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2 Previous Algorithms2.1 The PageRank AlgorithmOne of the earliest and most commercially successful of the e�orts to use hypertext link structures in web searchingis the PageRank algorithm used by Brin and Page [7] in the Google search engine [12]. The PageRank algorithmis query independent, that is, it operates on the whole Web, and assigns a PageRank value to every page. ThePageRank of a given web page i, PR(i), can be de�ned as the limiting fraction of time spent on page i by a randomwalk which proceeds at each step as follows: With probability � it jumps to a sample from a distribution D(�) (e.g.the uniform distribution) , and with probability 1� � it jumps uniformly at random to one of the pages linked fromthe current page. This idea is also used by Ra�ei and Mendelzon [19] for computing the \reputation" of a page.Intuitively, the value of PR(i) is a measure of the importance or authority of the web page i. This ranking is usedas one component of the Google search engine, to help determine how to order the pages returned by a web searchquery.2.2 Kleinberg's AlgorithmIndependent of Brin and Page, Kleinberg [14] proposed a more re�ned notion for the importance of web pages. Hesuggested that web page importance should depend on the search query being performed. Furthermore, each pageshould have a separate \authority" rating (based on the links going to the page) and \hub" rating (based on thelinks going from the page). Kleinberg proposed �rst using a text-based web search engine (such as AltaVista [2]) toget a Root Set consisting of a short list of web pages relevant to a given query. Second, the Root Set is augmentedby pages which link to pages in the Root Set, and also pages which are linked to pages in the Root Set, to obtaina larger Base Set of web pages. If N is the number of pages in the �nal Base Set, then the data for Kleinberg'salgorithm consists of an N � N adjacency matrix A, where Aij = 1 if there are one or more hypertext links frompage i to page j, otherwise Aij = 0.Kleinberg's algorithm assigns to each page i an authority weight ai and a hub weight hi. Let a = (a1; a2; : : : ; aN )denote the vector of all authority weights, and h = (h1; h2; : : : ; hN ) the vector of all hub weights. Initially bothauthority and hub vectors are set to u= (1; 1; : : : ; 1). At each iteration the operations I (\in") and O (\out") areperformed. The operation I sets the authority vector to a = AT h. The operation O sets the hub vector to h = Aa. A normalization step is then applied, so that the vectors a and h become unit vectors in some norm. Kleinbergproves that after a su�cient number of iterations the vectors a and h converge to the principal eigenvectors of thematrices ATA and AAT , respectively. The above normalization step may be performed in various ways. Indeed,ratios such as ai=aj will converge to the same value no matter how (or if) normalization is performed.Kleinberg's Algorithm (and some of the other algorithms we are considering) converge naturally to their principaleigenvector, i.e. to the eigenvector that corresponds to the largest eigenvalue of a matrix associated with the algorithm.Kleinberg [14] makes an interesting (though non-precise) claim that the secondary non-principal eigenvectors (or theirpositive and negative components) are sometimes representative of \sub-communities" of web pages. It is easy toconstruct simple examples which show that secondary eigenvectors sometimes are, but sometimes are not, indicativeof sub-communities. We present a few indicative such examples in section 5.2.3 The SALSA AlgorithmAn alternative algorithm, SALSA, was proposed by Lempel and Moran [15]. Like Kleinberg's algorithm, SALSAstarts with a similarly constructed Base Set. It then performs a random walk by alternately (a) going uniformly toone of the pages which links to the current page, and (b) going uniformly to one of the pages linked to by the currentpage. The authority weights are de�ned to be the stationary distribution of the two-step chain doing �rst step (a)and then (b), while the hub weights are de�ned to be the stationary distribution of the two-step chain doing �rststep (b) and then (a).Formally, let B(i) = fk : k! ig denote the set of all nodes that point to i, that is, the nodes we can reach fromi by following a link backwards, and let F (i) = fk : i! kg denote the set of all nodes that we can reach from i by2



following a forward link. The Markov Chain for the authorities has transition probabilitiesPa(i; j) = Xk : k2B(i)\B(j) 1jB(i)j 1jF (k)j :This Markov Chain corresponds to a random walk on the authority graph Ga, de�ned by the adjacency matrix ATA,where we move from authority i to authority j with probability Pa(i; j).Assume for a moment that the Markov Chain is irreducible, that is, the underlying authority graph consists of asingle component, where we can move between any two authorities, by following a backward and a forward link. Theauthors prove that the stationary distribution a = (a1; a2; :::; aN) of the Markov Chain satis�es ai = jB(i)j � jBj,where B = SiB(i) is the set of all (backward) links.A similar Markov Chain is de�ned for the hubs, that has transition probabilitiesPh(i; j) = Xk : k2F (i)\F (j) 1jF (i)j 1jB(k)j ;and the stationary distribution h = (h1; h2; :::; hN) satis�es hi = jF (i)j � jF j, where F = SiF (i) is the set of all(forward) links.The SALSA algorithm does not really have the same \mutually reinforcing structure" that Kleinberg's algorithmdoes. Indeed, since ai = jB(i)j=jBj, the relative authority of site i within a connected component is determined fromlocal links, not from the structure of the component. (See also the discussion of locality in Section 8.) We also notethat in the special case of a single component, SALSA can be viewed as a one-step truncated version of Kleinberg'salgorithm. That is, in the �rst iteration of Kleinberg's algorithm, if we perform the I operation �rst, the authorityweights are set to a = AT u, where u is the vector of all ones. If we normalize in the L1 norm, then ai = jB(i)jjBj ,which is the stationary distribution of the SALSA algorithm. A similar observation can be made for the hub weights.If the underlying authority graph Ga consists of more than one component, then the SALSA algorithm selectsa starting point uniformly at random, and performs a random walk within the connected component that containsthat node. Formally, let j be a component that contains node i, let Aj denote the number of authorities in thecomponent j, and Bj the set of (backward) links in component j. Also, let A denote the total number of authoritiesin the graph (a node is an authority only if it has non-zero in-degree). Then the weight of authority i isai = AjA jB(i)jjBj j :Motivated by the simplifying assumption of a single component, in the conference version of this paper [6], weconsidered a simpli�ed version of the SALSA algorithm where the authority weight of node i is the ratio jB(i)j=jBj.This corresponds to the case that the starting point for the random walk is chosen with probability proportional tothe \popularity" of the node, that is, the number of links that point to this node. We will refer to this variationof the SALSA algorithm as pSALSA (popularity SALSA). We will also consider the original SALSA algorithm asde�ned in [15]. When the distinction between pSALSA and SALSA is not important we will use the name SALSAto collectively refer to both algorithms.An interesting generalization of the SALSA algorithm is considered by Ra�ei and Mendelzon [19]. They proposean algorithm for computing reputations that is a hybrid of the SALSA algorithm, and the PageRank algorithm. Ateach step, with probability �, the Ra�ei and Mendelzon algorithm jumps to a page of the collection chosen uniformlyat random, and with probability 1 � � it performs a SALSA step. This algorithm is essentially the same as theRandomized HITS algorithm considered later by Ng et al. [18].2.4 The PHITS AlgorithmCohn and Chang [8] propose a statistical hubs and authorities algorithm, which they call the PHITS Algorithm.They propose a probabilistic model in which a citation c of a document d is caused by a latent \factor" or \topic",z. It is postulated that there are conditional distributions P (cjz) of a citation c given a factor z, and also conditional3



distributions P (zjd) of a factor z given a document d. In terms of these conditional distributions, they produce alikelihood function.Cohn and Chang then propose using the EM Algorithm of Dempster et al. [9] to assign the unknown conditionalprobabilities so as to maximize this likelihood function L, and thus best \explain" the proposed data. Their algorithmrequires specifying in advance the number of factors z to be considered. Furthermore, it is possible that their EMAlgorithm could get \stuck" in a local maximum, without converging to the true global maximum.3 Random Walks and the Kleinberg AlgorithmThe fact that the output of the �rst (half) step of the Kleinberg algorithm can be seen as the stationary distributionof a certain random walk on the underlying graph, poses the natural question of whether other intermediary resultsof Kleinberg's algorithm (and as n ! 1, the output of the algorithm itself) can also be seen as the stationarydistribution of a naturally de�ned random walk 1. We will show that this is indeed the case.We �rst introduce the following notation. We say that we follow a B path if we follow a link backwards, and wesay we follow an F path if we follow a link forward. We can combine these to obtain longer paths. For example, a(BF )n path is a path that alternates between backward and forward links n times. Now, let (BF )n(i; j) denote theset of (BF )n paths that go from i to j, (BF )n(i) the set of (BF )n paths that leave node i, and (BF )n the set of allpossible (BF )n paths. We can de�ne similar sets for the (FB)n paths.Now, we de�ne the undirected weighted graph G(BF )n as follows. The vertex set of the graph is the set of nodesin the base set. We place an edge between two nodes i and j if there is a (BF )n path between these nodes. Theweight of the edge is j(BF )n(i; j)j, the number of (BF )n paths between i and j. We perform a random walk ongraph G(BF )n . When at node i, we move to node j with probability proportional to the number of paths between iand j. The corresponding Markov Chain M(BF )n has transition probabilitiesPa(i; j) = j(BF )n(i; j)jj(BF )n(i)j :Similarly, we can de�ne the graph G(FB)n , and the corresponding Markov Chain M(FB)n , for the hubs case.Theorem 1 For each n � 1, the stationary distribution of M(BF )n is equal to the authority vector after the nthiteration of the Kleinberg algorithm, and the stationary distribution of M(FB)n is equal to the hub vector after thenth iteration of the Kleinberg algorithm.Proof: By de�nition of the (ATA)n, and (AAT )n matrices, we have that j(BF )n(i; j)j = (ATA)n(i; j), andj(FB)n(i; j)j = (AAT )n(i; j). Also, j(BF )n(i)j = Pj(ATA)n(i; j), and j(FB)n(i)j = Pj(AAT )n(i; j). After thenth operation of the Kleinberg algorithm the authority vector a, and hub vector h are the unit vectors in the direc-tion of (ATA)nu and (AAT )nu, respectively. (This actually assumes that in order to compute the authority weightswe switch the order of the operations I and O, but asymptotically this does not make any di�erence). If we takethe unit vectors under the L1 norm, then we haveai = j(BF )n(i)jj(BF )nj ; and hi = j(FB)n(i)jj(FB)nj : (1)From a standard theorem on random walks on weighted graphs (see, e.g., p. 132 of [16] for the correspondingresult on unweighted graphs), the stationary distribution of the Markov Chain M(BF )n is the same as the vector ain equation (1), while the stationary distribution of the Markov Chain M(FB)n is the same as the vector h in thesame equation. 21It is easy to show that for any probability vector p, there exists a Markov ChainM , such that p is the stationary distribution of M .Here, naturally de�ned Markov Chain means a Markov Chain that is related to the underlying graph of the algorithm.4



4 Some modi�cations to the Kleinberg and SALSA AlgorithmsWhile Kleinberg's algorithm has some very desirable properties, it also has its limitations. One potential problem isthe possibility of severe \topic drift". Roughly, Kleinberg's algorithm converges to the most \tightly-knit" communitywithin the Base Set. It is possible that this tightly-knit community will have little or nothing to do with the proposedquery topic.A striking example of this phenomenon is provided by Cohn and Chang ([8], p. 6). They use Kleinberg's Algorithmwith the search term \jaguar" (an example query suggested by Kleinberg [14]), and converge to a collection of sitesabout the city of Cincinnati! They determine that the cause of this is a large number of on-line newspaper articlesin the Cincinnati Enquirer which discuss the Jacksonville Jaguars football team, and all link to the same standardCincinnati Enquirer service pages. Interestingly, in a preliminary experiment with the query term \abortion" (anotherexample query suggested by Kleinberg [14]), we also found the Kleinberg Algorithm converging to a collection of webpages about the city of Cincinnati!Now, in both these cases, we believe it is possible to eliminate such errant behavior through more careful selectionof the Base Set, and more careful elimination of intra-domain hypertext links. Nevertheless, we do feel that theseexamples point to a certain \instability" of Kleinberg's Algorithm.4.1 The Hub-Averaging Kleinberg AlgorithmWe propose here a small modi�cation of Kleinberg's algorithm to help remedy the above-mentioned instability. Formotivation, consider the following example. Suppose there are K +1 authority pages, and M +1 hub pages, with Mand K large. The �rst hub points to all but the �rst authority (i.e. to the �nal K authorities). The next M �1 hubslink only to the �rst authority. The last hub points to the �rst two authorities, and serves the purpose of connectingthe graph. In such a set-up, we would expect the �rst authority to be considered much more authoritative than allthe others. However, if K and M are chosen appropriately, the Kleinberg algorithm allocates almost all authorityweight to the last K authorities, and almost no weight to the �rst authority. This is due to the fact that almost allof the hub weight is allocated to the �rst hub. It seems though that the �rst hub should be worse than the others,since it links only to \bad" authorities (in the sense that no other hub points to them).Inspired by such considerations, we propose an algorithm which is a \hybrid" of the Kleinberg and SALSAalgorithms. Namely, it does the authority rating updates I just like Kleinberg (i.e., giving each authority a ratingequal to the sum of the hub ratings of all the pages that link to it), but does the hub rating updates O by instead givingeach hub a rating equal to the average of the authority ratings of all the pages that it links to. This asymmetric viewof hubs and authorities is corroborated by the observation that in contrast to the in degree which gives an indicationof the quality of a node as an authority, the out degree is less informative when assessing the quality of a node asa hub. In the Kleinberg algorithm a hub can increase its weight simply by pointing to more nodes in the graph. Inthis modi�ed \Hub-Averaging" algorithm, a hub is better if it links to only good authorities, rather than linking toboth good and bad authorities.4.2 The Threshold Kleinberg AlgorithmsWe propose two di�erent \threshold" modi�cations to Kleinberg's Algorithm. The �rst modi�cation, Hub-Threshold,is applied to the in-step I. When computing the authority weight of page i, the algorithm does not take into accountall hubs that point to page i. It only counts those hubs whose hub weight is at least the average hub weight 2 overall the hubs that point to page i, computed using the current hub weights for the nodes. This corresponds to sayingthat a site should not be considered a good authority simply because a lot of very poor hubs point to it.The second modi�cation, Authority-Threshold, is applied to the out-step O. When computing the hub weight ofpage i, the algorithm does not take into account all authorities pointed to by page i. It only counts those authoritieswhich are among the top K authorities, judging by current authority values. The value ofK is passed as a parameterto the algorithm. This corresponds to saying that a site should not be considered a good hub simply because it points2Other thresholds are also possible. For example the median hub weight, or (1� �)wmax , where wmax is the maximum hub weightover all hubs that point to the authority, and 0 < � < 1. 5



to a number of \acceptable" authorities; rather, to be considered a good hub the site must point to some of the bestauthorities. This is inspired partially by the fact that, in most web searches, a user only visits the top few authorities.We note that if K = 1, then we transform the O operation to the max operator. The case K = 1 has someinteresting properties. It is not hard to see that the node with the highest in-degree will always be ranked �rst.The rest of the nodes are ranked depending on the amount of connectivity with, and the distance to the top node.Therefore, in this case the most popular node acts as a a seed to the algorithm: this node is ranked �rst, and therest of the nodes are ranked according to their relatedness to this node.We also consider a Full-Threshold algorithm, which makes both the Hub-Threshold and Authority-Thresholdmodi�cations to Kleinberg's Algorithm.4.3 The Breadth-First-Search Algorithm: A Normalized n-step VariantWhen the pSALSA algorithm computes the authority weight of a page, it takes into account only the popularity ofthis page within its immediate neighborhood, disregarding the rest of the graph. On the other hand, the Kleinbergalgorithm considers the whole graph, taking into account more the structure of the graph around the node, thanjust the popularity of that node in the graph. Speci�cally, after n steps, the authority weight of authority i isj(BF )n(i)j=j(BF )nj, where j(BF )n(i)j is the number of (BF )n paths that leave node i. Another way to think of thisis that the contribution of a node j 6= i to the weight of i is equal to the number of (BF )n paths that go from ito j. Therefore, if a small bipartite component intercepts the path between node j and i, the contribution of nodej will increase exponentially fast. This may not always be desirable, especially if the bipartite component is notrepresentative of the query.We propose the Breadth-First-Search (BFS) algorithm, as a generalization of the pSALSA algorithm, and arestriction of the Kleinberg algorithm. The BFS algorithm extends the idea of popularity that appears in pSALSAfrom a one link neighborhood to an n-link neighborhood. The construction of the n-link neighborhood is inspiredby the Kleinberg algorithm. However, instead of considering the number of (BF )n paths that leave i, it considersthe number of (BF )n neighbors of node i. Abusing the notation, let (BF )n(i) denote the set of nodes that canbe reached from i by following a (BF )n path. The contribution of node j to the weight of node i depends on thedistance of the node j from i. We adopt an exponentially decreasing weighting scheme. Therefore, the weight ofnode i is determined as follows:ai = jB(i)j+ 12 jBF (i)j+ 122 jBFB(i)j+ : : :+ 122n�1 j(BF )n(i)j:The algorithm starts from node i, and visits its neighbors in BFS order, alternating between Backward andForward steps. Every time we move one link further from the starting node i, we update the weight factors accordingly.The algorithm stops when n links have been traversed, or the nodes that can be reached from node i are exhausted.5 Secondary Eigenvectors in the Kleinberg AlgorithmThe Kleinberg Algorithm (and many of the other algorithms we are considering) converge naturally to the principaleigenvector of the associated matrix, i.e. to the eigenvector that corresponds to the largest eigenvalue. Kleinberg [14]makes an interesting (though non-precise) claim regarding the secondary (i.e., non-principal) eigenvectors (or theirpositive and negative components) being related to secondary (or opposing) \communities" of web pages. The use ofsecondary eigenvectors for discovering communities, or for improving the quality of the ranking has been investigatedfurther in [13, 1, 18].We now present a few simple examples which we feel illustrate the opinion that such secondary eigenvectorssometimes are, but sometimes are not, indicative of secondary communities. In short, there is no simple result eitherway, regarding these secondary eigenvectors. For the following, we write the examples as a sequence of two-digitnumbers, where each number represents a link, with the �rst digit being the hub number and the second digit beingthe authority number. For example, 23, 24, 34 indicates that there are links between the second hub and thirdauthority; second hub and fourth authority; and third hub and fourth authority. (All the examples have fewer than10 hubs and fewer than 10 authorities, so this notation will su�ce for now.)6



Example E1: 11, 21, 31, 41, 52, 62, 53, 63The corresponding matrix of transitions of authority weights is given byAAT = 0@ 4 0 00 2 20 2 21A :The eigenvalues of the matrix are 4, 4, and 0. Here the equality of two eigenvalues means that we have a wide choiceof how to choose representative eigenvectors. One possible choice for the eigenvectors is (0,1,1), (1,0,0), (0,1,-1).In this case, there is some correspondence between eigenvectors and communities. However, if the eigenvectors arechosen to be (1,1,1), (2,1,1), (0,1,-1), there is no correspondence whatsoever.Example E2: 11, 22, 32, 42, 52, 43, 53, 63, 73The corresponding matrix of transitions of authority weights is given byAAT = 0@ 1 0 00 4 20 2 41A :The eigenvalues of the matrix are 6, 2, and 1, with corresponding eigenvectors (0,1,1), (0,1,-1), (1,0,0). Here the �rstand third eigenvectors correspond nicely to communities, but the second eigenvector does not in any way.These simple examples suggest that:� Eigenvector components may or may not correspond to communities.� The eigenvectors which do correspond to communities may not be the �rst ones (cf. E2).� Equality of eigenvalues complicates things still further (cf. E1).Of course, these examples are reducible, whereas a more realistic example might be almost-but-not-quite reducible.However, it seems that making the graph irreducible can only make things worse. In particular, the eigenvectorweights assigned to two almost-but-not-quite-disjoint pieces can vary widely based on the exact details of the fewlinks joining them. So, we expect the values of the secondary eigenvectors to be even less indicative when partitioningthe pages into communities. Thus, it seems to us that there is no clear, simple, rigorous result available aboutsecondary eigenvectors corresponding to secondary communities.6 A Bayesian AlgorithmA di�erent type of algorithm is given by a fully Bayesian statistical approach to authorities and hubs. Suppose thereare M hubs and N authorities (which could be the same set). We suppose that each hub i has an (unknown) realparameter ei, corresponding to its \general tendency to have hypertext links", and also an (unknown) non-negativeparameter hi, corresponding to its \tendency to have intelligent hypertext links to authoritative sites". We furthersuppose that each authority j has an (unknown) non-negative parameter aj, corresponding to its level of authority.Our statistical model is as follows. The a priori probability of a link from hub i to authority j is given byP(i! j) = exp(ajhi + ei)1 + exp(ajhi + ei) ; (2)with the probability of no link from i to j given byP(i 6! j) = 11 + exp(ajhi + ei) : (3)This re
ects the idea that a link is more likely if ei is large (in which case hub i has large tendency to link to anysite), or if both hi and aj are large (in which case i is an intelligent hub, and j is a high-quality authority).7



To complete the speci�cation of the statistical model from a Bayesian point of view (see, e.g., Bernardo and Smith[4]), we must assign prior distributions to the 2M + N unknown parameters ei, hi, and aj . These priors should begeneral and uninformative, and should not depend on the observed data. For large graphs, the choice of priors shouldhave only a small impact on the results. We let � = �5:0 and � = 0:1 be �xed parameters, and let each ei have priordistribution N (�; �2), a normal distribution with mean � and variance �2. We further let each hi and aj have priordistribution Exp(1) (since they have to be non-negative), meaning that for x � 0, P(hi � x) = P(aj � x) = exp(�x).The (standard) Bayesian inference method then proceeds from this fully-speci�ed statistical model, by condi-tioning on the observed data, which in this case is the matrix A of actual observed hypertext links in the Base Set.Speci�cally, when we condition on the data A we obtain a posterior density � : R2M+N ! [0;1) for the parameters(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN ). This density is de�ned so thatP�(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN ) 2 S ��� fAijg�= RS �(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN )de1 : : :deMdh1 : : :dhMda1 : : :daN (4)for any (measurable) subset S � R2M+N , and alsoE�g(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN ) ��� fAijg�= RR2M+N g(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN )�(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN )de1 : : : deMdh1 : : : dhMda1 : : : daNfor any (measurable) function g : R2M+N ! R. An easy computation gives the following.Lemma 1 For our model, the posterior density is given, up to a multiplicative constant, by�(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN)/ MYi=1 exp(�hi) exp[�(ei � �)2=(2�2)]� NYj=1 exp(�aj)� Y(i;j):Aij=1 exp(ajhi + ei) . Yall i;j(1 + exp(ajhi + ei)) :Proof: We compute thatP�e1 2 de1; : : : ; eM 2 deM ; h1 2 dh1; : : : ; hM 2 dhM ; a1 2 da1; : : : ; aN 2 daN ; fAijg�= MYi=1 �P�ei 2 dei�P�hi 2 dhi�� NYj=1P�aj 2 daj� Yi;jAij=1 P�Aij = 1 j ei; hi; aj� Yi;jAij=0 P�Aij = 0 j ei; hi; aj�= MYi=1 �exp[�(ei � �)2=(2�2)]dei exp(�hi)dhi� NYj=1 exp(�aj)daj Yi;jAij=1 exp(ajhi + ei)1 + exp(ajhi + ei) Yi;jAij=0 11 + exp(ajhi + ei)= MYi=1 �exp[�(ei � �)2=(2�2)]dei exp(�hi)dhi� NYj=1 exp(�aj)daj Yi;jAij=1 exp(ajhi + ei) . Yall i;j (1 + exp(ajhi + ei)) :The result now follows by inspection. 2Our Bayesian algorithm then reports the conditional means of the 2M+N parameters, according to the posteriordensity �. That is, it reports �nal values baj, bhi, and bei, where, for examplebaj = ZR2M+N aj�(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN ) de1 : : : deMdh1 : : :dhMda1 : : : daN :8



To actually compute these conditional means is non-trivial. To accomplish this, we used a Metropolis Algorithm.The Metropolis algorithm is an example of a Markov chain Monte Carlo Algorithm; for background see, e.g., Smithand Roberts [22]; Tierney [23]; Gilks et al. [11]; Roberts and Rosenthal [20].The Metropolis Algorithm proceeds by starting all the 2M +N parameter values at 1. It then attempts, for eachparameter in turn, to add an independent N (0; �2) random variable to the parameter. It then \accepts" this newvalue with probability min(1; �(new)=�(old)), otherwise it \rejects" it and leaves the parameter value the way it is.If this algorithm is iterated enough times, and the observed parameter values at each iteration are averaged, thenthe resulting averages will converge (see e.g. Tierney, 1994) to the desired conditional means.There is, of course, some arbitrariness in the speci�cation of this Bayesian algorithm, e.g., in the form of theprior distributions and in the precise formula for the probability of a link from i to j. However, the model appearsto work well in practice, as our experiments show. We note that it is possible that the priors for a new search querycould instead depend on the performance of hub i on di�erent previous searches, though we do not pursue that here.This Bayesian algorithm is similar in spirit to the PHITS algorithm of Cohn and Chang [8] described earlier,in that both use statistical modeling, and both use an iterative algorithm to converge to an answer. However, thealgorithms di�er substantially in their details. Firstly, they use substantially di�erent statistical models. Secondly,the PHITS algorithm uses a non-Bayesian (i.e. \classical" or \frequentist") statistical framework, as opposed to theBayesian framework adopted here.6.1 A Simplified Bayesian AlgorithmIt is possible to simplify the above Bayesian model, by replacing equation (2) withP(i! j) = ajhi1 + ajhi ;and correspondingly replace equation (3) withP(i 6! j) = 11 + ajhi :This eliminates the parameters ei entirely, so that we no longer need the prior values � and �. A similar model forthe generation of links was considered by Azar et al. [3].This leads to a slightly modi�ed posterior density �(�), now given by � : RM+N ! R�0 where�(h1; : : : ; hM ; a1; : : : ; aN ) / MYi=1 exp(�hi)� NYj=1 exp(�aj) � Y(i;j):Aij=1 ajhi . Yall i;j(1 + ajhi) :This Simpli�ed Bayesian algorithm was designed to be to similar to the original Bayesian algorithm. Surprisingly,we will see that experimentally it often performs very similarly to the SALSA algorithm.7 Experimental ResultsWe have implemented the algorithms presented here on various queries. Because of space limitations we only re-port here (see Appendix A) a representative subset of results; all of our results (including the queries \death penalty",\computational complexity" and \gun control" which are not reported here) can be obtained athttp://www.cs.toronto.edu/�tsap/experiments. The reader may �nd it easier to follow the discussion in thenext section by accessing the full set of results (which includes results for the SALSA algorithm, and the AuthorityThreshold algorithm, when K = 1). The experimental results presented in this paper, are an improved version ofthe results presented in [6] where we now use an improved criterion for testing the convergence of the eigenvectoralgorithms.For the generation of the Base Set of pages, we follow the speci�cations of Kleinberg [14] described earlier. Foreach of the queries, we begin by generating a Root Set that consists of the �rst 200 pages returned by AltaVista on9



the same query. The Root Set is then expanded to the Base Set by including nodes that point to, or are pointedto, by the pages in the Root Set. In order to keep the size of the Base Set manageable, for every page in the RootSet, we only include the �rst 50 pages returned from AltaVista that point to this page. We then construct the graphinduced by nodes in the Base Set, by discovering all links among the pages in the Base Set, eliminating those thatare between pages of the same domain3.For each query, we tested nine di�erent algorithms on the same Base Set. We present the top ten authority sitesreturned by each of the algorithms. For evaluation purposes, we also include a list of the URL and title (possiblyabbreviated) of each site which appears in the top �ve of one or more of the algorithms. For each page we also notethe popularity of the page (denoted pop in the tables), that is, the number of di�erent algorithms that rank it in thetop ten sites. The pages that seem (to us) to be generally unrelated with the topic in hand appear bold-faced. Wealso present an \intersection table" which provides, for each pair of algorithms, the number of sites which were inthe top ten according to both algorithms (maximum 10, minimum 0).In the following we merge the SALSA and pSALSA algorithms under the name SALSA. The experiments haveshown that most graphs consists of a giant component of authorities and small isolated components. Furthermore,for all the queries we performed the ranking of the �rst 50 pages is identical. This is not true for the full ranking; theSALSA algorithm tends to promote some pages higher than the pSALSA, because of the fact that they belong tosmall components. However, for the purposes of this presentation we view these two algorithms as being essentiallythe same.In the tables, SBayesian denotes the Simpli�ed Bayesian algorithm,HubAvg denotes the Hub-Averaging Kleinbergalgorithm, AThresh denotes the Authority-Threshold algorithm, HThresh denotes the Hub-Threshold algorithm, andFThresh denotes the Full-Threshold algorithm. For the Authority-Threshold and Full-Threshold algorithms, we(arbitrarily) set the threshold K = 10.7.1 Discussion of Experimental ResultsWe observe from the experiments that di�erent algorithms emerge as the \best" for di�erent queries, while there arequeries for which no algorithm seems to perform well. One prominent such case is the query on \net censorship"(also on \computational complexity") where only a few of the top ten pages returned by any of the algorithms canpossibly be considered as authoritative on the subject. One possible explanation is that in these cases the topic isnot well represented on the web, or there is no strong interconnected community. This reinforces a common beliefthat any commercial search engine cannot rely solely on link information, but rather must also examine the textcontent of sites to prevent such di�culties as \topic drift". On the other hand, in cases such as \death penalty" (notshown here), all algorithms converge to almost the same top ten pages, which are both relevant and authoritative.In these cases the community is well represented, and strongly interconnected.The experiments also indicate the di�erence between the behavior of the Kleinberg algorithm and SALSA, �rstobserved in the paper of Lempel and Moran [15]. Speci�cally, when computing the top authorities, the Kleinbergalgorithm tends to concentrate on a \tightly knit community" of nodes (the TKC e�ect), while SALSA, tends tomix the authorities of di�erent communities in the top authorities. The TKC e�ect becomes clear in the \genetic"query (also in the \computational complexity" query), where the Kleinberg algorithm only reports pages on biologyin the top ten while SALSA mixes these pages with pages on genetic algorithms. It also becomes poignantly clear inthe \movies" query (and also in the \gun control" and the \abortion" query), where the top ten pages reported bythe Kleinberg algorithm are dominated by an irrelevant cluster of nodes from the about.com community. A moreelaborate algorithm for detecting intra-domain links could help alleviate this problem. However, these examples seemindicative of the topic drift potential of the principal eigenvector computed by the Kleinberg algorithm.On the other hand, the limitations of the SALSA algorithm become obvious in the \computational geometry"query, where three out of the top ten pages belong to the unrelated w3.com community. They appear in the toppositions because they are pointed to by a large collection of pages by ACM, which point to nothing else. A similarphenomenon explains the appearance of the \Yahoo!" page in the \genetic" query. We thus see that the simpleheuristic of counting the in-degree as the authority weight is also imperfect.3If one modi�es the way the Base Set or the graph is constructed, the results of the algorithms can vary dramatically. In ourabove-mentioned web page we report the output of the algorithms for the same query, over di�erent graphs.10



We identify two types of characteristic behavior: the Kleinberg behavior, and the SALSA behavior. The formerranks the authorities based on the structure of the entire graph, and tends to favor the authorities of tightly knitcommunities. The latter ranks the authorities based on their popularity in their immediate neighborhood, and favorsvarious authorities from di�erent communities. To see how the rest of the algorithms �t within these two types ofbehaviors, we compare the behavior of algorithms on a pairwise basis, using the number of intersections in theirrespective top ten authorities as an indication of agreement.The �rst striking observation is that the Simpli�edBayesian algorithm is almost identical to the SALSA algorithm.The SALSA algorithm and the Simpli�ed Bayesian have at least 80% overlap on all queries. One possible explanationfor this is that both algorithms place great importance on the in-degree of a node when determining the authorityweight of a node. For the SALSA algorithm we know that it is \local" in nature, that is, the authority weightassigned to a node depends only on the links that point to this node, and not on the structure of the whole graph.The Simpli�ed Bayesian seems to possess a similar, yet weaker property; we explore the locality issue further in thenext section. On the other hand, the Bayesian algorithm appears to resemble both the Kleinberg and the SALSAbehavior, leaning more towards the �rst. Indeed, although the Bayesian algorithm avoids the severe topic drift in the\movies" and the "gun control" queries (but not in the \abortion" case), it usually has higher intersection numberswith Kleinberg than with SALSA. One possible explanation for this observation is the presence of the ei parametersin the Bayesian algorithm (but not the Simpli�ed Bayesian algorithm), which \absorb" some of the e�ect of manylinks pointing to a node, thus causing the authority weight of a node to be less dependent on its in-degree.Another algorithm that seems to combine characteristics of both the SALSA and the Kleinberg behavior is theHub-Averaging algorithm. The Hub-Averaging algorithm is by construction a hybrid of the two since it alternatesbetween one step of each algorithm. It shares certain behavior characteristics with the Kleinberg algorithm: if weconsider a full bipartite graph, then the weights of the authorities increase exponentially fast for Hub-Averaging (therate of increase, however, is the square root of that of the Kleinberg algorithm). However, if the component becomesin�ltrated, by making one of the hubs point to a node outside the component, then the weights of the authorities inthe component drop. This prevents the Hub-Averaging algorithm from completely following the drifting behavior ofthe Kleinberg algorithm in the \movies" query. Nevertheless, in the \genetic" query, Hub-Averaging agrees stronglywith Kleinberg, focusing on sites of a single community, instead of mixing communities as does SALSA4. On theother hand, Hub-Averaging and SALSA share a common characteristic, since the Hub-Averaging algorithm tends tofavor nodes with high in-degree. Namely, if we consider an isolated component of one authority with high in-degree,the authority weight of this node will increase exponentially fast. This explains the fact that the top three authoritiesfor \computational geometry" are the w3.com pages that are also ranked highly by SALSA (with Hub-Averaginggiving a very high weight to all three authorities).For the threshold algorithms, since they are modi�cations of the Kleinberg Algorithm, they are usually closer tothe Kleinberg behavior. This is especially true for the Hub-Threshold algorithm. However, the bene�t of eliminatingunimportant hubs when computing authorities becomes obvious in the \abortion" query. The top authorities reportedby the Kleinberg algorithm all belong to the amazon.com community, while the Hub-Threshold algorithm escapesthis cluster, and produces a set of pages that are all on topic.The Authority-Threshold often appears to be most similar with the Hub-Averaging algorithm. This makes sensesince these two algorithms have a similar underlying motivation. The best moment for Authority-Threshold is the\movies" query, where it reports the most relevant top ten pages among all algorithms. An interesting case for theAuthority Threshold algorithm is when we set K = 1. As we previously discussed, in this case the node with thehighest in-degree acts as a seed to the algorithm: this node is ranked �rst, and the rest of the pages are rankedaccording to their relatedness to the seed page. Therefore, the quality of the results depends on the quality of theseed node. We present some experimental results for the case K = 1 in our web page. In all queries, the algorithmproduces satisfactory results, except for the \net censorship" query, where the seed page is the \Yahoo" home page,so the top pages are all devoted to pages on search engines. The behavior of the algorithm is highly focused, sinceit only outputs pages from the community of the seed page.The Full-Threshold algorithm combines elements of both the Threshold algorithms; however, usually it reportsin the top ten a mixture of the results of the two algorithms, rather than the best of the two.4In a version of the \abortion"query (denoted\re�ned" in our web page), the Hub-Averagingalgorithmexhibitsmixing of communities,similar to SALSA. 11



Finally, the BFS algorithm is designed to be a generalization of the SALSA algorithm, that combines someelements of the Kleinberg algorithm. Its behavior resembles both SALSA and Kleinberg, with a tendency to favorSALSA. In the \genetic" and \abortion" queries it demonstrates some mixing, but to a lesser extent than that ofSALSA. The most successful moments for BFS are the \abortion" and the \gun control" queries where it reportsa set of top ten pages that are all on topic. An interesting question to investigate is how the behavior of the BFSalgorithm is altered if we change the weighting scheme of the neighbors.8 Theoretical AnalysisThe experimental results of the previous section suggest that certain algorithms seem to share similar properties andranking behavior. In this section, we elaborate upon the formal study of fundamental properties and comparisonsbetween ranking algorithms, �rst initiated in [6]. For the purpose of the following analysis we need some basicde�nitions and notation. Let GN be a collection of graphs of size N . One special case is to let GN be the set of alldirected graphs of size N , hereafter denoted GN . We de�ne a link analysis algorithm A as a function that maps agraph G 2 GN to an N -dimensional vector. We call the vector A(G) the weight vector of algorithm A on graph G.The value of the entry A(G)[i] of vector A(G) denotes the authority weight assigned by the algorithm A to the pagei. We can normalize the weight vector A(G) under some chosen norm. The choice of normalization a�ects thede�nition of some of the properties of the algorithms, so we discriminate between algorithms that use di�erentnorms. For any norm L, we de�ne the L-algorithm A to be the algorithm A, where the weight vector of A isnormalized under L. For the following discussion, when not stated explicitly, we will assume that the weight vectorsof the algorithms are normalized under the Lp norm for some 1 � p � 1.8.1 MonotonicityDe�nition 1 An algorithm A is monotone if it has the following property: If j and k are two di�erent nodes in agraph G, such that every hub which links to j also links to k, then A(G)[k] � A(G)[j].Monotonicity appears to be a \reasonable" property but one can de�ne \reasonable" algorithms that are notmonotone. The Hub-Threshold algorithm we consider is not monotone5. One can �nd simple examples where theHub-Threshold algorithm converges to a weight vector that does not satisfy the monotonicity property.Theorem 2 Except for the Hub-Threshold algorithm, all other algorithms we consider in this paper are monotone.Proof: Let j and k be two di�erent nodes in a graph G, such that every node that links to j also links to k. Forthe pSALSA algorithm monotonicity is obvious, since the authority weights are proportional to the in-degrees of thenodes, and the in-degree of j is less than, or equal to the in-degree of k. The same holds for the SALSA algorithmwithin each authority connected component, which is su�cient to prove the monotonicity of the algorithm.For the Kleinberg and Hub-Averaging algorithms, it is not hard to see that they are monotone. Indeed, regardlessof the (n�1)th iteration hub values, the nth iteration authority value for k will be at least as large as that of j, sincethe set of hubs that point to j is a subset of that of k. Hence, for every n � 1, the monotonicity property holdsat the end of the nth iteration; therefore, the algorithms are monotone as n ! 1. Proofs of monotonicity for theAuthority-Threshold Kleinberg algorithms and the BFS algorithm follow similarly.For the Bayesian algorithm the proof of monotonicity is more involved. Recall that the Bayesian algorithm leadsto a density of the form�(e1; : : : ; eM ; h1; : : : ; hM ; a1; : : : ; aN ) / (prior density)� Y(i;j):Aij=1 exp(ajhi + ei) � Y(i;j)(1 + exp(ajhi + ei)) :5There are many variations of the Hub-Threshold algorithm that are monotone. For example, if we set the threshold to be the medianhub value (or some �xed value) instead of the mean, then the algorithm is monotone.12



Now, let j and k be two di�erent authority pages, such that every hub which links to j also links to k. Considerthe conditional distribution of aj and ak, conditional on the values of e1; : : : ; eM ; h1; : : : ; hM . We see that�(aj j e1; : : : ; eM ; h1; : : : ; hM ) / (prior density)� Yi:Aij=1 exp(ajhi) � Yi (1 + exp(ajhi + ei)) ;and �(ak j e1; : : : ; eM ; h1; : : : ; hM) / (prior density)� Yi:Aik=1 exp(akhi) � Yi (1 + exp(akhi + ei)) :Hence, �(ak 2 da j e1; : : : ; eM ; h1; : : : ; hM)�(aj 2 da j e1; : : : ; eM ; h1; : : : ; hM) / exp0@a Xi:Aik=1;Aij=0hi1A ; (5)regardless of the choice of prior density.Now, since hi � 0 for all i, it is seen that the expression (5) is a non-decreasing function of a. It then followsfrom the well-known \FKG inequality" (see e.g. Lemma 5 of Roberts and Rosenthal [21]) that, in the distribution �,P(ak � a j e1; : : : ; eM ; h1; : : : ; hM) � P(aj � a j e1; : : : ; eM ; h1; : : : ; hM ) ; a 2 R ; (6)i.e., that the conditional distribution of aj stochastically dominates that of ai. But then, integrating both sides ofthe inequality (6) over the joint distribution of (e1; : : : ; eM ; h1; : : : ; hM), it follows that in the distribution �,P(ak � a) � P(aj � a) ; a 2 R ;i.e., that the unconditional distribution of ak stochastically dominates that of aj . In particular, the mean of ak underthe posterior distribution � is at least as large as that of aj. Hence, the Bayesian Algorithm gives a higher authorityweight to authority k than to authority j, completing the proof of monotonicity of the Bayesian algorithm.For the Simpli�ed Bayesian algorithm, the argument is similar. In this case, the expression (5) is replaced by�(ak 2 da j e1; : : : ; eM ; h1; : : : ; hM)�(aj 2 da j e1; : : : ; eM ; h1; : : : ; hM) / Yi:Aik=1;Aij=0 ahi :Since hi � 0, we again see that this is a non-decreasing function of a, and a similar proof applies. 28.2 SimilarityLet A1 and A2 be two algorithms on GN . We consider the distance d (A1(G); A2(G)) between the weight vectors ofA1(G) and A2(G), for G 2 GN , where d : Rn �Rn ! R is some function that maps the weight vectors w1 and w2to a real number d(w1; w2). We �rst consider the Manhattan distance d1, that is, the L1 norm of the di�erence ofthe weight vectors, given by d1(w1; w2) =PNi=1 jw1(i) �w2(i)j.For this distance function, we now de�ne the similarity between two Lp-algorithms as follows. For the following,if 
 is a constant, and w is a vector, then 
w denotes the usual scalar-vector product.De�nition 2 Let 1 � p � 1. Two Lp-algorithms A1 and A2 are similar on GN , if (as N !1)maxG2GN min
1 ;
2�1 d1 (
1A1(G); 
2A2(G)) = o(N1�1=p) :The choice for the bound o(N1�1=p) in the de�nition of similarity is guided by the fact that the maximum d1distance between any two N -dimensional Lp unit vectors is �(N1�1=p). This de�nition of similarity generalizes thede�nition in [6], where 
1 = 
2 = 1. The constants 
1 and 
2 are introduced so as to allow for an arbitrary scalingof the two vectors, thus eliminating dissimilarity that is caused solely due to normalization factors. For example,13



let w1 = (1; 1; :::;1; 2), and w2 = (1; 1; :::;1) be two weight vectors before any normalization is applied. These twovectors appear to be similar. However, if we normalize in the L1 norm, then for 
1 = 
2 = 1, d1(w1; w2) = �(N );therefore, in the original de�nition, the vectors would be dissimilar.We also consider another distance function that attempts to capture the similarity between the ordinal rankingsof two algorithms. The motivation behind this de�nition is that the ordinal ranking is the usual end-product seenby the user. Let w1 = A1(G) and w2 = A2(G) be the weight vectors of two algorithms A1 and A2. We de�ne theindicator function Iw1w2 (i; j) as followsIw1w2 (i; j) = � 1 if w1(i) < w1(j) AND w2(i) > w2(j)0 otherwiseWe note that Iw1w2(i; j) = 0 if and only if w1(i) < w2(j) ) w2(i) � w2(j). Iw1w2(i; j) becomes one for each pair ofnodes that are ranked di�erently. We de�ne the \ranking distance" function dr as follows.dr(w1; w2) = 1N NXi=1 NXj=1 Iw1w2(i; j) :Note that, unlike d1, the distance between two weight vectors under dr does not depend upon the choice of normal-ization. Similar distance measures between rankings are examined by Dwork et al. [10].De�nition 3 Two algorithms, A1 and A2, are rank similar on GN , if (as N !1)maxG2GN dr(A1(G); A2(G)) = o(N ) :De�nition 4 Two algorithms, A1 and A2, are rank matching on fGNg, if for every graph G 2 GN ,dr(A1(G); A2(G)) = 0 :Remark: We note that by the above de�nition, every algorithm is rank matching with the trivial algorithm that givesthe same weight to all authorities. Although this may seem somewhat bizarre, it does have an intuitive justi�cation.For an algorithm whose goal is to produce an ordinal ranking, the weight vector with all weights equal conveys noinformation; therefore, it lends itself to all possible ordinal rankings. We also note that the dr distance does notsatisfy the triangle inequality, since, e.g., all algorithms have dr-distance 0 to the trivial algorithm. Of course, it isstraightforward to modify the de�nition of dr to avoid this; however, we �nd the de�nition used here to be mostnatural.For the purposes of this paper, we only consider the d1 and dr distance functions. Nevertheless, the de�nition ofsimilarity can be generalized to any distance function d, and any normalization norm jj � jj, as follows.De�nition 5 Two L-algorithms A1 and A2 are similar on GN under d, if (as N !1)maxG2GN min
1 ;
2�1 d(
1A1(G); 
2A2(G)) = o(MN ) 6;where MN = supkw1k=kw2k=1 d(w1; w2) is the maximum distance between any two N -vectors with unit norm L = jj � jj.The de�nition of similarity depends on the normalization of the algorithms. In the following we show that forthe d1 distance, similarity in Lp norm implies similarity in Lq norm, for any q > p.Lemma 2 Let v be a vector of length N , and suppose 1 � r < s � 1. Then kvkr � kvksN1=r�1=s.6Other operators are also possible. For example, if there exists some distribution over the graphs in GN we could replace \max" bythe average distance between the algorithms. 14



Proof: Assume �rst that s <1. We use H�older's inequality, which states that for any p and q such that 1 < p; q <1and 1=p+ 1=q = 1, if x and y are two N -dimensional vectors, thenNXi=1 jx(i)y(i)j �  NXi=1 jx(i)jp!1=p NXi=1 jy(i)jq!1=q :Set p = s=r and q = 1=(1� 1=p). Also, set x(i) = v(i)r and y(i) � 1, and let kvkrr denote (kvkr)r, and kvkrs denote(kvks)r . We have thatkvkrr = NXi=1 jv(i)jr = NXi=1 jv(i)jr 1 �  NXi=1 jv(i)jr(s=r)!1=(s=r) NXi=1 1q!1=q= kvkrsN1=q = kvkrsN1�1=(s=r) = kvkrsN1�r=s :Taking rth roots of both sides, we obtain kvkr � kvksN1=r�1=s, as claimed.For the case s =1, we compute thatkvkrr = NXi=1 jv(i)jr � NXi=1maxi jv(i)jr = N maxi jv(i)jr = Nkvkr1 :Thus, kvkr � N1=rkvk1. 2Theorem 3 Let A1 and A2 be two algorithms, and let 1 � r � s � 1. If the Lr-algorithm A1 and the Lr-algorithmA2 are similar, then the Ls-algorithm A1 and the Ls-algorithm A2 are also similar.Proof: Let G be a graph of size N , and let u = A1(G), and v = A2(G) be the weight vectors of the two algorithms.Let vp and up denote the weight vectors, normalized in the Lp norm. Since the Lr-algorithmA1 and the Lr-algorithmA2 are similar, there exist 
1; 
2 � 1 such thatd1(
1vr; 
2ur) = NXi=1 j
1vr(i)� 
2ur(i)j = o(N1�1=r) :Now, vs = vr=kvrks, and us = ur=kurks. Therefore, PNi=1 j
1kvrksvs(i) � 
2kurksus(i)j = o(N1�1=r). Without lossof generality assume that kurks � kvrks. Thenkvrks NXi=1 ����
1vs(i)� 
2 kurkskvrks us(i)���� = o(N1�1=r) :We set 
01 = 
1 and 
02 = 
2 kurkskvrks . Then we have thatd1(
01vs; 
02us) = NXi=1 j
01vs(i)� 
02us(i)j = o�N1�1=rkvrks � :But from the lemma, kvrks � kvrkrN1=s�1=r = N1=s�1=r. Hence, N1�1=rkvrks � N1�1=rN1=s�1=r = N1�1=s. Therefore,d1(
01vs; 
02us) = o(N1�1=s), and thus Ls-algorithm A1, and Ls-algorithm A2 are similar. 2Theorem 3 implies that if two L1-algorithms are similar, then the corresponding Lp-algorithms are also similar,for any 1 � p � 1. Furthermore, if two L1-algorithms are dissimilar, then the corresponding Lp-algorithms are alsodissimilar, for any 1 � p � 1. Therefore, the following dissimilarity results, proven for the L1 norm, hold for anyLp norm, for 1 � p � 1. 15



Proposition 1 The Hub-Averaging algorithm, and the Kleinberg algorithm are neither similar, nor rank similar onGN .Proof: Consider a graph G on N = 3r nodes that consists of two disconnected components. The �rst componentC1 consists of a complete graph on r nodes. The second component C2 consists of a complete graph C on r nodes,and a set of r \external" nodes E, such that each node in C points to a node in E, and no two nodes in C point tothe same \external" node.Let wK and wH denote the weight vectors of the Kleinberg, and the Hub-Averaging algorithm, respectively, ongraph G. We assume that the vectors are normalized in L1 norm. It is not hard to see that the Kleinberg algorithmallocates all the weight to the nodes in C2. After normalization, for all i 2 C, wK(i) = 1, for all j 2 E, wK(j) = 1r�1 ,and for all k 2 C1, wK(k) = 0. On the other hand, the Hub-Averaging algorithm allocates all the weight to thenodes in C1. After normalization, for all k 2 C1, wH(k) = 1, and for all j 2 C2, wH(j) = 0.Let U = C1[C. The set U contains 2r nodes. For every node i 2 U , either wK(i) = 1 and wH(i) = 0, or wK(i) = 0and wH(i) = 1. Therefore, for all 
1; 
2 � 1,Pi2U j
1wK(i)�
2wH(i)j � 2r. Thus, d1(
1wK ; 
2wH) = 
(r) = 
(N )which proves that the algorithms are not similar.The proof for rank dissimilarity follows immediately from the above. For every pair of nodes (i; j) such that i 2 C1and j 2 C2, wK(i) < wK(j), and wH(i) > wH(j). There are �(N2) such pairs, therefore, dr(wK; wH) = �(N ).Thus, the two algorithms are not rank similar. 2Proposition 2 The pSALSA algorithm and the Hub-Averaging algorithm are neither similar, nor rank similar onGN .Proof: For the proof of dissimilarity, we consider the same graph as in the proof of Proposition 1 for the dissimilaritybetween the Hub-Averaging and the Kleinberg algorithm. Let wp and wH be the weight vectors of pSALSA andHub-Averaging, respectively. We assume that the vectors are normalized in L1 norm. For this graph, the pSALSAalgorithm allocates weight w(i) = 1 to all nodes in C1.On the other hand the Hub-Averaging algorithm allocatesweight 1 to the nodes in C1. There are r nodes in C1 for which wp(i) = 1 and wK(i) = 0. For all 
1; 
2 � 1,Pi2C1 j
1wp(i) � 
2wk(i)j � r. Therefore, d1(
1wp; 
2wK) = 
(r) = 
(N ) which proves that Hub-Averaging andpSALSA are not similar.For the proof of rank dissimilarity, we consider a graph G on N = 3r + 3 nodes which are connected as follows.The graph consists of two sets of hubs X and Y of size r and 2, respectively, and two sets of authorities A and B,each of size r, and a single \central" authority c. Each hub in set X points to exactly one distinct authority in A,and both hubs in Y point to all authorities in B. Furthermore, all hubs in X and Y point to c.The pSALSA algorithm allocates the most weight to the central authority, then to the authorities in B, and thento the authorities in A. On the other hand, the Hub-Averaging algorithm considers each hub in X to be much betterthan each hub in Y . Hence, it will allocate highest weight to the authority c, nearly as high weight to the authoritiesin A, and much lower weight to the authorities in B. The sets A and B have size �(N ). Therefore, there are �(N2)pairs of nodes that are ranked di�erently from the two algorithms. Hence, Hub-Averaging and pSALSA are not ranksimilar. 2Proposition 3 The pSALSA algorithm and the Kleinberg algorithm are neither similar, nor rank similar on GN .Proof: Consider a graph G on N = 4r nodes that consists of two disconnected components. The �rst componentC1 consists of a complete graph on r nodes. The second component C2 consists of a bipartite graph with 2r hubs,and r authorities. Without loss of generality assume that r is even, and enumerate all hubs and authorities in C2.Make all \odd" hubs point to all \odd" authorities, and all \even" hubs point to all \even" authorities. Thus, eachhub points to r2 authorities, and each authority is pointed to by r authorities.Let wK and wp denote the weight vectors of the Kleinberg, and the pSALSA algorithm, respectively, on graph G.We assume that the vectors are normalized in L1 norm. It is not hard to see that the Kleinberg algorithm allocatesall the weight to the nodes in C1. After normalization, for all i 2 C1, wK(i) = 1, while for all j 2 C2, wK(j) = 0.On the other hand, the pSALSA algorithm distributes the weight to both components, allocating more weight to thenodes in C2. After the normalization step, for all j 2 C2, wp(j) = 1, while for all i 2 C1, wp(i) = r�1r .16



There are r nodes in C2 for which wp(i) = 1 and wK(i) = 0. For all 
1; 
2 � 1, Pi2C2 j
1wp(i) � 
2wk(i)j � r.Therefore, d1(
1wp; 
2wK) = 
(r) = 
(N ) which proves that the algorithms are not similar.The proof for rank dissimilarity follows immediately from the above. For every pair of nodes (i; j) such thati 2 C1 and j 2 C2, wK(i) > wK(j), and wp(i) < wp(j). There are �(N2) such pairs, therefore, dr(wK ; wH) = �(N ).Thus, the two algorithms are not rank similar. 2Proposition 4 The SALSA algorithm is neither similar, nor rank similar with the pSALSA, Hub-Averaging, orKleinberg algorithm.Proof: Consider a graph G on N = 3r nodes, that consists of two components C1 and C2. The component C1 is acomplete graph on 2r nodes, and the component C2 is a complete graph on r nodes, with one link (q; p) removed.Let wS , wK ,wH , andwp denote the weight vectors for SALSA, Kleinberg, Hub-Averaging and pSALSA algorithmsrespectively. We assume that the vectors are normalized in L1 norm. Also, let uS denote the SALSA weightvector before normalization. The SALSA algorithm allocates weight uS(i) = 1=3r for all i 2 C1, and weightuS(j) = (r� 1)=3(r2� r� 1) for all j 2 C2 n fpg. It is interesting to note that the removal of the link (q; p) increasedthe weight of the rest of the nodes in C2. Therefore, after normalization wS(i) = 1 � 1r(r�1) for all i 2 C1, andwS(j) = 1 for all j 2 C2 n fpg. On the other hand, both the Kleinberg and Hub-Averaging algorithms distributeall the weight equally to the authorities in the C1 component, and allocate zero weight to the nodes in the C2component. Therefore, after normalization, wK(i) = wH(i) = 1 for all nodes i 2 C1, and wK(j) = wH (j) = 0 for allnodes j 2 C2. The pSALSA algorithm allocates weight proportionally to the in-degree of the nodes, therefore, afternormalization, wp(i) = 1 for all nodes in C1, while wp(j) = r�12r�1 for all nodes j 2 C2 n fpg.For the Kleinberg and Hub-Averaging algorithm, there are r�1 entries in C2 nfpg, for which wK(i) = wH(i) = 0and wS(i) = 1. Therefore, for all of 
1; 
2 � 1, d1(
1wS(i); 
2wK(i)) = 
(r) = 
(N ), and d1(
1wS(i); 
2wH(i)) =
(r) = 
(N ). From the above, it is easy to see that dr(wS ; wK) = �(N ), and dr(wS ; wH) = �(N ).The proof for the pSALSA algorithm, is a little more involved. LetS1 = Xi2C1 j
1wp(i) � 
2wS(i)j = r ����
1 � 
2 � 
2r(r � 1) ����S2 = Xi2C2nfpg j
1wp(i) � 
2wS(i)j = (r � 1) ����
1 r � 12r� 1 � 
2���� :We have that d1(
1wp; 
2wS) � S1 + S2. It is not hard to see that unless 
1 = 2
2 + o(1), then S2 = �(r) = �(N ).If 
1 = 2
2 + o(1) then S1 = �(r) = �(N ). Therefore, for all 
1; 
2 � 1, d1(
1wp; 
2wS) = 
(N ). From the above itis easy to see that dr(wS ; wp) = �(N ).Thus, SALSA is neither similar, nor rank similar with any of the other algorithms. 2On the positive side we have the following.De�nition 6 A link graph is \nested" if for every pair of nodes j and k, the set of in-links to j is either a subsetor a superset of the set of in-links to k.Let GnestN be the set of all size-N nested graphs. (Of course, GnestN is a rather restricted set of size-N graphs.)Theorem 4 If two algorithms are both monotone, then they are rank matching on GnestN .Proof: Let G be a graph in GnestN , and let A1 and A2 be two monotone algorithms. Let w1 = A1(G), and w2 = A2(G)be the weight vectors of A1 and A2 respectively. Consider a pair j and k of nodes in G. Without loss of generality,assume that the set of in-links of j is a superset of the set of in-links of k. Since both algorithms are monotone, thenw1(j) � w1(k), and w2(j) � w2(k). Therefore Iw1w2(j; k) = 0 for all pairs of nodes. Therefore, dr(w1; w2) = 0, sothe algorithms A1 and A2 are rank matching on GnestN . 2Corollary 1 Except for the Hub-Threshold algorithm, all other algorithms we consider in this paper are rank match-ing on GnestN . 17



8.3 Stability and LocalityIn the previous section we examined the similarity of two di�erent algorithms on the same graph G. In this section weare interested in how the output of a �xed algorithm changes, as we alter the graph. We would like small changes inthe graph to have a small e�ect on the weight vector of the algorithm. We capture this requirement by the de�nitionof stability. The notion of stability has been independently considered (but not explicitly de�ned) in a number ofdi�erent papers [17, 18, 3, 1].Given a graph G, we can view a change in graph G, as an operation @ on graph G, that adds and/or removeslinks so a to produce a new graph G0 = @G. Formally, a change is de�ned as an operation on the adjacency matrixof the graph G, that alters k entries of the matrix, for some k > 0. The number k is called the size of the change.We denote by Ck the set of all possible changes of size at most k. We think of a change in graph G as being small,if the size k of the change is constant and independent of the size of the graph G.For the following, let E(G) denote the set of all edges (i.e. links) in the graph G. We assume that E(G) = !(1),otherwise all properties that we discuss below are trivial. The following de�nition applies to Lp-algorithms, for1 � p �1.De�nition 7 An Lp-algorithm A is stable7 on GN if for every �xed positive integer k, we have (as N !1)maxG2GN ;@2Ck min
1 ;
2�1 d1(
1A(G); 
2A(@G)) = o(N1�1=p) :Again, our choice for the bound o(N1�1=p) is is guided by the fact that the maximum d1 distance between any twoN -dimensional Lp unit vectors, is �(N1�1=p). As in the de�nition of similarity, the parameters 
1; 
2 used in thede�nition of stability allow for an arbitrary scaling of the weight vectors, thus eliminating instability which is causedsolely by di�erent normalization factors.De�nition 8 An algorithm A is rank stable on GN if for every k, we have (as N !1)maxG2GN ;@G2Ck dr(A(G); A(@G)) = o(N ):As in the case of similarity, the notion of stability can be de�ned for any distance function, and for any normal-ization norm.De�nition 9 An L-algorithm A is stable on GN under d if for every �xed positive integer k, we have (as N !1)maxG2GN ;@G2Ck min
1;
2�1 d(
1A(G); 
2A(@G)) = o(MN ) ;where again MN = supkw1k=kw2k=1 d(w1; w2) is the maximum distance between any two N -vectors with unit normL = jj � jj.Stability may be a desirable property. Indeed, the algorithms all act on a base set which is generated using someother search engine (e.g. AltaVista [2]) and the associated hypertext links. Presumably with a \very good" base set,all the algorithms would perform well. However, if an algorithm is not stable, then slight changes in the base set(or its link structure) may lead to large changes in the rankings given by the algorithm. Thus, stability may provide\protection" from poor base sets.Theorem 5 Let A be an algorithm, and let 1 � r � s � 1. If the Lr-algorithm A is stable, then the Ls-algorithmA is also stable.Proof: Let G be a graph, and let @ denote a change of constant size in graph G. Set v = A(G), and u = A(@G),and then the rest of the proof is identical to the proof of Theorem 3. 2Theorem 5 implies that if an L1-algorithmA is stable, then the Lp-algorithmA is also stable, for any 1 � p � 1.Furthermore, if the L1-algorithm A is unstable, then the Lp-algorithm A is also unstable, for any 1 � p � 1.Therefore, the following instability results, proven for the L1 norm, hold for any Lp norm, for 1 � p � 1.7This de�nition of stability generalizes the de�nition in [6], where we considered only changes that remove a constant number of links.18



Proposition 5 The Kleinberg and Hub-Averaging algorithms are neither stable, nor rank stable.Proof: Consider the graph G of size N = 2r + 3, which consists of two disjoint components C1 and C2. Thecomponent C1 consists of a complete graph on r nodes, and two extra hubs p and q that each points to a single nodeof the complete graph. The component C2 consists of a complete graph on r nodes, and an extra node that pointsto exactly one of these r nodes. For both Kleinberg and Hub-Averaging transition matrices, the eigenvalue of thecomponent C1 is (slightly) larger than that of C2; therefore, both algorithms will allocate all the weight to the nodesof C1, and zero weight to C2. If we delete the links from p and q, the eigenvalue of C2 becomes larger, causing the allthe weight to shift from C1 to C2, and leaving the nodes in C1 with zero weight. It follows that the two algorithmsare neither stable nor rank stable. 2Proposition 6 The SALSA algorithm, is neither stable, nor rank stableProof: We �rst establish the rank instability of the SALSA algorithm. The example is similar to that used inthe previous proof. Consider a graph G of size N = 2r + 3, which consists of two disjoint components. The �rstcomponent consists of a complete graph C1 on r nodes and two extra authorities p and q each of which is pointed toby a single node of the complete graph. The second component consists of a complete graph C2 on r nodes and anextra authority that is pointed to by exactly one of these r nodes.It is not hard to show that if r > 2, then the SALSA algorithm ranks the r authorities in C1 higher than thosein C2. We now remove the links to the nodes p and q. Simple computations show that if r > 1, the nodes in C2are ranked higher than the nodes in C1. There are �(N2) pairs of nodes whose relative order is changed; therefore,SALSA is rank unstable.The proof of instability is a little more involved. Consider again the graph G that consists of two complete graphsC1 and C2 of size N1 and N2 respectively, such that N2 = cN1, where c < 1 is a �xed constant. There exists alsoan extra hub h that points to two authorities p and q from the components C1 and C2 respectively. The graph hasN = N1 + N2 + 1 nodes, and NA = N1 + N2 authorities.The authority Markov chain de�ned by the SALSA algorithm is irreducible, therefore, the weight of authorityi is proportional to the in-degree of node i. Let w be the weight vector of the SALSA algorithm. Node p is thenode with the highest in-degree, therefore, after normalizing in the L1 norm, w(p) = 1, w(i) = 1 � 1=N1, for alli 2 C1 n fpg, w(q) = c, and w(j) = c� 1=N1 for all j 2 C2 n fqg.Now let G0 be the graph G after we remove the two links from hub h to authorities p and q. Let w0 denote theweight vector of the SALSA algorithm on graph G0. It is not hard to see that all authorities receive the same weight1=NA by the SALSA algorithm. After normalization, w0(i) = 1 for all authorities i in G0.Consider now the distance d1(
1w; 
2w0). LetS1 = XC1nfpg j
1w(i) � 
2w0(i)j = (N1 � 1) ����
1 � 
2 � 
1N1 ����S2 = XC2nfqg j
1w(i) � 
2w0(i)j = (N2 � 1) ����c
1 � 
2 � 
1N1 ���� :It holds that d1(
1w; 
2w0) � S1 + S2. It is not hard to see that unless 
1 = 1c
2 + o(1), then S2 = �(N2) = �(N ).If 
1 = 1c
2 + o(1), then S1 = �(N1) = �(N ). Therefore, d1(
1w; 
2w0) = 
(N ). Thus, the SALSA algorithm isunstable. 2We now introduce the idea of \locality". The idea behind locality is that a change in the in-links of a node shouldhave only a small e�ect on the weights of the rest of the nodes. Given a graph G, we say that a change @ in G a�ectsnode i, if the links that point to node i are altered. In algebraic terms, the change @ a�ects the entries of the ithcolumn of the adjacency matrix of graph G. We de�ne the impact set of a change @ in graph G, f@Gg, to be the setof nodes in G a�ected by the change @. 19



De�nition 10 An algorithm A is local8 if for every graph G, and every change @ in G there exists � > 0 such thatA(@G)[i] = �A(G)[i], for all i 62 f@Gg.De�nition 11 An algorithm A is rank local if for every graph G, and every change @ in G, if w = A(G) andw0 = A(@G), then, for all i; j 62 f@Gg, w(i) > w(j) ) w0(i) � w0(j) (equivalently, Iww0(i; j) = 0). The algorithm isstrictly rank local9 if w(i) > w(j), w0(i) > w0(j).We note that locality and rank locality do not depend upon the normalization used by the algorithm. From thede�nitions, one can observe that if an algorithm is local, then it is also strictly rank local. If it is strictly rank localthen it is obviously rank local.We have the following.Theorem 6 If an algorithm is rank local, then it is rank stable.Proof: Let G be a graph, and let @ be a change of size k in G. Let w be the weight vector of the algorithm on agraph G, and let w0 be the weight vector of the algorithm on the modi�ed graph @G. Let P = f@Gg be the impactset of change @, and let m be the size of the set P . Since the algorithm is rank local, Iww0(i; j) = 0 for all i; j 62 P .Therefore, dr(w;w0) = 1N NXi=1 mXp2P Iww0(i; p) :But Iww0(i; p) � 1 for all i and p, so dr(w;w0) = 1NNm = m. Therefore, the algorithm is rank stable. 2Therefore, locality implies rank stability. It is not necessarily the case that it also implies stability. For example,consider the algorithm A where for a graph G on N nodes, it assigns weight N jB(i)j to node i. This algorithm islocal, but it is not stable.Theorem 7 The pSALSA algorithm is local, and consequently strictly rank local, and rank local.Proof: Given a graph G, let u be the weight vector that assigns to node i weight equal to jB(i)j, the in-degree of i.Let w be the weight vector of the pSALSA algorithm; then w(i) = u(i)=kuk = jB(i)j=kuk, where k � k is any norm.Let @ be a change in G, and let G0 = @G denote the new graph. Let u0 and w0 denote the corresponding weightvectors on graph G0. For every i 62 f@Gg, the number of links to i remains una�ected by the change @; thereforeu0(i) = u(i). For the pSALSA algorithm, w0(i) = u0(i)=ku0k = u(i)=ku0k. For � = kukku0k , it holds that w0(i) = �w(i),for all i 62 f@Gg. Thus, pSALSA is local, and consequently strictly rank local, and rank local. 2Theorem 8 The pSALSA algorithm is stable, and rank stable.Proof: The proof of rank stability follows directly from the rank locality of pSALSA. For the proof of stability, letG be a graph on N nodes, and let @ 2 Ck be a change of size k in G. Let m be the size of f@Gg. Without lossof generality assume that f@Gg = f1; 2; : : :;mg. Let u be the weight vector that assigns to node i weight equal tojB(i)j, the in-degree of i. Let w be the weight of the L1-pSALSA algorithm. Then w = u=kuk, where k � k is the L1norm. Let u0 and w0 denote the corresponding weight vectors after the removal of the links. For all i 62 f1; 2; : : :;mgu0(i) = u(i). Furthermore,Pmi=1 ju(i)� u0(i)j � k. Set 
1 = 1 and 
2 = ku0kkuk . Thend1(
1w; 
2w0) = 1kuk NXi=1 ju(i) � u0(i)j � kkuk :8This de�nition of locality is not the same as the de�nition that appears in [6]. It is actually the same as the de�nition of the pairwiselocality in [6]. The original de�nition of locality is of limited interest since it applies only to unnormalized algorithms.9This stronger de�nition of rank locality is used for the characterization of the pSALSA algorithm (Theorem 9).20



We note that kuk is equal to the sum of the links in the graph. In the de�nition of stability we assumed thatthe number of links in the graph is !(1). Therefore, d1(
1w; 
2w0) = o(1), which proves that L1-pSALSA, andconsequently pSALSA is stable. 2Now, let G be a graph that is \authority connected"; that is, the authority graph Ga, as de�ned in section 2.3,is connected. Then SALSA and pSALSA are equivalent on G. Let GACN denote the family of authority connectedgraphs of size N . We have the following corollary.Corollary 2 The SALSA algorithm is stable on GACN .We originally thought that the Bayesian and Simpli�ed Bayesian algorithms were also local. However, it turnsout that they are neither local, nor strictly rank local. Indeed, it is true that conditional on the values of hi, ei,and aj, the conditional distribution of ak for k 6= j is unchanged upon removing a link from i to j. However, theunconditional marginal distribution of ak, and hence also its posterior mean bak (or even ratios bak=baq for q 6= j),may still be changed upon removing a link from i to j. (Indeed, we have computed experimentally that ba3=ba4 maychange upon removing a link from 1 to 2, even for a simple example with just four nodes.) Theorem 9 (proven below)implies that neither the Bayesian, nor the Simpli�ed Bayesian Algorithm are strictly rank local, since (as shownexperimentally) they not rank-matching with the pSALSA algorithm.We now use locality and \label-independence" to prove a uniqueness property of the pSALSA algorithm.De�nition 12 An algorithm is label-independent if permuting the labels of the graph nodes only causes the authorityweights to be correspondingly permuted.All of our algorithms are clearly label-independent. Label-independence is a reasonable property, but one cande�ne reasonable algorithms that are not label-independent. For example, consider the algorithm de�ned by Bharatand Henzinger [5]: when computing the authority weight of a node i, the hub weights of the nodes that belong tothe same domain are averaged over the number of the nodes from that domain that point to node i. This algorithmis not label-independent.Theorem 9 Consider an algorithm A that is strictly rank local, monotone, and label-independent. Then A (andhence any normalized variant of A) and pSALSA are rank matching on GN , for any N � 3.Proof: Let G be a graph of size N � 3, and let a = A(G) be the weight function of algorithm A on graph G, and sbe the weight function of pSALSA. We will be modifying G to form graphs G1, and G2 and we let a1, and a2 denote(respectively) the weight function of A on these graphs.Let i and j be two nodes in G. If s(i) = s(j), or equivalently (by de�nition of pSALSA) nodes i and j havethe same number of in-links, then Ias(i; j) = 0; therefore, nodes i and j do not violate the rank matching property.Without loss of generality assume that s(i) > s(j), or equivalently that node i has more in-links than j. The set ofnodes that point to i or j is decomposed as follows: there is a set of nodes C that point to both i and j; there is aset of nodes L that point only to node j; there is a set of cardinality R equal to L of nodes that point only to i; thereis a non-empty set of nodes E that point to node i. Note that except for the set E, the other sets may be empty.Let k 6= i; j be an arbitrary node in the graph. We now perform the following change in graph G: remove alllinks that do not point to i or j, and make the nodes in L and C to point to node k. Let G1 denote the resultinggraph. Since A is strictly rank local, and the nodes i and j are not a�ected by the change, the order of nodes i andj is preserved. Furthermore, from the monotonicity of algorithm A, we have that a1(i) � a1(k).We will now prove that a1(k) = a1(j). Assume that a1(k) < a1(j). Let G2 denote the graph that we obtain byremoving all the links from set L to node i, and adding links from set R to node i. The graphs G1 and G2 are thesame up to a label permutation that swaps the labels of nodes j and k. Therefore, a2(j) < a2(k), which contradictsthe assumption of strict rank locality. We reach the same contradiction if we assume that a1(k) > a1(j). Thus,a1(k) = a1(j), and a1(i) � a1(j). Since A is strictly rank local, a1(i) � a1(j)) a(i) � a(j).Therefore, for all i; j, Ias(i; j) = 0, that is, dr(a; s) = 0, as required. 2In e�ect then, the conditions of Theorem 9 characterize pSALSA. All three conditions are necessary for the proofof the theorem. Assume that we discard the label independence condition. Now, de�ne algorithm A, that assigns to21



each link a weight that depends on the label of the node the link originates from. The algorithm sets the authorityweight of each node to be the sum of the link weights that point to this node. This algorithm is clearly monotoneand local, however if the link weights are chosen appropriately, it will not be rank matching with pSALSA. Assumenow that we discard of the monotonicity condition. De�ne an algorithm A, that assigns weight 1 to each node withodd in-degree, and weight 0 to each node with even in-degree. This algorithm is local and label independent, butit is clearly not rank matching with pSALSA. Monotonicity and label independence are clearly not su�cient forproving the theorem; we have provided examples of algorithms that are monotone and label independent, but notrank matching with the pSALSA (e.g. the Kleinberg algorithm).8.4 SymmetryDe�nition 13 A \hubs and authorities" algorithm A is \symmetric" if inverting all the links in a graph simplyinterchanges the hub and authority values produced by the algorithm.We have by inspection:Theorem 10 The pSALSA and SALSA algorithms, the Kleinberg algorithm, the BFS algorithm, and the Simpli�edBayesian algorithm are all symmetric. However, the Hub-Averaging algorithm, the Threshold algorithms, and theBayesian algorithm are NOT symmetric.9 SummaryWe have considered a number of known and some new algorithms which use the hypertext link structure of WorldWide Web pages to extract information about the relative ranking of these pages. In particular, we have introducedtwo algorithms based on Bayesian statistical approach as well as a number of algorithms which are modi�cations ofKleinberg's seminal hubs and authority algorithm. Based on 8 di�erent queries (5 presented here), we discuss someobserved properties of each algorithm as well as relationships between the algorithms. We found (experimentally)that certain algorithms appear to be more \balanced", while others more \focused". The latter tend to be sensitiveto the existence of tightly interconnected clusters, which may cause them to drift. The intersections between thelists of the top-ten results of the algorithms suggest that certain algorithms exhibit similar behavior and properties.Motivated by the experimental observations, we introduced a theoretical framework for the study and comparisonof link-analysis ranking algorithms. We formally de�ned (and gave some preliminary results for) the concepts ofmonotonicity, stability and locality, as well as various concepts of distance and similarity between ranking algorithms.Our work leaves open a number of interesting questions. For example, are the Bayesian algorithms stable inany sense? What natural algorithms are similar (or rank similar) to each other? The two Bayesian algorithmsopen the door to the use of other statistical and machine learning techniques for ranking of hyper-linked documents.Furthermore, the framework we de�ned suggests a number of interesting directions for the theoretical study of rankingalgorithms, which we have just begun to explore in this work. For example, in this work we proved that strict ranklocality (together with monotonicity and label independence) implies rank matching with pSALSA. Such a resultcan be viewed as an axiomatic characterization of pSALSA and it would be interesting to know if other algorithmscan be axiomatically characterized. In our work all the examples for instability are on disconnected graphs. It wouldbe interesting to examine if instability can be proven for the class of connected graphs. Recent work has shownthat stability is tightly connected with the spectral properties of the underlying graph [17, 18, 3, 1]. This seems apromising direction for proving stability results.10 AcknowledgmentsWe would like to thank Ronald Fagin, Ronny Lempel, Alberto Mendelzon, and ShlomoMoran for valuable commentsand corrections. 22
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A ExperimentsA.1 Query: abortion (Base Set size = 2293)Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian1. P-1165 P-717 P-1165 P-1165 P-717 P-1461 P-717 P-717 P-7172. P-1184 P-1461 P-1184 P-1184 P-1769 P-719 P-719 P-1461 P-11923. P-1193 P-719 P-1193 P-1193 P-1461 P-1 P-1769 P-1191 P-11654. P-1187 P-1165 P-1187 P-1187 P-718 P-717 P-1461 P-719 P-11915. P-1188 P-1184 P-1188 P-1188 P-719 P-0 P-962 P-1184 P-11936. P-1189 P-1193 P-1189 P-1189 P-1 P-115 P-0 P-1165 P-11847. P-1190 P-1187 P-1190 P-1190 P-0 P-607 P-2 P-1192 P-11898. P-1191 P-1188 P-1191 P-1191 P-2515 P-1462 P-718 P-1193 P-11889. P-1192 P-1189 P-1192 P-1192 P-115 P-2 P-1325 P-1188 P-118710. P-1948 P-1190 P-1948 P-1948 P-962 P-1567 P-1522 P-1187 P-1190Index pop URL TitleP-0 3 www.gynpages.com Abortion Clinics OnLineP-1 2 www.prochoice.org NAF - The Voice of Abortion ProvidersP-2 2 www.cais.com/agm/main The Abortion Rights Activist Home PageP-115 2 www.ms4c.org Medical Students for ChoiceP-607 1 www.feministcampus.org Feminist Campus Activism Online: WelcomeP-717 6 www.nrlc.org National Right to Life OrganizationP-718 2 www.hli.org Human Life International (HLI)P-719 5 www.naral.org NARAL: Abortion and Reproductive Rights: ...P-962 2 www.prolife.org/ultimate Empty title �eldP-1165 6 www5.dimeclicks.com DimeClicks.com - Web and Marketing SolutionsP-1184 6 www.amazon.com/...../youdebatecom Amazon.com{Earth's Biggest SelectionP-1187 6 www.amazon.com/...../top-sellers.html Amazon.com{Earth's Biggest SelectionP-1188 6 www.amazon.com/.../software/home.html Amazon.com SoftwareP-1189 5 www.amazon.com/.../hot-100-music.html Amazon.com{Earth's Biggest SelectionP-1190 5 www.amazon.com/.../gifts.html Amazon.com{Earth's Biggest SelectionP-1191 5 www.amazon.com/.....top-100-dvd.html Amazon.com{Earth's Biggest SelectionP-1192 5 www.amazon.com/...top-100-video.html Amazon.com{Earth's Biggest SelectionP-1193 6 rd1.hitbox.com/....... HitBox.com - hitbox web site .......P-1325 1 www.serve.com/fem4life Feminists For Life of AmericaP-1461 5 www.plannedparenthood.org Planned Parenthood Federation of AmericaP-1462 1 http://www.rcrc.org The Religious Coalition for Reproductive ChoiceP-1522 1 www.naralny.org NARAL/NYP-1567 1 http://www.agi-usa.org The Alan Guttmacher Institute: Home PageP-1769 2 www.priestsforlife.org Priests for Life IndexP-1948 3 www.politics1.com/issues.htm Politics1: Hot Political Debates & IssuesP-2515 1 www.ohiolife.org Ohio Right To Life
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Kleinberg SALSA HubAvg AThresh HThresh FThresh BFS SBayesian BayesianKleinberg 10 7 10 10 0 0 0 7 9SALSA 7 10 7 7 3 3 3 8 8HubAvg 10 7 10 10 0 0 0 7 9AThresh 10 7 10 10 0 0 0 7 9HThresh 0 3 0 0 10 6 7 3 1FThresh 0 3 0 0 6 10 5 3 1BFS 0 3 0 0 7 5 10 3 1SBayesian 7 8 7 7 3 3 3 10 8Bayesian 9 8 9 9 1 1 1 8 10
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A.2 Query: +net +censorship (Base Set size = 2947)Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian1. P-375 P-371 P-371 P-371 P-375 P-375 P-371 P-371 P-3752. P-3163 P-1440 P-2874 P-375 P-1344 P-1344 P-375 P-1440 P-3713. P-3180 P-375 P-2871 P-2871 P-3130 P-3130 P-1299 P-375 P-31804. P-3177 P-2874 P-2873 P-2874 P-3131 P-3131 P-1440 P-2874 P-31775. P-3173 P-2871 P-2659 P-3536 P-3132 P-3132 P-2871 P-1299 P-31636. P-3172 P-1299 P-375 P-2873 P-3133 P-3133 P-2874 P-2871 P-31737. P-3132 P-3536 P-3536 P-2659 P-3135 P-3135 P-3536 P-3536 P-31668. P-3193 P-1712 P-2639 P-2639 P-3161 P-3161 P-1802 P-1712 P-31939. P-3170 P-268 P-1440 P-2639 P-3162 P-3162 P-2639 P-268 P-316810. P-3166 P-1445 P-2867 P-1440 P-3163 P-3163 P-452 P-1445 P-3132Index pop URL TitleP-268 2 www.epic.org Electronic Privacy Information CenterP-371 6 www.yahoo.com Yahoo!P-375 9 www.cnn.com CNN.comP-452 1 www.mediachannel.org MediaChannel.org { A Global Network ........P-1299 3 www.e�.org/blueribbon.html EFF Blue Ribbon CampaignP-1344 2 www.igc.apc.org/peacenet PeaceNet HomeP-1440 5 www.e�.org EFF ... - the Electronic Frontier FoundationP-1445 2 www.cdt.org The Center for Democracy and TechnologyP-1712 2 www.aclu.org ACLU: American Civil Liberties UnionP-1802 1 ukonlineshop.about.com Online Shopping: UKP-2639 3 www.imdb.com The Internet Movie Database (IMDb).P-2659 2 www.altavista.com AltaVista - WelcomeP-2867 1 home.netscape.com Empty title �eldP-2871 5 www.excite.com My Excite Start PageP-2873 2 www.mckinley.com Welcome to Magellan!P-2874 5 www.lycos.com LycosP-3130 2 www.city.net/countries/kyrgyzstan Excite TravelP-3131 2 www.bishkek.su/krg/Contry.html ElCat. 404: Not Found.P-3132 4 www.pitt.edu/~cjp/rees.html REESWeb: Programs:P-3133 2 www.ripn.net RIPNP-3135 2 www.yahoo.com/.../Kyrgyzstan Yahoo! Regional Countries KyrgyzstanP-3161 2 151.121.3.140/fas/fas-publications/... Error 404 RedirectorP-3162 2 www.rferl.org/BD/KY RFE/RL Kyrgyz Service : NewsP-3163 4 www.usa.ft.com Empty title �eldP-3166 2 www.path�nder.com/time/daily TIME.COMP-3168 1 www.yahoo.com/News Yahoo! News and MediaP-3170 1 www.�nancenet.gov ...FinanceNet is the government's o�cial home...P-3172 1 www.oecd.org OECD OnlineP-3173 2 www.worldbank.org The World Bank GroupP-3177 2 www.envirolink.org EnviroLink NetworkP-3180 3 www.lib.utexas.edu/.../Map collection PCL Map CollectionP-3193 2 www.wiesenthal.com Simon Wiesenthal CenterP-3536 5 www.shareware.com CNET.com - Shareware.com27



Kleinberg SALSA HubAvg AThresh HThresh FThresh BFS SBayesian BayesianKleinberg 10 1 1 2 3 3 1 1 8SALSA 1 10 6 6 1 1 7 10 2HubAvg 1 6 10 9 1 1 7 6 2AThresh 2 6 9 10 1 1 7 6 3HThresh 3 1 1 1 10 10 1 1 3FThresh 3 1 1 1 10 10 1 1 3BFS 1 7 7 7 1 1 10 7 2SBayesian 1 10 6 6 1 1 7 10 2Bayesian 8 2 2 3 3 3 2 2 10
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A.3 Query: Movies (Base Set size = 5757)Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian1. P-678 P-999 P-999 P-999 P-678 P-1989 P-999 P-999 P-9992. P-2268 P-2832 P-2832 P-2832 P-2266 P-2832 P-1911 P-2832 P-28323. P-2304 P-6359 P-2101 P-6359 P-2263 P-1980 P-2827 P-6359 P-28274. P-2305 P-2827 P-803 P-2827 P-2264 P-1983 P-2803 P-2827 P-63595. P-2306 P-2120 P-1539 P-2838 P-2265 P-1984 P-5470 P-1374 P-6786. P-2308 P-1374 P-1178 P-6446 P-2268 P-1986 P-2120 P-2120 P-28387. P-2310 P-803 P-6359 P-5 P-2280 P-1987 P-4577 P-803 P-22668. P-2266 P-1539 P-1082 P-2803 P-2299 P-1993 P-5 P-6446 P-22689. P-2325 P-6446 P-2827 P-2839 P-2300 P-1995 P-2838 P-1539 P-230810. P-2299 P-2838 P-6446 P-2840 P-2301 P-3905 P-4534 P-2838 P-2330
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Index pop Title URLP-5 2 www.movies.com Movies.comP-678 3 chatting.about.com Empty title �eldP-803 3 www.google.com GoogleP-999 6 www.moviedatabase.com The Internet Movie Database (IMDb).P-1082 1 www.amazon.com/ Amazon.com{Earth's Biggest SelectionP-1178 1 www.booksfordummies.com Empty title �eldP-1374 2 www.onwisconsin.com On WisconsinP-1539 3 206.132.25.51 Washingtonpost.com - News FrontP-1911 1 people2people.com/...nytoday People2People.com - SearchP-1980 1 newyork.urbanbaby.com/nytoday Kids & FamilyP-1983 1 tunerc1.va.everstream.com/nytoday/ Empty title �eldP-1984 1 nytoday.opentable.com/ OpenTableP-1986 1 www.nytimes.com/.../jobmarket The New York Times: Job MarketP-1987 1 www.cars.com/nytimes New York Today cars.com - new and used car ...P-1989 1 www.nytodayshopping.com New York Today Shopping - Shop for computers, ...P-1993 1 www.nytimes.com/.../nytodaymediakit New York Today - Online Media KitP-1995 1 http://www.nytimes.com/subscribe... The New York Times on the WebP-2101 1 www2.ebay.com/aw/announce.shtml eBay Announcement BoardP-2120 3 www.mylifesaver.com welcome to mylifesaver.comP-2263 1 clicks.about.com/...nationalinterbank Banking CenterP-2264 1 clicks.about.com/ Credit Report, Free Trial O�erP-2265 1 membership.about.com/... Member CenterP-2266 3 home.about.com/movies About - MoviesP-2268 3 a-zlist.about.com About.com A-ZP-2280 1 sprinks.about.com Sprinks : About SprinksP-2299 2 home.about.com/aboutaus About AustraliaP-2300 1 http://home.about.com/aboutcanada About CanadaP-2301 1 http://home.about.com/aboutindia About IndiaP-2304 1 home.about.com/arts About - Arts/HumanitiesP-2305 1 home.about.com/autos About - AutosP-2306 1 home.about.com/citiestowns About - Cities/TownsP-2308 2 home.about.com/compute About - Computing/TechnologyP-2310 1 home.about.com/education About - EducationP-2325 1 home.about.com/musicperform About - Music/PerformanceP-2330 1 home.about.com/recreation About - Recreation/OutdoorsP-2803 2 www.allmovie.com All Movie GuideP-2827 6 www.�lm.com Film.com Movie Reviews, News, Trailers...P-2832 6 www.hollywood.com Hollywood.com - Your entertainment source...P-2838 5 www.mca.com Universal StudiosP-2839 1 www.mgmua.com MGM - Home PageP-2840 1 www.miramax.com Welcome to the Miramax CafeP-3905 1 http://theadvocate.webfriends.com Empty title �eldP-4534 1 www.aint-it-cool-news.com Ain't It Cool NewsP-4577 1 go.com GO.comP-5470 1 www.doubleaction.net Double Action - Stand. Point. Laugh.P-6359 5 www.paramount.com Paramount Pictures - Home PageP-6446 4 www.disney.com Disney.com { Where the Magic Lives Online!30



Kleinberg SALSA HubAvg AThresh HThresh FThresh BFS SBayesian BayesianKleinberg 10 0 0 0 4 0 0 0 4SALSA 0 10 7 6 0 0 5 10 5HubAvg 0 7 10 5 0 0 3 7 4AThresh 0 6 5 10 0 0 6 6 5HThresh 4 0 0 0 10 0 0 0 3FThresh 0 0 0 0 0 10 0 0 0BFS 0 5 3 6 0 0 10 5 4SBayesian 0 10 7 6 0 0 5 10 5Bayesian 4 5 4 5 3 0 4 5 10A.4 Query: genetic (Base Set size = 3468)Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian1. P-2187 P-2187 P-2187 P-2187 P-2187 P-2187 P-2187 P-2187 P-21872. P-1057 P-258 P-1057 P-1057 P-1057 P-1057 P-3932 P-258 P-10573. P-2168 P-1057 P-3932 P-2168 P-2168 P-2168 P-1538 P-1057 P-21684. P-2200 P-3932 P-2095 P-2200 P-2200 P-2200 P-1057 P-3932 P-20955. P-2219 P-2095 P-2168 P-2219 P-2219 P-2219 P-2095 P-2095 P-22006. P-2199 P-1538 P-2186 P-2095 P-2199 P-2095 P-258 P-1538 P-22197. P-2095 P-2 P-941 P-3932 P-2186 P-3932 P-2168 P-2 P-39328. P-2186 P-2168 P-0 P-2199 P-2095 P-2199 P-2200 P-2168 P-21999. P-2193 P-941 P-2200 P-2186 P-2193 P-2186 P-2 P-941 P-218610. P-3932 P-23 P-2199 P-2193 P-3932 P-2193 P-2199 P-2200 P-2193Index pop URL TitleP-0 1 www.geneticalliance.org Genetic Alliance, Washington, DCP-2 3 www.genetic-programming.org genetic-programming.org-Home-PageP-23 1 www.geneticprogramming.com The Genetic Programming NotebookP-258 3 www.aic.nrl.navy.mil/galist The Genetic Algorithms ArchiveP-941 3 www3.ncbi.nlm.nih.gov/Omim OMIM Home Page { Online Mendelian Inheritance in ManP-1057 9 gdbwww.gdb.org The Genome DatabaseP-1538 3 www.yahoo.com Yahoo!P-2095 9 www.nhgri.nih.gov National Human Genome Research Institute (NHGRI)P-2168 9 www-genome.wi.mit.edu Welcome To the ..... Center for Genome ResearchP-2186 6 www.ebi.ac.uk EBI, the European Bioinformatics Institute ........P-2187 9 www.ncbi.nlm.nih.gov NCBI HomePageP-2193 5 www.genome.ad.jp GenomeNet WWW serverP-2199 7 www.hgmp.mrc.ac.uk UK MRC HGMP-RCP-2200 8 www.tigr.org The Institute for Genomic ResearchP-2219 5 www.sanger.ac.uk The Sanger Centre Web ServerP-3932 9 www.nih.gov National Institutes of Health (NIH)
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Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian BayesianKleinberg 10 5 8 10 10 10 7 6 10pSALSA 5 10 6 5 5 5 8 9 5HubAvg 8 6 10 8 8 8 7 7 8AThresh 10 5 8 10 10 10 7 6 10HThresh 10 5 8 10 10 10 7 6 10FThresh 10 5 8 10 10 10 7 6 10BFS 7 8 7 7 7 7 10 9 7SBayesian 6 9 7 6 6 6 9 10 6Bayesian 10 5 8 10 10 10 7 6 10
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A.5 Query: +computational +geometry (Base Set size = 1226)Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian1. P-161 P-161 P-634 P-161 P-0 P-161 P-0 P-161 P-1612. P-0 P-1 P-632 P-0 P-161 P-0 P-161 P-1 P-03. P-1 P-0 P-633 P-1 P-1 P-1 P-1 P-0 P-14. P-162 P-3 P-1406 P-162 P-162 P-162 P-300 P-3 P-1625. P-3 P-280 P-161 P-3 P-280 P-280 P-299 P-280 P-36. P-280 P-634 P-162 P-280 P-3 P-3 P-162 P-634 P-2807. P-275 P-162 P-1369 P-275 P-275 P-275 P-3 P-162 P-2758. P-299 P-2 P-351 P-299 P-299 P-299 P-280 P-2 P-2999. P-300 P-632 P-1308 P-300 P-300 P-848 P-375 P-633 P-30010. P-848 P-633 P-1 P-848 P-848 P-300 P-551 P-632 P-848Index pop URL TitleP-0 8 www.geom.umn.edu/software/cglist Directory of Computational Geometry SoftwareP-1 9 www.cs.uu.nl/CGAL The former CGAL home pageP-2 2 link.springer.de/link/service/journals/00454 LINK: Peak-time overloadP-3 8 www.scs.carleton.ca/~csgs/resources/cg.html Computational Geometry ResourcesP-161 9 www.ics.uci.edu/~eppstein/geom.html Geometry in ActionP-162 9 www.ics.uci.edu/~eppstein/junkyard The Geometry JunkyardP-275 5 www.ics.uci.edu/~eppstein David EppsteinP-280 8 www.geom.umn.edu The Geometry Center Welcome PageP-299 6 www.mpi-sb.mpg.de/LEDA/leda.html LEDA - Main Page of LEDA ResearchP-300 6 www.cs.sunysb.edu/~algorith The Stony Brook Algorithm RepositoryP-351 1 http://www.ics.uci.edu/~eppstein/gina/... Geometry Publications by AuthorP-375 1 graphics.lcs.mit.edu/~seth Seth TellerP-551 1 www.cs.sunysb.edu/~skiena Steven SkienaP-632 3 www.w3.org/Style/CSS/Buttons CSS buttonP-633 3 jigsaw.w3.org/css-validator W3C CSS Validation ServiceP-634 3 validator.w3.org W3C HTML Validation ServiceP-848 5 www.inria.fr/prisme/....../cgt CG TribuneP-1308 1 http://netlib.bell-labs.com/...compgeom /netlib/compgeomP-1369 1 http://www.adobe.com/... Adobe Acrobat ReaderP-1406 1 www.informatik.rwth-aachen.de/..... Department of Computer Science, AachenKleinberg SALSA HubAvg AThresh HThresh FThresh BFS SBayesian BayesianKleinberg 10 6 3 10 10 10 8 6 10SALSA 6 10 6 6 6 6 6 10 6HubAvg 3 6 10 3 3 3 3 6 3AThresh 10 6 3 10 10 10 8 6 10HThresh 10 6 3 10 10 10 8 6 10FThresh 10 6 3 10 10 10 8 6 10BFS 8 6 3 8 8 8 10 6 8SBayesian 6 10 6 6 6 6 6 10 6Bayesian 10 6 3 10 10 10 8 6 1033


