.1 and Theorem 5.2 so as to allow
revocable acceptances (see Remark 4.2) with slightly worse parameters. Recall that in
Theorem 5.1 we look at n/2 elements in the range [0, N/2] and then show that all n/4 size
subsets are indispensable. We can modify the proof so that this range is [aN/n, bN/n] for
suitable constants a, b > 2; we look at the first n/2 items and similar to the arguments in
Theorem 5.1, show that all subsets of size n/(2b) are indispensable. In the semi-revocable
model it is no longer the case that this supplies a width lower bound of

(

n/2
n/(2b)

)

, but instead
we should look for a family of feasible sets F such that any of the indispensable sets of
size n/(2b) is contained in some F ∈ F . But, and this is the crucial point, feasible sets
must be of size ≤ n/a, and so every f ∈ F contains at most

(

n/a
n/(2b)

)

sets, and a counting

argument immediately shows that |F| ≥
(

n/2
n/(2b)

)

/
(

n/a
n/(2b)

)

= 2Ω(n).

6. Satisfiability

The search problem associated with SAT is as follows: given a boolean conjunctive-
normal-form formula, f(x1, . . . , xn), output a satisfying assignment if one exists. There
are several ways to represent data items for the SAT problem, differing on the amount
of information contained in data items. The simplest weak data item contains a vari-
able name together with the names of the clauses in which it appears, and whether
the variable occurs positively or negatively in the clause. For example, the data item
< xi, (j, +), (k,−) > means that xi occurs positively in clause Cj, and negatively in clause
Ck, and these are the only occurrences of xi in the formula. The decision is whether to
set xi to 0 or to 1. We also define a strong model in which a data item fully specifies all
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clauses that contain a given variable. Thus Di = 〈xi, C1, C2, ..., Ck〉, where the C1, ..., Ck

are a complete description of the the clauses containing xi. Note that, unlike the Interval
Scheduling and Knapsack data items, the various types of SAT data items (and the node
data items for graphs which we mention later in this section) are not independent of one
another. For example, in a well-formed instance of 2SAT in the weak data item model,
there better not be three different variables that all assert that they appear in a given
clause. Such considerations constrain a successful adversary in a lower bound argument.

In general we would like to prove upper bounds for the weak data type, and lower
bounds for the strong data type. We will show that 2SAT (for the strong data type)
requires exponential time in the fixed-order pBT model, but has a simple linear time
algorithm in the adaptive-order pBT model (for the weak data type). Thus, we obtain
an exponential separation between the fixed- and adaptive-order pBT models. Next, we
give exponential lower bounds in the fully-adaptive-order model for 3SAT (strong data
type).

6.1. 2-Satisfiability in the Fixed-Order Model. In this section we show that the
fixed-order pBT model cannot efficiently solve 2SAT (or c-approximate MAX2SAT for
c > 21/22 ).

Theorem 6.1. For sufficiently large n, any fixed-order pBT algorithm for solving 2SAT
on n variables requires width 2Ω(n). This lower bound holds for the strong data type for
SAT.

Proof. Consider a set of variables x1, . . . , xn. Each variable xi gives rise to many
possible items, each of which will describe exactly two equations that hold for xi. In the
end, we will select one item from either (1) or (2) for each xi:
(1) For some choice of j 6= k ∈ [n] \ {i}, xj = xi = xk, or xj = xi 6= xk or xj 6= xi = xk,
(2) For some choice of j ∈ [n] \ {i}, 0 = xi = xj or xj = xi = 1.
Of course, each of these constraints must be represented by a small constant (at most 4)
number of clauses.

Call two items disjoint if they mention disjoint sets of variables. An r-chain is a chain
of equations of the form

0 = y1 = y2
?
= . . .

?
=yr−1 = yr = 1,

where y1, . . . , yr ∈ {x1, . . . , xn} and
?
= is either = or 6=.

Consider any ordering of the initial set of input items. Let M be the first m = bn/11c
disjoint (1)-items in the ordering. Suppose these items are called yi

6, i ≤ bn/11c, and let

yi
5

?
=yi

6
?
=yi

7 be the content of these items. This triple will form the middle of an 11-chain.
For each i, choose eight remaining variables in order to extend the chain to an 11-chain.
That is, partition the remaining variables into bn/11c disjoint sets (with possibly some
items leftover if n is not divisible by 11), each of size 8, so that for each i, we have an
11-chain involving the sequence of variables: yi

1, y
i
2, . . . , y

i
11.

The adversary removes items to be consistent with the following 11-chains for each i:

0 = yi
1 = yi

2
∗
=yi

3 = yi
4 = yi

5
?
=yi

6
?
=yi

7 = yi
8 = yi

9
∗
=yi

10 = yi
11 = 1.
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That is, the adversary specifies (by removal of items) all equations in the chain (in
particular, those involving yi

6 are consistent with M) except those relating yi
2 to yi

3 and
yi

9 to yi
10.

The adversary stops the game after phase q, the phase where we see the last item of
M . Note that at phase q, for each i: (i) the item yi

6 has been revealed (so one of the
three possibilities has been revealed for the inequalities on either side of yi

6); (ii) the items
yi

2, yi
3, yi

9 and yi
10 have not yet been revealed; and (iii) all other items in the 11-chain

may or may not be revealed, but if they have been revealed, they are consistent with the
equalities written above. Let P denote the set of revealed items after q phases of the
game.

We want to show that each of the 2bn/11c assignments to the yi
6 variables must be

maintained by the algorithm at level q of the game. More formally, we partition the set
of all decisions on P into equivalence classes, where two partial solutions ρ1 and ρ2 are
equivalent if they are identical over the yi

6 variables. We will show that the set of all such
equivalence classes is indispensable.

Consider one such equivalence class, and let α be the underlying assignment to the
yi

6 variables. If the algorithm does not maintain a partial solution consistent with α,
then the adversary can further specify each of the 11-chains so that at least one chain
will be left unsatisfied. Consider chain i: there are several cases depending on the actual
inequalities that are in P on the left and right of yi

6. The first case is when yi
5 = yi

6 = yi
7

is in P . If α(yi
6) = 0, then the algorithm throws away all future inputs on the chain i

except those consistent with the following picture:

0 = yi
1 = yi

2 = yi
3 = yi

4 = yi
5 = yi

6 = yi
7 = yi

8 = yi
9 6= yi

10 = yi
11 = 1

Otherwise, if α(yi
6) = 1, the algorithm throws away all future inputs on chain i except

those consistent with:

0 = yi
1 = yi

2 6= yi
3 = yi

4 = yi
5 = yi

6 = yi
7 = yi

8 = yi
9 = yi

10 = yi
11 = 1.

The other two cases (when yi
5 6= yi

6 = yi
7, and when yi

5 = yi
6 6= yi

7) are handled similarly.
Thus we have shown that under this adversary strategy, the algorithm must consider

at least 2bn/11c assignments. �

We now consider the associated optimization problem MAXSAT: find an assignment
to the variables of a CNF that maximizes the number of satisfied clauses. We remind
the reader that pBT inapproximation results are incomparable with complexity-theoretic
hardness of approximation results since pBT algorithms are incomparable with, say, poly-
time algorithms. It is a curious coincidence that the inapproximation ratio (21/22) that
we establish for pBT algorithms matches the best known NP -hardness of approximation
result for MAX2SAT (H̊astad (2001)). This NP -hardness result is proven for instances
of exact-MAX2SAT, where every clause has exactly two literals, while the hard examples
we give in our lower bound contain some clauses with only one literal. We can use a sim-
ilar technique to establish a slightly weaker inapproximation result for exact-MAX2SAT;
namely, 27/28. On the positive side, we note that the well-known derandomization of
the naive randomized algorithm (see, for example, Motwani & Raghavan (1995); Vazirani
(2001)) for exact-MAX2SAT (respectively, MAX2SAT) achieves approximation ratio 3/4
(respectively, 1/2) and can be implemented as a fixed-order priority algorithm (width-1
pBT ).
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Theorem 6.2. For any ε > 0, there exists a δ > 0 such that for all sufficiently large n,
any fixed-order pBT algorithm for solving MAX2SAT on n variables requires width 2δn

to achieve a 21
22

+ ε approximation. Again, this lower bound holds for the strong data type
for SAT.

Proof. The game is played exactly as in the proof of Theorem 6.1. Notice that,
when the algorithm does not cover a certain equivalence class with partial assignment
α, the adversary forces at least one 11-chain to be unsatisfied. In particular, 2 out of
the 22 clauses representing the 11-chain are unsatisfied (one associated with yi

2
∗
=yi

3 and

one with yi
9
∗
=yi

10). Now fix ε > 0 and let δ = (log e)11ε2. If the algorithm maintains
k < 2δn partial solutions at phase q, then it can cover at most k of the α-equivalence
classes. The probability that a random α-assignment agrees with a fixed α-assignment
on more than a (1/2 + 11ε)-fraction of the m = bn/11c variables that α sets is at most
e−(11ε)2m = e−11ε2n. If the algorithm maintains fewer than k α-assignments, then the
adversary can find an assignment α∗ that agrees with each of the k α-assignments on at
most a (1/2+11ε)-fraction. Hence, in a (1/2− 11ε)-fraction of the 11-chains, 1/11 of the
clauses are unsatisfied by any of the algorithm’s partial solutions, so the algorithm leaves
a (1/22 − ε)-fraction of all the clauses unsatisfied. �

We conclude this section by noting that the 11-chain construction is not optimal
for Theorem 6.1: the construction mentioned above for the exact-MAX2SAT problem
(which features a cycle of equations on 7 variables) yields a better exponent in the lower
bound. The 11-chain, however, yields a stronger inapproximation result in Theorem 6.2,
essentially because the adversary is able to invalidate two clauses instead of one when
the solver does not cover all equivalence classes (whereas the number of clauses needed
to represent the instance in an 11-chain is less than double the number of clauses needed
for a 7-cycle). Clearly we have no proof that 11-chains are optimal for the purpose of
proving inapproximation results, but the property we exploit seems clear: they are the
shortest chains such that on either side of the central item (the item in M), there is an
equation that appears only in (1)-items that are disjoint from the central item. This
means that the adversary has complete control over these equations at the point where
he or she stops the game.

6.2. Vertex Cover. We note that Johnson’s greedy 2-approximation for vertex cover
can be implemented as a fixed-order priority algorithm (i.e. a width-1 pBT ). Here the
items are vertices with their adjacency lists and (using any ordering) each vertex is ac-
cepted (included in the vertex cover) iff it is an end-point of a maximal matching that is
being constructed. A similar idea to the 2SAT inapproximation can be used to show a con-
stant inapproximation ratio for exponential-width fixed-order pBT algorithms computing
Vertex Cover (with the same input representation). Again note the incomparability with
NP-hardness of approximation results.

Theorem 6.3. For any ε > 0, there exists a δ > 0 such that for all sufficiently large n,
any fixed-order pBT algorithm for solving Vertex Cover on n vertices requires width 2δn

to achieve a 13
12

− ε approximation.

Proof. (sketch) Each node xi gives rise to two types of items
(1) For some j 6= k ∈ [n] \ {i}, xj − xi − xk (that is, xi has neighbors xj and xk).
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(2) For some j ∈ [n] \ {i}, xj − xi.
Let M be the first m = bn/13c disjoint (1)-items in the ordering: {yi

6 − yi
7 − yi

8}m
i=1.

Partition the vertices into m groups of size 13 so that each contains an item from M .
When the algorithm has seen every item in M , the adversary selects one of the two
following configurations for each group:

yi
1 − yi

2 − yi
3 − yi

4 − yi
5 − yi

6 − yi
7 − yi

8 − yi
9 − yi

10 − yi
11 − yi

12 − yi
13,

or
yi

1 − yi
2 − yi

4 − yi
5 − yi

6 − yi
7 − yi

8 − yi
9 − yi

10 − yi
3 − yi

11 − yi
12 − yi

13.

If the algorithm has included yi
7 in the vertex cover and the adversary chooses the

first configuration, then the algorithm is forced to cover the 13-chain with 7 vertices when
6 would have been enough; likewise if the algorithm has excluded yi

7 and the adversary
chooses the second configuration. Note again that the algorithm cannot predict the ad-
versary’s choices when it is deciding about vertices in M because vertices yi

2, y
i
3, y

i
4, y

i
10, y

i
11

are all clouded in obscurity since they are the centerpoints of (1)-items disjoint from M .
Again, if the algorithm maintains only 2δn assignments to {yi

7}m
i=1 for δ being a suffi-

ciently small constant, then the adversary can choose an assignment such that 1/2 − ε′

of the groups are non-optimal (for some ε′), giving an approximation no better than
(1/2 + ε′)1 + (1/2 − ε′)7/6 = 13/12 − ε. �

Here we use 13-chains (instead of 11-chains, as in the 2SAT proof) because we need
chains of odd length where, regardless of whether yi

7 is at an even or an odd position,
there are (1)-items on both sides of yi

7’s item that are disjoint from it.

6.3. 2-Satisfiability in the Adaptive-Order Model. In this section, we show that
allowing adaptive ordering avoids the exponential blow up in the number of possible as-
signments that need to be maintained. Specifically, we give a linear width pBT algorithm
for 2SAT in the adaptive-order model.

Theorem 6.4. There is a width-O(n) adaptive-order pBT algorithm for 2SAT on n
variables. Further, this upper bound holds for the weak data type for SAT.

Proof. Consider the standard digraph associated with a 2SAT instance. Recall that
the standard algorithm for the problem goes via finding the strongly connected com-
ponents of this graph. This does not fit immediately into the pBT model since, here,
whenever we observe a variable we must extend partial solutions by determining its value.
The algorithm we present uses the simple observation that a path of literals in the di-
graph, such as l1 → l2 → l3 → . . . → lm, has only linearly many potentially satisfying
assignments; namely the literals along the path must be set to 0 up to a certain point,
and to 1 from that point on, which means at most m+1 possible valid assignments to the
literals involved. Since the algorithm will adaptively explore only simple paths, essen-
tially using DFS, it will never be maintaining more than a linear number of assignments.
The pBT tree that we generate, however, will not correspond to a DFS tree. Instead,
think of each branch of the pBT tree as conducting the same DFS search in parallel, with
each branch maintaining one of the linearly many assignments mentioned above.

Using an adaptive ordering we can “grow” a path of literals as follows. Start with
an arbitrary variable item x1 and let l1 be a literal corresponding to x1. Having viewed
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the item for x1, we now know the names of the clauses that l1 and ¬l1 appear in. The
algorithm then chooses a new (that is, unseen so far) variable x2 (if there is one) such that
there is an edge l1 → l2 for some literal l2 corresponding to x2 (that is, build an ordering
that prefers variables x2 that appear in clauses of the form (¬l1 ∨ x2) or (¬l1 ∨ ¬x2)).
Then, it continues to look for a path l1 → l2 → l3 and so on. Each time we see a literal
corresponding to a new variable such as l3, we extend each branch of the pBT tree as
follows: on a branch that set l2 = 1, set l3 = 1; on a branch that set l2 = 0, create two
new branches setting l3 to 0 and 1, respectively. As long as this is possible we need to
maintain only a linear number of solutions.

When the path l1 → · · · → li is no longer extendable in this fashion, it must mean
that (i) the only outneighbors of li are literals corresponding to already-seen variables,
or (ii) li has outdegree 0. Case (i), has two subcases: if there is an edge li → l, where
l = ¬lj for some j < i, then terminate all branches of the pBT tree that set lj = 1
and continue growing the path from l (that is, each surviving branch of the pBT tree
continues with the common ordering that prefers new variables corresponding to literals
that are outneighbors of l). Otherwise, if the only out-edges are li → l for l = lj, then
terminate all branches of the pBT tree that don’t set li = lj and continue growing the
path from li−1. Finally, in case (ii), terminate all branches of the pBT tree that set li = 0
and continue growing the path from li−1. When we have explored all literals reachable
from l1, all such literals (and hence their underlying variables) will have a fixed value. We
then start over with a new variable, if there is one (making sure, on each branch of the
pBT tree, to respect the settings to the variables reachable from l1, should we encounter
them). �

6.4. 3-Satisfiability in the Fully Adaptive-Order Model. So far we have proven
lower bounds for fixed- and adaptive-order pBT algorithms. Here we use 3SAT to give the
first width lower bound for a fully-adaptive-order pBT algorithm. The same lower bound
also holds for the depth-first complexity measure and hence applies to a large class of
backtracking algorithms for SAT, commonly known as DPLL algorithms. In particular,
this lower bound can be seen to extend the lower bound of Alekhnovich et al. (2005)
against myopic DPLL algorithms to a more general model.

Theorem 6.5. Any fully-adaptive-order pBT algorithm for 3SAT on n variables requires
width 2Ω(n) and depth-first size 2Ω(n). This lower bound holds for the strong data type
for SAT.

The lower bound uses formulas that encode a full rank linear system Ax = b over
GF2. These formulas are efficiently solvable by Gaussian elimination, thus they separate
our model of dynamic programming and backtracking from algebraic methods.

6.4.1. Linear systems over expanders. Let A be an m × n 0/1 matrix, x be an
n × 1 vector of variables and b an m × 1 vector over 0/1. Given a fixed A, the Ax = b
problem on instance b is to find a 0/1 assignment (if there is one) to the variables in x
such that Ax = b where all arithmetic is performed modulo 2. More precisely, given that
A is fixed, each item is of the form 〈xj , bj1, ..., bjK

〉, where j1, ..., jK denote the indices of
the rows of A such that there is a 1 in the jth column. The decisions about items are
0 and 1, corresponding to the value assigned to the variable in question. If A has, say,
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at most three 1’s in each row, then it is easy to see that a width-w fully-adaptive-order
(depth-first) pBT algorithm for 3SAT gives a width-w fully-adaptive-order (depth-first)
pBT algorithm for the Ax = b problem. Hence, we will concentrate on the latter problem.

As usual, such a matrix A encodes a bipartite graph from m rows to n columns where
the edge (i, j) is present if and only if Aij = 1. For I ⊂ [m], let ΓA(I) (or just Γ(I))
denote the set of neighbors of the rows I. We will often view A as a bipartite graph from
equations in the linear system Ax = b to variables in x, where each equation is connected
to the variables it contains. Hence, we sometimes write V ars(I) instead of Γ(I).

We will need a matrix A such that the bipartite graph described above is a good
expander. In fact, we will use two notions of expanders: expanders and boundary ex-
panders. The latter notion is stronger as it requires the existence of unique neighbors.
However, every strong expander is also a good boundary expander.

Definition 6.6. We say that A is an (r, s, c)-expander if

(i) Each row of A contains at most s 1’s, and

(ii) ∀I ⊆ [m] (|I| ≤ r ⇒ |Γ(I)| ≥ c · |I|).

For a set of rows I ⊆ [m] of an m× n matrix A, we define its boundary ∂AI (or just ∂I)
as the set of all j ∈ [n] (called boundary elements) such that there exists exactly one row
i ∈ I where Aij = 1. Matrix A is an (r, s, c)-boundary expander if condition 2 is replaced
by

2′. ∀I ⊆ [m] (|I| ≤ r ⇒ |∂I| ≥ c · |I|).

We will not explicitly mention the notion of boundary expansion until we prove the
depth-first lower bound in Section 6.4.3, but we note that it is needed in the proof of
Lemma 6.12. In general, it is not hard to see that very good expanders are also boundary
expanders: any (r, s, c)-expander is an (r, s, 2c − s)-boundary expander.

The following lemma provides the existence of good expander matrices that have full
rank over GF2. It is an improvement upon the construction of full rank expanders in
Alekhnovich et al. (2005) and is likely to be of independent interest. In order not to
derail the proof of the lower bound, however, we place the proof of the lemma at the end
of Section 6.4.

Lemma 6.7. For any constant c < 2 there exists constants ε > 0 and K > 0 and a family
An of n × n matrices such that

◦ An has full rank.

◦ An is (εn, 3, c)-expander.

◦ Every column of An contains at most K ones.
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6.4.2. The Width Lower Bound. Fix n, let δ > 0 be a sufficiently small constant
and let A be a full-rank n × n matrix and an (r, 3, c = 2 − δ)-expander that has at most
K ones in each column, as guaranteed by Lemma 6.7. Here r is Ω(n) and K is a constant
that depends on c and r/n. Hence the items in this problem can be described by the
name of a variable, say, xj , and (up to) K 0/1 values, say, q1, ..., qK which represent
values for each bi where Aij = 1. Let A be any fully-adaptive-order pBT algorithm for
the Ax = b problem.

Consider the following Solver-Adversary game that operates in rounds. In each round:
(1) The Solver proposes a possible item D = 〈xj , q1, ..., qK〉.
(2) The Adversary reveals values for bj1 , ..., bjK

, where j1, ..., jK are the rows of A that
have a 1 in the jth column. The Adversary must remain consistent with its previous
answers.
(3) If the q values match the b values, the Solver chooses a set S ⊆ {0, 1}; otherwise the
round ends and a new round begins.
(4) The Adversary selects an element from S (if there is one).
The game ends when the Solver has proposed an item and chosen a subset for every
variable or when the Solver chooses ∅ in step (3).

It is not hard to see that A gives a strategy for the Solver in the above game against
any Adversary: A’s ordering function determines which item the Solver chooses in step
(1), and A’s choice function determines the set S in step (3) when an item is actually
revealed. The Adversary’s choice in step (4) serves to traverse a particular path in the
algorithm’s execution. Actually, the Solver in the game has a major advantage over the
algorithm: whenever it proposes an item that is not present in the input, it gets to see
the corresponding item that is present.

Let TA be the tree that represents A’s strategy against all adversaries. This tree will
have branch points for the Adversary’s decisions in step (2)—call these b-nodes—and for
the Adversary’s decisions in step (4)—call these x-nodes. Each b-node will have at most
2K children and each x-node will have at most 2 children. Furthermore, each b-node will
have exactly one child that is an x-node and all other children will be b-nodes.

But how does TA relate to the pBT trees created by A on individual instances of the
problem? Consider a fixed b ∈ {0, 1}n. Let T b

A be the subtree of TA consisting of all paths
that are consistent with b at the b-nodes. Every path in T b

A will have a corresponding
path in the pBT tree of A on instance Ax = b. Hence, our strategy for the lower bound
will be to analyze TA and show that it must contain many paths that are all consistent
with some fixed b.

Definition 6.8. For a path π in TA, let χ(π) be the (partial) assignment to the variables
x = (x1, ..., xn) corresponding to the branches of x-nodes that π follows, and let β(π) be
the values of b = (b1, ..., bn) that have been revealed according to the branches of b-nodes
that π follows.

Lemma 6.9. For any w ∈ {0, 1}n, there must be a path πw in TA such that χ(πw) = w.

Proof. If there weren’t such a path, set b = Aw and run A on the instance Ax = b.
A does not solve the problem on that instance. �
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Definition 6.10. Let r′ = r/4. A partial path π is a path in TA that starts at the root
and stops at the first point such that β(π) reveals at least r′ components of b. Notice
this means that β(π) reveals less than r′ + K components of b. A partial path π is called
good if χ(π) assigns values to at least γr′ variables in x, for a sufficiently small constant
γ > 0. Otherwise, it is called bad. For w ∈ {0, 1}n, we say that a partial path π finds w
if there is an extension π′ of π such that χ(π′) = w and β(π′) = Aw.

Note that no partial path can contain more than r′ + K x-nodes. If one did, consider
the submatrix of A consisting of the columns corresponding to the variables set on that
partial path; such a submatrix has at most r′ + K nonzero rows, so it cannot have full
column rank and therefore A would not have full rank. In Lemma 6.11 and Lemma 6.13
we will disregard the extra term of K when discussing the maximum number of bits of
b revealed or the maximum number of x-nodes along any partial path since it can only
make the bounds stronger.

Lemma 6.11. No partial path in TA can find more than 2n−r′ assignments in {0, 1}n.

Proof. By definition, a partial path π gives values to r′ components of b. For any
extension π′ of π, certainly β(π′) is an extension of β(π). There are 2n−r′ such extensions.
If π finds w, then it must be the case that w = A−1b for some extension b to β(π). Hence
there are at most 2n−r′ such w’s (here we are, of course, using the fact that A is full
rank). �

To proceed, we will need the following technical lemma:

Lemma 6.12 (Alekhnovich et al. 2005). Assume that an m × n matrix A is an (r, 3, c)-
expander for 17

9
< c < 2. Let x = {x1, . . . , xn} be a set of variables, x̂ ⊆ x, b ∈ {0, 1}m,

and let L = {`1, . . . , `k} be a tuple of linear equations from the system Ax = b. Assume
further that |x̂| ≤ r and |L| ≤ r. Denote by L the set of assignments to the variables in
x̂ that can be extended on x to satisfy L. If L is not empty then it is an affine subspace

of {0, 1}|x̂| of dimension greater than |x̂|
(

1
2
− 14−7c

2(2c−3)

)

.

Moreover, because of the linear algebraic structure of L, we can say that each partial
assignment in L can be extended to the same number of satisfying assignments for L.

Lemma 6.13. No good partial path in TA can find more than 2n−qr′ assignments in
{0, 1}n where q is a constant strictly bigger than 1.

Proof. Each good partial path π assigns values to at least γr′ variables in x (via
χ(π)). Let this set of variables be x̂. Also, let L be the set of equations corresponding
to β(π). We assume that χ(π) can be extended to satisfy L, since otherwise π finds no
assignments and we are done. There are at most 2n−r′ assignments to x that satisfy L.
We can partition this set of assignments based on the partial assignments they give to x̂.

Applying Lemma 6.12 and setting δ = 2 − c, there are at least 2( 1
2
− 7δ

2−4δ
)γr′ ≥ 2( 1

2
−7δ)γr′

(for δ sufficiently small) partitions each of equal size. Let q = 1 + (1
2
− 7δ)γ. Then there

are at most 2n−qr′ extensions to χ(π) that satisfy L, so certainly π finds at most 2n−qr′

assignments. �
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Lemma 6.14. There are at most 2εr′ bad partial paths in TA, where ε is a constant
strictly smaller than 1.

Proof. Each bad partial path can be specified by two sequences. Let B be a sequence
of r′′ bits, r′ ≤ r′′ ≤ r′ + K, denoting the values of each new component of b revealed
along the partial path in the order they are revealed (when multiple bits of b are revealed
at a single b-node, put some arbitrary order on them). Let X be a sequence of a = γr′

bits, denoting the values of the variables set along the partial path in the order they
are set. Not all such sequences are valid, however. Consider a particular placement of
the bits of X (in order) among the bits of B. For each occurrence of a bit from X, the
preceding bit of B is fixed (it is possible that more than one bit before the bit from X
is fixed). This is because that bit of B is used to specify the single child of a particular
b-node that is an x-node. Let BX be the bits of B immediately preceding the bits from
X. Now look at the remainder of B, B \BX . Each consecutive subsequence of size K in
B \BX has at most 2K − 1 possible values. This is because these bits are either fixed or
are used to specify children of b-nodes that are not x-nodes. Let z = (r′′−a)/K. Given a
particular X and a particular placement of X among the r′′ bits of B, there are at most
(2K − 1)z possible values of B. Therefore, the total number of bad paths is at most

(

r′′

a

)

2a
(

2K − 1
)z

= 2a2Kz
(

r′′

a

) (

1 − 1
2K

)z

≤ 2r′′
(

er′′

a

)a
e−z/2K

≤ 2r′′ (e/γ + o(1))a
(

e((1/γ+o(1))−1)/K2K
)−a

≤ 2r′′−a

= 2(1−γ+o(1))r′ ,

where the last inequality follows by setting γ sufficiently small compared to K. �

We are now ready to prove the width lower bound.

Theorem 6.15. Every fully-adaptive-order pBT algorithm A for Ax = b requires width
2Ω(n).

Proof. We will show that there are significantly more than 2r′ good partial paths in
TA. If we set b randomly, then each partial path remains in T b

A with probability at least
2−r′, so there must be a setting of b where T b

A, and hence the pBT tree of A, is big.
By Lemma 6.14, there are at most 2εr′ bad paths in TA where ε < 1. By Lemma 6.11,

each such bad path finds at most 2n−r′ assignments. Therefore, all the bad paths together
find at most 2n−(1−ε)r′ assignments. Since the set of all partial paths must find 2n assign-
ments by Lemma 6.9, the set of good paths must find at least 2n−2n−(1−ε)r′ ≥ (1−o(1))2n

assignments. By Lemma 6.13, then, there must be at least (1−o(1))2qr′ good paths in TA,
where q > 1. For any (partial) path π, the probability that a random b will be consistent
with π is 2−r′. Hence, the expectation over random b of the number of good paths in T b

A,
is at least 2(q−1)r′ . Thus there must be a setting of b that achieves this width. �

Note that Theorem 6.15 is proving something stronger than stated. The theorem is
showing an exponential lower bound on the expected width with respect to the input
distribution induced by the uniform distribution over random b vectors. If we define a
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randomized pBT algorithm as a distribution over deterministic pBT algorithms, then we
get a lower bound on the expected width of randomized pBT algorithms by applying
Yao’s minmax principle.

6.4.3. The Depth-First Lower Bound. We now know that for every fully-adaptive-
order pBT algorithm, there is a setting of b so that the Ax = b problem requires large
width. Of course, that algorithm may be able to put an orientation on its pBT tree for
such a b such that the leftmost path of the pBT tree finds the corresponding solution. If
the tree is generated in a depth-first manner, then the algorithm may solve the instance
very quickly. Here we prove that for any depth-first pBT algorithm, there must be a
choice of b such that the algorithm must traverse 2Ω(n) paths before it finds the solution.
In order to achieve this, we need to take a closer look at what T b

A looks like for a “typical”
choice of b. In particular, we will show that for almost all b’s, the tree T b

A has exponential
width.

Let c′ = 2c−3, so that A is an (r, 3, c′)-boundary expander. The eventual lower bound
(in Theorem 6.21) will begin by fixing A and any b ∈ {0, 1}n such that T b

A contains no
bad partial paths. By Lemma 6.14, almost every b satisfies this. We will then implicitly
describe a set of 2Ω(n) partial paths that must appear in T b

A. Since we have so much
flexibility in our choice of b, we will choose one such that the corresponding solution
appears in the right subtree of the top branching point in T b

A, and observe that there are
actually an exponential number of partial paths in the left subtree alone.

Definition 6.16 (Alekhnovich & Razborov 2001). For any set of variables x̂ in the lin-
ear system Ax = b, define the following inference relation on subsets of equations:

(6.17) L1 `x̂ L2 ≡ |L1| ≤ r/2 ∧ ∂L2 ⊆ x̂ ∪ V ars(L1).

Let Cl(x̂) (the closure of x̂) denote the union of all sets of equations L that can be inferred
(through the transitive closure of `x̂) from ∅.

Proposition 6.18. For any set of variables x̂ of size at most c′r/2, Cl(x̂) has size at
most |x̂|/c′.

Proof. If not, consider unioning the sets comprising Cl(x̂) in some arbitrary order
that respects the order of inference: L1,L2, .... Define Ck = ∪k

i=1Li, and let t be the
minimum number such that Ct has size greater than |x̂|/c′. Because of the order of the
sets, ∂Ct ⊆ x̂. Also Ct has size at most r. But then, by boundary expansion, Ct should
have a boundary of size at least c′ |Ct| > |x̂|. �

The following lemma is fairly straightforward, but very important. It basically says
that closures of sets of variables are the “hardest” subsets of equations to satisfy.

Lemma 6.19 (Alekhnovich 2005). Let A be an (r, 3, c′)-boundary expander and fix any
b ∈ {0, 1}n. Let χ be any partial assignment to x and let x̂ be the set of variables
underlying χ. Let L = Cl(x̂). If there is an assignment to x satisfying L that is consistent
with χ, then for every subset of equations L′ of size at most r/2, there is an assignment
to x consistent with χ satisfying L′.
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We will often abuse notation and write Cl(χ) for Cl(x̂), where χ is a partial assignment
to the variables x̂. In what follows, given a b and a node v in T b

A, we will say that v
satisfies its closure if there is an assignment to x consistent with χ(v) that satisfies those
equations of Ax = b in Cl(χ(v)).

Lemma 6.20. Let b be such that T b
A contains no bad partial paths. Then T b

A has at
least 2Ω(r′) good partial paths. In fact, both subtrees below the top branching point of
T b
A contain 2Ω(r′) good partial paths.

Proof. A sufficient set of good partial paths in T b
A will be those partial paths π that

maintain the invariant that, for all v on π, v satisfies its closure.
We first argue that any v in T b

A of depth less than r′ that satisfies its closure has
a child in T b

A. The only possible violation of this statement is if v is an x-node that
has no children (equivalently, if the Solver chooses ∅ in step (3)). But if v satisfies its
closure, then, by Lemma 6.19, there is an assignment to x consistent with χ(v) that
satisfies the equations underlying β(v). Let w ∈ {0, 1}n be this assignment. If v has no
children, then A will not find w since for every node v′ in TA that is not on any path
including v must have χ(v′) disagreeing with χ(v) or β(v′) disagreeing with β(v). In fact,
we can even argue that there is a child of v that satisfies those equations underlying β(v)
and that satisfies its closure; this is because together these constitute a set of at most
r′ + r′/c′ ≤ r/2 equations (here we are applying Proposition 6.18), so we can still use
Lemma 6.19 as above.

Now let π be any partial path in T b
A that has maintained the invariant until depth

r′. Let x̂ be the variables underlying χ(π) and let L be those equations from the system
Ax = b that are in Cl(x̂). Since π must be a good path, |x̂| ≥ γr′. By Lemma 6.12, there
are at least 2(q−1)r′ setting (for the same q as in Lemma 6.13) to x̂ that are consistent with
solutions to L. Therefore, there must be at least (q − 1)r′ x-nodes v along π satisfying
the following: let xi be the variable set by v and assume χ(π) sets xi = 0; then there is
an assignment consistent with χ(v) ∪ [xi = 1] that satisfies L. We will argue that each
such node v has two children in T b

A and both satisfy their closures. If there were no child
of v corresponding to the partial assignment χ(v) ∪ [xi = 1], then, again, let w be the
consistent assignment to x that satisfies L; A would not find w. So let v′ be that child
of v. Since Cl(χ(v′)) ⊆ L, v′ must satisfy its closure.

We have now established that there are partial paths that satisfy the invariant and
that every such partial path has at least (q − 1)r′ partial paths branching off of it that
also satisfy the invariant. This means that there must be at least 2(q−1)r′ such partial
paths. To see the claim about the two subtrees of T b

A, consider the first x-node in the tree
and assume that it corresponds to variable xi. The closure of a single variable is empty
for a good expander such as A, so that x-node must have two children both satisfying
the invariant. Now simply apply the same argument to both subtrees. �

We can now prove the depth-first lower bound:

Theorem 6.21. Every fully-adaptive-order pBT algorithm A for Ax = b requires depth-
first size 2Ω(n).

Proof. Since A is a depth-first algorithm, it will impose an order (say, left-to-right)
on the children of every x-node in TA. The root of TA is a b-node root. Let v denote the
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unique x-node that is a child of root and let xi be the variable it corresponds to. Finally,
assume that v sets xi = 0 on its left branch and xi = 1 on its right. Choose a value for
b ∈ {0, 1}n such that (i) b is consistent with β(v); (ii) b’s corresponding x sets xi = 1; and
(iii) T b

A contains no bad partial paths. This is certainly possible since at least a 1/2K+1

fraction of b’s satisfy (i) and (ii), while, by Lemma 6.14, all but a 2(ε−1)r′ fraction of b’s
satisfy (iii). By Lemma 6.20, T b

A contains 2Ω(r′) = 2Ω(n) good partial paths in the left
subtree of T b

A, but the solution is not found until the right subtree. �

6.4.4. Existence of Appropriate Expanders.

Proof. (of Lemma 6.7) It is well-known that the probabilistic method gives expanders
with 3 ones in each row, but here there are two additional subtle points: the maximum
number of ones in each column and the rank of the resulting matrix. We handle the
former issue using a trick from Alekhnovich (2005) and the latter by the techniques from
Alekhnovich et al. (2005).

Lemma 6.22 (Alekhnovich et al. 2005). Let L be a linear subspace of {0, 1}n of codi-
mension k. Let the vector v be a random vector in {0, 1}n with weight 3. Then
Pr[v 6∈ L] = Ω( k

n
).

Consider the random matrix An that contains Kn rows (K may depend on n), each
of which is chosen uniformly at random from the set of all rows of weight 3.

Proposition 6.23. With constant probability, rank(An) > (1 − e−Ω(K))n.

Proof. The proof resembles the analysis of the well-known Coupon Collector puzzle.
Consider the process of generating the rows of A: let At be the matrix consisting of the
first t rows of A, thus A = A[Kn]. By Lemma 6.22 it takes on average O(n/(n − k))
new rows to increase the rank of At from k to k + 1. Thus, in order to achieve the rank
(1 − e−K)n on average one has to take

T = O





(1−e−K)n
∑

k=1

n

n − k





randomly chosen rows. It is left to notice that

(1−e−K)n
∑

k=1

1/(n − k) =
n−1
∑

k=(e−K)n

1/k = K + O(1),

and to apply Markov’s inequality. �

It is not hard to show that Proposition 6.23 holds with probability 1−o(1) by analyzing
the variance of the number of rows required to achieve high enough rank. We omit the
details since we need only constant probability.

Assume that n is an integer and c′ is a constant slightly bigger than c, say c′ =
c + (2 − c)/2. From now on, K will be a large constant the exact value of which will be
determined later.

The following well-known fact states that a random matrix is a good expander.
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Lemma 6.24. For any c′ < 2, there is an α > 0 such that for all K > 0 and n sufficiently
large, An is an (r, 3, c′)-expander with probability 1 − o(1) provided that r ≤ α n

K1/(2−c′) .

At this point, fix A = An such that it satisfies the properties in Proposition 6.23
and Lemma 6.24. Let n′ = rank(A). By Proposition 6.23, n′ > (1 − e−Ω(K))n. One
may remove at most 2−Ω(K)n columns from A so that the resulting (Kn) × n′ matrix
has rank n′. Denote by J1 the index set of these columns. Denote by J2 the index set
of the columns that contain at least K̂ = 9K

c′−c
(n/r) ones (note this value is constant).

Since A has 3Kn ones overall, |J2| ≤ (c′ − c)r/3. If we remove from A all the columns
corresponding to J1 ∪ J2 then the resulting matrix has full rank and every column has at
most K̂ ones. The only problem is that it may not be an expander anymore. To fix this
we use a procedure similar to one developed in Alekhnovich et al. (2005).

Definition 6.25. For an A ∈ {0, 1}m×n and a subset of its columns J ⊆ [n] we define
an inference relation `c

J on the set of [m] rows of A:

(6.26) I `c
J I1 ≡ |I1| ≤ r/2 ∧ |Γ(I1) \ [Γ(I) ∪ J ]| < c|I1|

Let Cle(J) denote the union of all sets of rows that can be inferred (via the transitive
closure of `c

J) from ∅.
It is not hard to see the benefit of the Cle() operation: namely, for A ∈ {0, 1}m×n an

(r, 3, c′)-expander and J ⊆ [n], set Î = Cle(J) and Ĵ = Γ(Î). Let A′ be the matrix that
results from A after removing the columns Ĵ and the rows Î. Then A′ is an (r/2, 3, c)-
expander. We will eventually apply this transformation to A where J = J1 ∪J2, but first
we need to bound the size of Î in terms of |J |.

Lemma 6.27. If |J | ≤ (c′ − c)r/2, then |Cle(J)| < (c′ − c)−1|J |.

Proof. Assume otherwise and consider unioning the sets comprising Cle(J) in some
arbitrary order that respects the order of inference: I1, I2, .... Define Ck = ∪k

i=1Ii and let
t be the minimum number such that Ct has size at least |J |/(c′ − c). Note that |Ct| ≤ r,
so, by expansion it must be the case that

|Γ(Ct)| ≥ c′|Ct|.

On the other hand, each new Ij in the sequence contributes less than c|Ij| new elements
to Γ(Cj−1), so

|Γ(Ct)| < |J | + c|Ct|.
Hence

|Ct| < |J |/(c′ − c)

and the lemma follows by contradiction. �

We are ready to finish the proof of Lemma 6.7. Let J = J1 ∪ J2 and choose K large
enough so that |J | < (c′ − c)r/2. This is possible since r/n is inverse polynomial in K,
but |J1|/n is inverse exponential in K. Again, let Î = Cle(J) and let Ĵ = Γ(Î). By
Lemma 6.27, |Î| < r/2 and therefore |Ĵ | < 3r/2 (we can safely assume that 3r/2 is
a small fraction of n). If we remove all columns corresponding to Ĵ from A then the
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resulting matrix has full column rank. This is because after we remove the columns
corresponding to J1 we get a matrix in which all columns are linearly independent, thus
after the removal of Ĵ the matrix still has full column rank. At this point, all rows in Î are
all-zero, so we can safely remove them without decreasing the rank. Finally, let n̂ = Ω(n)
be the number of remaining columns and throw out all but n̂ linearly independent rows.
The final matrix, Â, is a full-rank, n̂× n̂, (r/2, 3, c)-expander that has at most K̂ ones in
each column. �

6.5. Subset-Sum lower bound. To prove an exponential lower bound on the width
of any fully-adaptive-order pBT algorithm for the Subset-Sum problem, we extend the
lower bound for the Ax = b problem and then use a “pBT reduction” from the extended
Ax = b problem to the Subset-Sum problem.

6.5.1. Extended lower bound for Ax = b. The extended Ax = b problem is identical
to the original except for the presence of n extra equality items, one for each row of A.
The equality item ei contains only the index i of the row it corresponds to (in particular,
it contains no information about b). The possible decisions about ei are accept and reject,
where a potential solution that accepts ei is valid only if all of the variables in row i of
A are set equal (i.e. they are all 0 or all 1). Likewise, if a potential solution rejects ei,
then that solution is valid only if the variables in that row are not all equal. Notice that
this extended problem is no harder for pBT than the original problem. The algorithm
could simply ignore the equality items until it has set all of the variable items and then
simply set the equality items accordingly. On the other hand, the presence of extra items
could introduce new opportunities for the pBT algorithm to branch and/or change its
ordering.

Nevertheless, we show that any fully-adaptive-order pBT algorithm for the extended
problem still requires exponential width. The proof will essentially mirror the previous
lower bound, with small modifications to the definitions of the game and of good and bad
paths to accommodate the equality items.

Begin by fixing A as above. Each round of the Solver-Adversary game now proceeds
as follows:
(1) The Solver proposes a possible item D = 〈xj , q1, ..., qK〉, or an equality item ei.
(2) In the former case, the Adversary reveals values for bj1 , ..., bjK

, where j1, ..., jK are the
rows of A that have a 1 in the jth digit. The Adversary must remain consistent with its
previous answers. In the latter case, the adversary does nothing.
(3) In the former case, if the q values match the b values, the Solver chooses a set
S ⊆ {0, 1}; otherwise the round ends and a new round begins. In the latter case, the
Solver chooses a set S ⊆ {accept, reject}.
(4) In both cases, the Adversary selects an element from S (if there is one).
The game ends when the Solver has proposed an item and chosen a subset for every
variable and every equality item, or when the Solver reveals ∅ in step (3).

Again, let TA be the tree that represents an algorithm A’s strategy against all adver-
saries. Now there will be three kinds of nodes: the b nodes and x nodes as before, and
the e-nodes (or equality nodes) which will have at most two children, corresponding to
the Adversary’s decision in step (4) when the Solver selects an equality item in step (1).
It is still the case that each b-node will have exactly one child that is an x-node and all
other children will be b-nodes. Define T b

A as before.
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Definition 6.28. For a path π in TA, let χ(π) be the (partial) assignment to the vari-
ables x = (x1, ..., xn) corresponding to the branches of x-nodes that π follows, and let
β(π) be the values of b = (b1, ..., bn) that have been revealed according to the branches
of b-nodes that π follows. Let η(π) be the (partial) assignment to the equality items
corresponding to the branches of e-nodes that π follows.

Lemma 6.9 still holds in this new context. We define a partial path as in Definition 6.10
and then have the following analogous definition for good and bad partial paths.

Definition 6.29. A partial path π is called good if either
(1) χ(π) assigns values to at least γr′ variables in x, or
(2) there are at least γr′ accepted equality items in π.
As in Definition 6.10, γ > 0 will be a sufficiently small constant. Otherwise, π is called
bad. For w ∈ {0, 1}n, we say that a partial path π finds w if there is an extension π′ of
π such that χ(π′) = w and β(π′) = Aw and η(π′) is consistent with w.

Lemma 6.11 still holds in exactly the same form.

Lemma 6.30. No good partial path in TA can find more than 2n−qr′ assignments in
{0, 1}n where q is a constant strictly bigger than 1.

Proof. Let π be a good partial path. If case (1) of the definition of good holds, we
proceed exactly as in Lemma 6.13. In case (2), let L ⊆ [n] denote the rows i of A such
that β(π) reveals bit bi. Consider an i ∈ [n] such that π accepts ei and i ∈ L. Any
extension of π that finds a solution must set all the variables in row i to 0 if bi = 0 and
all the variables to 1 if bi = 1. In other words, the values of the variables underlying
row i are fixed. Therefore, if at least γr′/2 of the accepted equality items correspond to
equations in L, then we can proceed as above with at least (2 − δ)γr′/2 variables fixed
(by expansion). Of course, if two such equations set a single variable in two different
ways, then no extension of π will find a solution.

Now assume that at least γr′/2 of the accepted equality items correspond to equations
outside L. Let ê ∈ [n] denote the rows corresponding to these γr′/2 accepted equality
items. We prove an analogue of Lemma 6.12 that shows there are many settings to
the items ei, for i ∈ ê, that are consistent with the equations L. More importantly,
one particular partial assignment to the ei’s extends to relatively few consistent full
assignments.

A system of distinct representatives (SDR) for L is an ordered pairing ((i1, xj1), ...,
(ir′ , xjr′

)) such that L = {i1, ..., ir′}, xjα is a variable in the equation corresponding to
row iα and xjα does not occur in any of the equations iα+1, ..., ir′. Notice that, if we have
an SDR, we can set all of the variables outside the SDR to any assignment we want, and
then set the variables in the SDR (in reverse order) in the unique way to satisfy L. Given
an SDR for L, call an equation i ∈ ê saturated if at least two of its underlying variables
appear in the SDR. We show that there is an SDR for L such that at least half of the
equations in ê are not saturated. If this is the case, then pick a subset of |ê|/4K of these
unsaturated equations that are all disjoint on their two variables that are not covered
by the SDR (if there are more than two such variables in an equation, just choose two
arbitrarily). For each equation in this subset, we must set the two uncovered variables
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equal in any extension of π if we expect to find a solution. Therefore, π can find at most
(

1

2

)|ê|/4K

2n−r′

solutions.
We now show the claim about the SDR. While the boundary of L contains elements

not in V ars(ê), choose one and assign it to its corresponding equation in L for the SDR.
Let L′ denote the remaining unassigned equations in L. We know that ∂L′ is contained
in V ars(ê), so at least (1 − 2δ)|L′| of the variables of L′ are in V ars(ê) and each of
the remaining variables in V ars(L′) is contained in at least two equations in L′. Simple
calculations show that there can be at most (1 + δ)|L′| elements of V ars(L′) outside of
V ars(ê). Due to the expansion of L′ ∪ ê, we can conclude

(6.31) (2 − δ)(|L′| + |ê|) ≤ (1 + δ)|L′| + |V ars(ê)|.
First of all, since |V ars(ê)| ≤ 3|ê|, it follows that |L′| ≤ 1+δ

1−2δ
|ê|. Substituting this into

inequality (6.31), we get that

|V ars(ê)| − |L′| ≥ (2 − 5δ)|ê|,
for δ sufficiently small. There are at most |L′| variables in any SDR for L that extends
the current partial SDR that are contained in V ars(ê). Therefore, no matter how we
extend the partial SDR, there will be at least 2 − 5δ variables per equation in ê on
average that are not covered by the SDR. Certainly, then, half the equations in ê must
not be saturated (again if δ is sufficiently small). Therefore, just extend the partial SDR
in the usual way: while L′ is not empty, choose a boundary variable and assign it to its
corresponding equation. �

Lemma 6.32. There are at most 2εr′ bad partial paths in TA, where ε is a constant
strictly smaller than 1.

Proof. Consider the proof of Lemma 6.14. Each bad path (by the original definition)
was specified by a pair of sequences B and X. To specify a bad path by the new definition,
it is sufficient to add a sequence E denoting the decisions made at e-nodes along the path.
There can be potentially n such decisions, but at most a = γr′ of them can be accepted;
the others must be rejected. Therefore, we can bound the number of bad paths by taking
the expression,

2r′ (e/γ)a
(

e((1/γ)−1)/2K22K
)−a

which we used to bound the number of bad paths by the original definition, and multiply
it by

(

n
γr′

)

. This yields a bound of

2r′(e/γ)a(f/γ)a
(

e((1/γ)−1)/2K22K
)−a

,

where f is a constant that depends on r/n. Again, by taking γ sufficiently small compared
to K and f , we can make this expression at most 2r′−a = 2r′−γr′ . �

Finally, we get the following theorem in exactly the same manner as we did Theo-
rem 6.15.
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Theorem 6.33. Every pBT algorithm A for the extended Ax = b problem requires
width 2Ω(n).

6.5.2. Reduction to Subset-Sum. To prove a lower bound for Subset-Sum, we ex-
hibit a reduction from the extended Ax = b problem to Subset-Sum that is sufficiently
local that it preserves efficient fully-adaptive-order pBT algorithms. We will not formally
define the concept of a pBT reduction but we believe the specific reduction we provide
will illustrate the requirements for such a reduction. Informally, we need to transform
items in the source problem domain to (sets of) items in the target domain in such a way
that any ordering/decisions in the target domain will induce an ordering/decisions in the
source domain.

We use a small modification on the standard reduction from 3SAT to Subset-Sum.
Fix n and A and consider the universe of items UAx=b for the extended Ax = b problem.
Each item in the universe for Subset-Sum will be a decimal number with 2n digits. The
first n digits, labelled x1, ..., xn, will correspond to the n variables of Ax = b. The last n
digits, labelled 1, ..., n, will correspond to the n equations in the system Ax = b. Given
a variable item D = 〈xj , bj1, ..., bjK

〉, we create two Subset-Sum items. Assume, wlog,
that bj1 = · · · = bjr = 1 and bjr+1 = · · · = bjK

= 0. Create one item, called SS1(D),
that has a 1 in digit xj and 1’s in digits j1, ..., jr and 0’s elsewhere, and another item,
SS2(D), that has a 1 in digit xj and 1’s in digits jr+1, ..., jK and 0’s elsewhere. Let SS(D)
denote the set of these two items. Given an equality item ei, create an item SS(ei) that
has a 2 in digit i and 0’s elsewhere. The universe for the Subset-Sum problem will be
USS =

⋃

D∈UAx=b
SS(D). The target value for Subset-Sum will be the number that has a

1 in digit xj for each j and a 3 in digit i for each i.
An ordering σ on USS induces an ordering Axb(σ) on UAx=b in the obvious way: go

through σ in order and replace each first occurrence of an item in SS(D) by D. Erase
any subsequent occurrences of items in SS(D). Also, each decision about an item in
SS(D) maps to a unique decision about D: for a variable item D, (SS1(D), accept)
maps to (D, accept), (SS1(D), reject) to (D, reject), (SS2(D), reject) to (D, accept),
(SS2(D), accept) to (D, reject). (SS(ei), accept) maps to (ei, reject), and (SS(ei), reject)
maps to (ei, accept).

Lemma 6.34. If there is a width-w(n) fully-adaptive-order pBT algorithm for Subset-
Sum, then there is a width-w(n) fully-adaptive-order pBT algorithm for the extended
Ax = b problem.

Proof. Let A be a width-w(n) algorithm for Subset-Sum. Algorithm B will simulate it
as follows: run A on the universe USS. Whenever A specifies an order σ, the corresponding
node of B’s execution will use the related order Axb(σ). If B finds that item D is the
first item in the instance according to the order, then it provides A with whichever item
in SS(D) came first in σ. Whatever decisions A branches on for this item, B branches
on the corresponding decisions for D. It is easy to check that B’s execution tree will have
width at most that of A’s execution tree and a path in B’s tree leads to a solution if and
only if the corresponding path in A’s tree leads to a solution. �

Theorem 6.35. Any fully-adaptive-order pBT algorithm for Subset-Sum requires width
2Ω(n).
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Proof. Simply apply Lemma 6.34 and Theorem 6.33. �

7. Open Questions

There are many open questions regarding our pBT models. Could we show, for example,
that the known greedy 2 − o(1) approximation algorithms for Vertex Cover are the best
we can do using a polynomial width pBT algorithm? This is particularly interesting due
to the lack of tight complexity-bound inapproximation results for Vertex Cover based on
standard assumptions (see Arora et al. (2006) for motivation of this idea). For Interval
Scheduling, can the adaptive pBT lower bound be extended to the fully-adaptive model.
For proportional profit on one machine, we are able to show that a width-2 adaptive-
order pBT can achieve a better approximation ratio than a priority algorithm. While
we know that, for one machine, an optimal solution requires width Ω(n), the tradeoff
between width and the approximation ratio is not at all understood. For example, what
is the best approximation ratio for a width-3 pBT ? We also do not know if an O(1)-width
adaptive-order pBT can achieve an O(1)-approximation ratio for interval scheduling with
arbitrary profits. For any of the problems already studied in the priority framework
(e.g. Angelopoulos & Borodin (2004); Borodin et al. (2003, 2005); Davis & Impagliazzo
(2009); Regev (2002)) it would be interesting to consider constant-width pBT algorithms.
Our only general approximation-width tradeoff results are the somewhat complementary
upper and lower bounds for the knapsack problem and the fixed-order lower bound for
interval scheduling for which (as noted above) we do not have a complementary upper
bound. It would be interesting to obtain (closely) matching width-approximation tradeoff
results for interval scheduling and other problems which require large width for optimality.

Although the focus of this paper has been with regard to worst case complexity, the
priority and pBT models can also be studied with regard to average case (or smoothed)
analysis. In particular, for finding a satisfying assignment with high probability in a
random 3CNF formula, the best (with regard to the ratio of clauses per variable under
which it succeeds) current algorithm due to Kaporis et al. (2003) can be implemented as
a priority algorithm. Indeed almost all random 3SAT algorithms used to constructively
prove 3SAT threshold lower bounds have been priority algorithms (one algorithm in
Achlioptas & Sorkin (2000) is a width 2 pBT ). Obtaining a sharp 3SAT threshold is a
major open question and one can consider if it is possible to improve upon the current
best density of 3.52 (Kaporis et al. (2003)) by a priority or small width pBT algorithm.

Will the pBT framework lead us to new algorithms (or at least modified interpreta-
tions of old algorithms)? Small examples in this direction are the width-2 approximation
for interval selection, the linear-width algorithm for 2SAT and the FPTAS for Knapsack
presented in this paper.

One way to augment the pBT model would be to allow non-deterministic branching.
That is, to allow a node in the pBT tree to branch without viewing an input item and,
therefore, without assigning decisions. For example, a node could branch in this way to
allow each of its children to explore different orders on the remaining items. Does this
capability strengthen the pBT model (in the fully-adaptive case)? In Davis et al. (2010),
it is shown that it does not help significantly for 7SAT.

While we have shown that the pBT model has strong connections to dynamic pro-
gramming and backtracking, can it be extended to capture other common algorithms?

36



For example, we show that pBT captures simple dynamic programming but what about
other dynamic programming algorithms? To capture some “non-simple” applications of
dynamic programming, Buresh-Oppenheim et al. (2010) recently defined a model that
enhances pBT by making more essential use of memoization. Namely, they define a pBP
(priority branching program) model which is a DAG analogue of our tree-based pBT
programs. Amongst other results, they argue that the Bellman Ford algorithm for the
least cost path problem (in a graph with no negative cycles) can be formulated within
their pBP model (with non-deterministic branching), but that there is no efficient pBT
algorithm (without non-deterministic branching) for the problem. It is not clear whether
a pBT algorithm with non-deterministic branching can capture Bellman Ford. A further
extension will be needed to capture “non serial” dynamic programming algorithms such
as the well known algorithms for computing optimal matrix chain products and optimal
binary search trees?

Finally, it is natural to consider randomized pBT algorithms. There are several ways
to augment pBT algorithms with randomness and then to study the trade-offs between
expected width (or depth first size) and the probability of obtaining a solution. One
natural model is as follows. Let H be the set of allowable decisions at a given node of
the pBT . Then for every subset H ′ ⊆ H , we have a probability pH′ of choosing H ′ as
the set of decisions to consider at that node, where

∑

H′ pH′ = 1. In the special case that
the probabilities are such that only singleton sets have positive probability, we have a
randomized priority (i.e. width 1) algorithm. It is easy to see that, in general, such a
randomized pBT induces a probability distribution on deterministic, but not-necessarily-
correct pBT algorithms. That is, not every algorithm in this distribution succeeds in
solving every instance of the problem. Therefore, the randomized lower bound alluded
to after Theorem 6.15 does not give a lower bound for this model, unless we impose the
(seemingly unreasonable) condition that the pH′ are assigned in such a way that every
resulting algorithm is correct. In other words, we do not get the desired trade-off between
expected width and the probability of obtaining a solution. Can such a lower bound be
proven, perhaps for SAT?
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