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Abstract 

Universal traversal sequences for d-regular n-vertex 
graphs require length Q(d”7i2 + dn2 log f), for 3 < 
d _< n/3 - 2. This is nearly tight for d = 0:n). 
We also introduce and study several variations 
on the problem, e.g. edge-universal traversal se- 
quences, showing how im:pr,oved lower bounds on 
these would improve the bounds given above. 

1. Universal TraversaIl Sequences 

Universal traversal sequencles were introducecl by 
Cook (see Aleliunas [l] and Aleliunas et al. [2]), 
motivated by the complexity of graph traversad. 

Let G(d,n) be th e set of all connected, d-regular, 
n-vertex, edge-labeled, lmdirected graphs G = 

This material is based upon work supported in part 
by the Natural Sciences and Engineering Research Ccuncil 
of Canada, and by the National Science Foundation under 
Grant CCR-8703196. Much of the work was performed while 
Allan Borodin and Larry Ruzzo were visitors at the Thomas 
J. Watson Research Center, and Martin Tompa was a visitor 
at the University of Washington. 

Permission to copy without fee all or part of this material is granted pro- 
vided that the copies are not made or datributed for direct commercial 
advantage, the ACM copyright notice and the title of the publicatior and 
its date appear, and notice is given that copying is by permission OF the 
Association for Computing Machinery. To copy otherwise, or to Eput,lish, 
requires a fee and/or specific permission. 

0 1989 ACM O-89791-307-8/89/0005/0562 $1.50 

(V, E). For this definition, edges are labeled as 
follows. For every edge {u, V} E E there are two 
labels Zzl,V and Z,,,u with the property that, for every 
u E V, {lu,v ( {u,z)} E E} = {O,l,. . . ,d - l}. For 
such labeled graphs, a string over {O,l, . . +, d - l} 
can be thought of as a sequence of edge traversal 
commands. In particular, any ZJ = U~lJ2 . . . Uk E 

u4 1 , . . . , d- 1}* and vg E V determine a unique se- 
quence (~0, vl,. . . , Q) E Vkfl such that ZVi-l,Vi = 
U;, for all i E (1,2,... , Ic}. Such a sequence U is 
said to traverse G starting at ~0 if and only if every 
vertex in G appears at least once in the sequence 
vO,vl,.--,vk. Finally, U is a universal traversal 
sequence for 9(d,n) if and only if U traverses each 
G E Q(d, n) starting at any vertex in G. U(d, n) de- 
notes the length of the shortest universal traversal 
sequence for G(d, n). To avoid certain trivialities, 
we also define U(d, n) = U(d, n + 1) in case O(d, n) 
is empty; see Proposition 1. 

Universal traversal sequences can also be defined 
for nonregular graphs of maximum degree d. The 
restriction to d-regular graphs is largely aesthetic, 
although the bounds change slightly. See Bar-Noy 
et aE. [5] for some results relating the two notions. 

There are two connections between universal 
traversal sequences and the complexity of undi- 
rected graph traversal, one motivating construc- 
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tive upper bounds and the other motivating lower 
bounds on U(d,n). Given an undirected graph G 
and two distinguished vertices s and t, determin- 
ing whether there is a path from s to t (the prob- 
lem sometimes known as USTCON or UGAP) is 
not known to be solvable in deterministic space 
O(logn). The best that is known for this problem 
is that it can be solved by an errorless probabilistic 
algorithm running in O(logn) space and polyno- 
mial expected time (Borodin et al. [7]). If univer- 
sal traversal sequences could be constructed in de- 
terministic space O(logn), then USTCON would 
be solvable within the same bounds. Aleliunas et 
al. [2] demonstrated that polynomial length uni- 
versal traversal sequences exist, but not by a suf- 
ficiently uniform construction. This suffices to 
demonstrate that USTCON can be solved by a 
nonuniform O(log n) space algorithm. Uniform 
constructions of subexponential length are known 
only for the case d = 2 (Istrail [14]) and d = n - 1 
(Karloff et al. [16]); the latter sequences are not 
of polynomial length. Uniformly constructible se- 
quences of length TZ’(“~~) would also be very in- 
teresting, implying that USTCON is solvable in 
deterministic space o(log2 n). 

The motivation for studying lower bounds on 
U(d, n) derives from considering the simultaneous 
time and space requirements for traversing undi- 
rected graphs. It is well known that any graph 
can be traversed in linear time (but using R(IV() 
space) by depth-first search, or O(log(V() space 
(but O((V((E() expected time) by random walk 
(Aleliunas et al. [2]). In fact, it has been shown re- 
cently that there is a spectrum of time-space com- 
promises between these two endpoints (Broder et 
al. [lo]). This raises the intriguing prospect of prov- 
ing that logarithmic space and linear time are not 
simultaneously achievable or, more generally, prov- 
ing a time-space tradeoff that matches these upper 
bounds. 

An appropriate model for proving such a tradeoff 
would be some variant of the “JAG” of Cook and 
Rackoff [12]. This is an automaton that has a lim- 
ited supply of pebbles that it can move from vertex 
to adjacent vertex. It uses its pebbles to recognize 
when it has returned to a previously visited vertex. 
The goal, then, would be to try to prove a trade- 
off between the number of pebbles and the number 
of moves the automaton makes. Of course, an au- 
tomaton with one pebble could traverse the entire 

graph merely by moving the pebble according to a 
universal traversal sequence. Thus, before tackling 
the problem of time-space tradeoffs we need good 
lower bounds on the lengths of universal traversal 
sequences. 

We briefly summarize work bounding the length 
of universal traversal sequences. For convenience, 
the best known bounds are given in Table 1. 
Aleliunas et al. [2] proved an O(d2n3 log n) upper 
bound. This bound actually applies to both regular 
and nonregular graphs. Kahn et al. 1151 improved 
this by a factor of d for regular graphs. For the spe- 
cial case d = 2 (the cycle), Aleliunas [l] showed an 
O(n3) bound. Bar-Noy et al. [5] and Bridgland [9] 
provided constructive, but nonpolynomial, upper 
bounds for the cycle, recently subsumed by the 
O(n4.76) construction of Istrail [14]. For the special 
case d = n- 1 (the clique), Bar-Noy et al. [5] showed 
an O(n3 log2 n) bound, subsequently improved by 
Alon and Ravid [3] by a factor of log n. Chandra et 
al. [ll] have recently shown that the latter bound 
holds for all d 2 n/2. The best constructive bound 
for the clique is the n ‘(l”gn) bound of Karloff et 
al. [16]. 

There has been less progress on lower bounds. 
Bar-Noy et al. [5] p roved an R( n log2 n/ log log n) 

bound for the clique. Alon and Ravid [3] improved 
this to Q(n2/ log n), which holds for all d = G(n). 

Prior to the current work, the best lower bound for 
2 5 d 2 n/2 - 1 was the following, also proved by 
Bar-Noy et al, [5]: 

U(d, n) = R(dn + nlogn). (1) 

This is still the best bound for d = 2, but for 3 2 
d 2 n/3 - 2 we improve this lower bound to 

U(d, n) = Q(d2n2 + dn2 log :). 

In particular, for constant degree the lower bound 
is improved from R(n log n) to Q(n2 log n), and for 
linear degree d 5 n/3 - 2 from St(n2) to fl(n”). 
Note that the latter differs from the upper bound 
O(n410g n) only by a logarithmic factor. We also 
give cubic lower bounds which hold for infinitely 
many pairs d,n with n/3 - 2 < d ,< n/2 - 1. 

One important technical point to be considered 
is that d-regular, n-vertex graphs do not exist for 
all values of d and n. 
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Table 1: Bounds on Length of Universal Traversal Sequences 

Proposition 1: For all t! and n, d-regular n- 
vertex graphs exist if and only if 0 5 d < n anC1 dn 
is even. 

Proof: (See, for example, Lov&sz, [17, exer- 
cise 5.21.) For the “only if” clause, dn/2 is the 
number of edges, which must be an integer. For 
the “if” clause, let V = (0, 1,. . . , n - I} and 
E = {{i,(i + j) mod n} 1 0 5 i < n and 1 5 
j _< [d/2]}. If d is even, I(V,E) is d-regular. If 
d is odd, then n must be even, so replace 1: by 
E U {{i, (i + n/2) mod n} 110 5 i < n}. 0 

In order to talk about s1 bounds on U(d, n), de- 
fine U(d,n) = U(d,n + 1) whenever dn is odd. 

The remainder of the paper is organized as fol- 
lows. In Section 2 we give our basic lower bound 
argument, proving the R(d2n2) bound. Section 3 
proves a technical result, showing that U(d, rz) is 
nearly monotone in n. This is needed in several 
of our results to transform infinitely-often lower 
bounds into almost-everywhere (Q) lower bounds. 
Section 4 proves the llt(dn2 log f) term of our l.ower 
bound, by reducing to the Iproblem (defined there) 
of “circumnavigating” a cycle many times, and gen- 
eralizing the cycle lower bound of Bar-Noy et al. [5]. 
Section 5 further generalizes the “circumna.viga- 
tion” reduction, giving possible approaches to im- 
proving our lower bounds. ISection 6 concludes with 
open problems. 

2. The G?(d2n2) Lower Bound 

In this section we present the basic lower bound ar- 
gument for universal traversal sequences. It is used 
to prove the following two theorems. Where appli- 
cable, Theorem 2 is generally the stronger result, 
but Theorem 3 extends over a wider range of de- 
grees (and provides slightly better absolute bounds 
for certain small values of n and d). 

Theorem 2: For all 3 5 d 5 n/3 - 2, U(d, n) = 
st(d2n2). In particular, let dn be even, and let d’ 
be the least integer in the range d + 1 _< d’ 5 d + 4 
such that n - d’ and d(n - d’)/2 are even. (Such a 
d’ exists, since it suffices for n - d’ to be a multiple 
of 4.) If 3 5 d < (n - 2 - (d’ - d))/3, then 

U(d,n) 2 d(d - 2>(n - d’>2 + 4d(n - d’)a 
16 

(s-4 

Theorem 3: For all 3 < d 5 n/3 - 1, U(d, n) = 
n(dn2). In particular, for 3 2 d 5 n/2 - 1, n even, 
and dn/2 even, 

U(d, n) 2 (d - 2)n”$4n 
8 

We will concentrate on the proof of Theorem 2; 
the proof of Theorem 3 is very similar. The follow- 
ing definitions will be useful. 

Definition: A sequence U is edge-universal for 
B(d, n) if, from all starting vertices of all graphs 
G in G(d,n), the path defined by U includes each 
(undirected) edge of G at least once. U is s-edge- 
universal (s-vertex-universal) if the path defined 
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by U includes each edge (respectively, enters each 
vertex) at least s times. 

The first observation is that if a sequence U is 
universal, then it must also be edge-universal for 
slightly smaller graphs. This is implicit in the proof 
of Lemma 13 of Bar-Noy et al. [5]. (Their lemma 
supplies the R(dn) b ound of Equation 1 in Sec- 
tion 1.) 

Lemma 4 (Bar-Noy et al.): For dn even, if U 
is universal for G(d, n), then U is edge-universal for 
G(d,n - d’) for all d’ 2 d + 1. 

Proof: If G(d, n - d’) is empty, then the con- 
clusion holds vacuously. Otherwise, we proceed by 
contradiction. Let (H, ~0, e) be a counterexample, 
i.e., H E G(d, n - d’) is a graph with a vertex ~0 
and an edge e such that U starting from DO fails 
to traverse edge e. By “hiding” some vertices on 
edge e, we can build from H a graph G in Q(d,n) 
for which U fails to be universal. Placing one ver- 
tex in the “middle” of e would suffice, except that 
the graph would no longer be d-regular. Instead, 
we attach an arbitrarily labeled d-regular, d/-vertex 
graph K. (By assumption d < d’, and if d is odd, 
then n and n - d’ must be even, whence d’ is even, 
so such a K exists by Proposition 1.) Join H and 
K by removing e = {u, w} and any edge {y, z} of 
K, and adding the edges {u, y} and {v, z} so that 
the resulting graph G is connected. Now U start- 
ing at ve in G will behave exactly as in H, never 
leaving either of the vertices incident to e by the la- 
bel which would have crossed e, and thus will never 
enter K. This contradicts the universality of U. 

Note that a (d+ 1)-clique is the smallest d-regular 
graph K, so d’ must at least d + 1. 0 

The key idea in the lower bound technique is 
found in the following lemma, which shows that 
an edge-universal sequence must be “highly” edge 
universal for smaller graphs. 

Lemma 5: Let 7t be even. If U is edge-universal 
for c(d, n), then it is s-edge-universal for B(d, n/2), 
where s = (d - 2)n/4 + 1. 

Proof: The theorem is vacuously true if 
G(d, n/2) is empty. Otherwise, the proof is by con- 
tradiction. Let (H, vc, e) be a counterexample, i.e., 
H = (VH,EH) is a graph in B(d,n/2) with a ver- 
tex o. and an edge e such that U starting from ~0 
crosses e only t times, where t < s. 

Partition the edges of H into two sets C and 
S so that (VH,C) is connected and contains e. In 
particular, let C be any spanning tree of H contain- 
ing e. Th e e d ges in S will be called “switchable” 
edges, for reasons to be made clear below. Note 
that IS( = dn/4 - (n/2 - 1) = s. 

Define a family {G, 1 x E {O,l}‘} c O(d,n) 
as follows. G{,I s is simply the graph consisting of 
two disjoint copies of H. For each z # {O}‘, G, 
is similar except that certain pairs of switchable 
edges, one from each copy of H, are crossed from 
one copy to the other. (See Figure 1.) These pairs 
of edges are selected from S as dictated by l’s in 
the corresponding positions of 2. (A special case of 
this construction appears in a different context in 
Awerbuch et al. [4].) 

More precisely, G, = (V, E5) is defined as fol- 
lows. 

Choose a one-to-one correspondence between 
edges in S and bit positions in 2. For U, D E VH 

let xu,, be the bit corresponding to edge {u, w} if 
{u, V} E S; otherwise z,,, = 0. Let $ denote the 
EXCLUSIVE OR operation. Let 

vi={t+~vH}, iE{o,l}. 

Then finally we have 

v = VOuVf 

& = {{‘lLi,??~-} 1 {t&,2)} E a&H, 
and i E (0, l}}, 

and, for all {u, V) E EH and i E (0, l), 

The vertices in V” will be referred to as the “left 
hand” copy of H, and those in V1 as the “right 
hand” copy. Note that G, is connected for all zr # 

UY, since each copy of H is internally connected 
via the unswitchable spanning tree edges, and the 
two copies are connected to each other through at 
least one switched edge. 

The key observation about this family of graphs 
is that for any sequence U, the path followed by U 
in H is identical to the path followed by U in G,, 
except that in G, the path will cross between the 
left and right copies of H on some steps. This is 
easy to see from the definition of E,: if the path 
leaves vertex u along edge (u, V} in H at some step, 
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“unswitch ed” edge pair: {u, V} 
“switched” edge pair: {v, w} 

V0 

Figure 1: G:, and Switchable Edges 

then no matter whether it,‘s at UO or u1 in G, at 
the same step, and no matter whether z,,, is (I or 
1, it will be at either w” or o1 at the end of the si,ep. 

In fact, we can say more. Define the parity of an 
edge to be 0 if both end poi.nbs are in the same clspy 
of H, and 1 if the two end :points are in different 
copies. In other words, the parity of the edge (u, 0) 

1s ~,,?I. Suppose the sequence of vertices visited by 
U in H starting at Vc is 

VO,Vl,V2 )‘... 

Then in G, starting at ZI g, U will visit the sequcfnce 

0;,?&0p,... 

where pj E {O,l} is the net parity of all the c:dge 
crossings up to and including the jth step, i. e., 

Pj = zz)o,?J1 63 2?J,,2)2 6) ’ * ’ @ 5tJj-l,Vj’ (4) 

This fact is easily proved .by induction on j. 

We are now prepared to show the central claim: 
if U when started from vc in H traverses e = {u, U} 
a number t < s of times, then there is an z # .:O}’ 
such that U in G, started from the left hand copy 
of ~0, namely 2):, nezler traverses the right l.and 
copy of e, namely {ul,vl}. (Note that e is a xon- 
switchable edge, by construction, so its two ccmpies 
in G, don’t cross between copies of H.) Sup:?ose 
e is traversed during steps ji, . . . , j, and no others. 

Thus 

{VJ~ = {'uj1-l,Q) = {qz-l,y,} 
=; . . . = &i-l, q,) 

and this is true of no other pair {wj-r, vj}. Then 
choose an 2 # (0)’ such that 

Pi = 0 

Pjz = 0 

Pjt = 0. 

From Equation 4 this is a system oft homogeneous 
linear equations in s unknowns over GF(2). Since 
t < s, this system always has a nonzero solution 
(Herstein [13, Corollary to Theorem 4.3.31). 0 

We can now prove Theorem 2. 

Proof of Theorem 2: As in the statement of 
the theorem, let dn be even a-nd d’ be the least 
integer satisfying d + 1 5 d’ :g d + 4 such that 
both n - d’ and d(n - d’)/2 are even. If U is 
universal for 9(d,n), then by Lemma 4 it is edge- 
universal for G(d, n - d’), and so by Lemma 5 it 
is s-edge-universal for G(d, (n - d’)/2), where s = 
(d - 2)(n - d’)/4 + 1. Clearly, an s-edge-universal 
sequence for G(d, (n - d/)/2) must have length at 
least s times the number of edges in graphs in 
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B(d, (n - d/)/2), i. e., 

JUI 1 sd(n - cc)/4 

d(d - 2)(n - d’)Z + 4d(n - d’) = 

16 

It is straightforward to verify that B(d,n), 
E(d, n - d’), and B(d, (n - d/)/2) are all nonempty, 
due to the various evenness constraints, and the as- 
sumption that d 5 (n - 2 - (d’ - d))/3, which is 
equivalent to d 5 (n - d’)/2 - 1. 

The stated R bound follows since d’ 2 d + 4 and 
n/3 - 2 5 (n - 2 - (d’- d))/3. 0 

The proof above is not valid for d > n/3 - 1, 
since Lemma 4 requires the insertion of a large 
gadget when d is large. However, the technique of 
Lemma 5 can be applied to obtain the lower bound 
of Theorem 3 for degrees up to n/2 - 1, by hiding 
a vertex rather than an edge. 

Lemma 6: Let n be even. If U is universal for 
E(d, n), then U is s-vertex-universal for 9(d, n/2), 
where s = (d - 2)n/4 + 1. 

Proof (Sketch): The proof is essentially the 
same as the proof of Lemma 5, except that rather 
than choosing an infrequently traversed edge to 
avoid in the right-hand copy of H in G,, one 
chooses an infrequently visited vertex. q 

The proof of Equation (3) of Theorem 3 is then 
immediate: if U is s-vertex-universal for n/2 vertex 
graphs, then IU] > sn/2. 

Perhaps somewhat surprisingly, U(d,n) is not 
known to be monotone in n. Thus, the lower 
bound for infinitely many values of d and n given 
above does not immediately imply the fl lower 
bound (i. e., for almost all n) stated in Theorem 3. 
However, we can show that U(d, n) is “sufficiently 
monotone” to yield the stated Q bound, for d up 
to n/3 - 1. This is deferred to Section 3. 

Even in the range n/3-1 < d 5 n/2-1 where the 
almost everywhere bound does not hold, Theorem 3 
still provides a “dense” lower bound, valid for half 
of the d, n pairs having dn even: namely, those with 
dn - 0 (mod 4) and n even. 

The bounds given in Equations 2 and 3 are valid 
for d = 2, but trivial. The underlying reason is that 
Lemma 5’s spanning tree would then contain all 
but one edge of H. Making more edges switchable 
could easily leave the graph disconnected. 

3. U(&, n) is Nearly Monotone in n 

Intuitively, one would expect that U(d, n) is mono- 
tonically nondecreasing with n, but there is cur- 
rently no proof of this conjecture, except for the 
easy case of d = 2 (e.g., see Aleliunas [l] or The- 
orem 7 below), and the case d = 3, which follows 
from Theorem 7 below. In the full paper [8] we 
prove Theorem 7, which shows that U(d,n) is 
“monotone in the large”, although there is still the 
possibility that it is nonmonotone within small re- 
gions . 

The idea for our proof of Theorem 7 came from 
a construction due to Steve Mann [personal com- 
munication]. 

Theorem 7: For all d,n, and all b 1 d - 1, 
U(d, n) 5 U(d, n + b). 

In addition to its intrinsic interest, this weak 
monotonicity result can be used to parlay “in- 
finitely often” lower bounds, such as the ones pre- 
sented in Theorem 3 and in Section 4, into “almost 
everywhere” (0) lower bounds. 

4. The f2(dn210gs) Lower Bound 

The Q(dn2 log 2) lower bound begins with many 
of the same ideas used in Section 2. By a careful 
choice of the graph H and its s switchable edges 
in Lemma 5, Section 4 shows that, from any uni- 
versal traversal sequence of length u for the family 

{G I x E {O,lYl, we can extract a sequence over 
(0, l} of length G(u/d) that “circumnavigates” any 
labeled ,&l-cycle R(dn) times. Bar-Noy et al. [5] 
prove that one circumnavigation of such a cycle re- 
quires a sequence of length a(2 log 2). Section 4.2 
generalizes their lemmas to prove that t circumnav- 
igations requires a sequence whose length is t times 
as great. Hence, u/d = Q(n2 log a). 

Given the amount of technical detail required to 
rework the lemmas of Bar-Noy et al. [5], the result- 
ing gain over the bound of Section 2 may appear 
small. However, the reduction from universal se- 
quences to multiple circumnavigations is very gen- 
eral, and may well lead to dramatically improved 
lower bounds. (See Section 6.) 
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4.1. R.eduction to Circumnavigations where 

For any labeled cycle C E: 6;(2,n), a string over 
{O,l} can be interpreted as a, traversal sequence. 
In particular, any U E (0, l}” and start vertex ‘70 
of C determine a unique sequence (Q, ~1, . . . , Ok) of 
vertices traversed by U. Such a sequence U is said 
to circumnavigate C t times starting at 00 if there 
are at least t times at which thle sequence returns to 
wo moving in the same direction in which it last left 
vo. More precisely, U circumn.avigates C t times if 
and only if there exist 0 5 21 < i:! < . . . < izt 5 k 
such that 

1. 7jo=TJj1 =uj 
2 

=...=q 
2t ’ 

2. vl # vo for all izj-1 < 1 .< iaj and 1 5 j < t, 
and 

3. WU;~~-~+I # vjzi-l, for all I. 2 j < t. 

U is a t-circumnavigation sequence for G(2, n) if and 
only if U circumnavigates each C E F(2,n) t times 
starting at any vertex in C. C(t, n) denotes the 
length of the shortest t-circumnavigation sequence 
for G(2,n). 

Theorem 8: Let n be a multiple of 8(d - 1). 
Then 

d 
WC 4 2 $7(2+ 4, 

where s = w and m = qh. 

Proof: This proof combines ideas from the 
proofs of Lemma 6 and Bar-Noy et al. [5, Lemma 91. 

For any (Y E (0, 1,. . . ,d - l}“, let Q lo,1 be the 
result of deleting all symbols other than 0 anI1 1 
from ~11. Let U be a universal traversal sequence for 
G(d,nj. Assume without loss of generality tha,t 0 
and 1 are the two least frequently occurring sym- 
bols in U, so that IUJ 2 $jUjoll. Let C f G(2,m) 
be an arbitrary labeled cycle,‘and v an arbitrary 
starting vertex of C. It sufilces, then, to prove that 

uIOl 
circumnavigates C 2s times starting at D. 

Cinstruct H E B(d, n/2) a3 follows. Let K$-1 = 
(V”,,??) for 0 4 i < 4m be disjoint copies of the 
(d - l)-clique lid-l. Let Vi = {vf,vi,. . . ,I&-,>. 
Then 

p = {{vi, ,Jj+l)mod4m 
3’ 3 })l_<j_<d-1). 

Label the edges in u;.Ei arbitrarily 
from (2,3,...,d - 1). If ,0 is the string of 
length m that circumnavigates C starting at v 
once in a clockwise direction, then label the edges 
in uJI” so that /3/3p/3 circumnavigates the cycle 
(v~,wj,...,w~m--l ) starting at V; once in a clock- 
wise direction, for all 1 5 j 5 d -- 1. There is an 
obvious homomorphism 4 from H to C that maps 
four cliques into each vertex of Cc, and such that 
if a sequence a starting at V: ends in some clique 

J&, 7 then cylol 

under # of I<:-;. 

starting at w ends at the image 

Let T be any spanning tree of 17, and let the set 
of switchable edges of H be 

that is, almost all edges in half of H. Note that 

ISI 2 $+ Cd - w - 2) _ 
2 

(a+-) 
>_ (d - 2)n/8 = s. 

For any z E (0, l}” - {O}‘, construct G, E G(d, n) 
from two disjoint copies of H as in Lemma 5. (If 
IS\ > s, then by convention the switchable edges 
beyond the first s are never switched.) 

Consider the vertex uFrn, which is in the clique 
farthest from any switchable edge. It must be the 
case that U, when applied to .H starting at ~10, 
makes at least s traversals from S to ~13” and back 
to S. If not, as in Lemma 5, there is an z # {O}’ 
such that U, when applied to G, starting at the 
left hand copy of ~10, never reaches the right hand 
copy of ?$m, contradicting the universality of U for 
G(d,n). Since the homomorphism 4 maps K2-l, 
Ki_ml, and wfrn onto V, these s traversals back and 
forth are mapped into 2s circumnavigations of C 
starting at 2). Cl 

4.2. A Lower Bound on t-Circumnavigat- 
ing an n-Cycle 

H= ~~‘V~,~~‘~~)“i’E’~~)), 
In this section, we generalize the cycle lower bound 
of Bar-Noy et aE. [5] to circumnavigations. Our 
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presentation is self contained, but closely follows 
their proof. 

Definition: A labeling w E (O,l)* is a labeled 
chain (O,l,. . . , 1~1) of vertices such that Z;-r,i = wi, 
for 1 < i 5 1~1. 

A labeling might, for example, represent an arc 
of a labeled cycle. 

Definition: A traversal sequence cy E {O,l}* 
traverses a labeling w if and only if, when started 
at the left end of w, it reaches the right end of 
w (without falling off the left end) exactly at the 
end of CX. To make this more precise, suppose that 
a, beginning at vertex 0 of the labeling, visits the 
sequence (2ru = 0, Dr , . . . , ~1~1) of vertices. Then, for 

au 1 I j I 14, 

2. oj = ZVjT1 ,Vj, and 

3. ~j = 1~1 if and only if j = Ial. 

Lemma 9: If (Y traverses u and 0 traverses V, 
then CY,~ traverses UV. Conversely, if 7 traverses uz), 
then y = (YY/~, where (Y traverses u, and ,B traverses 
2). 

Proof: The forward direction is immediate. For 
the converse, let cy (0) be the prefix (suffix) of y up 
to (after) the first entry into (last departure from) 
the vertex at the boundary between u and o. 0 

Definition: A sequence 0 is an a-block if p tra- 
verses Oala, but no proper suffix of 0 does so. The 
minimal prefix (suffix) of /3 traversing 0’ (la) is 
called an a-half-block, and is denoted PO (,B’, re- 
spectively). 

Definition: For p E {O,l)* and x E (O,l], let 
#J be the number of occurrences of z in /?. 

Lemma 10 (See [5, Lemma 31): Let /3 be an 
u-block. Then 

(10.1) #up”-#rpo = a, and #I@-#e/?l = a, 
and 

(10.2) every nonempty prefix and suffix of 
,B”(,B1) has more O’s (l’s) than l’s (O’s). 

Proof: Condition 10.1 is necessary in order to 
traverse Oa and la. Condition 10.2 follows from the 
minimality of blocks and half-blocks, and from the 
requirement that they not “fall off the ends” of the 
labeling being traversed. 0 

Following the notation in [5], we identify a block 
or half block with its set of (consecutive) indices in 
the sequence o. For example, if ,0 and y are blocks 
in Q, we use the set notation /3 C y to denote that 
/? is a subinterval of y. 

Lemma 11 (See [5, Lemma 41): For any 
WO,Wl,...,Wm, if o traverses 200 ~~r(Oalawj), 
then cy contains m pairwise disjoint u-blocks. (fl 
denotes string concatenation.) 

Proof: Let a = aecyr . - ecr,, where oe(~r. -. cy; 
is the prefix of Q up to and including the symbol 
entering the last vertex in wo$,(O’lawj) for the 
last time. Then a;+1 starts with an u-block. •I 

Lemma 12: Let U be a t-circumnavigation se- 
quence for G(2, n). For every 1 5 a 5 n/4, 
let m, = (l&J - 1) t. Then there exist strings 

Wa,O, Wa,l, . - . 7 Wa,ma such that U traverses each la- 
beling in the set {wa I 1 2 a 2 n/4), where 

Wa = Wa,O fj (Oalawa,,). 
i=l 

Proof: Let C, E G(2,n) be the cycle labeled 
(clockwise, from a designated start vertex uo) by 

the n-symbol prefix of (0~1’)[%1. Let c, de- 
note the clockwise labeling of C, starting from 
wc, and G denote the counterclockwise labeling. 
Thus, if c, = (Oala)k~, where 1x1 < Zu, then 
iZ = ly(Oala)“-l(Oala-f), where y is the comple- 
ment of the reverse of Z. 

Let U = ciyrc272 . *- ct~tet+r where, for 1 5 
j 2 t, ej (possible empty) traverses C, from 
00 back to we zero or more times without com- 
pleting a circumnavigation, whereas rj completes 
exactly one circumnavigation, starting and end- 
ing at z,e, and not visiting 00 otherwise. Then 
7j traverses ca (if rj was a clockwise circum- 
navigation) or G (if yj was a counterclockwise 
circumnavigation). As noted above, ca contains 
(Oala)ln/2al, and q contains (Oala)ln/2al-1. In ei- 
ther case, there exist yj and zj such that yj tra- 
verses yj(O”1”) ln/2alM1tj. Obviously, cj traverses 

Ej. Thus, by Lemma 9, u = (n& tj7j) Et+1 
traverses ( nfzl Ejyj(Oala)Ln'2aJ-1Zj Et+l. > The 
lemma follows by collecting the cj’s, yi’s, and zj’s 
into the appropriate w,,;‘s. 0 
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Definition: Two half blocks have a trivial in- 

tersection if and only if the:y are either disjoint x 
one is contained in the other. 

Lemma 13 (See [5, Lem:ma 51): Let p and 13 
be two blocks. Then p” and fll have a trivial in- 
tersection. 

Proof: This follows from condition 10.2 of 
Lemma 10, the prefix and suffix properties of 0’ 
andp’. 0 

Definition: A set {p,“’ 1 1 _< j 5 T and zj E 
(0, 1)) of half blocks is nested if and only if 

1. every pair of half blocks has a trivial intersec- 
tion, and 

2. if pj” C /Ii for j # k, then there exists an 
1 # {j, k} such that /3j”’ <, @c ,Q, where 2: = 
1 - 2. 

Lemma 14 (See [5, Lemma 61): 
For 1 5 a < n/4, let m,, = ([$j - 1) t, let 

WR,O, Wa,l~ - * * 7 w~,~~ be strings in {O,l}*, and let 
W - w,,on~r (Oalaw,,;). If U traverses each la- 
b&& in the set (2~~ 1 1 5 ~15 n/4} then U c.on- 
tains a nested set of half blocks 

where, letting ai = [n/4;], ,$ik traverses (x;k)“i. 

Proof: By induction on i. 

Let & be a maximum cardinality set of pair-wise 
disjoint ai-blocks in U. By Lemma 11 and the fact 
that U traverses wai, 

= (2i -- l)t 

2 it 

for i 2 1. When i = 1, p.ick any half block of each 
of t al-blocks in B,,. A.ssume the lemma is true 

for i - 1, and let 

be the nested set asserted by the induction hypoth- 
esis. We will show how to find t half blocks of Bai 
that preserve the nestedness of II. 

For each p E I?,, define 

.rn(p> = {$ik E B 1 px:jk n ,oj”kj” # 0 and 

As will be seen, I@) includes all the half blocks 
that could possibly “interfere with” p, i.e. prevent 
either half block of fi from being included in B. 

CLAIM 1: The sets In(p), /3 E I?,;, are pairwise 
disjoint. To see this, suppose by way of contradic- 
tion that /3Tik E In(p) I-I In(a) for some p # B. 
Without loss of generality, assume that /? occurs 
in U to the left of p. py;” has nonempty intersec- 

tion with pxjk and pjk but contains neither /3% 
nor fiq, which is impossible, since one of /3- and 
pq lies between ,P+ and Pxjk. 

CLAIM 2: There exist t blocks p E Bai such 
that In(p) = 0. This is true by Claim 1 and the 
facts that there are at least it ai,-blocks in Bai and 
exactly (i - 1)t half blocks in B. 

For 1 < I < t, let pil be an a;-block in gai such 
that In(&) = 0. If 0: U pi: is disjoint from every 
,f$” E B, we can pick either half block of &, so 
we arbitrarily let x;l = 0. Otherwise, consider a 
minimal (in the inclusion sense) ,6Tik E I3 such that 

/3yLk fl (pi U p,:) # 0. Then since pyi” @ In(&) 

and by Lemmas 10 and 13, we must have p? C ,- 
P Ti”, so let xi2 = 2jk. The fact that 

u {/3Zl 1 15 12 t) 

is properly nested follows from the induction hy- 
pothesis and the pairwise disjointness of pz’, 1 5 
1st. 0 

Lemma 15 (See [5, Lemma 71): 
Let B = {p,“j ) 1 < j 5 r} be a nested set of half- 

blocks, and for ‘1 _< j 5 T, let bj be such that @yi 

traverses (~j)~j. Then 
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Proof: Without loss of generality, assume that 
the half blocks in B are numbered so that ,!$T’ is not 
contained in ,03’ for j < i. The proof is by induc- 
tion on T. The case T = 1 follows immediately from 
condition 10.1 of Lemma 10. Assume the lemma is 
true for T - 1, SO that ( UiEi /??I 2 CgEi bj. 

By part 2 in the definition of nested sequences, 
the maximal pj”j C p,” are of opposite type, i. e. 

xj = 2,. Let p be the union of the PT that are 
maximal half blocks contained in /3,“r. In order for 
p,“’ to satisfy condition 10.1 of Lemma 10, it must 
be the case that I@,“r - PI > b,, so that 

) (j pj”j1 = ,(rjp;‘)“p:‘, 
j=l j=l 

T-l 

= I(Upj”J)u(p,“‘-P)I 
j=l 

r-l 

q 

= I Upj"'HIP,"'-PI 
j=l 

T-l 

2 C bj + b, = f: bj. 
j=l j=l 

Theorem 16 (See [5, Theorem 21): If U is a 
t-circumnavigation sequence for G(2, n), then lU/ 1 
$tn(lnn -O(l)). That is, C(t,n) = Q(tnlogn). 

Proof: From Lemmas 12 and 14 it is immediate 
that U contains a nested set of half blocks that 
includes t distinct a;-half blocks for each 1 5 i 5 
n/4. Thus, from Lemma 15, 

>_ itn(lnn - O(1)). 

I7 

This section generalizes the notion of circumnav- 
igations to graphs other than cycles, and shows 
how a lower bound on this generalization would 
also yield a lower bound on U(d,n). 

CoroIlary 1'7: If 3 5 d = o(n), then U(d, n) = For any G E S(d,n), any start vertex ‘ue of G, 

R(dn2 log 2). and any UE {O,l,...,d-I}*, let (wu,w1,...,Dk) 

Proof: From Theorems 8 and 16, whenever 
8(d - 1) divides n, 

WA 4 2 &(d - 2)n2(ln 3 - O(1)). 

The Q bound follows from Theorem 7. 0 

5. Variations on the Reductions 

This section describes two variations on the reduc- 
tions presented in previous sections, either of which 
may conceivably lead to improved lower bounds on 
U(d,n). Proofs in this section are deferred to the 
full paper [8]. 

5.1. t-Edge-Universal Sequences for the 
Cycle 

This section describes a reduction that could con- 
ceivably improve the lower bound on U( d, n) from 
0(dn2 log 2) to St(d2n2 log 5). The basic idea is to 
use Lemma 5 in place of Lemma 6 in the proof of 
the reduction of Theorem 8. 

Definition: Let E(t,d, n) be the length of 
the shortest sequence that is t-edge-universal for 

B(d, 4. 
Note that C(t, n) > E(t, 2, n). 

Theorem 18: Let n - d - 1 be a multiple of 
2(d - 1). Then 

W4 4 2 $(d - l)s, 2,774, 

where s = t d-2)(n-d-11 
4 + 1 and m = WI. 

For instance, suppose it could be proven that 
E(t,2, m) = R(tmlogm), a generalization of The- 
orem 16. Then for 3 5 d = o(n), it would 
follow from Theorems 7 and 18 that U(d,n) = 
R(d(ds)m log m) = Q(d2n2 log 2). 

5.2. Commuting Sequences for Arbitrary 
Graphs 
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be the sequence of vertices traversed by U when 
started at wg. For any two ve:rtices u and w of ,f, 
such a sequence U is said to commute between u 
and w t times starting at DO if and only if there 
exist 0 5 ir < iz < 9.. c: &+I < k such tl.at 
vu; = u for 0 5 j _< t and viZj = w for 1 5 j 2 
t. ‘3;’ is a t-commuting sequence for G(d, n) if and 
only if U commutes between each pair of vertices 
in each G E G(d,n) t times starting at any verl;ex 
in G. I;‘(t, d, n) denotes the length of the shortest 
t-commuting sequence for <i(tl,n). 

For example, note that %i(s, 2,2m) 2 C(2s, sn.), 
since each commute between. a fixed pair of anti- 
podal vertices on a 2m-cycle labeled p/3 will cause 
two circumnavigations of the m-cycle labeled /3. 
Thus, Theorem 8 is a corollary (for d’ = 2) of the 
following theorem. 

Theorem 19: Suppose 2 5 d’ 5 d, and let n be 
a multiple of 8(d - d’ + 1). Then 

U(d, n> 2 d, dK(s - 1, d’, m), 

where s = w + 1 and m = .el. 

6. Open Problems 

There are many interesting open problems sug- 
gested by this work. Perhaps the most important 
is to try to extend these lower bounds to a time- 
space tradeoff for undirected gra,ph connecti-fity, 
using the model suggested i.n Section 1. The first 
goal would be to prove tha,t, for constant degree 
and constant number of pebbles, any automaton 
requires time fl(n”) to traverse n-vertex graphs, 
since we now know this to ‘be true for one pebble. 
Beame et al. [S] have recent1.y shown a lower bound 
of R(nlogn) for one variant of this model. Their 
argument is based on a different universal traversal 
sequence lower bound (Sipser and Szemeredi [per- 
sonal communication]), and doesn’t seem to extend 
using the one in Section 2. 

Extending the R(d2n2) bound to values of d 
closer to n/2 would also be enlightening, partic- 
ularly since a recent result of Chandra et aE. [ll] 
yields an upper bound of O(n3 logn) for all d > 
n/2. This, together with our lower bound, shows 
that U(d,n) is not monotone in d, but it is not 
yet known whether U(d,n) drops sharply at d = 
n/2, as does the expected cover time of a random 
walk [II]. It is also not known whether U(d,n) is 
monotone in d up to some threshold, perhaps n/2. 
There is also a gap in our knowledge for d 2 n/2. 
The best lower bound for d 2 n/2 is R(n2/ logn) 
(Alon and Ravid [3]), well below the known upper 
bound of O(n310gn) [II]. 
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