
Information and Computation 150, 244�267 (1999)

On Randomization in On-Line Computation

Allan Borodin

Department of Computer Science, University of Toronto, Canada
E-mail: bor�cs.toronto.edu

and

Ran El-Yaniv

Department of Computer Science, Technion�Israel Institute of Technology, Israel
E-mail: rani�cs.technion.ac.il

This paper concerns two fundamental but somewhat neglected issues,
both related to the design and analysis of randomized on-line algorithms.
Motivated by early results in game theory we define several types of
randomized on-line algorithms, discuss known conditions for their
equivalence, and give a natural example distinguishing between two
kinds of randomizations. In particular, we show that mixed randomized
memoryless paging algorithms can achieve strictly better competitive
performance than behavioral randomized algorithms. Next we summarize
known��and derive new��``Yao principle'' theorems for lower bounding
competitive ratios of randomized on-line algorithms. This leads to four
different theorems for bounded�unbounded and minimization�maximiza-
tion problems.] 1999 Academic Press

1. INTRODUCTION

This paper studies two issues related to randomized on-line algorithms. In
particular, we will consider these issues in the context of competitive analysis but
the same issues are relevant for other criteria that measure the performance of
on-line algorithms. The first issue concerns models for randomized algorithms.
Informally, we conceptually think of randomized algorithms (especially for upper
bounds) that toss coins (say integer or 0�1 valued)1 and then based on these coin
tosses and the present ``state'' of the computation, take various actions (so as to
process the present request) and change ``state.'' This informal description can be
formalized in terms of computation trees. However, it is often common (especially

Article ID inco.1998.2775, available online at http:��www.idealibrary.com on

2440890-5401�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

1 The formulation that follows is set in terms of finite games and discrete (finite) distributions.
Nevertheless, all the stated definitions and theorems can be formulated in terms of infinite games with
continuous distributions (see Remark 2).

for lower bounds) in the analysis of randomized algorithms to define randomized
algorithms as probability distributions on deterministic algorithms. In particular,
we often adopt this latter view in order to apply the Yao principle, which allows
us to infer a lower bound for randomized algorithms by considering input distribu-
tions for deterministic algorithms. Needless to say, matching an upper bound, based
on one model, of randomization with a lower bound based on a different model is
only meaningful if the lower bound model is at least as powerful as the upper
bound model. We shall see that there are natural situations where this is not the
case. Hence we need a more careful study of the relative power of models for
randomized algorithms.

The second issue we consider is the application of the Yao principle in the
context of randomized on-line algorithms. Online algorithms can introduce some
subtlety in applying the Yao principle for several reasons. First, there is a natural
ambiguity in how to define the competitive ratio for a randomized algorithm.
Second, unlike traditional off-line optimization problems, we often think of on-line
problems as having an infinite sequence of requests and, moreover, there may be an
infinite number of actions that an on-line algorithm may take to process a given
request. Finally, on-line problems can be either cost minimization or profit maxi-
mization problems with bounded or unbounded costs�profits. We shall see that
some care is needed to accommodate these differences.

Section 2 begins with a review of some basic game theoretic definitions and
results that are relevant to the foundations of competitive analysis. In particular, we
formalize the models discussed above as behavioral and mixed strategies. In
Section 3 we consider the important case of games of perfect recall for which there
is a known equivalence between behavioral and randomized strategies. However,
Section 5 demonstrates that there can be a difference between behavioral and mixed
algorithms (in particular, that mixed algorithms can sometimes be more powerful)
and we illustrate this by considering ``memoryless'' algorithms for paging. Section 6
provides a variety of ways one can apply the Yao principle in the context of com-
petitive analysis, including one example (due to Kirk Pruhs) on how the principle
can be improperly applied.

2. RANDOMIZED STRATEGIES: MIXED, BEHAVIORAL AND GENERAL

In what follows we assume familiarity with the basic game-theoretic definitions of
games in extensive and strategic forms. For the reader's convenience we include a
review of the basic game theoretic concepts in Appendix B. For simplicity in this
section we develop the game theoretic concepts for finite games. The generalization
of these concepts to infinite (enumerable) games are straightforward.

Mixed strategies. Let 1 be a finite n-person game (either in extensive or
strategic form). A mixed strategy xi for a player i is a probability distribution over
the set of his pure strategies S i. For each pure strategy s # S i we denote by xi(s) the
probability to choose s (that is, �s # Si xi(s)=1). The interpretation is that the
player uses some randomizing device before the start of the game and chooses one
pure strategy according to this probability distribution. After that the player's

245RANDOMIZATION IN ON-LINE COMPUTATION

actions are completely deterministic. Given a mixed strategy profile x=(x1, x2, ..., xn),
where xi is the mixed strategy of player i, the expected payoff vector H(x) for the
n players, is given by H(x)=�s x(s) H(s), where s=(s1, s2, ..., sn) is any pure
strategy profile, H(s) is the vector payoff associated with s (see Appendix B.2), and
x(s)=>i # N xi(si).

Behavioral strategies. Let 1 be a finite n-person game in extensive form. An
alternative way to randomize is to make an independent random choice at each
decision point (i.e., at each information set). Such a randomized strategy is called
``behavioral.'' For complicated games, and also from an algorithmic viewpoint,
behavioral strategies often appear to be more ``natural.'' Nevertheless, for analysis
one would often like to deal with mixed strategies.

Clearly, when defining a behavioral strategy, we must take into consideration the
constraints given by the information sets. Since a player cannot distinguish between
any two nodes in the same information set, he must use the same randomizing
device (i.e., probability distribution) for all nodes in the same information set. For-
mally, a behavioral strategy bi for player i is a ki -tuple (b i

1 , b i
2 , ..., b i

ki
) of probability

distributions, where ki is the number of his information sets, U i
1 , U i

2 , ..., U i
ki

. The
probability distribution b i

j is over the set D(U i
j)=[1, 2, ..., d i

j] of decision alter-
natives in each node in the j th information set, U i

j (i.e., D(U i
j) is the set of labels

of edges outgoing from each node in the jth information set of player i). Given a
behavioral strategy profile b =(b1, b2, ..., bn), where bi is the behavioral strategy
chosen by player i, we let p(l | b) denote the conditional probability that leaf l is
reached given b. Then, define the expected payoff vector,

H(b)= :
leaf l

p(l | b) H(l).

In the context of (off-line) complexity theory it is easy to prove an equivalence,
in terms of computational power, between behavioral and mixed algorithms. That
is, in the case of worst case analysis of off-line problems whenever there are no
memory restrictions on the machine (games of complete information), there is a
complete equivalence between two types of randomized algorithms.2 With regards
to games of incomplete information, the situation is similar. Here again, whenever
there are no memory restrictions, the two types of randomized are equivalent.
However, under memory restrictions the equivalence does not hold anymore and in
fact (as we shall see) there is even a third (typically neglected!) type of randomiza-
tion called general strategies (see Section 2.1). Therefore, one cannot simply assume
that all representations of randomized algorithms are equivalent for on-line
algorithms. Consider the following example.3

246 BORODIN AND EL-YANIV

2 It is well known that this equivalence need not hold in off-line computational models when there are
memory restrictions. See a negative example given for the ``WAG'' model by Beame et al. [BRR+90]
and a discussion in [Poo96]

3 This example is known in the game-theoretic folklore. The particular interpretation here is borrowed
from [PR94] (see also [AHP96]).

Example 1 (The absent-minded driver). Consider a person sitting late at night
in a bar after a long evening of drinking (he is currently sober but a little bit
absent-minded). In order to return home (payoff 1) he has to take the highway and
then get off using the second exit. Getting off at the first exit or continuing on the
highway after the second exit will lead to dangerous areas with a risk of being killed
(payoff 0). The driver knows that he is absent-minded and realizes, still in the bar,
that he would not be able to distinguish between the first and second exits because
they look exactly the same. What would be the optimal strategy for this person?

As depicted in Fig. 1 (Appendix A), this problem is easily formulated as a one-
person game in extensive form. Clearly, this is a game of incomplete information as
the two decision nodes, a and b, are in the same information set. This means that
the player cannot distinguish between them. The set of pure strategies for the player
is [L, R] (L for ``leave'' the highway and R for ``remain'') and any probability
mixture of them yields an expected payoff of 0. In contrast, a behavioral strategy
that chooses L or R with probability 1�2 independently, at each decision node has
an expected payoff of 1�4. Hence, in this example a behavioral strategy is strictly
superior to mixed strategy.

It is not hard to construct examples that show the converse situation where
mixed strategies are superior to behavioral (we shall present one later).

2.1. General Strategies

There is yet another class of randomized strategies. Let 1 be a finite n-person
game in extensive form. A general strategy for player i is a probability measure on
the set of his behavioral strategies Bi. Given a general strategy gi for player i we
denote by gi(bi), with bi # Bi, the probability of bi. Then, given a general strategy
profile g=(g1, g2, ..., gn), the definition of the payoff vector H(g) associated with g
is as follows. For each behavioral strategy profile b let g(b) be the joint probability
distribution g(b)=>i gi(b i). Then,

H(g)=:
b

:
leaf l

g(b) H(l).

Remark 1. Note that we can define the (expected) payoff vector associated with
any strategy profile, where the various strategies of the players can be pure, mixed,
behavioral, and general. The definition is straightforward.

Example 2 (Isb57). Consider the two-person zero-sum game in extensive form
of Fig. 2 (in Appendix A). This game [Isb57] shows that all three types of
randomizations are different. Consider the general strategy that chooses with prob-
ability 1�2 the behavioral strategy b1=(3�4: x1 , 0 : x2 , 1�4: x3 , 0 : y1 , 1 : y2) (i.e.,
with probability 3�4 choose x1 , with probability 0 choose x2 , and with probability
1�4 choose x3 , etc.) and with probability 1�2 the behavioral strategy b2=(0: x1 ,
3�4: x2 , 1�4: x3 , 1 : y1 , 0 : y2). It is not hard to see that this general strategy guaran-
tees the first player an expected payoff of 9�16. Now consider mixed strategies.
Using an optimal mixed strategy the first player will obtain an expected payoff of

247RANDOMIZATION IN ON-LINE COMPUTATION

1�2. Finally, it is possible to show that the optimal behavioral strategy for the first
player yields an expected payoff of 25�64.

3. TWO KNOWN EQUIVALENCE THEOREMS FOR LINEAR GAMES AND
GAMES OF PERFECT RECALL

An n-person game in extensive form is called linear if the game tree is such that
for each player i no information set of player i is intersected twice by a path from
the root to a leaf. It is known that in a linear game every general strategy for any
player is equivalent to some mixed strategy. This follows from Lemma 1 below,
which states that, in a linear game, behavioral strategies are a special case of mixed
strategies. Before we state the lemma it is necessary to define the following equiv-
alence relation between strategies. Let 1 be a game. We say that two strategies of
player i, xi and yi, are equivalent if for any strategy profile s[&i] of the other players,

H(xi, s[&i])=H(yi, s[&i]).

That is, the resulting payoff vector H(}) (consisting of the payoffs for all players)
is the same under xi and yi. It is immediate to see that xi and yi are equivalent if
for each leaf l in the game tree the probability of reaching l, given the strategy
profile (xi, s[&i]), equals the probability of reaching l, given the profile (yi, s[&i]).

Lemma 1 [Isb57]. Let 1 be a linear game. Then for any behavioral strategy bi

for player i there is an equivalent mixed strategy xi.

Hence, in a linear game the set of behavioral strategies Bi for player i is, in effect,
a subset of the set of his mixed strategies X i. In fact, Bi is a small subset of X i. To
see that note that the number of independent probabilities (i.e., degrees of freedom)
required to specify a behavioral strategy is ;=�ki

j=1 (|D(U i
j)|&1). In contrast, for

a mixed strategy this number is /=>ki
j=1 (|D(U i

j)|&1). Thus, ; is linear in the
total number of choices (labels) of player i (�j |D(U i

j)|), whereas / is exponential.
In contrast, as indicated by Example 1 there are (nonlinear) games where the linear
dimension of the space of behavioral strategies is larger than that of the mixed
strategies. The following theorem is a simple conclusion of Lemma 1.

Theorem 1 [Isb57]. In a linear game every general strategy gi of player i is
equivalent to a mixed strategy xi.

Before stating the second known equivalence theorem we define the known
concept of ``perfect recall.'' Intuitively, a player has perfect recall if at all times
during a play, he remembers what he knew, as well as what he chose at all previous
decision nodes. Formally, we say that an edge e precedes a decision node v if there
is a path on the game tree, starting with e and leading to v. We say that player i
has perfect recall if for each edge e, outgoing from an information set U i

e , and each
decision node v # U i

v , if e precedes v then e precedes any other w # U i
v . It is not hard

to prove the following lemma.

Lemma 2 [Isb57]. Any game in which every player has perfect recall is linear.

248 BORODIN AND EL-YANIV

The following equivalence theorem is due to Kuhn [Kuhn53].

Theorem 2 [Kuh53]. Let 1 be any game in extensive form. If player i has perfect
recall then every mixed strategy xi of player i has an equivalent behavioral strategy bi.

Remark 2. Kuhn's theorem was proven only for finite games. Nevertheless, this
theorem can be extended, in a straightforward manner for infinite games, whenever
the length of the game and the number of choices in each information set are at
most countable. Further, Kuhn's theorem was extended by Aumann [Aum64] to the
case where the number of choices in some information sets is uncountable. Note that
in general, games in which time is continuous do not fit in the model presented here.

Corollary 3 [Kun53; Isb57]. In games of perfect recall all three classes of
randomized strategies (behavioral, mixed, and general) are equivalent.

Since every game of complete information (see Appendix B) is, in particular, a
game of perfect recall, it is clear that in games of complete information all three
classes of randomized strategies are equivalent.

4. ONLINE ALGORITHMS AND COMPETITIVENESS

We use the basic formulation from Ben-David et al. [BDBK+94] of ``request-
answer games.'' Within this formulation we define on-line and off-line algorithms
(and problems), and the competitive ratio performance measure.

A (cost minimization) request-answer game is defined as follows. (It is easy to
define the analogous concepts for profit maximization problems.) Let R and W be
nonempty sets. R is called the request set and W is called the answer set. Associated
with these sets is a sequence of computable cost functions

costi : Ri_W i � R, i=1, 2,

Denote elements of R and W by r and w, respectively. Each such r is called a
request and each w is called an answer. Sequences of requests and answers are
denoted by _ and |, respectively. A request sequence is any finite sequence of
requests.

A deterministic online algorithm ALG is a sequence of functions a(i) : Ri � W,
i=1, 2, ..., . Given a (deterministic) on-line algorithm ALG=[a(i)] and a request
sequence _=r1 , r2 , ..., rj , define a[_] as an element of W j, a[_]=w1 , w2 , ..., wj

with wi=a(i)(r1 , ..., ri), i=1, 2, ..., j. Thus, ALG[_] is the ``answer sequence'' of
ALG with respect to the input sequence _. For any input sequence _ with |_|= j,
the cost incurred by ALG with respect to _, denoted ALG(_), is defined to be
costj (_, ALG[_]). An off-line algorithm is a function b : R* � W* such that for
each input sequence _ with |_|= j, b[_] # W j. An off-line algorithm b is optimal
if for all _,

b(_)=cost |_|(_, b[_])= inf
x # W*

[cost |_|(_, x)].

We denote by OPT a generic optimal off-line algorithm.

249RANDOMIZATION IN ON-LINE COMPUTATION

A deterministic on-line algorithm ALG is c-competitive (or ``attains a competitive
ratio of c'') if there exists a constant : such that for each request sequence _,

ALG(_)&c } OPT(_)�:.

The smallest c such that ALG is c-competitive is called ALG's competitive ratio and
is denoted R(ALG). Thus, a c-competitive algorithm is guaranteed to incur a cost
no larger than c times the smallest possible cost (in hindsight) for each input
sequence (up to the additive constant :).

A bounded cost request answer game is a request answer game such that
sup_ cost |_|(_, }) is finite. A finite request answer game is a bounded cost request
answer game with a finite request set and a finite answer set such that there exists
a positive integer i0 such that for all _ with |_|>i0 , cost |_|(_, })=costi0

(_$, }), where
_$ is the proper i0 -prefix of _ (i.e., |_$|=i0). It is not hard to see that any finite
request answer game is ``isomorphic'' to a request answer game where the number
of possible deterministic (on-line) algorithms and the number of different request
sequences is finite. When dealing with a finite request answer game we require, in
the definition of c-competitiveness, that the additive constant : is zero for,
otherwise, a sufficiently large additive constant (which may be dependent on the
problem description) can allow for arbitrarily small competitive ratios.

We now need to introduce the concept of a randomized algorithm (for a request
answer game) and its competitive ratio. As we have seen in Section 2 and
Appendix B, there are two prominent approaches for defining the concept of a
randomized algorithm: one based on mixed strategies and one on behavioral
strategies. (As previously mentioned there is also the combined approach of general
strategies.) We shall now briefly consider each of these two approaches in the
context of the request-answer formulation. In the mixed strategy approach, a
randomized on-line algorithm for a request answer game is a distribution on deter-
ministic algorithms; that is, it is a distribution on sequences (a1 , a2 , ...) of answer
functions. Of course this distribution is independent of any request sequence. From
the behavioral approach, for each time step i, a randomized algorithm provides a
distribution on a set of answer functions. Of course, the distribution used at any
time step can depend on the request sequence seen thus far. However, if there is ``no
memory,'' then the distribution at each time step is independent of previous events.
Whichever approach we used (i.e., mixed or behavioral) for any input sequence _,
we have a well-defined notion of the expected cost E[ALG(_)] of a randomized
algorithm ALG on this input. An oblivious adversary for a randomized algorithm,
must choose a nemesis request sequence _, based only on the definition of the
algorithm, without observing the choices of the algorithm (e.g., without observing
the random coin tosses of the algorithm). For any request sequence _, the optimal
off-line cost is still well defined and now we can say that a randomized algorithm
is c-competitive if there exists a constant : such that for each request sequence _,

E[ALG(_)]&c } OPT(_)�:.

250 BORODIN AND EL-YANIV

The smallest c such that randomized ALG is c-competitive against an oblivious
adversary is denoted R� OBL(ALG).

For on-line algorithms, in addition to oblvious adversaries, we can also consider
the more powerful adaptive adversaries. Informally, an adaptive adversary4 can
observe the behavior of a randomized algorithm and selects the next request as a
function of the present configuration of the on-line algorithm (but not knowing the
outcome of any future random coin tosses). In this paper we are only concerned
with oblivious adversaries but we note that the lower bound for demand paging in
Theorem 6 is proven by first considering adaptive adversaries in Theorem 5.

5. MIXED AND BEHAVIORAL MEMORYLESS PAGING ALGORITHMS

Theorems 1 and 2 (and Examples 1 and 2) are of fundamental importance for
competitive analysis. To understand the relevancy of these results it is sufficient to
observe the structural properties (in terms of linearity and imperfect�perfect recall)
of extensive form representations of randomized on-line algorithms. Clearly, when
the available on-line algorithms have no memory restrictions, the on-line player
essentially has perfect recall because during the game he can remember at each time
everything he observed in the past. Hence, by Corollary 3 the three kinds of
randomized strategies are equivalent.

Nevertheless, whenever there are memory restrictions, for example when the on-
line player is restricted to use bounded memory, the equivalence theorems do not
hold. It is not hard to see that the extensive form representation of on-line games,
where the on-line player has bounded memory will in general exhibit nonlinearity
and imperfect recall. Hence, for such games there is no a-priori equivalence between
the three types of randomized strategies and in light of Isbell's example it can be
anticipated that no such equivalence is possible. In this section we support this
assertion by giving a natural example that distinguishes between memoryless mixed
and behavioral on-line ``demand paging'' algorithms.

On the one hand, we use a known lower bound for the competitive ratio of any
memoryless cat-and-rat behavioral algorithm to obtain a lower bound of k on the
competitive ratio of any memoryless behavioral paging algorithm whenever
N=k+1 is the number of slow memory pages. On the other hand, we describe a
new memoryless mixed paging algorithm which is ((k+1)�2)-competitive.

5.1. Memoryless Behavioral Demand Paging Algorithms

Consider a paging problem with a fast memory of size k and a slow memory of
size N>k. A deterministic paging algorithm ALG can be defined as

ALG: S_C_R � S_C,

251RANDOMIZATION IN ON-LINE COMPUTATION

4 See [BDBK+94] or [BEY98] for the defintion of on-line and off-line adaptive adversaries and the
corresponding defintions of the competitive ratio.

where S, C and R are the state, configuration and request sets, respectively. (Infor-
mally, the configuration of a paging algorithm is simply the contents of its fast
memory.) That is, based on its current state and configuration of the algorithm and
the present request, ALG changes state and (if the request is not in the current
configuration) changes the configuration by evicting exactly one node and then
including the present request in the new configuration. In fact, we have defined a
demand paging algorithm which never evicts a page unless required (by a request
for a page not presently in the cache) to do so. All the common paging algorithms
are demand paging algorithms and hereafter we will identify paging with demand
paging.5 A paging algorithm is called bounded memory if S is finite (i.e., independ-
ent of the length of the request sequence) and it is called memoryless if |S|=1; i.e.,
there is only one state, in which case

ALG: C_R � C.

The same definitions can be applied to randomized algorithms in which case the
function ALG is a probabilistic function. Consider a deterministic or randomized
memoryless on-line algorithm ALG. Since we assume demand paging, a request for
a node that is already in the current configuration is ignored. Therefore in the case
of a deterministic algorithm or a randomized algorithm against an adaptive adver-
sary, we can assume that the adversary is ``cruel'' which means that it only requests
nodes not in the current cache of ALG. When N=k+1 each paging algorithm
exposes a single hole at all times and we can summarize the situation as follows:
wherever a randomized memoryless algorithm ALG has its hole (say at node u),
the adversary requests u, causing ALG to move the hole to some node v (and incur
one page fault) according to some distribution that depends only on u.

Coppersmith, Doyle, Raghavan, and Snir [CDRS90] have modeled this situa-
tion as a game between an on-line ``blind''6 cat and an adversarial rat (or mouse)
on a complete (k+1)-node graph G=(V, E, d), where the distance function d is
uniform.7 The cat is situated on some node of the graph and the rat requests
(``threatens'') that node, causing the cat to move. The cat's moves are defined by a
stochastic matrix P=(pij), where pij is the probability that the cat will move from
i to j when i is requested. Note that in general pij { p ji .

Initially (at the start of a stage), both the cat and the rat are at the same node.
Then, after generating a request for that node, the rat moves to some other node.
In every step, the adversary generates a request for the node on which the cat is
located. Then the cat moves to another node, according to the probabilities on the
outgoing edges, from its current node. That is, the cat begins a random walk (deter-
mined by P) on the graph. When the cat finally catches the rat (i.e., moves to the
node occupied by the rat) the stage ends and a new stage begins.

252 BORODIN AND EL-YANIV

5 In the case of unbounded memory, any paging algorithm can be converted to a demand paging
algorithm having the same competitive ratio. This is not necessarily the case for the bounded memory
algorithms that follow but, again, one usually assumes demand paging for all paging algorithms.

6 We say ``blind'' since the cat will never know when the cat and rat are occupying the same node.
7 For the abstract cat and rat game that is now being defined, we will only assume that d is symmetric.

For the application to the paging problem, duv=1 for all u and v.

Let e=(i, j) be an edge in the graph. The stretch factor of e is the ratio hij �dij ,
where hij is the hitting time of nodes i and j, where the hitting time is defined to be
the expected distance of a random walk (according to P) starting at node i until
first landing on node j. The edge stretch factor of the graph G is the maximum
stretch factor of any edge in the graph. The stretch factor of a cycle _=u1 ,
u2 , ..., ul , u1 is the ratio CAT(_)�RAT(_) (i.e., the ratio between the cost paid by the
cat to the cost paid by the rat). The (cycle) stretch factor of the graph G is the
maximum stretch factor of any cycle in G. The following theorems, due to
Coppersmith, Doyle, Raghavan, and Snir [CDRS90] provide a lower bound on
the competitive ratio of any randomized algorithm for the cat.

Theorem 4 [CDRS90]. For every symmetric weighted N-node graph and for
every stochastic matrix P, the cycle stretch factor is at least N&1.

Theorem 5 [CDRS90]. Let G be any symmetric weighted graph and let CAT be
any online algorithm (i.e., let P be any stochastic matrix). If the cycle stretch factor
of a graph with respect to P is c, then there exists an adaptive adversary (and also
an oblivious adversary) that extracts a competitive ratio of c from the online player.

Coppersmith et al. [CDRS90] also prove a converse for Theorem 5, showing
that the stretch factor is also an upper bound on the competitive ratio attainable
by the cat.

For N=k+1, Coppersmith et al. [CDRS90] apply Theorems 4 and 5 to obtain
a lower bound of k for any memoryless paging algorithm against adaptive adver-
saries. The argument is as follows. The adversary chooses a cycle v0 , v1 , ..., vm&

having stretch factor c=k. We can assume that initially the adversary (i.e. the rat)
and on-line algorithm (the cat) have the same configuration (i.e. occupy the same
hole) and that this initial hole is one of the vi . Otherwise, the adversary moves its
hole to (say) v0 and continues to hit nodes other than v0 until the on-line algorithm
moves its hole to v0 . Whenever, the rat adversary and the cat on-line algorithm
occupy the same hole (say vi) on this cycle, the adversary requests vi and moves its
hole to v(i+1) mod m . The adversary then continues to hit the hole of the on-line
algorithm until it moves its hole to v(i+1) mod m . In this way, the adversary rat is
forcing the cat to take a random walk on the cycle. By definition of the cycle stretch
factor, this random walk will have expectation k times the weight of the cycle cost.
This result can be extended to oblivious adversaries. The problem with constructing
an oblivious adversary is that the adversary does not know where the cat will move
in any step, or how long the cat will take to find the rat. Instead, when the rat is
in some node v, the adversary can hit every node in the graph except v many times,
before hitting v and moving the rat. The number of times each node will be hit
should be large enough to guarantee that the on-line cat will pay at least twice the
stretch factor unless it reaches v. This way, the expected cost of the on-line player
is at least the expected cost conditioned on the on-line player going across that
cycle, which (as for the adaptive adversary) is k times the cost of the adversary. We
thus have

Theorem 6. For N=k+1 the optimal competitive ratio of a memoryless
behavioral paging algorithm against an oblivious adversary is k.

253RANDOMIZATION IN ON-LINE COMPUTATION

5.2. Memoryless Mixed Paging Algorithms

Here again we consider the paging problem with N=k+1. Consider the following
``permutation'' paging algorithm due to Chrobak, Karloff, Payne, and Vishwanathan
[CKPV91].8

Let ? be a cyclic permutation of [1, 2, ..., N] (i.e., the set of slow memory pages).
Let ?(m) denote the m-fold composition of the (cyclic) permutation ?. Consider the
following deterministic ``permutation'' algorithm.

Algorithm PERM? . Upon a page fault on page i evict page ?(m*)(i) such that
m* is the minimum m with ?(m)(i) currently in the cache.

We first note that PERM? is memoryless (as it does not store any information
between successive requests). Note also that when N=k+1 Algorithm PERM?

always evicts page ?(i) on a fault on page i. Further, when N=k+1, ?(m)(i) is the
configuration of PERM? after m faults, starting in the configuration i.

It is known [CKPV91] that Algorithm PERM? is k-competitive for all N>k.
Clearly, there are (N&1)! different permutation algorithms. Define MIX2PERM to
be the uniform mixture of two permutation algorithms, PERM?1

and PERM?2
,

where ?1=(123 } } } N) and ?2=(NN&1 } } } 1).

Theorem 7. For N=k+1 MIX2PERM is (k+1)�2-competitive against an
oblivious adversary.

The proof of Theorem 7 proceeds as follows. Since N=k+1 we can denote any
configuration of a permutation algorithm by an integer in [1, ..., N]. Specifically,
when N=k+1 the integer that represents a configuration is the index of the page
that is currently not in the fast memory. For all i and j define

d?(i, j)=arg min
m

?(m)(i)= j.

For example, if k=4 then d12345(2, 1)=4 and d54321(2, 1)=1.
Clearly, the range of the function d?(i, j) is [1, ..., k] and for i and j with i{ j,

we immediately have �?1
d?(i, j)+�?2

d?(i, j)=k+1.
Consider any request sequence. We apply a standard k-phase partition techni-

que.9 Since N=k+1, during each k-phase the optimal off-line algorithm incurs
exactly one fault. It follows that the adversary can benefit by always prolonging
each k-phase thus forcing a particular configuration on the on-line algorithm. We
thus seek to characterize the behavior of MIX2PERM with respect to such request
sequences. Denote by ,k(j) the set of all k-phases that do not include a request to
page j (that is, a sequence is in ,k(j) iff it includes references to all pages i{ j). We
need the following lemma.

254 BORODIN AND EL-YANIV

8 Chrobak et al. called this algorithm ROTATE.
9 The k-phase partition of a request sequence _ is its partition into segments as follows: phase 0 is the

empty sequence. For every i&1, phase i is the maximal sequence following phase i&1 that contains at
most k distinct page requests (see [FKL+91])

Lemma 3. Let , # ,k(j). Then, PERM?(,), the cost of PERM? to process ,, is
less than or equal to d?(i, j) if it starts at configuration i.

Proof. We prove the lemma by induction on n=|,| (where , is any suffix of a
k-phase in ,k(j)). The claim clearly holds for the empty suffix. Now, consider the
first request ,(1) of ,. If ,(1){i, PERM? does not change its configuration and by
the induction hypothesis, Zi=PERM?(,(2), ..., ,(n))�d?(i, j), with Zi denoting
the cost of PERM? for processing the suffix ,(2), ..., ,(n), starting at configuration
i. Otherwise, ,(1)=i and by the induction hypothesis Z?(i)�d?(?(i), j)=
d?(i, j)&1 so PERM?(,)=1+Z?(i)�d?(i, j).

Note that in the worst case, the inequality in Lemma 14 is replaced with equality.
Now, suppose that both permutation algorithms (that is, for permutations ?1 and
?2) work concurrently and start at configuration i. Consider any k-phase , # ,k(j).
It is clear that upon processing , both permutation algorithms will end in con-
figuration j. By Lemma 14 the total cost of both permutation algorithms to process
, is k+1. Hence the expected cost of MIX2PERM for this k-phase is (k+1)�2 and
Theorem 13 follows.

This completes the proof of the Theorem 13. The algorithm MIXPERM that
uniformly mixes all (N&1)! permutation algorithms is also (k+1)�2-competitive
for N=k+1 (see [BEY98]). Recently, Chi-Lok Chan (personal communication)
has shown that (k+1)�2 is a lower bound for mixed (and general) strategies of
memoryless demand paging and has exhibited counterexamples showing that
neither MIX2PERM nor MIXPERM can achieve (k+1)�2 for N>k+1.

6. THE YAO PRINCIPLE FOR ON-LINE ALGORITHMS

We refer the reader to Appendix C, where we review the game-theoretic defini-
tions and concepts underlying the Yao principle, as applied to finite games in
strategic form, viewing randomized algorithms as mixed strategies. In particular, we
now consider unbounded memory on-line randomized algorithms which can (as
games of perfect recall) be viewed as mixed strategies. The Yao principle can be
used for proving lower bounds on the competitive ratio of randomized on-line
algorithms against an oblivious adversary (and thus against all adversary types).
For a profit maximization problem the method is essentially the following: to
obtain a lower bound of c on the competitive ratio of the best randomized
algorithms it is sufficient to choose any probability distribution y over inputs
(request sequences) and to bound from below, by c, the ratio of average optimal
off-line profit to average on-line profit of any deterministic on-line algorithm (where
the expectations are taken with respect to y). In this case, c is a lower bound on
the competitive ratio of the best randomized on-line algorithm. As we shall see,
there are several variations of this method depending on whether the on-line
problem is finite (i.e., the sets of deterministic algorithms and possible request
sequences are finite), or not, and whether the payoff function is bounded, or
not.

255RANDOMIZATION IN ON-LINE COMPUTATION

As it turns out, the technique applied for profit maximization problems differs
somewhat from its counterpart for cost minimization problems. We first develop
the technique for profit maximization problems and then develop it for cost
minimization problems.

6.1. The Yao Principle for Profit Maximization Problems

A profit maximization request-answer game is called finite if both the set of deter-
ministic on-line algorithms and the set of request sequences are finite. Denote the
finite set of deterministic algorithms by A=[ALG1 , ALG2 , ..., ALGm]. Similarly,
let the finite set of possible request sequences be 7=[_1 , _2 , ..., _n]. We now define
the following two-person zero-sum game G. Player 1 is the on-line player and A

is the set of his pure strategies. Player 2 is the adversary and 7 is the set of his pure
strategies. It remains to define the payoff function. Here we have several
possibilities. Perhaps the most natural choice for the payoff function is h1(i, j)=
OPT(_j)�ALGi (_j). At the outset, this choice for the payoff function seems to be
natural since it specifies the competitive ratio explicitly. Nevertheless, this is not
quite the case. In particular, let us consider the right-hand side of Yao's inequality.
(See the inequality in displayed line (8) in Appendix C.) When applied to the
matrix H specified by h1 , we have

max
x(i)

min
j

Ex(i) _ OPT(_j)
ALGi (_j)& , (1)

where x=x(i) denotes a mixed strategy for player 1 and Ex(i)[}] denotes the expec-
tation with respect to x. Similarly we use the same notation for y= y(j) and
Ey(j)[}]. Notice that this expression that is supposed to specify the optimal
randomized competitive ratio is not quite compatible with the standard definition
of the competitive ratio. In particular, according to the ``standard'' definition, the
optimal randomized competitive ratio is

max
x(i)

min
j

OPT(_ j)
Ex(i)[ALGi (_ j)]

.

But in general for a random variable X, E[1�X]{1�E[X]. Hence, one cannot
prove lower bounds on the standard randomized competitive ratio using this
definition.10 As seen in the following example,11 this confusion may lead to
erroneous conclusions.

Example 3 (Wrong use of the Yao Principle). Consider the following on-line
problem given by

256 BORODIN AND EL-YANIV

10 But of course, it is certainly possible to define the randomized competitive ratio for a profit maxi-
mization problem by using the form (1).

11 This example was given to us by K. Pruhs (personal communication).

_1 _2 } } } _i } } } _k _k+1

ALG1

k
1

k
2

} } }
k
i

} } }
k
k

2k
2k

ALG2

k
k

k
k

} } }
k
k

} } }
k
k

2k
k

The (i, j) entry of this matrix is a fraction of the form OPT(_j)�ALGi (_j) which
corresponds to the payoff function h1 . Consider the mixed strategy for the
adversary,

y=\ 1
kHk

, ...,
1

kHk
, 1&

1
Hk + ,

where Hk is the kth harmonic number, Hk=1+1�2+ } } } +1�k. It is not hard to
check that for i=1, 2, Ey(j)[OPT(_j)�ALGi (_j)]�2&o(1). Hence, we have by the
Yao Principle that maxx(i) minjEx(i)[OPT(_ j)�ALGi (_j)]�2&o(1). Nevertheless,
it is easy to verify that mixing ALG1 and ALG2 with probabilities 1�3 and 2�3 is
1.5-competitive.

A slight modification of the payoff function (i.e., taking 1�h1 instead of h1 and
letting Player 1 be the maximizer) yields a correct ``Yao's principle.'' Moreover, we
can formulate the Yao Principle using a different game. This is summarized in the
following theorem whose proof is given in Appendix D.

Theorem 8 (Yao principle: Finite profit problems). Let G be any finite12

request-answer game. Let ALG be any on-line randomized algorithm for G and let
R� OBL(ALG) be the competitive ratio of ALG against an oblivious adversary. Let y(j)
be any probability distribution over request sequences. Then,

ROBL(ALG)�max {min
i

Ey(j)[OPT(_j)]
Ey(j)[ALGi (_ j)]

, min
i

1

Ey(j) _ALGi (_j)
OPT(_j) &=

Example 4. In continuation to Example 3 we now show how to use Theorem 8
to obtain a correct (and tight) lower bound to the problem of Example 3. Consider
the following mixed strategy y for the adversary with yi , the ith component of y
being

1�2i+1, i=1, 2, ..., k&1,

yi={1�2k, i=k,

1�2, i=k+1.

257RANDOMIZATION IN ON-LINE COMPUTATION

12 The finiteness requirement ensures that the von Neumann minimax theorem holds. It can be relaxed
whenever the request-answer game can be appropriately formulated as a two-person zero-sum game with
a payoff function that guarantees minimax (e.g., when this payoff function is continuous; see [Rag94]
for other classes of such payoff functions).

Clearly, � i yi=1 and it is not hard to see that a lower bound of 3�2&o(1) can be
proved, using this distribution, via Theorem 8 (using the ratio of expectations).

Theorem 8 can be applied only when the von Neumann minimax theorem
applies. The minimax theorem always holds with respect to finite games. For
infinite games the minimax theorem is known to hold for some particular types of
games (e.g., when the payoff function is continuous) but does not hold in general.13

Hence, one cannot apply Theorem 8 without verifying that the minimax theorem
applies. Luckily, for unbounded (and therefore infinite) games we have the following
version of the Yao principle that is somewhat more complicated to state but does
not rely at all on the minimax theorem. This theorem is an adaptation of a cost
minimization variant proved by Borodin, Linial, and Saks [BLS92] for metrical
task systems. The proof of the theorem is given in Appendix E.

Theorem 9 (Yao principle: Unbounded Profit Problems). Let G be any unbounded
payoff maximization request-answer game. Let ALG be any randomized online algo-
rithm in G. Let y(j) be any probability distribution over the set of all finite request
sequences, [_j]. For each positive integer n, let yn(j) be the marginal distribution over
the set of all request sequences of length n [_n

j].14 Suppose that two conditions are
satisfied:

lim sup
n � �

Eyn(j)[OPTx(_n
j)]

supi Eyn(j)[ALGi (_n
j)]

�c, (2)

lim sup
n � �

Eyn(j)[OPT(_n
j)]=�. (3)

Then, R� OBL(ALG)�c.

6.2. The Yao Principle for Cost Minimization Problems

For cost minimization problems we have two theorems analogous to Theorems
8 and 9 (i.e., for finite and unbounded request-answer games). The theorems for
cost minimization and their proofs are almost analogous to the profit maximization
theorems. The main difference is with the finite case where, in the case of cost mini-
mization, we do not resort to the inversion of the ``natural'' payoff function (h1 in
the case of profit maximization).

Theorem 10 (Yao principle: Finite Cost Problems). Let G be any finite15 cost
minimization request-answer game. Let ALG be any online randomized algorithm for
G. Let y(j) be any probability distribution over request sequences. Then,

R� OBL(ALG)�max {min
i

Ey(j)[ALGi (_ j)]
Ey(j)[OPT(_j)]

, min
i

Ey(j) _ALG i (_ j)
OPT(_j) &= .

258 BORODIN AND EL-YANIV

13 See [Rag94] for a survey that lists all known types of games for which the minimax theorem holds.
14 The marginal distribution yn(j) is obtained by normalizing probabilities of sequences of length n

with respect to the total sum of these probabilities.
15 Here again the finiteness requirement ensures that the von Neumann minimax theorem holds and

can be relaxed whenever the request-answer game can be formulated as a two-person zero-sum game
with a payoff function that guarantees minimax.

The following theorem is due to Borodin, Linial, and Saks [BLS92].

Theorem 11 (Yao principle: Unbounded Cost Problems). Let G be any unbounded
cost minimization request-answer game. Let ALG be any randomized online algorithm
for G. Let y(j) be a probability distribution over the set of all finite request sequences,
[_j]. For each positive integer n, let yn(j) be the marginal distribution over the set
of all request sequences of length n [_n

j]. Suppose that two conditions hold:

lim inf
n � �

infi Ey(j)[ALGi (_n
j)]

Ey(j)[OPT(_n
j)]

�c (4)

lim sup
n � �

Ey(j)[OPT(_n
j)]=�. (5)

Then, R� OBL(ALG)�c.

7. CONCLUDING REMARKS

The use of the Yao principle for on-line algorithms can be a source for some
confusion. We hope that by formulating this principle rigorously in the context of
competitive on-line analysis we have helped to clarify the applicability of the
principle.

The issue of bounded recall, non-linear games and in general, of games involving
bounded memory algorithms is not well studied in game theory.16 Nevertheless, it
is of fundamental importance for the theory of computation. Clearly, bounded
memory (randomized) algorithms play an important role in algorithm design and
analysis. For example, most real-time on-line algorithms are of bounded memory.
Thus, this paper only scratches the surface of what we believe to be a wide and
important area of research, where we seek to understand the computational power
of the various kinds of (bounded memory) randomized algorithms.

To conclude this paper we would like to suggest several directions for future
research:

v Games of extensive form are far from satisfactory for representations of
bounded memory randomized algorithms. (For example. the reader may want to
try to model a few stages of the ``competitive game'' of a k-server algorithm with
three bits of memory against an adversary using extensive form with the
appropriate information sets.) It would be of great interest to devise a more suitable
model for games involving bounded memory algorithms.

v Find other examples of natural on-line games where optimal (memory
bounded) behavioral, mixed (and general) algorithms attain different competitive
ratios. In particular, do the results for demand paging extend to non demand
paging algorithms?

v Characterize two-person zero-sum on-line games of imperfect recall (games
involving bounded algorithms) for which Kuhn's theorem is still valid.

259RANDOMIZATION IN ON-LINE COMPUTATION

16 Two recent papers that do relate to these issues are [PR94; AHP96].

APPENDIX A: SOME FIGURES

FIG. 1. One person game with incomplete information and imperfect recall.

FIG. 2. Two-person zero-sum game distinguishing between general, mixed and behavioral strategies.

APPENDIX B: GAMES IN EXTENSIVE AND STRATEGIC FORMS

There are two primary mathematical abstractions of games, called ``extensive''
and ``strategic.'' The extensive form representation of a game is what is commonly
referred to as a ``game tree.'' It explicitly specifies the rules of the game via the order
of the moves for the various players, the information and choices available to a
player whenever it is one's turn to move and the payoff obtained by all players in
any possible play. Indeed, one possible way to depict or imagine a game in
extensive form is via a tree.

A game in strategic form (also called ``normal form'') is what is commonly
referred to as a ``matrix game.'' As the name suggests, this representation abstracts
away the individual moves and focuses only on strategies. As a more abstract
representation of a game it provides an important theoretical tool.

For simplicity, the formulations that follow deal only with finite games that have
a finite set of players and finite total number of decision alternatives for each player.
Note that the modeling of (competitive analysis of) on-line problems requires in

260 BORODIN AND EL-YANIV

general infinite games (and only two players, the on-line player and the adversary).
All the formulations that follow generalize naturally to infinite enumerable games.
Later we shall discuss generalizations for infinite games with larger cardinality.

B.1. Games in Extensive Form

An n-person game in extensive form consists of a set N=[1, 2, ..., n] of players
and a rooted tree T called the game tree. The game tree has the following structure:

(1) The set of internal nodes of T is partitioned into n+1 subsets Pi,
i=0, 1, ..., n, where for each i�1 the members of Pi are called ``the (decision) nodes
of player i.'' A node in Pi is called a chance node (or a nature node) and for each
such node there is an associated probability distribution over its outgoing edges;

(2) All the outgoing edges to descendants of each internal node associated
with a player are distinctly labeled by action labels;

(3) For each i=1, 2, ..., n, the set Pi of decision nodes is partitioned into ki

information sets, U i
1 , U i

2 , ..., U i
ki

, such that for each information set U i
j all the deci-

sion nodes in U i
j are ``isomorphic'' in the sense that they have the same number of

outgoing edges, and these outgoing edges have the same labels.

(4) Each leaf of T is labeled by an n-tuple (h1, h2, ..., hn) of payoffs.

Under the following interpretation the above model17 gives a complete descrip-
tion of each ``play'' of the game. We define a play of the game 1 as any path from
the root to a leaf with the understanding that this path was obtained by the players
(and chance) as follows. First note that the role of chance moves is straightforward.
If, during a play of the game, a chance node v is reached, the probability distribu-
tion associated with v is ``invoked'' to choose one outgoing edge of v. The role of
players' decision nodes and payoffs is self-explanatory. Now, to better understand
the role of information sets, consider the following interpretation. Imagine that each
player i is in command of ki ``agents'' that play the game for him. For j=1, 2, ..., ki ,
the j th agent (of player i) is in charge of all decision nodes in the j th information
set U i

j . Before the start of the game player i instructs the agents and gives each of
them a strategy. Then after the game starts the agents cannot communicate with
each other (and with their boss). Now suppose that the play of the game has
progressed to a certain node v # U i

j �Pi; that is, the next move should be played by
the j th agent of player i, who must choose one outgoing edge of node v. At this
time the only information available to this agent is the description of the game 1
and instructions obtained from his ``boss'' (player i) before the start of the game. In
particular, all nodes in U i

j appear identical to this agent since he is not told which
path led to his information set. Since all nodes in the same information set are
``isomorphic'' the agent specifies one choice that is valid for any node in the
information set.

261RANDOMIZATION IN ON-LINE COMPUTATION

17 In fact, as part of the definition one must add the requirement that the extensive form description
is ``common knowledge'' among the n players. This means that all players know it, each player knows
that all other players know it, each one knows that everyone else knows it and so on (ad infinitum). For
a discussion why this requirement is necessary see Myerson [Mye91, Section 2.7].

The introduction of information sets allows for descriptions of complex games in
which the players do not have complete information on the actions of the other
players and even their own previous actions. Formally we say that a game is of
complete information if and only if each information set is a singleton. Otherwise we
say that the game is of incomplete information. Examples of games of complete
information are chess and tic-tac-toe. Examples of games of incomplete information
are bridge and poker. Also, any off-line request answer game is a game of complete
information and any on-line request answer game is a game of incomplete informa-
tion.

B.2. Games in Strategic Form

An n-person game in strategic form consists of a set N=[1, 2, ..., n] of players
and for each player i, i=1, 2, ..., n, there is a set S i of pure strategies. Also there is
a function H : S1_S 2_ } } } _Sn � Rn, called the payoff function. Each vector
s # S1_S 2_ } } } _Sn is called a pure strategy profile and for each strategy profile s
the i th coordinate H*(s) of H(s) specifies the payoff for the i th player for a play
where the players choose their respective strategies according to s.

As may be expected, the transformation from an extensive form to strategic form
is many-to-one. Indeed, going from extensive form to strategic form abstracts away
some information given in the extensive form (e.g., the order of the moves) so that
some information is lost.18 However, this transformation always preserves the sets
of pure and mixed strategy sets and their (expected) payoffs.

A key step in transforming an extensive form into strategic form is defining the
``pure strategies'' in the extensive form game. Intuitively, in an extensive form game
a pure strategy for a player is a list of edge labels, one for each of his information
sets. Formally, let 1 be an n-person game in extensive form. Consider player i and
let U i=[U i

1 , U i
2 , ..., U i

ki
] be the set of his k i information sets. Each information set

U i
j contains decision nodes that have the same number of outgoing edges and we

denote the set of choices (labels of outgoing edges) of each node in U i
j by

D(U i
j)=[1, 2, ..., d i

j]. Each vector (s1 , s2 , ..., ski
), where sj # D(U i

j) is a pure strategy
of player i. That is, player i has >ki

j=1 d i
j pure strategies. Denote by S i the set of

pure strategies of player i. It remains to define the payoff associated with a pure
strategy profile s=(s1, s2, ..., sn) of the n players. For each pure strategy profile s,
and for each leaf l denote by p(l | s) the probability that the leaf l is reached, given
the profile s. For each leaf l denote by H(l) the vector of expected payoffs
associated with l (as defined by the extensive form). Then, the vector payoff is

H(s)= :
leaf l

p(l | s) H(l).

262 BORODIN AND EL-YANIV

18 In the case where the extensive form has chance nodes, the payoffs are random variables and there-
fore a transformation to strategic form results in a payoff matrix whose entries are expected payoffs (i.e.,
the first moment) so we do lose probabilistic information (i.e., the rest of the moments). (Of course, we
could put a probability distribution in each entry.)

APPENDIX C: MINIMAX THEOREM AND THE YAO PRINCIPLE

The competitive analysis of an on-line problem can be seen as a solution of a
two-person zero-sum game. In particular, given any finite request-answer game (say
of profit maximization) one possible way to view it as a two-player zero-sum game
is the following. The first player who is the on-line player seeks a strategy that max-
imizes the payoff defined to be the reciprocal of its competitive performance; that
is, the payoff is the ratio of on-line profit to optimal off-line profit.19 The adversary
seeks a strategy that minimizes the on-line player's payoff. Thus, the two players are
in strict opposition and the game is zero-sum.

Unless otherwise is stated, we shall be concerned from now on with games of
perfect recall where we have an equivalence between general, mixed, and behavioral
strategies (see Theorem 2). In general, the theorems stated in this section, such as
the minimax theorem do not apply, with respect to behavioral strategies under
games of imperfect recall (and nonlinear games). However, under perfect recall we can
assume, without loss of generality, that all games are given in their strategic form.

Let G=(hij) be a finite two-person zero-sum game. In what follows the row (resp.
column) index i (resp. j), enumerates the pure strategies of the first (resp. second)
player. For mixed strategies x=(x1 , x2 , ..., xm) and y=(y1 , y2 , ..., yn) for players 1
and 2, respectively, we define

H(x, y)=HG(x, y)= :
m

i=1

:
n

j=1

h(i, j) xi yj ,

the expected payoff for player 1 under x and y. The game with players 1 and 2
using H(x, y) as payoff function is called the mixed extension of G.

Theorem 12 (von Neumann). Every finite two-person zero-sum game has a
value. That is,

max
x

min
y

H(x, y)=min
y

max
x

H(x, y). (6)

One interpretation of the minimax theorem is that in any two-person zero-sum
game any player does not lose anything by revealing his best mixed strategy before
the start of the game. Further, a simple observation is that if player 1 (resp. player
2) knows that player 2 (resp. player 1) uses (an optimal) mixed strategy, one of his
optimal (mixed) strategies is deterministic. This is established in the following
simple lemma (which is a corollary of the minimax theorem).

Lemma 4 (Loomis' lemma). Let x* and y* be optimal mixed strategies for
players 1 and 2. Then,

max
i

H(i, y*)=min
j

H(x*, j)=H(x*, y*).

263RANDOMIZATION IN ON-LINE COMPUTATION

19 There is a reason for this particular definition. In particular, one cannot take the payoff function
to be the optimal off-line profit over the on-line profit (so that player 1 is the minimizer). See Section 6
for details.

Alternatively,

min
y

max
i

H(i, y)=max
x

min
j

H(x, j)=H(x*, y*). (7)

Proof. Set v=H(x*, y*), the value of the game. By Theorem 12, v is well
defined. Clearly, for all j, v�H(x*, j). Hence v�minj H(x*, j). Assume, by con-
tradiction, that v<minj H(x*, j). Then for all j, v<H(x*, j). Setting y*=
(y1*, y2* , ..., yn*) we thus have

v= :
n

j=1

vyj*< :
n

j=1

H(x*, j) y j*=H(x*, y*).

But this clearly contradicts the minimax theorem (Theorem 12). Hence,
v=minj H(x*, j). An analogous arguments proves that v=mini H(i, y*).

Lemma 4 entails a simple but very useful conclusion��the ``Yao principle.'' In
particular, from the equality (7) it follows that for any mixed strategy y for player 2,

max
i

H(i, y)�max
x

min
j

H(x, j). (8)

This means that we can obtain a bound20 on player 1's best (randomized) payoff
by calculating his best deterministic payoff with respect to any mixed strategy for
player 2. We refer to this inequality (8) as Yao's inequality. The application of Yao's
inequality (as first applied by Yao in [Yao77]) as a tool for obtaining bounds is
now routine in standard complexity theory. Nevertheless, for the purpose of
competitive analysis it is somewhat delicate.

APPENDIX D: PROOF OF THEOREM 8

We first show that R� OBL(ALG) is at least

1

maxi Ey(j) _ALGi (_ j)
OPT(_ j) &

.

Formulate the request-answer game as a two-person zero-sum game using the
payoff function

h2(i, j)=1�h1(i, j)=
ALGi (_j)
OPT(_j)

264 BORODIN AND EL-YANIV

20 Since in this game player 1 is a (profit) maximizer this bound is an upper bound (i.e., a negative
result concerning player 1's performance). When player 1 is a (cost) minimizer Yao's inequality would
be mini H(i, y)�minx max j H(x, j) for any mixed strategy y.

(i.e., using h2 the on-line player is the maximizer). Suppose that for some mixed
strategy y(j) for the adversary we have

1
c

�max
i

Ey(j) _ALGi (_ j)
OPT(_ j) & .

By Yao's inequality (8) we thus have

1
c

�max
x(i)

min
j

Ex(i) _ALGi (_j)
OPT(_j) &

=max
x(i)

min
j

Ex(i)[ALGi (_j)]
OPT(_ j)

�
1

R� OBL(ALG)
.

We now prove that

min
i

Ey(j)[OPT(_j)]
Ey(j)[ALGi (_j)]

is also a lower bound on the (best) randomized competitive ratio. For each con-
stant c consider a two-person zero-sum game G(c) between the on-line player
(player 1) against the adversary (player 2). For each pure strategy pair i and j the
payoff to the on-line player is

h3(i, j)=c } ALGi (_j)&OPT(_ j).

Again, the on-line player is the maximizer. By the minimax theorem the game G(c)
has a value V(c) and by Loomis' lemma (Lemma 4),

V(c)=max
x(i)

min
j

Ex(i)h3(i, j).

Clearly V(c)�0 if and only if the best randomized algorithm for the on-line player
is c-competitive. Notice that for any mixed strategy y(j) for the adversary,

0>max
i

Ey(j)[h3(i, j)]

if and only if

min
i

Ey(j)[OPT(_j)]
Ey(j)[ALGi (_j)]

>c. (9)

265RANDOMIZATION IN ON-LINE COMPUTATION

Suppose that the inequality (9) holds. Then by Yao's inequality (8)

0>max
i

Ey(j)[h3(i, j)]�
Ey(j)[OPT(_ j)]
Ey(j)[ALG i (_ j)]

=V(c)

and, therefore, the best randomized algorithm for the on-line player is not
c-competitive.

APPENDIX E: PROOF OF THEOREM 9

Suppose that (2) and (3) hold with respect to some probability distribution y(j).
Assume, by way of contradiction, that the competitive ratio of the (randomized)
algorithm ALG (represented by the distribution x(i)) is c$<c. By definition, there
exists a constant : such that

c$ } Ex(i)[ALGi (_n
j)]�OPT(_n

j)+:

for each of the sequences in [_n
j]. Taking the expectation of both sides with respect

yn(j) we obtain

c$ } Eyn(j)Ex(i)[ALG i(_n
j)]�OPT(_n

j)+:.

Since the profits ALG(}) are nonnegative we can exchange the order of the expecta-
tions (whether they are defined by sums or integrals) in the left-hand side,

c$ } Ex(i)Eyn(j)[ALG i(_n
j)]�OPT(_n

j)+:.

Set

An*=sup
i

Eyn(j)[ALGi (_n
j)].

Clearly,

c$ } An*�c$ } Ex(i)Eyn(j)[ALGi (_n
j)].

Hence, for all sufficiently large n (for which An*)>0)

Eyn(j)[OPT(_n
j)]

An*
+

:
An*

�c$<c.

By assumption (3) and since ALG is c$-competitive it must be that :�An* � 0. But
this contradicts assumption (2). It follows that R� OBL(ALG)�c.

266 BORODIN AND EL-YANIV

ACKNOWLEDGMENTS

We thank Kirk Pruhs for Example 3 which inspired us to think of the Yao principle in this context.
Also, we thank Robert Aumann and Adi Rose� n for helpful discussions. Finally, we are grateful to
Chi-Lok Chan and Micheal Loui for many suggestions and corrections to an earlier verion of this paper.

Received April 21, 1997; final manuscript received November 3, 1998

REFERENCES

[AHP96] Aumann, R. J., Hart, S., and Perry, M. (1996), ``On the Absent-Minded Paradox, 1996,''
discussion paper, Center for Rationality, The Hebrew University.

[Aum64] Aumann, R. J. (1994), Mixed and behavior strategies in infinite extensive games,
in ``Advances in Game Theory'' (M. Dresher, L. S. Shapley, and A. W. Tucker, Eds.),
Vol. 1, pp. 627�650, Princeton Univ. Press, Princeton, NJ.

[BBR+90] Beame, P., Borodin, A., Raghavan, P., Ruzzo, W. L., and Tompa, M. (1990), Time-space
trade-offs for undirected graph connectivity, in ``Proceedings of the 31st Annual
Symposium on Foundations of Computer Science,'' pp. 429�438.

[BDBK+94] Ben-David, S., Borodin, A., Karp, R. M., Tardos, G., and Wigderson, A. (1994), On the
power of randomization in on-line algorithms, Algorithmica 11, 2�14.

[BEY98] Borodin, A., and El-Yaniv, R. (1998), ``On-line Computation and Competitive Analysis,''
Cambridge Univ. Press, Cambridge.

[BLS92] Borodin, A., Linial, N., and Saks, M. (1992), An optimal on-line algorithm for metrical
task systems, J. Assoc. Comput. Mach. 39, 745�763.

[CDRS90] Coppersmith, D., Doyle, P., Raghavan, P., and Snir, M. (1990), Random walks on
weighted graphs, and application to on-line algorithms, in ``Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing,'' pp. 369�378.

[CKPV91] Chrobak, M., Karloff, H. J., Payne, T., and Vishwanathan, S. (1991), New results on
server problems, SIAM J. Discrete Math. 4(2), 172�181.

[FKL+91] Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A., Sleator, D. D., and Young,
N. E. (1991), On competitive algorithms paging algorithms, J. Algorithms 12, 685�699.

[Isb57] Isbell, J. R. (1957), Finitary games, in ``Contributions to the Theory of Games''
(M. Dresher, A. W. Tucker, and P. Wolfe, Eds.), Vol. III, pp. 79�96, Princeton Univ.
Press, Princeton, NJ.

[Kuh53] Kuhn, H. W. (1953), Extensive games and the problem of information, in ``Contributions
to the Theory of Games'' (H. W. Kuhn and A. W. Tucker, Eds.), Vol. II, pp. 193�216,
Princeton Univ. Press, Princeton, NJ.

[Mye91] Myerson, R. B. (1991), ``Game Theory: Analysis of Conflict,'' Harvard Univ. Press,
Cambridge, MA.

[Poo96] Poon, C. K. (1996), ``On the Complexity of the st-Connectivity Problem,'' Ph.D. thesis,
University of Toronto.

[PR94] Piccione, M. and Rubinstein, A. (1994), ``On the Interpretation of Decision Problems
with Imperfect Recall,'' Working Paper No. 24�94, The Sackler Institute for Economic
Studies, Tel-Aviv University.

[Rag94] Raghavan, T. E. S. (1994), Zero-sum two-person games, in ``Handbook of Game Theory''
(R. J. Aumann and S. Hart, Eds.), Vol. 2, chapter 20, pp. 735�759, Elsevier Science
Publishers B.V.

[Yao77] Yao, A. C. (1977), Probabilistic computations: Towards a unified measure of complexity,
in ``Proceedings of the 18th Annual Symposium on Foundations of Computer Science.''

267RANDOMIZATION IN ON-LINE COMPUTATION

	1. INTRODUCTION
	2. RANDOMIZED STRATEGIES: MIXED, BEHAVIORAL AND GENERAL
	3. TWO KNOWN EQUIVALENCE THEOREMS FOR LINEAR GAMES AND GAMES OF PERFECT RECALL
	4. ON-LINE ALGORITHMS AND COMPETITIVENESS
	5. MIXED AND BEHAVIORAL MEMORYLESS PAGING ALGORITHMS
	6. THE YAO PRINCIPLE FOR ON-LINE ALGORITHMS
	7. CONCLUDING REMARKS
	APPENDIX A: SOME FIGURES
	FIG. 1
	FIG. 2

	APPENDIX B: GAMES IN EXTENSIVE AND STRATEGIC FORMS
	APPENDIX C: MINIMAX THEOREM AND THE YAO PRINCIPLE
	APPENDIX D: PROOF OF THEOREM 8
	APPENDIX E: PROOF OF THEOREM 9
	ACKNOWLEDGMENTS
	REFERENCES

