
Algorithmica (1994) 11:73-91 Algorithmica
�9 1994 Springer-Verlag New York Inc.

A New Measure for the Study of On-Line Algorithms

S. Ben-Dav id 1 and A. Borod in 2

Abstract. An accepted measure for the performance of an on-line algorithm is the "competitive ratio"
introduced by Sleator and Tarjan. This measure is well motivated and has led to the development of
a mathematical theory for on-line algorithms.

We investigate the behavior of this measure with respect to memory needs and benefits of lookahead
and find some counterintuitive features. We present lower bounds on the size of memory devoted to
recording the past. It is also observed that the competitive ratio reflects no improvement in the
performance of an on-line algorithm due to any (finite) amount of lookahead.

We offer an alternative measure that exhibits a different and, in some respects, more intuitive
behavior. In particular, we demonstrate the use of our new measure by analyzing the tradeoff between
the amortized cost of on-line algorithms for the paging problem and the amount of lookahead available
to them. We also derive on-line algorithms for the K-server problem on any bounded metric space,
which, relative to the new measure, are optimal among all on-line algorithms (up to a factor of 2) and
are within a factor of 2K from the optimal off-line performance.

Key Words. On-line algorithms, Competitive analysis.

1. Introduction. We cons ider the p rob l em of ca r ry ing out a sequence of tasks
subject to some cost funct ion where at any given m o m e n t a cur rent task has to
be processed wi thou t knowledge of future requests.

In a seminal paper , S lea tor and Tar j an [ST] in t roduce a measure for ana lyz ing
the pe r fo rmance of on- l ine a lgor i thms. In par t icu lar , they s tudy the move to front
s t ra tegy for list accessing and var ious strategies for paging. Ra the r than s tudy the
pe r fo rmance of such on-l ine a lgor i thms relat ive to p robab i l i s t i c assumpt ions a b o u t
the inpu t d is t r ibut ion , they relate the on-l ine cost to tha t of an op t ima l off-line
a lgor i thm. An a lgo r i thm is said to be M-competitive if the cost incurred by using
it on any request sequence is never more than M times the min imal poss ible
(off-line) cost of serving tha t sequence (up to an addi t ive constant) . The resul t ing
measure , called the compet i t ive ra t io in [K M R S] , has now been invest igated in a
n u m b e r of specific and abs t rac t settings. A l though the compet i t ive ra t io is in
general a pessimist ic b o u n d (in tha t it appl ies even when the future is comple te ly
unpredic table) , there are often a lgor i thms yie lding surpr is ingly good bounds on
this rat io.

O n the o ther hand, since on-l ine versus off-line cons idera t ions are so pervasive,
it should no t be expected tha t cons ide ra t ion of the compet i t ive ra t io (or any one
measure) will a lways lead to efficient (or even reasonable) a lgor i thms.

Department of Computer Science, Technion, Haifa, Israel.
2 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

Received August 7, 1990; revised April 16, 1992. Communicated by Prabhakar Raghavan.

74 s. Ben-David and A. Borodin

The following example describes a fairly common situation in which we choose
to abandon all competitive strategies in favor of a noncompetitive one. Consider
the question of buying an insurance policy. Paying $5 a month to insure one's
car against theft is a noncompetitive strategy! The mere existence of a scenario
where one will never present a claim to the insurance agent suffices to make it so.
On such a scenario the all-knowing off-line strategy would have never bought the
policy.

We introduce another measure, which we call the Max/Max ratio. Simply stated,
the Max/Max ratio compares the worst-case amortized behavior of an algorithm
with that of an optimal off-line algorithm. An algorithm is said to have Max/Max
ratio M if it is guaranteed that on no request sequence will it ever have to pay
more than M times the maximal cost that an optimal off-line algorithm pays on
a sequence of the same length (up to an additive constant). Thus our "new"
measure is just a revival of the traditional worst-case amortized analysis except
that we now normalize by the best that can be done using an optimal off-line
algorithm. We discuss the basic features of this new measure and investigate the
types of on-line algorithms it suggests.

We consider several aspects of the on-line versus off-line problem, such as the
effects of available lookahead and the dependence of the on-line algorithm upon
memory. We investigate both the competitive and the Max/Max measure with
respect to these aspects and show that, as far as these questions are concerned,
the Max/Max gives rise to a perhaps more intuitive behavior.

Using a simple argument, we show that the definition of the competitive ratio
measure implies that it does not reflect any improvement in an on-line agent's
behavior due to any finite amount of lookahead. This is a rather disappointing
aspect of that measure. With respect to the Max/Max ratio, we will see that the
potential benefit of finite lookahead becomes a central issue.

One of the more enticing aspects of the perspective provided by the competitive
ratio is the role of memory. In fact, at first it appears to be a paradox that the
known competitive algorithms make essential use of memory even though the past
is uncorrelated with the future. The paradox is explained by observing that the
goal of a competitive algorithm is not to be optimal on any sequence but rather
to make sure that the optimal (off-line) algorithm cannot be doing too much better.
That is, it is sometimes beneficial to increase one's own cost, if in doing so it can
be guaranteed that the optimal off-line cost grows accordingly.

In Section 3 we examine this question. We show that memory dependence is
inherent in the competitive ratio by giving some lower bounds on the amount of
memory needed for running competitive on-line algorithms. Our results imply
that, for certain on-line tasks, any competitive algorithm should devote unbounded
(i.e., must grow with certain parameters of the metric space) memory space to
recording past behavior. We limit our discussion to deterministic algorithms.
Randomization can compensate for memory constraints, but our arguments can
be applied to derive similar lower bounds on the product of the number of memory
bits and the number of random bits used by any competitive algorithm.

This paradoxical behavior seems to disappear when considering the Max/Max
measure. We show, in Section 5, that once efficiency is measured via the Max/Max

A New Measure for the Study of On-Line Algorithms 75

ratio, then, for every metric space, there exists a 2K-competitive memoryless
on-line algorithm for the K-server problem on that space.

For definiteness we formulate our considerations in terms of the K-server model
of Manasse et al. [MMS2] although the issues transcend this particular abstract
model. In the next section we introduce the required definitions and notation.
Section 3 investigates the issues of memory and the benefits of lookahead for the
competitive measure. Starting in Section 4 we shift our focus to the Max/Max
measure. We first introduce the new measure and its basic properties. In Section
5 we proceed to show that for every bounded K-server system there is a natural,
simple, and memoryless on-line algorithm achieving a Max/Max ratio of 2K. This
should be contrasted with the still open and intriguing K-server conjecture of
[MMS2], of whether or not for every K-server system the competitive ratio is
equal to K. (Fiat et al. [FRR] and Grove I-G] have made substantial progress on
this conjecture by showing that the competitive ratio for every K-server system
is bounded by an (exponential) function of K.) An additional benefit of our
Max/Max measure is that on-line algorithms can be directly compared (i.e.,
without reference to the performance of an optimal off-line algorithm whose
analysis might be quite complex). Our natural and memoryless on-line algorithm
is shown to be within a factor of 2 of any on-line memoryless algorithm. In Section
6 we begin the study of lookahead, starting with a complete analysis of "paging."
In particular, we show that with lookahead l = n - 1, an on-line player can
perform optimally in the K-server paging problem; that is, the Max/Max ratio
equals one! We then consider arbitrary K-server problems and conclude with our
own version of a K-server conjecture.

2. Definitions and Notation. A K-server system consists of a metric space (V; d)
where V is a set of nodes (possibly infinite) and d is a metric defined on the nodes.
That is, d: V x V ~ R >~ is symmetric and satisfies the triangle inequality. 3 At any
time, K-servers are located on the nodes, where K < I VI. Following a request for
a node v, if no server is on v, at least one server must be moved from its present
location u to v at a cost of d(u, v). Given a request sequence ~ = vl,/)2, .. . ,/)t, an
algorithm d responds by an appropriate sequence of moves.

Given a K-server system and an initial configuration So of servers, an algorithm
d , when applied to a request sequence # = vl v~, produces a sequence of
configurations $1, S 2 S t such that v t ~ S t ~ V. 4 The cost of d on ~, denoted
C~aV;d)(~), is the sum of move costs, ~ = i d(Si, Si+l) where d(Si, Si+l) is the cost
induced by the metric d to change from configuration Si to configuration Si+ 1
(i.e., d(Si, Si+O = min{~,~si d(u, f(u)): f is a function from Si onto Si+l}).

3 In the [MMS2] formulation, d need not be symmetric but since all the known results concern
symmetric systems we always make this assumption.
4 The original definition of the K-server problem also implies that IS i n Si+ 11 -> K -- 1 (i.e., at most
one server moves). As observed in [MMS2], because of the triangle inequality, the competitive ratio
does not change when we allow more than one server to move. However, when memory requirements
are also considered, this greater generality is useful and we allow this generality in the definition.

76 s. Ben-David and A. Borodin

Define the competitive ratio of an algorithm ~ as

W(cV;d)(d) = lim sup Cd(#)
t ~ oo C o t , T (6) >_ t COPT(#) '

where COPT(#) is the optimal cost to satisfy the request sequence #.5 That is, we
compare the on-line and off-line performance on the same request sequence and
consider the limiting behavior of the worst sequences in terms of this ratio. An
algorithm d is called competitive if its competitive ratio is bounded by some
constant. I t should be noted that the optimal cost is well defined since t3 is a finite
sequence. Moreover, dynamic programming affords an obvious algorithm (see
[BLS] and [MMS2]) to realize the optimal bound. However, dynamic pro-
gramming is an "off-line" algorithm in that the entire sequence must be seen in
order to produce the configuration (or server move) sequence. (A much more
efficient but still off-line algorithm can be found in [CKPV].) An algorithm d is
called on-line if, for all i, S~+ 1 is a function of v 1 vi+t. We can also define
algorithms with limited lookahead and we do so by saying that d has lookahead
I if, for all i, S~+ 1 is a function of vl v~+,. In particular then, on-line algorithms
are algorithms with lookahead l = 1.

The concept of memory in server systems is introduced by Raghavan and Snir
[RS]. They define a K-server on-line algorithm with Q memory states (i.e., I-log 2 Q-]
bits of memory) as a function u: Q x V K x V~--~Q x V r satisfying the server
property that if u(s, <x l , . . . , xr>, z) = (s', <Yl YK>), then z e {Yl , YK}.

This definition of memory is permissive in the sense that it allows the algorithm
to store for free any information that does not vary with request sequences.
Furthermore, the algorithm may use unlimited working space, as long as it resets
it afresh after each move of a server.

3. The Role of memory and Lookahead in the Competitive Ratio. In this section
we wish to show that competitive K-server on-line algorithms have to use memory
growing (unboundedly) with the distances of the graphs they are designed for.

As mentioned at the end of the previous section, our definition of memory is
very permissive. It does not charge for any computation or data size as long as
the computat ion can be done (and the data be written down) before seeing the
request sequence. I t follows that the memory we are charging for can be thought
of as "learning from past experience." On the other hand, such learning should
be irrelevant to the on-line/off-line problem as we are assuming the worst-case
scenario where the future can be independent of the past.

This state of affairs differs from most real-life situations. In our personal lives

5 We henceforth drop the superscript (V; d) whenever it is clear from the context. We should note that
an equivalent definition of the competitive ratio as defined in [BLS] and [MMS2] is given as

inf{plthere exists a constant fl such that, for all finite request sequences #, CA(~) - p- COPT(#) < fl}.

A New Measure for the Study of On-Line Algorithms 77

we often do find that "experience is the best teacher." What is the reason for this
discrepancy between daily practice and what should be expected from a measure
of success for on-line algorithms ? The answer is twofold. First, in real-life situations
there is usually a correlation between past and future. Second, in practice there
is always a limitation on computat ional resources so that not all possible
precomputat ion is available. We therefore view the results of this section as
reflecting a counterintuitive aspect of the competitive ratio in spite of their
consistency with daily practice.

We begin by considering the restricted model of reasonable algorithms (as defined
in the conference version of Manasse et al. [MMS1]) 6 in which a server is only
allowed to move if it serves the current request. Then, in Theorem 3.2, we show
how a memory bound for the general model can be easily derived from bounds
in the restricted scenario. The main tool for our proof of a memory lower bound
is the following simple lemma.

LEMMA 3.1. For every competitive on-line algorithm d for the K-server problem
on a metric space T of size (K + 1) , / f d is reasonable and uses at most M memory
states, then, in some sequence of (KM + 1) requests, ~ will leave every node of T
unoccupied for at least one point of time.

PROOF. Let us denote by {t o tK} the vertices of T and examine the response
of the algorithm d to a long sequence of requests that keeps hitting the unoccupied
node of T (as T has (K + 1) many nodes and ~r operates only K many servers,
such a node always exists).

If d keeps a server on some node, say to, for more than M K many responses
to consecutive requests, then, due to its memory bound, there must be two
requests--o-(/), a (j) - - to the same node in {t 1 t~c}, such that d sees both
requests in the same configuration (of servers and memory state). It follows that
~r will then keep a server immobile on to for any request sequence that, from that
moment on, will just repeat the requests a(i), a(i + 1) , a(j). As all these
requested nodes are among {t 1 , t~} the off-line player can fix his servers, pay
nothing, and defeat any competitive ratio. This contradicts our assumption that
~r is competitive. []

The following definition extracts the metric space parameters that we use to
bound (from below) the necessary memory size.

DEFINITION 3.1. Let (G; d) be a metric space and let T be a finite subset of G.

* Let L(T) be max{d(t, (T - {t})): t e T} (where, for a point t and a set S, d(t, S)
denotes the distance between t and the member of S closest to it).

�9 Let l(T) denote the smallest distance between two (different) members of T.

6 The journal version of Manasse et al. [MMS2] refers to such algorithms as lazy algorithms which
should not be confused with the concept of a "lazy adversary" as defined in [RS].

78 s. Ben-David and A. Borodin

�9 Let Sr(G) denote the supremum of the ratio L(T)/l(T) over all K-size subsets
T~_G.

THEOREM 3.1. Let (G; d) be a metric space over n vertices, K < n and M a
natural number. Every reasonable on-line algorithm for the K-server problem on
G that has at most M memory states achieves a competitive ratio no better than
(i.e., at least) (2MK + 2SK + I(G))/(2MK + 1).

PROOF. Assume d is a competitive on-line K-server algorithm for G. Let
T = {to, tl tK} be a (K + 1)-size subset of G such that

SK+ I(G) = d(to, {tl tK})/d(tl, t2).

Without loss of generality we assume that in the initial configuration all the
servers are occupying nodes on T (we can always force a competitive algorithm
to set his servers in a given configuration by a long enough sequence of requests
to these nodes only).

By Lemma 3.1, d is bound to vacate t o at least every (MK + 1) many
requests. Every such move costs d at least 2L(T), while the off-line player is
being charged at most l(t) per request (on any request sequence confined to T).
Our claim now follows by a straightforward calculation (taking into account
that, on a request sequence that always hits an unoccupied node, ~ ' is charged
at least l(T) on every request). []

COROLLARY 3.1. If(G; d) is such that SK + I(G) is infinite, a finite memory reasonable
algorithm cannot be competitive for the K-server problem on G. Similarly, no finite
memory on-line algorithm can achieve a bounded competitive ratio on a family of
spaces with unbounded SK + 1.

COROLLARY 3.2. Any K competitive reasonable on-line algorithm for the K-server
problem on a space (G;d) should have at least (2SK+x(G)- K)/(K 2 - K) many
memory states.

THEOREM 3.2. Let (G; d) be a finite metric space of size n. Let K < n and M be
natural numbers. I f d is an on-line algorithm for the K-server problem on G and M
is an upper bound on the number of d ' s memory states, then the competitive ratio
Wc(d) is no better than (i.e., at least) (2nK-1MK + 2SK + I(G))/(2n K- 1MK + 1).

PROOF OF THE THEOREM. We wish to apply Theorem 3.1 but now we should
consider the possibility that many servers can move on a given request. A simple
way of doing this is to simulate any algorithm that moves servers at will, by an
algorithm that moves a server only to service a request. We do this by using
memory to recall the "virtual locations" of the original algorithm's servers. For
such a simulation of a K-server algorithm with M memory states on an n size
space, < n K- 1M memory states are needed. The theorem now follows by substitu-
ting this memory formula in the bound of Theorem 3.1. []

A New Measure for the Study of On-Line Algorithms 79

How well do our bounds for memory size fit in with the memory use of known
on-line algorithms? Well, for the two-server problem on a triangle our bound
meets precisely the needs of the BALANCE algorithm (known also as the "Ski
Rental" algorithm). This algorithm serves with the closest server to a requested
node until it has incurred a cost that would have sufficed for bringing over the
remote server, and at such points it does choose to serve with the remote server.
To implement such an algorithm, we have to compare costs accumulated by
portions of size l(T) with L(T), thus using at least L(T)/I(T)= S3(G) many
memory states (here G = T is the underlying triangle).

Chrobak et al. [CKPV] present a K-competitive on-line algorithm for subsets
of the real line. On any request to an uncovered point, their algorithm moves
the two servers adjacent to that point. (If the request is to one side of all the
servers, then only the one adjacent server moves.) Both servers "move toward
the request with equal speed" and stop when the first of them reaches it. Such
an algorithm can be viewed as being "memoryless." The "memoryless" aspect
of the Chrobak et al. algorithm is achieved by allowing more than one server
to move and by having the ability to move servers to arbitrary points on the line.

To bridge the gap between our model and theirs, consider again the reason-
able algorithm model. It is clearly possible to simulate the Chrobak et al.
algorithm in such a model by using memory to recall "virtual locations" of
servers. It is interesting to note that the upper bounds, for K-servers on the line
that follows from such a simulation, match the behavior of the lower bounds
on memory provided by the above results (e.g., when K is kept constant, both
the bound of Corollary 3.2 and the memory needs of the simulated algorithm
grow linearly in the ratio between the smallest and largest distances among the
requested nodes).

On the other hand, as SK+I(G) can be arbitrarily high for finite subsets on
the real line, our theorems can be applied to conclude that, for every n > 1 and
1 < K < n, there can be no finite upper bound for the competitive ratio of a
memoryless on-line algorithm that must work for every K-server system on a
finite set of nodes on the line.

3.1. The Competitive Ratio of Memoryless Algorithms. As we have mentioned
in the introduction the exact value of the best possible competitive algorithms
is a major open question. Applying the above results we can give an almost
complete answer to this question in the realm of memoryless algorithms.

DEFINITION 3.2. Let (G; d) be a metric space.

�9 The basic K competitive ratio of (G; d) is the best possible competitive ratio
of a memoryless K-server on-line algorithm for (G; d). That is,

E~(G) = inf{wc(d): sr is a reasonable memoryless

K-server on-line algorithm for G}

�9 Let S(G) denote sup{(d(x, y)/d(s, t)): x, y, s ~ t ~ G}.

80 S. Ben-David and A. Borodin

THEOREM 3.3. For every metric space (G; d) and every K, the basic K-competitive
ratio of G satisfies 2SK+I(G) _< EKc(G) <_ K . S(G).

PROOF. The lower bound is just the bound derived by substituting M = 0 in the
bound of Theorem 3.1. For the upper bound the algorithm ROTATE presented
by Chrobak et al. [CKPV] can be applied. This algorithm is reasonable and
memoryless but just the same, it is shown in that paper, that this algorithm is
K-competitive for every K-server on any uniform space (i.e., the distance between
any pair of different points equals 1). It is easy to see that, for every space (G; d),
if an algorithm is W-competitive for (G; u), where u is the uniform metric on G,
then it is < W" S(G; d) competitive for (G; d). []

We have limited our discussion to deterministic algorithms. Randomization can
compensate for memory constraints, but our arguments can be applied to derive
similar lower bounds on the product of the number of memory bits and the number
of random bits used by any competitive algorithm.

It is an interesting open problem as to whether or not for every K-server system
the optimal competitive ratio can be obtained by memoryless algorithms whose
servers are allowed to move a fractional distance on an edge (in the spirit of the
[CKPV] line algorithm). In order to avoid trivializing this question (say by
encoding arbitrarily many memory states in the least-significant digits of one
server's location), we can restrict the algorithm's function u: V tc x V ~ V K so that
u(vl, v2, . . . , Vk, V) is determined by an algebraic computation on the costs d(u, w)
for u, w ~ {vl, . . . , Vk, V}.

3.2. The Role of Lookahead. The only advantage an off-line algorithm has over
an on-line one is its ability to see the future. It might be expected that allowing
an on-line agent access to some finite lookahead would result in improving its
performance relative to that of the off-line algorithm. Contrary to this expectation,
as far as the competitive ratio is concerned, no finite lookahead is sufficient for
any improvement in the performance of an on-line algorithm. As a measure of
efficiency of an algorithm, the competitive ratio fails to reflect an important aspect
of one's everyday experience--the benefits of (finite) lookahead for decision-
making tasks.

THEOREM 3.4. For every l-lookahead on-line algorithm d (for any K-server system)
there exists a fully on-line (i.e., with lookahead l -- 1) algorithm ~ achievin 9 exactly
the same competitive ratio.

PROOF. Let ~ react to any sequence of requests tz = (x~, x2 x 0 by simulating
d ' s behavior on a t = (x l " " x l X z ' " x 2 " " x t ' " x t) . It is straightforward to note

l l l
that C~(tr)/CoPT(Cr) = Cd(cr~)/CoPr(~r~). It now follows from the definition of the
competitive ratio that Wc(d) > Wc(~). (The reverse inequality is trivially true.) []

A New Measure for the Study of On-Line Algorithms 81

It should be noted that this simple argument remains valid when the on-line
algorithm is allowed to chose its responses with the help of a random source (and
the cost of serving a sequence is defined as the average cost over the bits generated
by that source).

4. Definition and Basic Properties of the M a x / M a x Ratio. We now introduce a
new ratio which, in some sense, seems closer to the spirit of traditional worst-case
complexity analysis. The new measure we offer here gives rise to a different priority
relation between on-line algorithms. The Max/Max ratio supplies a mathematical
model for preferring to buy an insurance policy, a model in which the benefits of
lookahead are evident and there exist (almost) optimal memoryless algorithms.
The new measure clearly fails to capture locality of reference; in particular, for
the paging problem all K-server on-line algorithms have the same Max/Max ratio.
It should be noted though that, contrary to common belief, the competitive ratio
suffers from a similar p rob lem-- i t does not necessarily prefer algorithms employ-
ing locality of reference. Chrobak et al. [CKPV] present an on-line algorithm for
p a g i n g - - R O T A T E - - t h a t is absolutely memoryless (and therefore cannot take into
account any such consideration), but still achieves the best possible competitive
ra t io - -K.

Thus we are not trying to argue in favor of a particular measure. Rather we are
simply claiming that different measures reflect different concerns.

We first define the amortized cost of an algorithm d as:

DEFINITION 4.1. Mr(d) = maxl~ I =t rgd(#)/t. The amortized cost of an algorithm
d is defined as M (d) = lim supt~ ~ Mr(d).

This is a natural adaptation of the notion of amortized complexity to our
context. However, in order to make this concept well defined, we hereafter assume
that our server systems are bounded in the sense that, for some N < oo, d(u, v) <
for all nodes u, v. (Alternatively, we could normalize Mr(d) by the diameter covered
by the requested nodes.) Also for definiteness we assume that both the on-line and
off-line algorithms start in the same specified initial configuration.

The following technical lemma helps to simplify the presentation.

LEMMA 4.1. For every bounded K-server system and any optimal off-line algorithm
OPT for serving it, the sequence Mr(OPT) converges to a (finite) limit as t goes to
infinity (thus M(OPT) = limt_~ ~ Mr(OPT)).

We are now in a position to introduce the main definition of this paper - - the
Max/Max ratio of an algorithm:

DEFINITION 4.2. Let d be an algorithm for serving requests on some K-server
system, the Max/Max ratio of d denoted wM(d) is lim supt~ ~(Mt(d)/Mt(OPT)).

82 S. Ben-David and A. Borodin

It immediately follows from Lemma 1 that:

LEMMA 4.2. wM(d) = lim sup,__,~(Mt(d)/M,(OPT)) = M(sd)/M(OPT).

That is, we compare the worst-case behavior of A and OPT rather than their
performance on the same sequence. Our Max/Max ratio is a normalized amortized
complexity measure, where here we normalize by the best that can be done using
the optimal off-line algorithm.

The entity abstracted by the competitive ratio is quite different; in many cases
minimizing the amortized cost is in sharp conflict with minimzing the competitive
ratio, as illustrated by the following problematic concern:

Let us consider a two-server, .three-node system as a very simplified abstraction
for studying the purchase of insurance (say on a car). Let d(1, 2) = p and
d(1, 3) = d(2, 3) = c for some c much larger than p. We can think o fp as an annual
premium and c as the cost of replacement. The presence (resp. absence) of a server
on node 3 will correspond to the state of being insured (resp. not being insured).
To obtain a bounded competitive ratio (say by using the BAL algorithm of
Manasse et al. [-MMS1]) we must vacate node 3 whenever the premium costs paid
thus far equals the replacement cost. This decision takes place no matter how
many times node 3 has been requested (i.e., how many replacements have taken
place)! On the other hand, minimizing the Max/Max ratio forces us to buy
insurance every year as long as p < c. Clearly, the different measures determine
very different strategies! In practice the measure (or combination of measures) has
to be chosen that best reflects the consideration(s) bein9 emphasized.

We would like to point out a few more properties of the Max/Max measure.

COROLLARY 4.1. Let d , ~ be algorithms for servicin9 the same finite K-server
system, then

M (d) wM(d)
m

M(,~) w~(~)

PROOF. This is a straightforward consequence of Lemma 2. []

Corollary 4.1 indicates that for a given space (V; d) the Max/Max measure
orders all servicing algorithms. This property enables a complete analysis of the
relative (Max/Max) efficiency of two on-line algorithms without referring to an
optimal off-line algorithm (and consequently without having to analyze it). We
make use of this convenience in Section 4 where we present an on-line algorithm
which is optimal up to a factor of 2 amongst all on-line algorithms for any bounded
K-server system.

One more possible use of this comparability property is that it gives an exact
measure for the improvement in performance gained by increasing the number of
servers; it is not clear how best to address this issue relative to the competitive
ratio. (For one interesting approach, see Young [Y].)

A New Measure for the Study of On-Line Algorithms 83

4.1. The M a x ~ M a x Ratio Is Graph-Dependent. Given the [MMS1] competitive
ratio lower bound of K for every K-server system, and their K-server conjecture
which states that this is optimal for every K-server system, it may very well be
that the competitive ratio is independent of the underlying system. The situation
is quite different when we consider the Max/Max ratio. In Section 6 we see that
for uniform K + 1 node space the Max/Max ratio for K-servers is exactly K. We
now present a class of metric spaces for which this ratio is 1.

DEFINITION 4.3. A space (G; d) is a K-cluster if it can be partitioned into K subsets
G~, . . . , G K so that:

(i) For all i, there are at least two nodes in G i.
(ii) For all i ~ j, if x ~ G i, y ~ Gi, z ~ G j, then d(x, z)/d(x, y) > K.

(iii) For all i, j, diameter (G,) = diameter (G j).

FACT 1. I f G is a K-cluster, then an on-line K-server algorithm exist that achieves
a M a x / M a x ratio o f 1 on G.

PROOF. Let the on-line algorithm devote a fixed server to every cluster. The
amortized cost per request of such an algorithm is at most the diameter of the
G~'s. On the other hand, if v 1 . " VK, UI"" U K are nodes such that, Vi, 1 _< i _< K,
diameter (Gi) = d(vi, ui), then the request sequence (vl"'" VKUl"'" UK)* forces any
off-line algorithm to pay d(viui) per request. []

"Cost Graphs" are a simple tool for visualizing the behavior of servicing
algorithms and for comparing different measures. A cost graph displays the cost
that an algorithm incurs as a function of the task sequence it has to serve as
follows: Given a K-server system we fix a natural number t and consider the set
of all request sequences of length t. We present the request sequences in an
arbitrary order along the x-axis and use the y-axis for the cost.

J

FACT 2. Given any task system and any algorithm ~ for servicin9 it, w M (d) <

Wc(d).

PROOF. This fact becomes self-evident when cost graphs are viewed. Given a task
system, for every s and every positive p the cost graphs of all algorithms that are
within competitive ratio p of the optimal off-line lie in the strip between the graph
of COPT(~) and pCoPT(a), whereas any algorithm whose graph is bounded by
p'maxl~j= , CoPT(~) is within a Max/Max factor <p. []

4.2. Memoryless M a x ~ M a x Optimal Algorithms. The first issue on which we
wish to compare the Max/Max ratio with the competitive measure is the de-
pendence of good algorithms upon memory. We have seen in Section 3 that
competitive on-line algorithms necessarily depend upon memory. We wish to show
that, once the Max/Max ratio is used for measuring the efficiency of on-line
algorithms, memory use becomes irrelevant. Unfortunately we are unable, at this

84 S. Ben-David and A. Borodin

stage, to prove the ultimate result along this line--i.e., that, for any K and any
metric space G, a memoryless on-line algorithm exists that achieves the optimal
Max/Max ratio. In Section 5 we do prove a result that approximates the above
statement. That is, we provide a general purpose memoryless on-line algorithm
that, for any K and any bounded metric space G, achieves a Max /Max ratio that
is within a factor of 2 of the best possible on-line algorithm (for this K and G).

5. A Good Algorithm. Considering the previous discussion, we can expect that
a relatively simple algorithm based on "staying in one's terri tory" will yield a
good bound on the Max/Max ratio. This is indeed the case.

DEFINITION 5.1. Given a bounded metric space G = (V;d) and K e N , the
K-coverin9 radius of G is defined as

R(K, G) = inf{rlthere exist a "set of centers" X = {vl , vr} ~ V

such that d(u, X) < r for all u e V}.

(Recall that d(u, X) denotes infwx d(u, v).)

LEMMA 5.1. Let R(K, G) = r. Then for every e > 0 there exist u~, . . . , u K+ ~ in V
such that d(u i, u j) > r - e for all i r j .

PROOF. Suppose that for every set of K + 1 distinct points ux u K + 1 there is
a pair of points u~, u i with d(u~, uj) <_ r - e. Then we can define a K-set X =
{vl , . . . , vK} such that the covering radius (by using these points) is _ < r - e as
follows: Choose vl arbitrarily. Given X = {vl, . . . , vt} with d(v i, vj) > r - e for all
i r j, if a v e V exists such that d(v, X) > r - e, then set X = X u {v}. Otherwise
the process ends. By assumption the process must end with # X ___ K and X is
an appropriate set of centers. []

Consider the following K-Center algorithm for any K-server problem on a
bounded metric space (V; d). Let the covering radius be R and let X = {vl, . . . , vK}
be a set of centers such that all nodes in V are within R of X. Place the ith server
on v,. To serve a request, choose any server subject to the constraint that the ith
server remains within distance R of v,.

THEOREM 5.1. The above K-Center algorithm achieves a M a x ~ M a x ratio <_2K
for the K-server problem on any bounded metric space.

PROOF. Clearly the algorithm never pays more than 2R to serve a request. For
every e > 0 let ul Uk+~ be a set of pairwise (R - - e) remote nodes whose
existence is established by Lemma 5.1. Consider any (off-line) algorithm on the
repeating request sequence (u~ Ur+O*. Clearly, for every e > 0, even the

A New Measure for the Study of On-Line Algorithms 85

op t imal a lgor i thm mus t pay R - e every K requests (see the discussion concerning
the uni form system in the next section), so that, for all e > 0, WM(K-Center)<
2R/ ((R- -e) /K) . As we can choose e arbi trar i ly small, we can conclude
wM(K-Center) <_ 2K. []

COROLLARY 5.1. The K-Center algorithm is optimal up to a factor of 2 amongst
all on-line algorithms.

PROOF. F o r every e > 0, let ul Uk + 1 be a set of pairwise (R -- 5) remote nodes
as in the theorem. By always requesting an unoccupied node f rom this set every
on-line a lgor i thm can clearly be forced to pay at least R - e in every request. []

H o c h b a u m and Shmoys [HS] show that the p rob lem of comput ing an opt imal
K-set of centers for a finite metric space is an N P - h a r d problem. In [HS] it is
shown tha t an efficient app rox ima t ion a lgor i thm does exist for obta ining a K-set
with radius r ' < 2r where r is the opt imal radius, but obta ining an approx ima t ion
within a factor of (2 - e) remains an N P - h a r d problem. If the on-line a lgor i thm
uses this approx imat ion , then clearly wM(approximate K-Center) <__ 4K.

Finally, one might ask abou t the per formance of perhaps the " m o s t basic"
a lgori thm, namely, serving with the closest server. It is easy to see tha t if the
K-servers are configured so as to m a k e the covering radius of the remaining nodes
large (e.g., by having one server for two remote nodes), then "serving with the
closest server" will not correct itself. Even if the servers are initially placed on an
opt imal set of centers, it is still possible to drag serves away f rom their terri tory.

CLAIM. There is a finite metric space such that, starting from any initial configura-
tion, the M a x / M a x ratio of the Serve-with-Closest on-line algorithm on this metric
space is exponential in K.

PROOF. Let b i be the ith element in the Fibonacci sequence and let a'~ = 0
and a'i+l = a'i + bi. Let our space be a set of reals {al a2r} where, for all
i satisfying 3 < i < 2 K - 1, we have ai+ 1 - a ~ < a i - a i - 2 and the a~'s are
arbi t rar i ly close to the a'i's (i.e., given any e choose the a~'s so as to m a k e sure that
~=K1 [a'i - ai[< e). The metr ic on the space is natural ly defined by the distances
between the points on the real line.

We wish to show that, s tar t ing f rom any initial configuration, we can force a
Serve-with-Closest player to set its K-servers on the odd indexed points.

We do this in K steps. At the beginning of stage i (i > 1), we have the p roper ty
that for each j < i there is exactly one server on node azj_ 1 and that all of the
remaining K - i + 1 servers are on the nodes {ajl j >_ 2i - 1}. Stage i proceeds as
follows: Unti l there is at mos t one server on the two nodes {a2~_ 1, a2~}, we cont inue
to move servers toward azK by requesting any node aj (j > 2/) such tha t aj is
unoccupied but a j_ 1 is occupied by a server. If the total numbe r of servers on
{azi- 1, azl} is greater than one, then such an aj must exist. I f there is exactly one
server on the nodes {azi_ 1, azl}, then request az~_ 1 to complete stage i.

Otherwise we bring one server toward a2~_ ~ by requesting the lowest a i such

86 S. Ben-David and A. Borodin

that a s is unoccupied but as+ ~ is occupied by a server. The stage ends when a2i_ 1

gets requested.
Having so forced the servers to the odd indexed points, the adversary requests

a2K-a and azK alternatively, so that the Serve-with-Closest algorithm is forced to

pay b2K_ 1 ,,~ ~/)2K-2 per request, where ~0 = (1 + x/5)/2.
On the other hand, as ~ r - l l bi < bK- 1 + bK, the K-Center algorithm will station

its servers on the upper half of the set of vertices and serve all requests to vacant
nodes by the leftmost stationed server. It is easy to check that the cost of serving
any request is thus O(q~K). []

6. The Influence of Lookahead. Unlike the situation for the competitive ratio, we
now show that, when considering the Max/Max ratio, lookahead can improve
on-line performance. In particular, we can completely analyze the power of
lookahead with respect to any uniform server system (i.e., paging).

LEMMA 6.1. Let U, denote the uniform n-node space (i.e., d(i,j) = 1 for all i r
Then, for all K < n - 1,

n - K
M (O P T) -

n - 1

PROOF. If we consider the uniform server system U,, then the off-line player can
play a simple greedy strategy, namely, to postpone paging as long as possible.
That is, it evicts the page whose next request is farthest in the future. (This strategy
was proposed by Belady [B] and proven optimal by Mattison et al. [MGST]. An
elegant proof can be found in [MS].) We assume the initial configuration has
servers on nodes x,-K+l, . . . , x, and consider the request sequence xt, . . . , x,,
xl x In trying to postpone moving as much as possible, at time t the
off-line player will serve an uncovered node with that server whose present location
will be the last to be requested. In doing so, it is easy to see that on the given
input sequence the off-line player then moves n - K times for every n - 1 requests.
Conversely, by looking ahead at the next n - 1 requests in any request sequence,
O P T can guarantee that at most n - 1 - (k - 1) = n - k nodes will be unoccupied
when requested. []

We now show that an on-line player with lookahead l -- n - 1 can achieve the
same max cost by essentially following the same greedy strategy. Indeed, for any
l satisfying n - K < l ___ n - 1, the on-line player can use the greedy strategy to
achieve a max ratio of (n - 1)/1.

THEOREM 6.1. Consider the K-server problem on U,, with lookahead l, 1 <_
l<_ n - 1 .

A New Measure for the Study of On-Line Algorithms 87

(i) I f I < n - K, then the greedy strategy achieves a M a x ~ M a x ratio = (n - 1)/
(n -- K) and this is optimal. (That is, any l < n - K yields the same M a x ~ M a x

rato as f o r l = 1.)
(ii) I f n -- K < 1 < n -- 1, then the greedy strategy achieves a M a x / M a x ratio o f

(n - 1)/I and this is optimal. (Thus, in particular, the M a x / M a x ratio = 1 for
l = n - 1.)

PROOF. We first consider the case l _< n - K so without loss of generality let
l = n -- K. At every point in time, there are n - K uncovered nodes. The adversary
constructs the request sequence by maintaining the proper ty that the next n - K
requests are distinct and different f rom the K covered nodes. To do so, the
adversary makes the (n - K)th next request to be a node that is neither covered
now nor is it requested in the next I - 1 requests foreseen by the on-line algorithm.

Clearly, such a strategy forces the on-line player to move a server on every
request.

N o w we consider the case n - K < l _ n - 1. The on-line a l g o r i t h m / - G R E E D Y
is as follows:

Lookahead to the next l requests and use the greedy strategy described
above (in Lemma 6.1's proof), relative to the lookahead available to you. That
is, if there are any presently occupied nodes which are not requested in the
next I requests, then use any server sitting on such a node. Otherwise use that
server whose locat ion is the last to be requested for the first time amons t the
next l requests.

We will show M(I -GREEDY) = (n - K)/l. Combining this with Lemma 6.1 we
have

n - K / l n - 1
w~t"(I-GREEDY) -

n -- K / n -- 1 l

Let us prove that, in any sequence of I requests, the on-line algori thm pays at
most n - K.

Let 0.1a~"" 0.m be a sequence of requests and let C be a configurat ion of servers.
We say 0.i is a repeat point in o"1o"5"'- 0.rn relative to C if either 0.i is a location
occupied in C or there exists j < i such that 0.j = 0.~.

CLAIM 1. I f t < t', and Ct and C c represent the configurations (before satisfying
the request) at times t and t' respectively, then any request at time t" > t' to a node
v in Ct, is a repeat point with respect to Cr

PROOF. If v = a~ is in Ct we are done. Else, v must have been requested before
time t' (else v r Cc). Thus a~ is a repeat point relative to C t. []

CLAIM 2. For every C and every a l a 2 . . . a l , at least I - (n - K) repeat points
relative to C exist.

88 s. Ben-David and A. Borodin

PROOF. Claim 2 is immediate since there are only n - K uncovered nodes. []

CLAIM 3. Suppose / - G R E E D Y vacates a node v in configuration Ct. Then either

v is not requested in the nex t I steps or before the f irs t request to v there are at least

K - 1 requests to members o f Cr

PROOF. If V is vacated even though it is to be requested within the next I requests,
then, by definition o f / - G R E E D Y , there must have been at least K - 1 requests,
one to each of the nodes in Ct - {v}.

CLAIM 4. Relat ive to any Ca the f i rs t K - 1 repeat points (or as many that exist)

in a a a 2 " " a t do not c o s t / - G R E E D Y .

PROOF. Let a s be the ith repeat point for any 1 __ i < K - 1; i.e., as occurs with
the algori thm in configurat ion Cs.

If a s is in C a and is not vacated in the processing of a a ~ a, then clearly
as does no t c o s t / - G R E E D Y . If a s is not in C1, then it mus t have been requested
at some time t': 1 <_ t' < s. Let t' be the last such request. Clearly, o- s e C c + ~ and
if it is not vacated in the processing of at,+a, . . . , o's, then again a~ does not cost
the algorithm. []

Returning to the p roof of the theorem, suppose that C~ is the last configuration
from which a s was vacated. Then by Claim 3 there must be at least K - 1 requests
in a~, . . . , a s_ a to members of C~ and, by Claim 1, each of these requests is a repeat
point with respect to C1. Hence there are K - 1 repeat points relative to Ca in
a~a2"'" as - 1 contradict ing the assumption that a s is the i _< K - 1 repeat point
relative to Ca.

The on-line player then pays at most n - K in any l steps since the first
l - (n - K) repeat points are free. Thus the

(n - - K) / l n - - 1

M a x / M a x ratio <_ (n - K)/(n - 1) = - - f - - "

Finally let us show a lower bound of (n - 1)/1 on the M a x / M a x ratio of any
on-line algori thm with lookahead 1 in the range [n - K, n - 1].

CLAIM 5. For any n -- K < l < n - 1 and for any on-line algori thm d with

lookahead l, a request sequence on n nodes exists that forces the on-line player to
move a server at least n - K many times on every subsequence o f I many consecutive

requests.

PROOF. The claim follows once we can demonstrate the existence of a request
sequence o-~ such that, for every i, the subsequence a(i + 1), a(i + 2), . . . , a(i + /)

A New Measure for the Study of On-Line Algorithms 89

contains at least n - K nodes that are not occupied by servers after d ' s response
to the ith request of a. Such a sequence can be easily generated by letting
a(1) a(/) contain n - K nodes not occupied by the servers in their initial
configuration (this is possible whenever n - K </) , and then, at each stage i > l,
chose as a(i + 1) the last node vacated by d before it serves a(i - l + 1). []

This completes the proof of Theorem 6.1. []

The previous theorem raises an important question. Namely, is it the case that,
for every bounded K-server problem, indeed for every bounded task system
problem, an l exists such that there is an l-lookahead algorithm achieving a
Max/Max ratio equal to 1 ? That is, can amortized optimality always be achieved
with finite lookahead? The following example shows that finite lookahead cannot
always guarantee optimality.

CLAIM. There is a K-server system for which no amount of finite lookahead can
guarantee Max~Max optimality. Consider three servers with lookahead l on a
"barbell" graph with nodes {a,b, c, d} and edge costs d(a, b)= d(c,d)= 1 and
d(a, c) = d(a, d) = d(b, c) = d(b, d) = 4. The initial configuration is {a, b, c}. The
sequence of requests is generated in segments. The prefix (abcd) z begins each segment.
I f before the first request of the segment, a or b is vacant, ab is added to end the
segment, otherwise c or d is vacant and cd is added to end the segment. Segments
are repeatedly generated this way. The on-line algorithm incurs a cost of at least 2
per (abcd) piece and an additional 2for the two requests at the end of each segment,
for an average cost of (2l + 2)/(4l + 2) per request. For any sequence of n requests,
O P T can incur an average cost per request bounded by �89 + 4/n by immediately
moving a server so that both nodes on the side of the barbell that will be requested
most are covered, and then only moving the server on the other side of the barbell
back and forth.

Although finite lookahead cannot always guarantee optimality, it is the case
that increasing the lookahead can improve the Max/Max ratio. As observed before,
the usual optimal (off-line) algorithm is dynamic programming which needs to see
the entire request sequence. The obvious approach then would be to use an
l-lookahead approximation to dynamic programming, which indeed as l grows
gives a better approximation to the optimal dynamic programming algorithm. We
have the following:

THEOREM 6.2. For every bounded K-server system, Ve > 0, 31 and an 1-lookahead
algorithm DP(1) such that the M a x / M a x ratio of DP(l) <_ (1 + e).

PROOF. Let R = R(K, G) be the K-covering radius of G, so that by the argument
of Theorem 5 the off-line player pays at least R / K per request on a worst-case
sequence. The on-line algorithm DP(l) simply looks ahead I requests and performs,
as does the dynamic programming solution O PT for the sequence of l requests
~1a2"'" a~, say, ending in configuration C. Then DP(1) looks ahead at the next l

90 S. Ben-David and A. Borodin

requests tTl+ltYl+2ff2l and now simulates the behavior of O PT on the entire
sequence of 21 requests a~tr2"..tr2~. If OPT would be in configuration C' after
a l a 2 " " a t, then, in processing a t+ l . . . a2 t , the cost to DP(1) will be at most
d(C, C') + OPT's cost on at+ l ' . .a2 t . Continuing in this manner, it follows that if
1 = m.max(c,c,) d(C, C')/(R(K, G)/K), then CDP(l)(6) ~ (1 + 1/m)Copr(#). []

The argument above produces an l that depends upon both K and the metric
space. We have already seen that in the paging scenario the amount of lookahead
needed for approximating an off-line performance grows unboundedly with n (and
therefore with K).

CLAIM. For a two-server problem on a triangle G, any lookahead less than 2S3(G)
does not improve the Max~Max ratio of an on-line algorithm. (It should be noted,
though, that such lookahead can help an on-line algorithm reduce its cost on some
request sequences; e.g., sequences with blocks of length < l on which the requests are
constrained to a subset of size <_ K of the nodes). The claim can be easily extended
to any K-server problem.

PROOF. The idea is similar to that of Theorem 3.1.
Let (vlv2) be the smallest edge of G. Let d denote d(vlv2) and let D be the length

of the medium-sized edge of G (so Sa(G) = D/d). An on-line algorithm can choose
to leave a server at Va and thus bound its amortized cost by d per request.

Let A be any l-lookahead on-line algorithm. If I < 2S3(G), then, being faced with
a sequence of l many requests alternating between v 1 and v 2, A should keep a
server unmoved on v 3. Having only l-lookahead there is the risk that the (l + 1)st
next request may be to v 3, and as d ' l < 2D this is the best way to serve
VlV2Vl...v2v3v 1. It follows that A's amortized cost _>d, just as could be achieved

without lookahead. []

CONJECTURE. We conclude with our own version of a K-Server Conjecture:

For every (bounded) K-server system, the Max~Max ratio < K; furthermore,
this ratio can be achieved by a memoryless algorithm.

Acknowledgments. We are greatly indebted to the referees who not only provided
many constructive suggestions for improving the presentation but also found
errors in some of our original claims and conjectures. In particular, we thank one
of the referees for the example contained in the Claim preceding Theorem 6.2.

[B]

References

L. A. Belady. A study of replacement algorithms for virtual storage computers. IBM
Systems J., 5:78-101, 1966.

A New Measure for the Study of On-Line Algorithms 91

[BLS]

[CKPV]

[FRR]

[KMRS]

[MGST]

[MMS1]

[MMS2]

[MS]

A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task systems.
Proc. 19th Annual ACM Symposium on Theory of Computing, New York, May 1987,
pp. 373-382. Also in J. Assoc. Comput. Mach., 39:745-763, 1992.
M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server problems.
Proc. 1st Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA,
1990.
A. Fiat, Y. Rabani, and Y. Ravid. Competitive K server algorithms. Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science, St. Louis, MO, Oct. 1990,
pp. 454-463.

[G] E. Grove. The harmonic k-server algorithm is competive. Proc. 23rd Annual ACM
Symposium on Theory of Computing, May 1991.

[HS] D.S. Hochbaum and D. B. Shmoys. Powers of graphs: a powerful approximation tech-
nique for bottleneck problems. Proc. ACM Symposium on Theory of Computing, 1984,
pp. 324-333.
A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.
Algorithmica, 3(1):79-119, 1988.
R. L. Mattison, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems J., 9(2):78-117, 1970.
M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for on-line
problems. Proc. 20th Annual ACM Symposium on Theory of Computing, Chicago, ILl, May
1988, pp. 322-333.
M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for on-line
problems. Journal of Algorithms, 11:208-230, 1990.
L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging algorithm.
Technical Report CMU-CS89-122, School of Computer Science, Carnegie Mellon Uni-
versity, 1989. Also in Algorithmica, 6(6):816-825, 1991.

[RS] P. Raghavan and M. Snir. Memory vs. randomization in on-line algorithms. Proc. 16th
ICALP, Italy, July 1989, pp. 687-703. LNCS 372, Springer-Verlag, Berlin, 1990.

[ST] D.D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Comm.
ACM, 28(2):202-208, 1985.

[Y] N. Young. The k-server dual and loose competitiveness for paging. To appear in
Algorithmica.

