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I Introduction 

It is well known from the work of 
Motzkin [55], Belaga [587 and Pan [667, 

th 
that "most" n degree polynomials 
p E R [ x ]  r e q u i r e  a b o u t  n / 2  x ,  ÷ o p s  
and  n ± ops  and  t h a t  t h e s e  b o u n d s  c a n  
a l w a y s  be  a c h i e v e d  w i t h i n  t h e  f r a m e w o r k  o f  

p r e c o n d i t i o n e d  e v a l u a t i o n  ( 1 ) .  More  p r e -  
c i s e l y ,  i f  p c a n  be  c o m p u t e d  u s i n g  l e s s  

r . . q  

than I~] ×' ÷ or less than n ± ops, 

then the coefficients of p are algebrai- 
cally dependent. 

However, it can be argued that only 
polynomials in Q[x] are of any computa- 
tional concern. Moreover, one would like 
"practical tests" to determine the comple- 
xity of a specific polynomial. With 
respect to non scalar * ops, Paterson 
and Stockmeyer [71] are able to show that 
approximately ¢-n such ops are required 

for "most" n th degree polynomials in 
th 

Q[x] . Also they show that every n 
degree polynomial can be computed in about 

non scalar * ops. In Q[x] , the 
scalar * ops can be simulated by (an 
unbounded number of) ± ops. Strassen 
[72] uses a careful analysis of the 
Motzkin-Belaga argument (and also of the 
corresponding development in Paterson- 
Stockmeyer) to exhibit specific polynomials 
Z[x] whose required complexity is nearly 

(1) See Knuth [69] or Revah [74] for a 
review. We use the followin~ nota- 
tion: R, Q, C for the field of 
reals, rationals, complex numbers, 
respectively; F[Yl,...,ym] is the 

rzng of polynomials, F[[y I .... ,ym ]] is 

the power series ring and F(Yl,...,ym) 

the field of rational functions in 
yl,...,ym over F . We will also use 

ops to denote either a x or ÷ 
op. 

that obtainable by general preconditioning 
methods. For example, any program for 

3 
n 2 2 i n  i 

p(x) = ~ x requires 
i=0 

i) either n - 4 * ops and n - 4 + 

ops or at least n2/log n total 
ops. 

ii) at least /-n non scalar ~ ops. 

That is, if one chooses to tradeoff ± 
ops to reduce the * complexity of p(x) , 
then it can be done but only with an 

exorbitant cost of at least n2/log n + 
ops . 

The situation when counting ± ops 
with the potential of unlimited * ops, 
is not as clear. In fact, we are not 
aware of any previous results which show 
that not all p E Q[x] are computable in 
(say) 4 + ops. A "useable" characteri- 
zation of precisely which polynomials are 
computable in 4 ± ops is more than a 
tedious exercise. Does an analogue of 
Paterson-Stockmeyer hold? That is, can 
the output of a program (which is computing 

th 
an n degree polynomial) using k ± 
ops but an unbounded number of * ops be 

n 
x i represented by [ qi(~l'''''st) for 

i=0 
some fixed polynomials {qi } where the 

number t of parameters {~i } is bounded 

by some function of k ? We shall show in 
section III that this is the case with 

t ~ k 2 but unlike the situation in 
Paterson-Stockmeyer, we do not yet know if 
the use of unlimited * ops can in ~eneral 
reduce the ± complexity of all p ~ Q[x] 

While the arguments based on algebraic 
dependence provide us with our best lower 
bounds thus far, a different approach of 
independent interest is taken in section 
IV. Namely, we are able to show that the 
number of ± ops required to compute any 
p ~ R[x] is bounded below by a function 
of the number of distinct real zeros of 
p . The potential (e.g., for producing non 
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linear lower bounds) and limitations of 
this approach will be discussed. 

II The Model and a Review of Basic Results 
Based on Algebraic Independence 

We follow informally the notation of 
Winograd [70] and say that we are interested 
in computing p E Fix] over G(x) given 
G u {x} where G is a field. That is, we 
think of a program P as a sequence of 
statements <Sl,...,Sm > ; each s i is of 

the form Pi op qi where 

op E {+, -, x, ÷} and each operand Pi ' 
qi is either 

i) in G u {x} ; i.e., a scalar 
constant or 'x' 

ii) a previously computed s. (j<i) 
3 

P computes p e Fix] if p = s (as 
elements of F[x] v G(x) ). m 

In III, the choice of F & G are not 
that essential but for definiteness we can 
take F = Q and G = C . Section IV will 
depend essentially on the choice G = R . 

Definition I: Let H be an extension 
field of F = Q . Ul,...,u m s H are 

algebraically dependent (over Q ) if 
a non trivial f E Z[yl,...,y t] such 

that f(ul,...,u t) = 0 . 

Lemma 1 (see Van der Waerden [64]): 

Let pl,...,p m e Q(al,...,a t) If 

m > t , then pl,...,pm are alg. dep. 

For the sake of completeness and motivation, 
let's briefly sketch the lower bound of 
Paterson and Stockmeyer. Assuming no ÷ , 
we can construct a "canonical" program 
using k non scalar x ops; namely: 

+i s_ 1 

s0 + x 

s i ÷  ( ~ a!  x j < i  j ' i s j )  ( ~ a'.' j<i ]'isj) 

÷ X~ sj 
Sk+l j-<k ]'k+l 

r _ 2k 
pj (~)x j where r < Then Sk+ 1 j =0 

and  ~ = < a ' _ l , l , a ~ , l , a ' _ ' l , 1 , . . . , a k , k + l  > 

= <a 1 , . . . , a t >  w h e r e  t i s  

a p p r o x i m a t e l y  k 2 

T h e o r e m  1 ( P a t e r s o n  & S t o c k m e y e r . ) :  
I f  n + l  > t , t h e n  3 p E I x ]  n o t  
doable in k non scalar x ops. 

n "x j n 
Proof: Let p(x) = ~ a = ~ pj (~)x j 

p=0 J p=0 

for some choice of ~ if p is 
computable in k non scalar x ops. 

But <p0(~),... ,pn(~)> are alg. dep. if 

n+l > t and hence 7 non trivial 

f ~ Z[Y 1 ..... Yn+I ]: f(P0(~),--.,Pn(~)) = 

0. If every p ~ Q[x] were doable in k 
non scalar x ops, then f(q0,...,qn) = 0 

for all <q0'''''qn > s Qn+I Hence 

f = 0 because Qn+I is dense in R n+l 
and f is continuous. This contradicts 
the assumption that f be non trivial. 

As Paterson and Stockmeyer observe, 
if we can produce a finite number, say t , 
of canonical programs for some measure 
(rather than just one) then the same type 
of results will follow; for the "alg. dep. 
of each program" is characterized by some 
fi ~ Z[YI'''''Yt I and hence the coeffi- 

cients of any n th degree polynomial 
doable in k ops, will be a zero of 

f = ~ f .  
i=l 1 

From these observations, the following 
fact follows directly: 

Fact i: Let ~ : N ÷ N be any function. 

a) There are n th degree polynomials 
in Q[x] which either require 

In-~ * ops or more than ~(n) 

± ops. 

b) There are n th degree polynomials 
in QFn] which either require n 
± ops, or more than @(n) * ops. 

In either case, once @(n) is given, 
there are only a finite number of canonical 
programs each having the appropriate 
number of parameters. 

III A Lower Bound for ± Ops Based on 
Algebraic Dependence 

We shall now consider the situation 
when the number of * ops is not bounded 
by any function of the degree.----One might 
argue that this is a totally impractical 
hypothesis, but we believe that the ques- 
tions arising out of the developments in 
sections III and IV are more than academic. 
The difficulty in trying to bound ± ops 
is suggested by the simplest example. Let 

s ÷ (x+a) u represent the first ± step 
(say u ~ N ). If we treat u as a 

parameter, then s = a u + uaU-lx + 
(~)  u - 2  2 

a X + . . . .  

We cannot immediately view s as 

pj (a)x j with the pj being 
j=0 
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polynomials. Nor can we treat each ~, 2, 
3 
, ... as a parameter for then the number 

of parameters will not be a bounded function 
of ± ops. We might want to argue that u 
cannot be too large without introducing 
some inefficiency; but this is just the 
sort of question we cannot yet answer. 

Let's consider a "canonical" k ± 
step Drogram: 

T O = 1 

S O = x 

= s  j'i } 
Ti j<i J 

l ~ i ~ k  

Si = Yi + Ti 

m. 
Tk+l = Yk+l ~ S'J'k+l represents 

j ~ k  J 

t h e  o u t p u t  w h e r e  e a c h  m. . e Z . 
] , 1  

( A l l o w i n g  n e g a t i v e  e x p o n e n t s  a c c o u n t s  f o r  
+ a n d  a l s o  a l l o w s  a s i m p l i f i c a t i o n  i n  t h e  
n u m b e r  o f  p a r a m e t e r s  i n t r o d u c e d .  On t h e  
o t h e r  h a n d ,  we w i l l  h a v e  t o  v i e w  t h e  c o m p u -  
t a t i o n  a s  t a k i n g  p l a c e  o v e r  s o m e  p o w e r  
s e r i e s  G [ [ x - @ ] l  a s  i n  S t r a s s e n  [ 7 2 1  i n  
o r d e r  t o  a c c o m m o d a t e  t h e  n e g a t i v e  
e x p o n e n t s . )  

We want to express Tk+ 1 as a polyno- 

mial in x whose coefficients are in some 
H = Z(~l,...,~t) Let's concern ourselves 

th 
only with the computation of n degree 
polynomials. Suppose P computes p over 
G[x] . Then P correctly computes p 

over G[x] mod (x n+l) ; i.e., with all 
higher order terms dropped throughout the 
computation. 

The example s ÷ (x+~) u illustrates 
the approach to be taken. We can consider 
n+2 cases: u = 0, ..., u = n, u > n . It 
is clear that for each u = i (i_<n) that 

we can represent s mod (x n+l) as some 
n 

pj (~)x i For u > n , we have 
j=0 

u u-I (u) s = ~ + u~ x + ... U-nxn 

n 
= [ rj (~,B,u)x j where B = u and 

j=0 

rj c Z(~,B,u) ; i.e., r0(~,B,u) = B 

rl(a,g,u)=u8-~ , ... , rn = (u)~ More 

generally, if u e Z (rather than N ) we 
would have 2n+3 cases: u < -n, u = -n, 
..., u = 0, ..., u = n, u > n . Consider 
u < 0 and assume ~ ~ 0 . (If ~ = 0 , we 
would have to consider power series in 
x - @ rather than x for some appropriate 

@ . ) Then 

s ÷ I/(~+x) -u = [i/(~+x)] -u 

[i _ 1 1 2 1 3 ]-u 
- --gx + -yx - --¢x + ... 

CZ C~ C~ 

1 1 1,n 1 n.-u 
s mod (x n+l) = [~ - -~x + ... (-x) --n-%-Tx i 

n 
= [ r~(~,B,u)x j with B = -u 

j=0 J 

th 
Theorem 2: Consider n degree polyno- 

mial p and assume that p can be 
computed in k ± 
on the number of 

be represented as 

2 
with t ~ (k+2) 

_ {ei } and @ m 

ops (without any bound 
* ops). Then p can 

n 

Pj (~I ..... at) (x-@)J 
p=0 

for some choice of 

Proof: To simplify the discussion we shall 
assume that all the exponents {m. .} 

],i 
in the canonical program are non negative 
and hence we can take @ = 0 . 

The proof is by induction on k , 
arguing by cases depending on whether or 
not any mj, i ~ n or > n . A k ± step 

(k+l)(k+2) 
program introduces v = 2 

exponents, all of which we shall treat as 
parameters. For every exponent there are 
n+2 cases to consider (mi, i~ = 0, 

= I, ) , or (n+2) v cases in all. mj, i ..- 

Each case will determine a new canonical 
program. For each of these (finite number 
of) programs, we shall characterize the 
statements in the desired manner. 

Let's just consider the case that all 
exponents are > n (of course, we could 
argue trivially that we are not computing 
p , but this approach shows that we are 

not even computing p mod (x n+l) if k 
is too small). 

Induction step: 

n i xj 
Assume Si = j!0 pj (~l'''''~t(i)) 

mod (x n+l) for 0 -< i -< r . 
n 

Show that Sr+ 1 = [ pr+ij (~I 
p=0 

~t (r+l))X j and that 

t(r+l) -< t(r) + 2(r+l) So by 
2 

induction t = t(k+l) -< (k+2) 

Introduce new parameters (and rename 

by ~t(r)+l'~t(r)+2 '''''at(r+l) to 

represent Yr+l,m0,r+l,...,mr,r+l, 
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1 ml 
[p0(~l,... ,~t(1)) ] ,r+l,..., 

m r 
[p0(~l,...,~t(r))] r,r+l We have thus 

introduced 2 (r+l) parameters. Now it 

remains to show that Sr+ 1 = ~ p~+l (~I' 

.... ~t(r+l))X j (rood x n+l) 

r m 
= H S j,r+l + 

Sr+l j =0 ] Yr+l 

m. I ~ 1,r+l = P~(~I''''' Look at any S i j=0 

i I mi'r+l c~t (i))x rood (xn÷l) . 

Claim: The coefficient of x ~" 
is (~-<n-<mi 'r+l) 

( mi'r+l~ 
m l.l+m 2.2+...+m .s=~ 

n m I / 

<mi,r+l ) ( mi r+l-ml- ) -ml . , • . .m n 

m 2 m n 

Ipi I mi'r+l-ml' ' 'm i ml 
0(~i .... ) n Pl ( ) ... 

m 
pi( ) n 

And as in the simple example, the expres- 
sion can be written as a rational function 

g(al , . . . ,a t (r) ,mi,r+l , [p~? mi'r+l) So it 

follows that ~ S mi'r+l mod (x n+l) 
j + Yr+l 

can be represented as desired. 

th 
Corollary I: There exist n degree 

polynomials e Q[x] which require ~ 
± ops (even if we do the computation 

mod (x n+l) ; i.e., chop off high order 
terms without cost). 

Corollary 2: By calculating upper bounds 
on the degree and weight of the polyno- 

mials {p~(~l,...)} we can exhibit ala 

Strassen [72] specific polynomials which 
require ~-n ± ops. 

At this time we do not know if such a 
saving (or any saving) can generally be 
obtained. We suspect that while it may be 
possible to achieve a saving when computing 

n+l 
mod (x ) , that the additional require- 
ments imposed by the cancellation of high 
order terms will preclude any such saving. 
That is, ± ops In computations over Q(x) 
cannot in general be reduced by * ops. 

We state the following conjecture: 
There is a function y(k,n) satisfying 
the following property: If p is an 
th n degree polynomial (say in @[x] ) and 

p is computable in k ± ops, then p is 
computable in k ± ops and ~ y(k,n) * 
ops. 

Finally, we can note that if a general 
saving in ± ops can be achieved for any 
fixed n O (say B(n0) ± ops), then a 

proportionate saving can be achieved for 
all n ~ n O (i.e., only need about 

B(n0).n/n 0 ± ops). 

IV A Lower Bound Based on the Number of 
Real Zeros 

In Strassen [733, we see the first 
non trivial results concerning non linear 
lower bounds for arithmetic complexity. 
Algebraic geometry provides the proper 
notion of 'degree' for a set (rather than 
just one) polynomial in several variables. 
The geometric formulation of degree is 
"correct" from a complexity point of view 
since Strassen is able to show that the 
degree can at most double after a * op 
and is unchanged after any ± op. In 
this way, one can prove for example that 

th 
any n degree polynomial evaluated at 
n arbitrary points requires n log n * 
ops. 

For ± ops, we do not yet have an 
appropriate concept or property (such as 
degree) which can be used to derive non 
linear lower bounds. For example: Is 
polynomial multiplication non linear wrt. 

th 
± ops? Does there exist an n degree 
polynomial which requires n log n ± ops 
for computation at n arbitrary points? 
One type of property that may be relevant 
is to look at the zeros associated with 
the polynomials computed during a computa- 
tion. If we look at all complex zeros, 

th 
then we can obviously generate an n 
degree p ~ R[x] which has n distinct 
zeros in one ± op (of course, these 
zeros have a nice structure). 

The approach of this section is to 
show that the number of distinct real 
zeros can not grow too fast as a function 
of the number of ± ops. Unfortunately, 
(unlike degree wrt. * ops) it is not 
true that if Pl and P2 have ~ r 

distinct real zeros, then Pl ÷ P2 has 

¢(r) distinct real zeros (for some 
function ~: N + N ). 

We consider again the canonical pro- 
gram given in the last section: 
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T O = 1 

SO =x 

1 
m. 

= H S J,i l~i~k 

Ti j<i J mj, i e Z 

Si. = Yi + Ti Yi ~ R 

Tk+l = Yk+l ~ sm j'k+l 
j~k j 

We want to bound the number of distinct 
real roots in T as a function of n . 

n 
To do so a more general induction hypothesis 
seems necessary. 

N r 0 . r 
Theorem 3: Let p = ~ ajS 0 'j .. S n,j. 

j=l n 

Qj (S O ..... Sm) with each Qj E R(y 0 ..... 

ym) of deg -< M , and aj s R (deg. can 

be defined as max (deg of numerator, deg 
denominator) ). Then p has 
-< $(n, N, M) distinct real roots. The 
function ~ will be defined by induction. 

Note: $(n, N, M) is independent of the 
exponents ri, j E Z 

Throughout the following, S' denotes 
dS 

Corollary 3: Let p(k) be the maximum 
number of distinct real roots in any 
polynomial computable in k -+ ops. Then 
p(k)  -< ¢ ( k , l , O )  

Lemma 2: If f(x) ~ R[x] has k non zero 
terms, then f has ~ 2k-i distinct 
real zeros. 

Proof: Induction on k 

Let f = xr.g(x) = xr(a0 + ... ) Note 

that if g has r distinct real zeros, 
then g' has at least r-I distinct 
real zeros (Rolle's Theorem). 

F-- 

Lemma 3: S' = T' = I _ ~ m i " n+l n+l Tn+l ~ ,n+l 
i=0 

s~/si] 

Corollary 4: S' = Q(S , ) and n+l 0 "'''Sn+l 
deg Q can be bound by some ~(n) 
independent of the {mi,n+ I} 

Proof of Theorem: (double induction; main 
induction on n , second induction on 
N ) 

n = 0: ~(0, N, M) = 2[N(NM+M+I)] 1 , 
by Lemma 2. 

Assume true for n and all N , H . 

Induction on N for 

N = i: 

Any zero of 

i) 

ii) 

iii) 

n+l : 
n+l ri, 1 

p = a I ~ S i Ql(b0,...,Sn+l ) 
i=0 
r n r i n+l,l ,I 

= al~n+ 1 ~ S. • i=0 i 

QI(S0 ..... Sn+ 1 ) 

p is one of the following: 

S rn+l'l and hence a A zero of n+l ' 

zero of Sn+ 1 But 

n m i 
= ~ S. ,n+l + 

Sn+l i=0 i Yn+l 

and so the induction (on n with 
N = 2 ) can be applied. 

n r. 
A zero of ~ S. I'I Apply 

i=0 i 
induction. 

A zero of Ql(S0,...,Sn+l) and 

hence a zero of the numerator Pl 

of Q1 " Since deg Pl ~ M , 

there are at most (n+2) M terms 
in P1 and each of these terms 

can be expanded into the form 
N'~M+I n r. 

a. ~ S l ' Jo  i 
j=l J i=0 i (So ..... Sn) 

by making the substitution 

n smi,n+ 1 (At 
Sn+l = Yn+l + H 1 

worst, we have to raise Sn+ 1 to 

the H th power.) 

End N = 1 . 

N (n iri 1 
N > I: p = ~ aj H S i 'j 

j =i i=0 

Qj (S O ..... Sn+ 1 ) 

r. 
i, 1Q1 Sn+l ) = F a c t o r  o u t  a I ~ S i ( $ 0 , . . . ,  

P l  ' 

N r 
p = Pl(l + ~ a .  II s_x'l~j 

j=2 J 1 (So ..... Sn+l)) 

= plP2 • 

' has a It suffices to show that P2 

bounded number of distinct real zeros 

p½ = ~ ajS00'J...S rn+l,j. 
j=2 n 

I n+ l  
(i! 0 ~i,jS;/Si )'Qj (S O ..... Sn+ I) 
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] + Qj (S O ..... Sn+ I) • 

Now observe 
N 

i) ?i .S~/S i has bounded deg by 
i=0 'J 
Lemma 2 

ii) deg Qj is bounded 
n+l 

iii) O! = [ 2 j  S '  
O- 

"j(S0'''''Sn+I) i=O i i 

Again, by Lemma 2, 
Q j ( S 0 , . . . , S n +  1) h a s  b o u n d e d  

d e g r e e .  
QED 

The  b o u n d  on  t h e  f u n c t i o n  ~ ( n ,  N, M) 
w i l l  d e p e n d  on  how t h e  r a t i o n a l  f u n c t i o n s  
Qj a r e  r e p r e s e n t e d  a n d  m a n i p u l a t e d .  To 

g e t  a b e t t e r  b o u n d  we may w a n t  t o  c o n s i d e r  
~ ( n ,  N, M, t )  w h e r e  t c o u l d  b e  a b o u n d  
on  t h e  n u m b e r  o f  t e r m s  i n  some Q~ 

3 

F a c t  2:  0 ( k )  ~ 3 k ( w h e r e  0 ( k )  was  
- - - d - ~ n e d  i n  C o r o l l a r y  3 ) .  

T h a t  i s ,  t h e  a p p r o a c h  o f  s e c t i o n  IV 
t h  c a n  a t  b e s t  show t h e  e x i s t e n c e  o f  n 

d e g r e e  p o l y n o m i a l s  r e q u i r i n g  O ( l o g  n )  ± 
o p s .  B u t  t h i s  i s  c o n s i s t e n t  w i t h  t h e  
s i m p l e  b o u n d  f o r  * o p s  b a s e d  on  d e g r e e .  
L e t  u ( k )  = maximum [ n u m b e r  o f  d i s t i n c t  
r e a l  r o o t s  i n  a n y  p o l y n o m i a l  c o m p u t a b l e  i n  
k * o p ] .  

F a c t  3 :  u ( k )  = 2 k 

We c o n j e c t u r e  t h a t  o ( k )  ~ c k ( f o r  
some c ) b u t  m o s t  l i k e l y  s u c h  a b o u n d  w i l l  
n o t  r e s u l t  f r o m  a n y  s i m p l e  m o d i f i c a t i o n  o f  
T h e o r e m  3 .  I t  s h o u l d  a l s o  b e  n o t e d  t h a t  we 
h a v e  n o t  y e t  p r o v e n  a n y  u p p e r  b o u n d  o n  
0 ( k )  when  c o m p l e x  s c a l a r s  a r e  a l l o w e d  a s  
p r o g r a m  c o n s t a n t s .  R e t u r n i n g  t o  t h e  q u e s -  
t i o n  o f  n o n  l i n e a r  l o w e r  b o u n d s ,  we m u s t  
a l s o  h o p e  t h a t  a p p r o p r i a t e  b o u n d s  w o u l d  
h o l d  i n  t h e  c o n t e x t  o f  m u l t i v a r i a t e  p o l y n o -  
m i a l s .  H e r e ,  o f  c o u r s e ,  we m u s t  b e  c a r e f u l  
s i n c e  p ( x , y )  c a n  h a v e  a n  i n f i n i t e  n u m b e r  
o f  z e r o s .  Y e t  we c a n  h o p e  t h a t  a n  e x t e n s i o n  
c o u l d  b e  f o u n d ,  f o r  e x a m p l e ,  w h e n  t h e r e  a r e  

2 
n pairs {<xi,Yj> I l~i~n, l~j~n} of 
zeros. 
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