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Abstract

Recently, there have been a number of algorithms proposed for analyzing hypertext link structure so as to
determine the best “authorities” for a given topic or query. While such analysis is usually combined with content
analysis, there is a sense in which some algorithms are deemed to be “more balanced” and others “more focused”.
We undertake a comparative study of hypertext link analysis algorithms. Guided by some experimental queries,
we propose some formal criteria for evaluating and comparing link analysis algorithms.
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1 Introduction

In recent years, a number of papers [7, 14, 5, 19, 15, 8] have considered the use of hypertext links to determine the
value of different web pages. In particular, these papers consider the extent to which hypertext links between World
Wide Web documents can be used to determine the relative authority values of these documents for various search
queries.

We consider some of the previously published algorithms as well as introducing some new alternatives. One of our
new algorithms is based on a Bayesian statistical approach as opposed to the more common algebraic/graph theoretic
approach. While link analysis by itself cannot be expected to always provide reliable rankings, it is interesting to study
various link analysis strategies in an attempt to understand inherent limitations, basic properties and “similarities”
between the various methods. To this end, we offer definitions for several intuitive concepts relating to (link analysis)
ranking algorithms and begin a study of these concepts.

We also provide some new (comparative) experimental studies of the performance of the various ranking algo-
rithms. It can be seen that no method is completely safe from “topic drift”, but some methods do seem to be
more resistant than others. We shall see that certain methods have surprisingly similar rankings as observed in our
experimental studies, however they cannot be said to be similar with regard to our formalization.

*A preliminary version of this paper has appeared in the Proceedings of the 10th International World Wide Web Conference.
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2 Previous Algorithms

2.1 The PageRank Algorithm

One of the earliest and most commercially successful of the efforts to use hypertext link structures in web searching
is the PageRank algorithm used by Brin and Page [7] in the Google search engine [12]. The PageRank algorithm
is query independent, that is, it operates on the whole Web, and assigns a PageRank value to every page. The
PageRank of a given web page ¢, PR(i), can be defined as the limiting fraction of time spent on page ¢ by a random
walk which proceeds at each step as follows: With probability € it jumps to a sample from a distribution D() (e.g.
the uniform distribution) , and with probability 1 — € it jumps uniformly at random to one of the pages linked from
the current page. This idea is also used by Rafiei and Mendelzon [19] for computing the “reputation” of a page.
Intuitively, the value of PR(¢) is a measure of the importance or authority of the web page i. This ranking is used
as one component of the Google search engine, to help determine how to order the pages returned by a web search

query.

2.2 Kleinberg’s Algorithm

Independent of Brin and Page, Kleinberg [14] proposed a more refined notion for the importance of web pages. He
suggested that web page importance should depend on the search query being performed. Furthermore, each page
should have a separate “authority” rating (based on the links going fo the page) and “hub” rating (based on the
links going from the page). Kleinberg proposed first using a text-based web search engine (such as AltaVista [2]) to
get a Root Set consisting of a short list of web pages relevant to a given query. Second, the Root Set is augmented
by pages which link to pages in the Root Set, and also pages which are linked to pages in the Root Set, to obtain
a larger Base Sel of web pages. If N is the number of pages in the final Base Set, then the data for Kleinberg’s
algorithm consists of an N x N adjacency matrix A, where A;; = 1 if there are one or more hypertext links from
page ¢ to page j, otherwise A;; = 0.

Kleinberg’s algorithm assigns to each page ¢ an authority weight a; and a hub weight h;. Let @ = (a1, a2, ..., an)
denote the vector of all authority weights, and h = (hy, ha, ..., hn) the vector of all hub weights. Initially both
authority and hub vectors are set to u= (1,1,...,1). At each iteration the operations Z (“in”) and O (“out”) are
performed. The operation Z sets the authority vector to @ = A” h. The operation O sets the hub vector to h = A
a. A normalization step is then applied, so that the vectors @ and h become unit vectors in some norm. Kleinberg
proves that after a sufficient number of iterations the vectors a and h converge to the principal eigenvectors of the
matrices AT A and AAT, respectively. The above normalization step may be performed in various ways. Indeed,
ratios such as a;/a; will converge to the same value no matter how (or if) normalization is performed.

Kleinberg’s Algorithm (and some of the other algorithms we are considering) converge naturally to their principal
eigenvector, 1.e. to the eigenvector that corresponds to the largest eigenvalue of a matrix associated with the algorithm.
Kleinberg [14] makes an interesting (though non-precise) claim that the secondary non-principal eigenvectors (or their
positive and negative components) are sometimes representative of “sub-communities” of web pages. It is easy to
construct simple examples which show that secondary eigenvectors sometimes are, but sometimes are not, indicative
of sub-communities. We present a few indicative such examples in section 5.

2.3 The SALSA Algorithm

An alternative algorithm, SALSA, was proposed by Lempel and Moran [15]. Like Kleinberg’s algorithm, SALSA
starts with a similarly constructed Base Set. Tt then performs a random walk by alternately (a) going uniformly to
one of the pages which links to the current page, and (b) going uniformly to one of the pages linked to by the current
page. The authority weights are defined to be the stationary distribution of the two-step chain doing first step (a)
and then (b), while the hub weights are defined to be the stationary distribution of the two-step chain doing first
step (b) and then (a).

Formally, let B(i) = {k : k — i} denote the set of all nodes that point to ¢, that is, the nodes we can reach from
i by following a link backwards, and let F'(i) = {k : i = k} denote the set of all nodes that we can reach from ¢ by



following a forward link. The Markov Chain for the authorities has transition probabilities

Pu(i,j) = > |B()] |F (k)|

k:keB()NB(j)

This Markov Chain corresponds to a random walk on the authority graph G, defined by the adjacency matrix AT A,
where we move from authority ¢ to authority j with probability P, (¢, j).

Assume for a moment that the Markov Chain is rreducible, that is, the underlying authority graph consists of a
single component, where we can move between any two authorities, by following a backward and a forward link. The
authors prove that the stationary distribution @ = (a1, as, ..., an) of the Markov Chain satisfies a; = |B(%)] / |B|,
where B = |J; B(f) is the set of all (backward) links.

A similar Markov Chain is defined for the hubs, that has transition probabilities

Pp(i,j) = > |F(5)] [B(k)]’

k:keF()NF(j)

and the stationary distribution b = (hy, ha, ..., hy) satisfies h; = |F(%)] / |F'|, where F' = | J; F'(4) is the set of all
(forward) links.

The SALSA algorithm does not really have the same “mutually reinforcing structure” that Kleinberg’s algorithm
does. Indeed, since a; = |B(¢)|/|B|, the relative authority of site i within a connected component is determined from
local links, not from the structure of the component. (See also the discussion of locality in Section 8.) We also note
that in the special case of a single component, SALSA can be viewed as a one-step truncated version of Kleinberg’s
algorithm. That is, in the first iteration of Kleinberg’s algorithm, if we perform the 7 operation first, the authority
weights are set to @ = AT w, where u is the vector of all ones. If we normalize in the L; norm, then a; = |J|BBj |,
which is the stationary distribution of the SALSA algorithm. A similar observation can be made for the hub weights.

If the underlying authority graph G, consists of more than one component, then the SALSA algorithm selects
a starting point uniformly at random, and performs a random walk within the connected component that contains
that node. Formally, let j be a component that contains node ¢, let A; denote the number of authorities in the
component j, and B; the set of (backward) links in component j. Also, let A denote the total number of authorities
in the graph (a node is an authority only if it has non-zero in-degree). Then the weight of authority ¢ is

W = A 1BAL
A Byl

Motivated by the simplifying assumption of a single component, in the conference version of this paper [6], we
considered a simplified version of the SALSA algorithm where the authority weight of node 7 is the ratio |B(4)|/|B|.
This corresponds to the case that the starting point for the random walk is chosen with probability proportional to
the “popularity” of the node, that is, the number of links that point to this node. We will refer to this variation
of the SALSA algorithm as pSALSA (popularity SALSA). We will also consider the original SALSA algorithm as
defined in [15]. When the distinction between pSALSA and SALSA is not important we will use the name SALSA
to collectively refer to both algorithms.

An interesting generalization of the SALSA algorithm is considered by Rafiei and Mendelzon [19]. They propose
an algorithm for computing reputations that is a hybrid of the SALSA algorithm, and the PageRank algorithm. At
each step, with probability €, the Rafiei and Mendelzon algorithm jumps to a page of the collection chosen uniformly
at random, and with probability 1 — € it performs a SALSA step. This algorithm is essentially the same as the
Randomized HITS algorithm considered later by Ng et al. [18].

2.4 The PHITS Algorithm

Cohn and Chang [8] propose a statistical hubs and authorities algorithm, which they call the PHITS Algorithm.
They propose a probabilistic model in which a citation ¢ of a document d 1s caused by a latent “factor” or “topic”,
z. Tt is postulated that there are conditional distributions P(e|z) of a citation ¢ given a factor z, and also conditional



distributions P(z|d) of a factor z given a document d. In terms of these conditional distributions, they produce a
likelihood function.

Cohn and Chang then propose using the EM Algorithm of Dempster et al. [9] to assign the unknown conditional
probabilities so as to maximize this likelihood function L, and thus best “explain” the proposed data. Their algorithm
requires specifying in advance the number of factors z to be considered. Furthermore, it is possible that their EM
Algorithm could get “stuck” in a local maximum, without converging to the true global maximum.

3 Random Walks and the Kleinberg Algorithm

The fact that the output of the first (half) step of the Kleinberg algorithm can be seen as the stationary distribution
of a certain random walk on the underlying graph, poses the natural question of whether other intermediary results
of Kleinberg’s algorithm (and as n — oo, the output of the algorithm itself) can also be seen as the stationary
distribution of a naturally defined random walk '. We will show that this is indeed the case.

We first introduce the following notation. We say that we follow a B path if we follow a link backwards, and we
say we follow an F' path if we follow a link forward. We can combine these to obtain longer paths. For example, a
(BF)™ path is a path that alternates between backward and forward links n times. Now, let (BF)™(4, ) denote the
set of (BF)™ paths that go from i to j, (BF)™ (i) the set of (BF)™ paths that leave node ¢, and (BF)" the set of all
possible (BF)" paths. We can define similar sets for the (F B)" paths.

Now, we define the undirected weighted graph ((gpry~ as follows. The vertex set of the graph is the set of nodes
in the base set. We place an edge between two nodes ¢ and j if there is a (BF)™ path between these nodes. The
weight of the edge is |(BF)"(¢,j)|, the number of (BF)" paths between ¢ and j. We perform a random walk on
graph G(gpr)y~. When at node ¢, we move to node j with probability proportional to the number of paths between i
and j. The corresponding Markov Chain M(gp» has transition probabilities

[(BE)" (4 )]

P =

Similarly, we can define the graph G'(pp)~, and the corresponding Markov Chain M gp)~, for the hubs case.

Theorem 1 For each n > 1, the stationary distribution of Mppy~ is equal to the authority vector after the nth
iteration of the Kleinberg algorithm, and the stationary distribution of M(pp)~ 1is equal to the hub vector after the

n'® iteration of the Kleinberg algorithm.

Proof: By definition of the (AT A)?, and (AAT)" matrices, we have that |(BF)"(i,j)| = (ATA)"(i,j), and
(FBY(i,0)] = (AATY(i,j). Also, [(BF)™(0)| = $,(ATA) (i, ), and [(FB)(i)] = 355(AAT)(i,j). Alter the
n'*® operation of the Kleinberg algorithm the authority vector @, and hub vector h are the unit vectors in the direc-
tion of (AT A)"u and (AAT)"u, respectively. (This actually assumes that in order to compute the authority weights
we switch the order of the operations 7 and @, but asymptotically this does not make any difference). If we take
the unit vectors under the L; norm, then we have

[(BF)"(4)]
[(BE)"|

[(FB)" (4)]

and h; = 7|(FB)”| . (1)

a; =

From a standard theorem on random walks on weighted graphs (see, e.g., p. 132 of [16] for the corresponding
result on unweighted graphs), the stationary distribution of the Markov Chain M(pp)~ is the same as the vector a
in equation (1), while the stationary distribution of the Markov Chain M pp)~ is the same as the vector h in the
same equation. a

Tt is easy to show that for any probability vector p, there exists a Markov Chain M, such that p is the stationary distribution of M.
Here, naturally defined Markov Chain means a Markov Chain that is related to the underlying graph of the algorithm.



4 Some modifications to the Kleinberg and SALSA Algorithms

While Kleinberg’s algorithm has some very desirable properties, it also has its limitations. One potential problem is
the possibility of severe “topic drift”. Roughly, Kleinberg’s algorithm converges to the most “tightly-knit” community
within the Base Set. It is possible that this tightly-knit community will have little or nothing to do with the proposed
query topic.

A striking example of this phenomenon is provided by Cohn and Chang ([8], p. 6). They use Kleinberg’s Algorithm
with the search term “jaguar” (an example query suggested by Kleinberg [14]), and converge to a collection of sites
about the city of Cincinnati! They determine that the cause of this is a large number of on-line newspaper articles
in the Cincinnati Enquirer which discuss the Jacksonville Jaguars football team, and all link to the same standard
Cincinnati Enquirer service pages. Interestingly, in a preliminary experiment with the query term “abortion” (another
example query suggested by Kleinberg [14]), we also found the Kleinberg Algorithm converging to a collection of web
pages about the city of Cincinnati!

Now, in both these cases, we believe it i1s possible to eliminate such errant behavior through more careful selection
of the Base Set, and more careful elimination of intra-domain hypertext links. Nevertheless, we do feel that these
examples point to a certain “instability” of Kleinberg’s Algorithm.

4.1 The Hub-Averaging Kleinberg Algorithm

We propose here a small modification of Kleinberg’s algorithm to help remedy the above-mentioned instability. For
motivation, consider the following example. Suppose there are K + 1 authority pages, and M + 1 hub pages, with M
and K large. The first hub points to all but the first authority (i.e. to the final K authorities). The next M — 1 hubs
link only to the first authority. The last hub points to the first two authorities, and serves the purpose of connecting
the graph. In such a set-up, we would expect the first authority to be considered much more authoritative than all
the others. However, if K and M are chosen appropriately, the Kleinberg algorithm allocates almost all authority
weight to the last K authorities, and almost no weight to the first authority. This is due to the fact that almost all
of the hub weight is allocated to the first hub. It seems though that the first hub should be worse than the others,
since it links only to “bad” authorities (in the sense that no other hub points to them).

Inspired by such considerations, we propose an algorithm which is a “hybrid” of the Kleinberg and SALSA
algorithms. Namely, it does the authority rating updates Z just like Kleinberg (i.e., giving each authority a rating
equal to the sum of the hub ratings of all the pages that link to it), but does the hub rating updates O by instead giving
each hub a rating equal to the average of the authority ratings of all the pages that it links to. This asymmetric view
of hubs and authorities is corroborated by the observation that in contrast to the in degree which gives an indication
of the quality of a node as an authority, the out degree is less informative when assessing the quality of a node as
a hub. In the Kleinberg algorithm a hub can increase its weight simply by pointing to more nodes in the graph. In
this modified “Hub-Averaging” algorithm, a hub is better if it links to only good authorities, rather than linking to
both good and bad authorities.

4.2 The Threshold Kleinberg Algorithms

We propose two different “threshold” modifications to Kleinberg’s Algorithm. The first modification, Hub-Threshold,
is applied to the in-step Z. When computing the authority weight of page ¢, the algorithm does not take into account
all hubs that point to page i. It only counts those hubs whose hub weight is at least the average hub weight ? over
all the hubs that point to page i, computed using the current hub weights for the nodes. This corresponds to saying
that a site should not be considered a good authority simply because a lot of very poor hubs point to it.

The second modification, Authority-Threshold, is applied to the out-step 0. When computing the hub weight of
page ¢, the algorithm does not take into account all authorities pointed to by page . It only counts those authorities
which are among the top K authorities, judging by current authority values. The value of K is passed as a parameter
to the algorithm. This corresponds to saying that a site should not be considered a good hub simply because 1t points

20ther thresholds are also possible. For example the median hub weight, or (1 — 5)wm(w7 where wmqg is the maximum hub weight
over all hubs that point to the authority, and 0 < § < 1.



to a number of “acceptable” authorities; rather, to be considered a good hub the site must point to some of the best
authorities. This is inspired partially by the fact that, in most web searches, a user only visits the top few authorities.

We note that if X = 1, then we transform the O operation to the max operator. The case K = 1 has some
interesting properties. It is not hard to see that the node with the highest in-degree will always be ranked first.
The rest of the nodes are ranked depending on the amount of connectivity with, and the distance to the top node.
Therefore, in this case the most popular node acts as a a seed to the algorithm: this node is ranked first, and the
rest of the nodes are ranked according to their relatedness to this node.

We also consider a Full-Threshold algorithm, which makes both the Hub-Threshold and Authority-Threshold
modifications to Kleinberg’s Algorithm.

4.3 The Breadth-First-Search Algorithm: A Normalized n-step Variant

When the pSALSA algorithm computes the authority weight of a page, it takes into account only the popularity of
this page within its immediate neighborhood, disregarding the rest of the graph. On the other hand, the Kleinberg
algorithm considers the whole graph, taking into account more the structure of the graph around the node, than
just the popularity of that node in the graph. Specifically, after n steps, the authority weight of authority i is
[((BF)™(9)|/|(BF)"|, where |(BF)"(7)] is the number of (BF)™ paths that leave node i. Another way to think of this
is that the contribution of a node j # i to the weight of ¢ is equal to the number of (BF)™ paths that go from ¢
to j. Therefore, if a small bipartite component intercepts the path between node j and 7, the contribution of node
j will increase exponentially fast. This may not always be desirable, especially if the bipartite component is not
representative of the query.

We propose the Breadth-First-Search (BFS) algorithm, as a generalization of the pSALSA algorithm, and a
restriction of the Kleinberg algorithm. The BFS algorithm extends the idea of popularity that appears in pSALSA
from a one link neighborhood to an n-link neighborhood. The construction of the n-link neighborhood is inspired
by the Kleinberg algorithm. However, instead of considering the number of (BF)" paths that leave ¢, it considers
the number of (BF)" neighbors of node ¢. Abusing the notation, let (BF)™(¢) denote the set of nodes that can
be reached from i by following a (BF)" path. The contribution of node j to the weight of node i depends on the
distance of the node j from i. We adopt an exponentially decreasing weighting scheme. Therefore, the weight of
node 7 is determined as follows:

. 1 . 1 . 1 "o
ar = |BU) |+ G BF)| + 55 BFBG) + -+ ey |(BE) (0}
The algorithm starts from node ¢, and visits its neighbors in BFS order, alternating between Backward and
Forward steps. Every time we move one link further from the starting node z, we update the weight factors accordingly.
The algorithm stops when n links have been traversed, or the nodes that can be reached from node ¢ are exhausted.

5 Secondary Eigenvectors in the Kleinberg Algorithm

The Kleinberg Algorithm (and many of the other algorithms we are considering) converge naturally to the principal
eigenvector of the associated matrix, i.e. to the eigenvector that corresponds to the largest eigenvalue. Kleinberg [14]
makes an interesting (though non-precise) claim regarding the secondary (i.e., non-principal) eigenvectors (or their
positive and negative components) being related to secondary (or opposing) “communities” of web pages. The use of
secondary eigenvectors for discovering communities, or for improving the quality of the ranking has been investigated
further in [13, 1, 18].

We now present a few simple examples which we feel illustrate the opinion that such secondary eigenvectors
sometimes are, but sometimes are not, indicative of secondary communities. In short, there is no simple result either
way, regarding these secondary eigenvectors. For the following, we write the examples as a sequence of two-digit
numbers, where each number represents a link, with the first digit being the hub number and the second digit being
the authority number. For example, 23, 24, 34 indicates that there are links between the second hub and third
authority; second hub and fourth authority; and third hub and fourth authority. (All the examples have fewer than
10 hubs and fewer than 10 authorities, so this notation will suffice for now.)



Example E1: 11, 21, 31, 41, 52, 62, 53, 63
The corresponding matrix of transitions of authority weights is given by

4 0 0
AAT = [0 2 2
0 2 2

The eigenvalues of the matrix are 4, 4, and 0. Here the equality of two eigenvalues means that we have a wide choice
of how to choose representative eigenvectors. One possible choice for the eigenvectors is (0,1,1), (1,0,0), (0,1,-1).
In this case, there is some correspondence between eigenvectors and communities. However, if the eigenvectors are
chosen to be (1,1,1), (2,1,1), (0,1,-1), there is no correspondence whatsoever.
Example E2: 11, 22, 32, 42, 52, 43, 53, 63, 73

The corresponding matrix of transitions of authority weights is given by

1
AAT = |0
0

N = O
= N O

The eigenvalues of the matrix are 6, 2, and 1, with corresponding eigenvectors (0,1,1), (0,1,-1), (1,0,0). Here the first
and third eigenvectors correspond nicely to communities, but the second eigenvector does not in any way.

These simple examples suggest that:

e Eigenvector components may or may not correspond to communities.

e The eigenvectors which do correspond to communities may not be the first ones (cf. E2).
e Equality of eigenvalues complicates things still further (cf. E1).

Of course, these examples are reducible, whereas a more realistic example might be almost-but-not-quite reducible.
However, it seems that making the graph irreducible can only make things worse. In particular, the eigenvector
weights assigned to two almost-but-not-quite-disjoint pieces can vary widely based on the exact details of the few
links joining them. So, we expect the values of the secondary eigenvectors to be even less indicative when partitioning
the pages into communities. Thus, it seems to us that there is no clear, simple, rigorous result available about
secondary eigenvectors corresponding to secondary communities.

6 A Bayesian Algorithm

A different type of algorithm is given by a fully Bayesian statistical approach to authorities and hubs. Suppose there

are M hubs and N authorities (which could be the same set). We suppose that each hub ¢ has an (unknown) real

parameter e;, corresponding to its “general tendency to have hypertext links”, and also an (unknown) non-negative

parameter h;, corresponding to its “tendency to have intelligent hypertext links to authoritative sites”. We further

suppose that each authority j has an (unknown) non-negative parameter a;, corresponding to its level of authority.
Our statistical model is as follows. The a priori probability of a link from hub ¢ to authority j is given by

exp(a;jhi + ;)

P; N
(=) 1+ exp(ajh; + e;)

, (2)

with the probability of no link from ¢ to j given by

1
1+ exp(ajh; + ;)

P(ifj) = (3)

This reflects the idea that a link is more likely if e; is large (in which case hub ¢ has large tendency to link to any
site), or if both h; and a; are large (in which case i is an intelligent hub, and j is a high-quality authority).



To complete the specification of the statistical model from a Bayesian point of view (see, e.g., Bernardo and Smith
[4]), we must assign prior distributions to the 2M + N unknown parameters e;, h;, and a;. These priors should be
general and uninformative, and should not depend on the observed data. For large graphs, the choice of priors should
have only a small impact on the results. We let 4 = —5.0 and ¢ = 0.1 be fixed parameters, and let each e; have prior
distribution N (y,0?), a normal distribution with mean y and variance o?. We further let each h; and a; have prior
distribution Exp(1) (since they have to be non-negative), meaning that for > 0, P(h; > z) = P(a; > z) = exp(—=).

The (standard) Bayesian inference method then proceeds from this fully-specified statistical model, by condi-
tioning on the observed data, which in this case is the matrix A of actual observed hypertext links in the Base Set.
Specifically, when we condition on the data A we obtain a posterior density = : R**N — [0, o) for the parameters
(e1,...,em,h, ... har,ar, ... an). This density is defined so that

P((el,...,eM,hl,...,hM,al,...,aN) €s ‘ {Aij})
= fS mler, ..., em, ha, .. har,ar, ... an)dey .. deyrdhy .. dhpyrday .. dan (4)
for any (measurable) subset S C R**+¥ and also
E(g(el,...,eM,hl,...,hM,al,...,aN) ‘ {Aij})
= fR2M+Ng(61,...,eM,hl,...,hM,al,...,aN)ﬂ'(el,...,eM,hl,...,hM,al,...,aN)del...deMdhl...thdal...daN
for any (measurable) function g : R*™+Y — R. An easy computation gives the following.

Lemma 1 For our model, the posterior density is given, up to a multiplicative constant, by

(61,.. cemyhi, .. har,ar, ... anN)
N
o HeXP i) exp[—(e; — 1)*/(20%)] x [ ] exp(—a;)
j=1
X H eXp(Cljhi‘i‘@Z’)/ H (1 + exp(ajhi +ei)).
(¢,4):A:5=1 all 1,7

Proof: We compute that

P(er €der,.. . en € dens, by €dhy, .. hyr € dhar, a1 € dar,. ., ax € dax, {4;})

47

M
= H[P(eiede) h Edh HP a]Eda] H P ]Il|6i,hi,a]’) H P(Aij20|6i,hi,aj)

Al Ao
- ﬁ [exp[—(e; — p1)?/(20%)]de; exp(—hi)dh;] H exp(—a;)da; H exp(ajhi + ei) II 1
i=1 ol j)da; 1+exp(ajh; +e;) 1+ 1+ exp(ajh; +ei)

Agj=0

M
= H[GXP[_(ei—u)z/( ?)]de; exp(—h;)dh;] Hexp —aj)da; H exp(a;h; + ¢€;) / H (14 exp(ajhi +€;)) .

=1
i A v_1 all 1,7

The result now follows by inspection. a

Our Bayesian algorithm then reports the conditional means of the 2M + N parameters, according to the posterior
density 7. That is, it reports final values @;, hZ, and ¢;, where, for example

a; :/ ajmler,....em ha, ... har,aq, ... ay) der...depydhy .. dhyrday .. . day.
R2M+N



To actually compute these conditional means 1s non-trivial. To accomplish this, we used a Metropolis Algorithm.
The Metropolis algorithm is an example of a Markov chain Monte Carlo Algorithm; for background see, e.g., Smith
and Roberts [22]; Tierney [23]; Gilks et al. [11]; Roberts and Rosenthal [20].

The Metropolis Algorithm proceeds by starting all the 2M + N parameter values at 1. It then attempts, for each
parameter in turn, to add an independent N(0,&%) random variable to the parameter. It then “accepts” this new
value with probability min(1, m(new)/m(old)), otherwise it “rejects” it and leaves the parameter value the way it is.
If this algorithm is iterated enough times, and the observed parameter values at each iteration are averaged, then
the resulting averages will converge (see e.g. Tierney, 1994) to the desired conditional means.

There is, of course, some arbitrariness in the specification of this Bayesian algorithm, e.g., in the form of the
prior distributions and in the precise formula for the probability of a link from i to j. However, the model appears
to work well in practice, as our experiments show. We note that it is possible that the priors for a new search query
could instead depend on the performance of hub ¢ on different previous searches, though we do not pursue that here.

This Bayesian algorithm is similar in spirit to the PHITS algorithm of Cohn and Chang [8] described earlier,
in that both use statistical modeling, and both use an iterative algorithm to converge to an answer. However, the
algorithms differ substantially in their details. Firstly, they use substantially different statistical models. Secondly,
the PHITS algorithm uses a non-Bayesian (i.e. “classical” or “frequentist”) statistical framework, as opposed to the
Bayesian framework adopted here.

6.1 A Simplified Bayesian Algorithm
Tt is possible to simplify the above Bayesian model, by replacing equation (2) with

a;h;
P . % . — g
(Z j) 14+ a; h; ’
and correspondingly replace equation (3) with
P f)) =
7 = —.
J 14+ a; h;

This eliminates the parameters e; entirely, so that we no longer need the prior values g and o. A similar model for
the generation of links was considered by Azar et al. [3].
This leads to a slightly modified posterior density 7(-), now given by 7 : RM+N — R20 where

M N
m(hy, ..., har a1, ..., aN) Hexp(—hi) X Hexp(—aj) X H a;h; / H (14 a;h;) .
i=1 j=1

(5,5):Ai =1 all 4,j

This Simplified Bayesian algorithm was designed to be to similar to the original Bayesian algorithm. Surprisingly,
we will see that experimentally it often performs very similarly to the SALSA algorithm.

7 Experimental Results

We have implemented the algorithms presented here on various queries. Because of space limitations we only re-
port here (see Appendix A) a representative subset of results; all of our results (including the queries “death penalty”,
“computational complexity” and “gun control” which are not reported here) can be obtained at
http://www.cs.toronto.edu/~tsap/experiments. The reader may find 1t easier to follow the discussion in the
next section by accessing the full set of results (which includes results for the SALSA algorithm, and the Authority
Threshold algorithm, when K = 1). The experimental results presented in this paper, are an improved version of
the results presented in [6] where we now use an improved criterion for testing the convergence of the eigenvector
algorithms.

For the generation of the Base Set of pages, we follow the specifications of Kleinberg [14] described earlier. For
each of the queries, we begin by generating a Root Set that consists of the first 200 pages returned by AltaVista on



the same query. The Root Set is then expanded to the Base Set by including nodes that point to, or are pointed
to, by the pages in the Root Set. In order to keep the size of the Base Set manageable, for every page in the Root
Set, we only include the first 50 pages returned from AltaVista that point to this page. We then construct the graph
induced by nodes in the Base Set, by discovering all links among the pages in the Base Set, eliminating those that
are between pages of the same domain?.

For each query, we tested nine different algorithms on the same Base Set. We present the top ten authority sites
returned by each of the algorithms. For evaluation purposes, we also include a list of the URL and title (possibly
abbreviated) of each site which appears in the top five of one or more of the algorithms. For each page we also note
the popularity of the page (denoted pop in the tables), that is, the number of different algorithms that rank it in the
top ten sites. The pages that seem (to us) to be generally unrelated with the topic in hand appear bold-faced. We
also present an “intersection table” which provides, for each pair of algorithms, the number of sites which were in
the top ten according to both algorithms (maximum 10, minimum 0).

In the following we merge the SALSA and pSALSA algorithms under the name SALSA. The experiments have
shown that most graphs consists of a giant component of authorities and small isolated components. Furthermore,
for all the queries we performed the ranking of the first 50 pages is identical. This is not true for the full ranking; the
SALSA algorithm tends to promote some pages higher than the pSALSA | because of the fact that they belong to
small components. However, for the purposes of this presentation we view these two algorithms as being essentially
the same.

In the tables, SBayesian denotes the Simplified Bayesian algorithm, HubAvg denotes the Hub-Averaging Kleinberg
algorithm, AThresh denotes the Authority-Threshold algorithm, HThresh denotes the Hub-Threshold algorithm, and
FThresh denotes the Full-Threshold algorithm. For the Authority-Threshold and Full-Threshold algorithms, we
(arbitrarily) set the threshold K = 10.

7.1 Discussion of Experimental Results

We observe from the experiments that different algorithms emerge as the “best” for different queries, while there are
queries for which no algorithm seems to perform well. One prominent such case i1s the query on “net censorship”
(also on “computational complexity”) where only a few of the top ten pages returned by any of the algorithms can
possibly be considered as authoritative on the subject. One possible explanation is that in these cases the topic is
not well represented on the web, or there is no strong interconnected community. This reinforces a common belief
that any commercial search engine cannot rely solely on link information, but rather must also examine the text
content of sites to prevent such difficulties as “topic drift”. On the other hand, in cases such as “death penalty” (not
shown here), all algorithms converge to almost the same top ten pages, which are both relevant and authoritative.
In these cases the community is well represented, and strongly interconnected.

The experiments also indicate the difference between the behavior of the Kleinberg algorithm and SALSA, first
observed in the paper of Lempel and Moran [15]. Specifically, when computing the top authorities, the Kleinberg
algorithm tends to concentrate on a “tightly knit community” of nodes (the TKC effect), while SALSA, tends to
mix the authorities of different communities in the top authorities. The TKC effect becomes clear in the “genetic”
query (also in the “computational complexity” query), where the Kleinberg algorithm only reports pages on biology
in the top ten while SALSA mixes these pages with pages on genetic algorithms. It also becomes poignantly clear in
the “movies” query (and also in the “gun control” and the “abortion” query), where the top ten pages reported by
the Kleinberg algorithm are dominated by an irrelevant cluster of nodes from the about.com community. A more
elaborate algorithm for detecting intra-domain links could help alleviate this problem. However, these examples seem
indicative of the topic drift potential of the principal eigenvector computed by the Kleinberg algorithm.

On the other hand, the limitations of the SALSA algorithm become obvious in the “computational geometry”
query, where three out of the top ten pages belong to the unrelated w3.com community. They appear in the top
positions because they are pointed to by a large collection of pages by ACM, which point to nothing else. A similar
phenomenon explains the appearance of the “Yahoo!” page in the “genetic” query. We thus see that the simple
heuristic of counting the in-degree as the authority weight is also imperfect.

3If one modifies the way the Base Set or the graph is constructed, the results of the algorithms can vary dramatically. In our
above-mentioned web page we report the output of the algorithms for the same query, over different graphs.
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We identify two types of characteristic behavior: the Kleinberg behavior, and the SALSA behavior. The former
ranks the authorities based on the structure of the entire graph, and tends to favor the authorities of tightly knit
communities. The latter ranks the authorities based on their popularity in their immediate neighborhood, and favors
various authorities from different communities. To see how the rest of the algorithms fit within these two types of
behaviors, we compare the behavior of algorithms on a pairwise basis, using the number of intersections in their
respective top ten authorities as an indication of agreement.

The first striking observation is that the Simplified Bayesian algorithm is almost identical to the SALSA algorithm.
The SALSA algorithm and the Simplified Bayesian have at least 80% overlap on all queries. One possible explanation
for this 1s that both algorithms place great importance on the in-degree of a node when determining the authority
weight of a node. For the SALSA algorithm we know that it is “local” in nature, that is, the authority weight
assigned to a node depends only on the links that point to this node, and not on the structure of the whole graph.
The Simplified Bayesian seems to possess a similar, yet weaker property; we explore the locality issue further in the
next section. On the other hand, the Bayesian algorithm appears to resemble both the Kleinberg and the SALSA
behavior, leaning more towards the first. Indeed, although the Bayesian algorithm avoids the severe topic drift in the
“movies” and the ”gun control” queries (but not in the “abortion” case), it usually has higher intersection numbers
with Kleinberg than with SALSA. One possible explanation for this observation is the presence of the e; parameters
in the Bayesian algorithm (but not the Simplified Bayesian algorithm), which “absorb” some of the effect of many
links pointing to a node, thus causing the authority weight of a node to be less dependent on its in-degree.

Another algorithm that seems to combine characteristics of both the SALSA and the Kleinberg behavior is the
Hub-Averaging algorithm. The Hub-Averaging algorithm is by construction a hybrid of the two since it alternates
between one step of each algorithm. It shares certain behavior characteristics with the Kleinberg algorithm: if we
consider a full bipartite graph, then the weights of the authorities increase exponentially fast for Hub-Averaging (the
rate of increase, however, is the square root of that of the Kleinberg algorithm). However, if the component becomes
infiltrated, by making one of the hubs point to a node outside the component, then the weights of the authorities in
the component drop. This prevents the Hub-Averaging algorithm from completely following the drifting behavior of
the Kleinberg algorithm in the “movies” query. Nevertheless, in the “genetic” query, Hub-Averaging agrees strongly
with Kleinberg, focusing on sites of a single community, instead of mixing communities as does SALSA%. On the
other hand, Hub-Averaging and SALSA share a common characteristic, since the Hub-Averaging algorithm tends to
favor nodes with high in-degree. Namely, if we consider an isolated component of one authority with high in-degree,
the authority weight of this node will increase exponentially fast. This explains the fact that the top three authorities
for “computational geometry” are the w3.com pages that are also ranked highly by SALSA (with Hub-Averaging
giving a very high weight to all three authorities).

For the threshold algorithms, since they are modifications of the Kleinberg Algorithm, they are usually closer to
the Kleinberg behavior. This 1s especially true for the Hub-Threshold algorithm. However, the benefit of eliminating
unimportant hubs when computing authorities becomes obvious in the “abortion” query. The top authorities reported
by the Kleinberg algorithm all belong to the amazon.com community, while the Hub-Threshold algorithm escapes
this cluster, and produces a set of pages that are all on topic.

The Authority-Threshold often appears to be most similar with the Hub-Averaging algorithm. This makes sense
since these two algorithms have a similar underlying motivation. The best moment for Authority-Threshold is the
“movies” query, where it reports the most relevant top ten pages among all algorithms. An interesting case for the
Authority Threshold algorithm is when we set K = 1. As we previously discussed, in this case the node with the
highest in-degree acts as a seed to the algorithm: this node is ranked first, and the rest of the pages are ranked
according to their relatedness to the seed page. Therefore, the quality of the results depends on the quality of the
seed node. We present some experimental results for the case K = 1 in our web page. In all queries, the algorithm
produces satisfactory results, except for the “net censorship” query, where the seed page is the “Yahoo” home page,
so the top pages are all devoted to pages on search engines. The behavior of the algorithm is highly focused, since
it only outputs pages from the community of the seed page.

The Full-Threshold algorithm combines elements of both the Threshold algorithms; however, usually it reports
in the top ten a mixture of the results of the two algorithms, rather than the best of the two.

4In a version of the “abortion” query (denoted “refined” in our web page), the Hub- Averaging algorithm exhibits mixing of communities,

similar to SALSA.
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Finally, the BFS algorithm is designed to be a generalization of the SALSA algorithm, that combines some
elements of the Kleinberg algorithm. Its behavior resembles both SALSA and Kleinberg, with a tendency to favor
SALSA. In the “genetic” and “abortion” queries it demonstrates some mixing, but to a lesser extent than that of
SALSA. The most successful moments for BFS are the “abortion” and the “gun control” queries where it reports
a set of top ten pages that are all on topic. An interesting question to investigate is how the behavior of the BFS
algorithm is altered if we change the weighting scheme of the neighbors.

8 Theoretical Analysis

The experimental results of the previous section suggest that certain algorithms seem to share similar properties and
ranking behavior. In this section, we elaborate upon the formal study of fundamental properties and comparisons
between ranking algorithms, first initiated in [6]. For the purpose of the following analysis we need some basic
definitions and notation. Let Gy be a collection of graphs of size N. One special case is to let Gn be the set of all
directed graphs of size N, hereafter denoted G . We define a link analysis algorithm A as a function that maps a
graph G € Gy to an N-dimensional vector. We call the vector A(G) the weight vector of algorithm A on graph G.
The value of the entry A(G)[i] of vector A(G) denotes the authority weight assigned by the algorithm A to the page
i

We can normalize the weight vector A(G) under some chosen norm. The choice of normalization affects the
definition of some of the properties of the algorithms, so we discriminate between algorithms that use different
norms. For any norm L, we define the L-algorithm A to be the algorithm A, where the weight vector of A is
normalized under L. For the following discussion, when not stated explicitly, we will assume that the weight vectors
of the algorithms are normalized under the L, norm for some 1 < p < ooc.

8.1 Monotonicity

Definition 1 An algorithm A is monotone if it has the following property: If j and k are two different nodes in a
graph G, such that every hub which links to j also links to k, then A(G)[k] > A(G)[j].

Monotonicity appears to be a “reasonable” property but one can define “reasonable” algorithms that are not
monotone. The Hub-Threshold algorithm we consider is not monotone®. One can find simple examples where the
Hub-Threshold algorithm converges to a weight vector that does not satisfy the monotonicity property.

Theorem 2 FExcept for the Hub-Threshold algorithm, all other algorithms we consider in this paper are monotone.

Proof: Let j and %k be two different nodes in a graph G, such that every node that links to j also links to k. For
the pSALSA algorithm monotonicity is obvious, since the authority weights are proportional to the in-degrees of the
nodes, and the in-degree of j is less than, or equal to the in-degree of k. The same holds for the SALSA algorithm
within each authority connected component, which is sufficient to prove the monotonicity of the algorithm.

For the Kleinberg and Hub-Averaging algorithms, it is not hard to see that they are monotone. Indeed, regardless
of the (n—1)™ iteration hub values, the n'! iteration authority value for k will be at least as large as that of j, since
the set of hubs that point to j is a subset of that of k. Hence, for every n > 1, the monotonicity property holds
at the end of the n' iteration; therefore, the algorithms are monotone as n — oo. Proofs of monotonicity for the
Authority-Threshold Kleinberg algorithms and the BFS algorithm follow similarly.

For the Bayesian algorithm the proof of monotonicity is more involved. Recall that the Bayesian algorithm leads
to a density of the form

m(er,...,em,h1, ... har,ar, ..., an) o (prior density) x H exp(ajhi + ;) / H(l—i—exp(ajhi—l—ei)).
(1,5):As;=1 (4,4)

5There are many variations of the Hub-Threshold algorithm that are monotone. For example, if we set the threshold to be the median
hub value (or some fixed value) instead of the mean, then the algorithm is monotone.
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Now, let j and k be two different authority pages, such that every hub which links to j also links to k. Consider
the conditional distribution of a; and a, conditional on the values of e1,...,enr, b1, ..., har. We see that

m(ajler,...,ear, h1, ..., har) x (prior density) x H exp(ajhi)/ H(l—i—exp(ajhi—l—ei)),

1A;;=1
and
m(ag|er, ... eamr,h1, ..., har) o (prior density) x H exp(akhi)/ H(l—l—exp(akhi—l—ei)).
itAie=1 i
Hence,
d hi,...,h
mla €daley, ... epr, by, ... har) = exp | a Z il (5)

m(a; €daler, ... en b1, ... har) AT a0
regardless of the choice of prior density.

Now, since h; > 0 for all ¢, it is seen that the expression (5) is a non-decreasing function of a. It then follows
from the well-known “FKG inequality” (see e.g. Lemma 5 of Roberts and Rosenthal [21]) that, in the distribution =,

Plaxr > aler,...;enr ha, ... hy) > Pla; > aler,...,enr he, ... har), aeR, (6)

i.e., that the conditional distribution of a; stochastically dominates that of a;. But then, integrating both sides of
the inequality (6) over the joint distribution of (e1,...,ear, b1, ..., har), it follows that in the distribution

P(ax > a) > P(a; > a), e €R,

i.e., that the unconditional distribution of aj stochastically dominates that of a;. In particular, the mean of a; under
the posterior distribution 7 is at least as large as that of a;. Hence, the Bayesian Algorithm gives a higher authority
weight to authority £ than to authority j, completing the proof of monotonicity of the Bayesian algorithm.

For the Simplified Bayesian algorithm, the argument is similar. In this case, the expression (5) is replaced by

m(ar Edaley, ... ep,he,..., 0
(ak d|1 Mhl hM)o( I ahi
m(a; € daler,....ep, ha, ... har) A= AL=0
Since h; > 0, we again see that this is a non-decreasing function of a, and a similar proof applies. a

8.2 Similarity

Let A; and Ay be two algorithms on Gy. We consider the distance d (A1(G), A2(G)) between the weight vectors of
A1(G) and A2(G), for G € Gy, where d : R” x R” — R is some function that maps the weight vectors w; and ws
to a real number d(wy, w2). We first consider the Manhattan distance dy, that is, the Ly norm of the difference of
the weight vectors, given by dy (w1, ws) = Zf\;l |w1 () — wa(7)].

For this distance function, we now define the similarity between two L,-algorithms as follows. For the following,
if v is a constant, and w is a vector, then yw denotes the usual scalar-vector product.

Definition 2 Let 1 < p < oo. Two L,-algorithms Ay and Ay are similar on Gy, if (as N — x)

max min d A (G), 72 45(G)) = o(N'~1/P) .

i min | i (3141 (G), 93 45(G)) = o(N1H1)
The choice for the bound O(Nl_l/p) in the definition of similarity is guided by the fact that the maximum d;
distance between any two N-dimensional L, unit vectors is @(Nl_l/p). This definition of similarity generalizes the
definition in [6], where 44 = v5 = 1. The constants 71 and 72 are introduced so as to allow for an arbitrary scaling
of the two vectors, thus eliminating dissimilarity that is caused solely due to normalization factors. For example,
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let wy = (1,1,...,1,2), and we = (1,1, ...,1) be two weight vectors before any normalization is applied. These two
vectors appear to be similar. However, if we normalize in the Lo, norm, then for y1 = v2 = 1, dy (w1, wa2) = O(N);
therefore, in the original definition, the vectors would be dissimilar.

We also consider another distance function that attempts to capture the similarity between the ordinal rankings
of two algorithms. The motivation behind this definition is that the ordinal ranking is the usual end-product seen
by the user. Let wy = A1(G) and wy = A3(G) be the weight vectors of two algorithms A; and As. We define the
indicator function Iy, ., (¢, 5) as follows

wiwz\BI) =90 otherwise

We note that I, (¢, j) = 0 if and only if wy (i) < wa(j) = wa(?) < wa(f). Lw,w, (%, j) becomes one for each pair of
nodes that are ranked differently. We define the “ranking distance” function d,. as follows.

1 N N
dr(wlawZ) = NZZleu&(i’j) :
i=1j=1

Note that, unlike d;, the distance between two weight vectors under d, does not depend upon the choice of normal-
ization. Similar distance measures between rankings are examined by Dwork et al. [10].

Definition 3 Two algorithms, Ay and Aa, are rank similar on Gy, if (as N = o)

é%%)]i dr(A1(G), A2(G)) = o(N) .

Definition 4 Two algorithms, Ay and As, are rank matching on {Gn}, if for every graph G € Gy,
dr(A1(G), A2(G)) =0 .

Remark: We note that by the above definition, every algorithm is rank matching with the trivial algorithm that gives
the same weight to all authorities. Although this may seem somewhat bizarre, it does have an intuitive justification.
For an algorithm whose goal is to produce an ordinal ranking, the weight vector with all weights equal conveys no
information; therefore, it lends itself to all possible ordinal rankings. We also note that the d, distance does not
satisfy the triangle inequality, since, e.g., all algorithms have d,.-distance 0 to the trivial algorithm. Of course, it is
straightforward to modify the definition of d, to avoid this; however, we find the definition used here to be most
natural.

For the purposes of this paper, we only consider the d; and d,. distance functions. Nevertheless, the definition of
similarity can be generalized to any distance function d, and any normalization norm || - ||, as follows.

Definition 5 Two L-algorithms A1 and As are similar on Gy under d, if (as N — o)

: _ 6
gnax min - d(n41(G), 7242(G)) = o(My) 7,

where My = SUpP|jy, ||=|jw,|(=1 4(W1, w2) 15 the mazimum distance between any two N-vectors with unit norm L = || -||.

The definition of similarity depends on the normalization of the algorithms. In the following we show that for
the d; distance, similarity in L, norm implies similarity in L, norm, for any ¢ > p.

Lemma 2 Let v be a vector of length N, and suppose 1 < r < s < 0co. Then ||v||, < ||v]|; N*/7=1/s.

8Other operators are also possible. For example, if there exists some distribution over the graphs in G we could replace “max” by
the average distance between the algorithms.
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Proof: Assume first that s < co. We use Holder’s inequality, which states that for any p and ¢ such that 1 < p,¢ < oo
and 1/p+1/¢ =1, if ¢ and y are two N-dimensional vectors, then

N N 1/p N 1/q
Z|x<i>y<i>|s(2|x<i>|P) (Z|y<i>|q) .

Set p = s/r and g = 1/(1 = 1/p). Also, set 2(i) = v(i)" and y(i) = 1, and let [|o[|} denote (|[v],)", and [[v]}; denote
(]|v]ls)". We have that

1ol

N /(s/r) s N 1/q
S o z| m<(2| ) (zw)

=1 =1
o]l Nl/q—H || NIZVGI) = | Nt

Taking ™ roots of both sides, we obtain ||v||, < ||v||s N*/"=1/% as claimed.
For the case s = 0o, we compute that

o[l Z| )" < ZmaX = Nmax[v(d)]" = NJv|l5 -
Thus, ||v]], < Nl/’“||v||oo. m|

Theorem 3 Let Ay and As be two algorithms, and let 1 < r < s < oco. If the L.-algorithm Ay and the L,-algorithm
As are similar, then the Lg-algorithm Ay and the Lg-algorithm As are also similar.

Proof: Let GG be a graph of size N, and let u = A;(G), and v = A2(G) be the weight vectors of the two algorithms.
Let v, and u, denote the weight vectors, normalized in the L, norm. Since the L,-algorithm A; and the L,-algorithm
Ao are similar, there exist 41,2 > 1 such that

di (y1ve, your) = 3 Jy1ve (1) = your (i) = o( N7

Now, vs = v, /||vr||s, and us = w, /||ur||s. Therefore, ZZ LI llorllsvs (2) — v |lurllsus (3)] = O(Nl_l/’“). Without loss
of generality assume that [|u,||s > ||vr||s. Then

— O(Nl—l/r) )

N
. u ]
[lor]s Z Y105 () — 72 I THSUS(Z)
i=1 ||v7‘||8

We set v = v and 44 = 75 llﬁ:”i Then we have that

Nl—l/r
dl(’YivSaVéus Z |71vs ’qus( | = o (7) .

[lor[]s

But from the lemma, ||v.||s > ||v|l, N/*=1/" = N1/s=1/7  Hence, ||1v Ill/r < NJ\S:CT = N'=1/s_ Therefore,
dy(yivs, Yous) = O(Nl_l/s), and thus Ls-algorithm A, and L;-algorithm A- are similar. m|

Theorem 3 implies that if two L;-algorithms are similar, then the corresponding L,-algorithms are also similar,
for any 1 < p < oo. Furthermore, if two L.o-algorithms are dissimilar, then the corresponding L,-algorithms are also
dissimilar, for any 1 < p < oo. Therefore, the following dissimilarity results, proven for the L., norm, hold for any
Ly norm, for 1 < p < oo.
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Proposition 1 The Hub-Averaging algorithm, and the Kleinberg algorithm are neither similar, nor rank similar on

Gn.

Proof: Consider a graph G on N = 3r nodes that consists of two disconnected components. The first component
(' consists of a complete graph on 7 nodes. The second component C5 consists of a complete graph C' on r nodes,
and a set of r “external” nodes E, such that each node in C' points to a node in £, and no two nodes in C' point to
the same “external” node.

Let wg and wg denote the weight vectors of the Kleinberg, and the Hub-Averaging algorithm, respectively, on
graph G. We assume that the vectors are normalized in L., norm. It is not hard to see that the Kleinberg algorithm
allocates all the weight to the nodes in Cs. After normalization, for all i € C', wg (i) = 1, for all j € E, wg (j) = 7=,
and for all k& € C1, wg(k) = 0. On the other hand, the Hub-Averaging algorithm allocates all the weight to the
nodes in Cy. After normalization, for all k € Cy, wg(k) = 1, and for all j € Ca, wg(j) = 0.

Let U = C1UC. The set U contains 2r nodes. For every node i € U, either wg (i) = 1 and wg (i) = 0, or wg (¢) = 0
and wgr (¢) = 1. Therefore, for all y1,y2 > 1, ZiEU [yiwg (1) —yowm (£)] > 2r. Thus, di(y1wg, yawp) = Q(r) = Q(N)
which proves that the algorithms are not similar.

The proof for rank dissimilarity follows immediately from the above. For every pair of nodes (¢, j) such that ¢ € C4
and j € Ca, wg (i) < wg(j), and wy (i) > wg(j). There are O(N?) such pairs, therefore, d,(wg,wg) = O(N).
Thus, the two algorithms are not rank similar. ad

Proposition 2 The pSALSA algorithm and the Hub-Averaging algorithm are neither similar, nor rank similar on
Gn.

Proof: For the proof of dissimilarity, we consider the same graph as in the proof of Proposition 1 for the dissimilarity
between the Hub-Averaging and the Kleinberg algorithm. Let w, and wg be the weight vectors of pSALSA and
Hub-Averaging, respectively. We assume that the vectors are normalized in L, norm. For this graph, the pSALSA
algorithm allocates weight w(i) = 1 to all nodes in C7.0n the other hand the Hub-Averaging algorithm allocates
weight 1 to the nodes in €. There are r nodes in C; for which w, (i) = 1 and wg (i) = 0. For all y1,v2 > 1,
ZiECl [viwp (1) — y2wg ()] > r. Therefore, di(v1wp, y2wr) = Q(r) = Q(N) which proves that Hub-Averaging and
PSALSA are not similar.

For the proof of rank dissimilarity, we consider a graph G on N = 37 4+ 3 nodes which are connected as follows.
The graph consists of two sets of hubs X and Y of size r and 2, respectively, and two sets of authorities A and B,
each of size r, and a single “central” authority ¢. Each hub in set X points to exactly one distinct authority in A,
and both hubs in Y point to all authorities in B. Furthermore, all hubs in X and Y point to c.

The pSALSA algorithm allocates the most weight to the central authority, then to the authorities in B, and then
to the authorities in 4. On the other hand, the Hub-Averaging algorithm considers each hub in X to be much better
than each hub in Y. Hence, it will allocate highest weight to the authority ¢, nearly as high weight to the authorities
in A, and much lower weight to the authorities in B. The sets A and B have size ©(N). Therefore, there are ©(N?)
pairs of nodes that are ranked differently from the two algorithms. Hence, Hub-Averaging and pSALSA are not rank
similar. ad

Proposition 3 The pSALSA algorithm and the Kleinberg algorithm are neither similar, nor rank similar on Gy .

Proof: Consider a graph GG on N = 4r nodes that consists of two disconnected components. The first component
C consists of a complete graph on r nodes. The second component C5 consists of a bipartite graph with 27 hubs,
and r authorities. Without loss of generality assume that r is even, and enumerate all hubs and authorities in Cl.
Make all “odd” hubs point to all “odd” authorities, and all “even” hubs point to all “even” authorities. Thus, each
hub points to 5 authorities, and each authority is pointed to by r authorities.

Let wg and w, denote the weight vectors of the Kleinberg, and the pSALSA algorithm, respectively, on graph G.
We assume that the vectors are normalized in Lo, norm. It is not hard to see that the Kleinberg algorithm allocates
all the weight to the nodes in C}. After normalization, for all i € C, wg(¢) = 1, while for all j € Ca, wg(j) = 0.
On the other hand, the pSALSA algorithm distributes the weight to both components, allocating more weight to the
nodes in C5. After the normalization step, for all j € Cs, w,(j) = 1, while for all i € Cy, w, (i) = =L

r -
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There are r nodes in C'5 for which wp,({) = 1 and wg (i) = 0. For all y1,v2 > 1, Zie@ [v1w, (3) — yowsg (§)] > 7.
Therefore, di(y1wp, v2wk) = Q(r) = Q(N) which proves that the algorithms are not similar.

The proof for rank dissimilarity follows immediately from the above. For every pair of nodes (4, j) such that
i€ Cyand j € Co, wi (i) > wi (j), and wy (i) < wy(j). There are O(N?) such pairs, therefore, d,(wg,wn) = O(N).
Thus, the two algorithms are not rank similar. ad

Proposition 4 The SALSA algorithm is neither similar, nor rank similar with the pSALSA, Hub-Averaging, or
Kleinberg algorithm.

Proof: Consider a graph G on N = 3r nodes, that consists of two components C; and C5. The component C is a
complete graph on 2r nodes, and the component C' is a complete graph on r nodes, with one link (¢, p) removed.

Let ws, wg, wi, and w, denote the weight vectors for SALSA, Kleinberg, Hub-Averaging and pSALSA algorithms
respectively. We assume that the vectors are normalized in L., norm. Also, let ug denote the SALSA weight
vector before normalization. The SALSA algorithm allocates weight ug(é) = 1/3r for all ¢ € €y, and weight
us(j) = (r—=1)/3(r> —r—1) for all j € Cy\ {p}. It is interesting to note that the removal of the link (¢, p) increased
the weight of the rest of the nodes in C2. Therefore, after normalization wg(é) = 1 — ( 7y for all ¢+ € C4, and
wg(j) = 1 for all j € C3\ {p}. On the other hand, both the Kleinberg and Hub-Averaging algorithms distribute
all the weight equally to the authorities in the C7 component, and allocate zero weight to the nodes in the C,
component. Therefore, after normalization, wg (i) = wy(¢) = 1 for all nodes ¢ € Cy, and wx (j) = wg(j) = 0 for all
nodes j € C5. The pSALSA algorithm allocates weight proportionally to the in-degree of the nodes, therefore, after
normalization, wy (i) = 1 for all nodes in 1, while w,(j) = ;f_ll for all nodes j € Cs \ {p}.

For the Kleinberg and Hub-Averaging algorithm, there are » — 1 entries in C3 \ {p}, for which wg (i) = wg (i) =
and wg(?) = 1. Therefore, for all of v1,v2 > 1, di(y1ws(¢), y2wk (1)) = Q(r) = QN), and di(y1ws (%), y2wm (7))
Q(r) = Q(N). From the above, it is easy to see that d,(wg, wg) = O(N), and d, (ws, wy) = O(N).

The proof for the pSALSA algorithm, is a little more involved. Let

0

S = X huweld) = o] = | = = 75
1€C
| | L
S20= ) () —yws@)] = (- 1) Ngp =1
i€Ca\{p}

We have that di(y1w,, y2ws) > S1 + So. It is not hard to see that unless v = 242 + o(1), then Sy = O(r) = O(N).
If v1 = 292 4 o(1) then S1 = O(r) = O(N). Therefore, for all v1,v2 > 1, di(y1wp, v2ws) = Q(N). From the above it
is easy to see that d,(ws,wp) = O(N).

Thus, SALSA is neither similar, nor rank similar with any of the other algorithms. a

On the positive side we have the following.

Definition 6 A link graph is “nested” if for every pair of nodes j and k, the set of in-links to j is either a subset
or a superset of the set of in-links to k.

Let QKF” be the set of all size-N nested graphs. (Of course, g”est is a rather restricted set of size-N graphs.)
Theorem 4 If two algorithms are both monotone, then they are rank matching on GRE*.

Proof: Let G be a graph in G#¢**, and let A; and A, be two monotone algorithms. Let w; = A1(G), and ws = As(G)
be the weight vectors of A; and As respectively. Consider a pair j and &k of nodes in G. Without loss of generality,
assume that the set of in-links of j is a superset of the set of in-links of k. Since both algorithms are monotone, then
wi(j) > wi(k), and wa(j) > wa(k). Therefore Iy, w, (4, k) = 0 for all pairs of nodes. Therefore, d, (w1, ws) = 0, so
the algorithms A; and A, are rank matching on GR7*. ad

Corollary 1 FExcept for the Hub-Threshold algorithm, all other algorithms we consider in this paper are rank match-
mg on QJ’{F”.
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8.3 Stability and Locality

In the previous section we examined the similarity of two different algorithms on the same graph G'. In this section we
are interested in how the output of a fired algorithm changes, as we alter the graph. We would like small changes in
the graph to have a small effect on the weight vector of the algorithm. We capture this requirement by the definition
of stability. The notion of stability has been independently considered (but not explicitly defined) in a number of
different papers [17, 18, 3, 1].

Given a graph GG, we can view a change in graph G, as an operation d on graph G, that adds and/or removes
links so a to produce a new graph G/ = 9G. Formally, a change is defined as an operation on the adjacency matrix
of the graph G, that alters k entries of the matrix, for some & > 0. The number k is called the size of the change.
We denote by Cj the set of all possible changes of size at most k. We think of a change in graph G as being small,
if the size k of the change is constant and independent of the size of the graph G.

For the following, let F((G) denote the set of all edges (i.e. links) in the graph G. We assume that E(G) = w(1),
otherwise all properties that we discuss below are trivial. The following definition applies to Lp-algorithms, for
1 <p< oo

Definition 7 An L,-algorithm A is stable” on Gy if for every fized positive integer k, we have (as N — oo)

max min  dy (11 A(G), 12 AOG)) = o(N1=HrY |
GeGN,0€C, v1,722>1 1(71 ( ) 72 ( )) ( )
Again, our choice for the bound O(Nl_l/p) is 1s guided by the fact that the maximum d; distance between any two
N-dimensional L, unit vectors, is @(Nl_l/p). As in the definition of similarity, the parameters =1, v2 used in the
definition of stability allow for an arbitrary scaling of the weight vectors, thus eliminating instability which is caused
solely by different normalization factors.

Definition 8 An algorithm A is rank stable on Gy if for every k, we have (as N — o)
d.(A(G), A(OG)) = o(N).
Gegrz?,%)éeck (A(6), A{06)) o)

As in the case of similarity, the notion of stability can be defined for any distance function, and for any normal-
ization norm.

Definition 9 An L-algorithm A is stable on Gy under d if for every fized positive integer k, we have (as N — o)

e e, om0 AMA(G), 72A(0G)) = o(My),

where again My = SUD|jw, || =|[wa|=1 d(wy, ws) is the marimum distance between any two N -vectors with unit norm

L=1-1l

Stability may be a desirable property. Indeed, the algorithms all act on a base set which is generated using some
other search engine (e.g. AltaVista [2]) and the associated hypertext links. Presumably with a “very good” base set,
all the algorithms would perform well. However, if an algorithm 1s not stable, then slight changes in the base set
(or its link structure) may lead to large changes in the rankings given by the algorithm. Thus, stability may provide
“protection” from poor base sets.

Theorem 5 Let A be an algorithm, and let 1 < r < s < co. If the L.-algorithm A is stable, then the Lg-algorithm
A 1s also stable.

Proof: Let G be a graph, and let § denote a change of constant size in graph G. Set v = A(G), and v = A(9G),
and then the rest of the proof is identical to the proof of Theorem 3. a

Theorem 5 implies that if an L;-algorithm A is stable, then the L,-algorithm A is also stable, for any 1 < p < oo.
Furthermore, if the L., -algorithm A is unstable, then the L,-algorithm A is also unstable, for any 1 < p < oo.
Therefore, the following instability results, proven for the L., norm, hold for any L, norm, for 1 < p < ooc.

"This definition of stability generalizes the definition in [6], where we considered only changes that remove a constant number of links.
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Proposition 5 The Kleinberg and Hub-Averaging algorithms are neither stable, nor rank stable.

Proof: Consider the graph G of size N = 2r + 3, which consists of two disjoint components C; and C3. The
component C; consists of a complete graph on r nodes, and two extra hubs p and ¢ that each points to a single node
of the complete graph. The component C' consists of a complete graph on r nodes, and an extra node that points
to exactly one of these r nodes. For both Kleinberg and Hub-Averaging transition matrices, the eigenvalue of the
component C is (slightly) larger than that of Cs; therefore, both algorithms will allocate all the weight to the nodes
of C, and zero weight to C5. If we delete the links from p and ¢, the eigenvalue of C'; becomes larger, causing the all
the weight to shift from C; to C's, and leaving the nodes in Cy with zero weight. It follows that the two algorithms
are neither stable nor rank stable. ad

Proposition 6 The SALSA algorithm, is neither stable, nor rank stable

Proof: We first establish the rank instability of the SALSA algorithm. The example is similar to that used in
the previous proof. Consider a graph G of size N = 2r 4+ 3, which consists of two disjoint components. The first
component consists of a complete graph €7 on r nodes and two extra authorities p and ¢ each of which is pointed to
by a single node of the complete graph. The second component consists of a complete graph C5 on r nodes and an
extra authority that is pointed to by exactly one of these r nodes.

It is not hard to show that if » > 2, then the SALSA algorithm ranks the » authorities in €y higher than those
in C's. We now remove the links to the nodes p and ¢. Simple computations show that if » > 1, the nodes in (s
are ranked higher than the nodes in C;. There are ©(N?) pairs of nodes whose relative order is changed; therefore,
SALSA is rank unstable.

The proof of instability is a little more involved. Consider again the graph G that consists of two complete graphs
C4 and O of size Ny and N, respectively, such that Ny = ¢Nj, where ¢ < 1 is a fixed constant. There exists also
an extra hub A that points to two authorities p and ¢ from the components (7 and C respectively. The graph has
N = N1y + Ny + 1 nodes, and N4 = Ny + Ny authorities.

The authority Markov chain defined by the SALSA algorithm is irreducible, therefore, the weight of authority
¢ 1s proportional to the in-degree of node i. Let w be the weight vector of the SALSA algorithm. Node p is the
node with the highest in-degree, therefore, after normalizing in the Lo, norm, w(p) = 1, w(¢) = 1 — 1/Ny, for all
i€ Ci\{p}, w(q) = ¢, and w(j) = c—1/Ny for all j € Ca2\ {q}.

Now let G’ be the graph G after we remove the two links from hub & to authorities p and ¢. Let w’ denote the
weight vector of the SALSA algorithm on graph G’. Tt is not hard to see that all authorities receive the same weight
1/N4 by the SALSA algorithm. After normalization, w’(7) = 1 for all authorities ¢ in G.

Consider now the distance dy(yw, ya2w'). Let

S1o= Z [y1w (i) — 'yzw/(i)| =Ny —1) |91 —y2 — X]_ll
N p)

Se = Y bnwli) = ()] = (Ve = 1) en =32 — -
ci\a)

Tt holds that di(yiw,y2w’) > S; + S2. Tt is not hard to see that unless v, = %'yz + o(1), then S; = O(N2) = O(N).
If vy = %'yz + o(1), then S} = O(Ny) = O(N). Therefore, di(y1w,v2w') = Q(N). Thus, the SALSA algorithm is
unstable. a

We now introduce the idea of “locality”. The idea behind locality is that a change in the in-links of a node should
have only a small effect on the weights of the rest of the nodes. Given a graph GG, we say that a change J in G affects
node i, if the links that point to node ¢ are altered. In algebraic terms, the change J affects the entries of the *P
column of the adjacency matrix of graph GG. We define the impact set of a change § in graph G, {9G}, to be the set
of nodes in (& affected by the change 0.
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Definition 10 An algorithm A is local® if for every graph G, and every change & in G there exists X\ > 0 such that
A(OG)[i] = ANA(G)[i], for all i ¢ {0G}.

Deﬁnition 11 An algorithm A is rank local if for every graph G, and every change 9 in G, if w = A(G) and
A(0G), then, for all i,j & {0G}, w(i) > w(j) = w'(i) > w'(j) (equivalently, Ly (4, j) = 0). The algorithm is
strlctly rank local9 if w(i) > w(y) & (@) > w'(j).

We note that locality and rank locality do not depend upon the normalization used by the algorithm. From the
definitions, one can observe that if an algorithm is local, then it is also strictly rank local. If it is strictly rank local
then it is obviously rank local.

We have the following.

Theorem 6 If an algorithm is rank local, then it is rank stable.

Proof: Let GG be a graph, and let 0 be a change of size k£ in G. Let w be the weight vector of the algorithm on a
graph G, and let w’ be the weight vector of the algorithm on the modified graph 9G. Let P = {9G} be the impact
set of change 9, and let m be the size of the set P. Since the algorithm is rank local, Iy (¢,j) = 0 for all 4,5 ¢ P.

Therefore,
1 N m
N .
dp(w,w') = ¥ Z Z Lyw (i, p) .
i=1peP
But Iy (i,p) < 1 for all ¢ and p, so d,(w,w') = %Nm = m. Therefore, the algorithm is rank stable. a

Therefore, locality implies rank stability. It is not necessarily the case that it also implies stability. For example,
consider the algorithm A where for a graph G on N nodes, it assigns weight NPl to node i. This algorithm is
local, but 1t is not stable.

Theorem 7 The pSALSA algorithm is local, and consequently strictly rank local, and rank local.

Proof: Given a graph G, let u be the weight vector that assigns to node i weight equal to |B(7)|, the in-degree of <.
Let w be the weight vector of the pSALSA algorithm; then w(i) = (s )/||u|| = |B( | /||ul], where || - || is any norm.
Let @ be a change in G, and let G = G denote the new graph. Let u’ and w’ denote the corresponding weight
vectors on graph G’. For every i & {0G}, the number of links to i remains unaffected by the change J; therefore
W'(i) = u(i). For the pSALSA algorithm, w'(i) = w'(i)/[[/[| = u(i)/[[[|. For A = &k it holds that w'(i) = Aw(i),
for all i € {0G}. Thus, pSALSA is local, and consequently strictly rank local, and rank local. a

Theorem 8 The pSALSA algorithm is stable, and rank stable.

Proof: The proof of rank stability follows directly from the rank locality of pSALSA. For the proof of stability, let
(i be a graph on N nodes, and let 0 € C; be a change of size k in (G. Let m be the size of {3G}. Without loss
of generality assume that {0G} = {1,2,...,m}. Let u be the weight vector that assigns to node i weight equal to
|B(4)], the in- degree of i. Let w be the Welght of the L1-pSALSA algorithm. Then w = u/||u||, where || - || is the L,
norm. Let w’ and w’ denote the corresponding weight vectors after the removal of the links. For all ¢ € {1,2,... m}

u'(i) = u(i). Furthermore, 7" | Ju(i) — u/(i)| < k. Set 41 = 1 and 72 = %lﬂ Then

1 & k
di(y1w, yaw') —|—Z — .

= Tl

8 This definition of locality is not the same as the definition that appears in [6]. It is actually the same as the definition of the pairwise
locality in [6]. The original definition of locality is of limited interest since it applies only to unnormalized algorithms.
9This stronger definition of rank locality is used for the characterization of the pSALSA algorithm (Theorem 9).
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We note that [|u|| is equal to the sum of the links in the graph. In the definition of stability we assumed that
the number of links in the graph is w(1). Therefore, di(y1w,y2w’) = o(1), which proves that L;-pSALSA, and
consequently pSALSA is stable. a

Now, let (G be a graph that is “authority connected”; that is, the authority graph G, as defined in section 2.3,
is connected. Then SALSA and pSALSA are equivalent on G. Let g;@c denote the family of authority connected
graphs of size N. We have the following corollary.

Corollary 2 The SALSA algorithm is stable on G4

We originally thought that the Bayesian and Simplified Bayesian algorithms were also local. However, 1t turns
out that they are neither local, nor strictly rank local. Indeed, it is true that conditional on the values of h;, e;,
and a;, the conditional distribution of ay for & # j is unchanged upon removing a link from 7 to j. However, the
unconditional marginal distribution of ax, and hence also its posterior mean @y (or even ratios dag/d, for ¢ # j),
may still be changed upon removing a link from ¢ to j. (Indeed, we have computed experimentally that @s/as may
change upon removing a link from 1 to 2, even for a simple example with just four nodes.) Theorem 9 (proven below)
implies that neither the Bayesian, nor the Simplified Bayesian Algorithm are strictly rank local, since (as shown
experimentally) they not rank-matching with the pSALSA algorithm.

We now use locality and “label-independence” to prove a uniqueness property of the pSALSA algorithm.

Definition 12 An algorithm is label-independent if permuting the labels of the graph nodes only causes the authority
weights to be correspondingly permuted.

All of our algorithms are clearly label-independent. Label-independence is a reasonable property, but one can
define reasonable algorithms that are not label-independent. For example, consider the algorithm defined by Bharat
and Henzinger [5]: when computing the authority weight of a node ¢, the hub weights of the nodes that belong to
the same domain are averaged over the number of the nodes from that domain that point to node i. This algorithm
is not label-independent.

Theorem 9 Consider an algorithm A that s strictly rank local, monotone, and label-independent. Then A (and
hence any normalized variant of A) and pSALSA are rank matching on Gy, for any N > 3.

Proof: Let GG be a graph of size N > 3, and let ¢ = A(G) be the weight function of algorithm A on graph G, and s
be the weight function of pSALSA. We will be modifying GG to form graphs (1, and G2 and we let a1, and a5 denote
(respectively) the weight function of A on these graphs.

Let ¢ and j be two nodes in G. If s(f) = s(j), or equivalently (by definition of pSALSA) nodes i and j have
the same number of in-links, then I,;(¢, j) = 0; therefore, nodes ¢ and j do not violate the rank matching property.
Without loss of generality assume that s(¢) > s(j), or equivalently that node ¢ has more in-links than j. The set of
nodes that point to ¢ or j is decomposed as follows: there is a set of nodes (' that point to both ¢ and j; there is a
set of nodes L that point only to node j; there is a set of cardinality R equal to L of nodes that point only to ¢; there
1s a non-empty set of nodes F that point to node 7. Note that except for the set F, the other sets may be empty.

Let & # 4,7 be an arbitrary node in the graph. We now perform the following change in graph G: remove all
links that do not point to ¢ or j, and make the nodes in L and C' to point to node k. Let (G; denote the resulting
graph. Since A is strictly rank local, and the nodes 7 and j are not affected by the change, the order of nodes ¢ and
J is preserved. Furthermore, from the monotonicity of algorithm A, we have that a1 () > a1 (k).

We will now prove that a;(k) = a1(j). Assume that ay(k) < a1(j). Let G2 denote the graph that we obtain by
removing all the links from set L to node ¢, and adding links from set R to node i. The graphs G; and G2 are the
same up to a label permutation that swaps the labels of nodes j and k. Therefore, a2(j) < as(k), which contradicts
the assumption of strict rank locality. We reach the same contradiction if we assume that a;(k) > a1(j). Thus,
ai (k) = a1(4), and a1(¢) > a1(j). Since A is strictly rank local, a1 (¢) > a1(j) = a(d) > a(j).

Therefore, for all ¢, j, I55(4,j) = 0, that is, d,(a, s) = 0, as required. a

In effect then, the conditions of Theorem 9 characterize pSALSA. All three conditions are necessary for the proof
of the theorem. Assume that we discard the label independence condition. Now, define algorithm A, that assigns to
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each link a weight that depends on the label of the node the link originates from. The algorithm sets the authority
weight of each node to be the sum of the link weights that point to this node. This algorithm is clearly monotone
and local, however if the link weights are chosen appropriately, it will not be rank matching with pSALSA. Assume
now that we discard of the monotonicity condition. Define an algorithm A, that assigns weight 1 to each node with
odd in-degree, and weight 0 to each node with even in-degree. This algorithm is local and label independent, but
it 1s clearly not rank matching with pSALSA. Monotonicity and label independence are clearly not sufficient for
proving the theorem; we have provided examples of algorithms that are monotone and label independent, but not
rank matching with the pSALSA (e.g. the Kleinberg algorithm).

8.4 Symmetry

Definition 13 A “hubs and authorities” algorithm A is “symmetric” if inverting all the links in a graph simply
interchanges the hub and authority values produced by the algorithm.

We have by inspection:

Theorem 10 The pSALSA and SALSA algorithms, the Kleinberg algorithm, the BFS algorithm, and the Simplified
Bayesian algorithm are all symmetric. However, the Hub-Averaging algorithm, the Threshold algorithms, and the
Bayesian algorithm are NOT symmetric.

9 Summary

We have considered a number of known and some new algorithms which use the hypertext link structure of World
Wide Web pages to extract information about the relative ranking of these pages. In particular, we have introduced
two algorithms based on Bayesian statistical approach as well as a number of algorithms which are modifications of
Kleinberg’s seminal hubs and authority algorithm. Based on 8 different queries (5 presented here), we discuss some
observed properties of each algorithm as well as relationships between the algorithms. We found (experimentally)
that certain algorithms appear to be more “balanced”, while others more “focused”. The latter tend to be sensitive
to the existence of tightly interconnected clusters, which may cause them to drift. The intersections between the
lists of the top-ten results of the algorithms suggest that certain algorithms exhibit similar behavior and properties.

Motivated by the experimental observations, we introduced a theoretical framework for the study and comparison
of link-analysis ranking algorithms. We formally defined (and gave some preliminary results for) the concepts of
monotonicity, stability and locality, as well as various concepts of distance and simelarity between ranking algorithms.

Our work leaves open a number of interesting questions. For example, are the Bayesian algorithms stable in
any sense? What natural algorithms are similar (or rank similar) to each other? The two Bayesian algorithms
open the door to the use of other statistical and machine learning techniques for ranking of hyper-linked documents.
Furthermore, the framework we defined suggests a number of interesting directions for the theoretical study of ranking
algorithms, which we have just begun to explore in this work. For example, in this work we proved that strict rank
locality (together with monotonicity and label independence) implies rank matching with pSALSA. Such a result
can be viewed as an axiomatic characterization of pPSALSA and it would be interesting to know if other algorithms
can be axiomatically characterized. In our work all the examples for instability are on disconnected graphs. It would
be interesting to examine if instability can be proven for the class of connected graphs. Recent work has shown
that stability is tightly connected with the spectral properties of the underlying graph [17, 18, 3, 1]. This seems a
promising direction for proving stability results.
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A Experiments

A.1 Query: abortion (Base Set size = 2293)
Kleinberg | pSALSA | HubAvg | AThresh | HThresh | FThresh | BFS SBayesian | Bayesian
1. | P-1165 | P-717 P-1165 | P-1165 | P-717 P-1461 | P-717 | P-T17 P-717
2. | P-1184 | P-1461 | P-1184 | P-1184 | P-1769 | P-719 P-719 | P-1461 P-1192
3. | P-1193 | P-T19 P-1193 | P-1193 | P-1461 | P-1 P-1769 | P-1191 P-1165
4. | P-1187 | P-1165 | P-1187 | P-1187 | P-718 P-717 P-1461 | P-719 P-1191
5. P-1188 P-1184 | P-1188 | P-1188 | P-719 P-0 P-962 P-1184 P-1193
6. P-1189 P-1193 | P-1189 | P-1189 | P-1 P-115 P-0 P-1165 P-1184
7. P-1190 P-1187 | P-1190 | P-1190 | P-0 P-607 P-2 P-1192 P-1189
8. P-1191 P-1188 | P-1191 | P-1191 | P-2515 P-1462 P-718 P-1193 P-1188
9. P-1192 P-1189 | P-1192 | P-1192 | P-115 P-2 P-1325 | P-1188 P-1187
10. | P-1948 P-1190 | P-1948 | P-1948 | P-962 P-1567 | P-1522 | P-1187 P-1190
Index pop | URL Title
P-0 3 WWW.gynpages.com Abortion Clinics OnLine
P-1 2 www.prochoice.org NAF - The Voice of Abortion Providers
P-2 2 www.cais.com/agm/main The Abortion Rights Activist Home Page
P-115 2 www.ms4c.org Medical Students for Choice
P-607 1 www.feministcampus.org Feminist Campus Activism Online: Welcome
P-717 6 www.nrlc.org National Right to Life Organization
P-718 2 www.hli.org Human Life International (HLI)
P-719 5 www.naral.org NARAL: Abortion and Reproductive Rights: ...
P-962 2 www.prolife.org/ultimate Empty title field
P-1165 | 6 wwwb.dimeclicks.com DimeClicks.com - Web and Marketing Solutions
P-1184 | 6 www.amazon.com/...../youdebatecom Amazon.com-Earth’s Biggest Selection
P-1187 | 6 www.amazon.com/...../top-sellers.html Amazon.com-Earth’s Biggest Selection
P-1188 | 6 www.amazon.com/.../software/home.html | Amazon.com Software
P-1189 | 5 www.amazon.com/.../hot-100-music.html | Amazon.com—Earth’s Biggest Selection
P-1190 | 5 www.amazon.com/.../gifts.html Amazon.com—FEarth’s Biggest Selection
P-1191 | 5 www.amazon.com/.....top-100-dvd.html Amazon.com—FEarth’s Biggest Selection
P-1192 | 5 www.amazon.com/...top-100-video html Amazon.com—FEarth’s Biggest Selection
P-1193 | 6 rd1.hitbox.com/....... HitBox.com - hitbox web site .......
P-1325 | 1 www.serve.com/femdlife Feminists For Life of America
P-1461 | 5 www.plannedparenthood.org Planned Parenthood Federation of America
P-1462 | 1 http://www.rcrc.org The Religious Coalition for Reproductive Choice
P-1522 | 1 www.naralny.org NARAL/NY
P-1567 | 1 http://www.agi-usa.org The Alan Guttmacher Institute: Home Page
P-1769 | 2 www.priestsforlife.org Priests for Life Index
P-1948 | 3 www.politics].com /issues.htm Politics1: Hot Political Debates & Issues
P-2515 | 1 www.ohiolife.org Ohio Right To Life
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Kleinberg | SALSA | HubAvg | AThresh | HThresh | FThresh | BFS | SBayesian | Bayesian
Kleinberg | 10 7 10 10 0 0 0 7 9
SALSA 7 10 7 7 3 3 3 8 8
HubAvg 10 7 10 10 0 0 0 7 9
AThresh 10 7 10 10 0 0 0 7 9
HThresh 0 3 0 0 10 6 7 3 1
FThresh 0 3 0 0 6 10 5 3 1
BFS 0 3 0 0 7 5 10 3 1
SBayesian | 7 8 7 7 3 3 3 10 8
Bayesian 9 8 9 9 1 1 1 8 10
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A.2 Query: +net +censorship (Base Set size = 2947)
Kleinberg | pSALSA | HubAvg | AThresh | HThresh | FThresh | BFS SBayesian | Bayesian

1. | P-375 P-371 P-371 | P-371 P-375 P-375 | P-371 P-371 P-375
2. | P-3163 | P-1440 | P-2874 | P-375 | P-1344 | P-1344 | P-375 | P-1440 P-371
3. P-3180 P-375 P-2871 | P-2871 | P-3130 | P-3130 | P-1299 P-375 P-3180
4. P-3177 P-2874 | P-2873 | P-2874 | P-3131 | P-3131 | P-1440 P-2874 P-3177
5. P-3173 P-2871 | P-2659 | P-3536 | P-3132 | P-3132 | P-2871 | P-1299 P-3163
6. P-3172 P-1299 P-375 P-2873 | P-3133 | P-3133 | P-2874 | P-2871 P-3173
7. P-3132 P-3536 | P-3536 | P-2659 | P-3135 | P-3135 | P-3536 | P-3536 P-3166
8. | P-3193 P-1712 | P-2639 | P-2639 | P-3161 | P-3161 | P-1802 | P-1712 P-3193
9. P-3170 P-268 P-1440 P-2639 | P-3162 | P-3162 | P-2639 | P-268 P-3168
10. | P-3166 | P-1445 | P-2867 | P-1440 | P-3163 | P-3163 | P-452 P-1445 P-3132

Index pop | URL Title

P-268 2 WWW.epic.org Electronic Privacy Information Center

P-371 6 www.yahoo.com Yahoo!

P-375 9 WWW.cnn.com CNN.com

P-452 1 www.mediachannel.org MediaChannel.org — A Global Network ........

P-1299 | 3 www.efl.org /blueribbon.html EFF Blue Ribbon Campaign

P-1344 | 2 www.igc.apc.org/peacenet PeaceNet Home

P-1440 | 5 www.eff.org EFF ... - the Electronic Frontier Foundation

P-1445 | 2 www.cdt.org The Center for Democracy and Technology

P-1712 | 2 www.aclu.org ACLU: American Civil Liberties Union

P-1802 | 1 ukonlineshop.about.com Online Shopping: UK

P-2639 | 3 www.imdb.com The Internet Movie Database (IMDb).

P-2659 | 2 www.altavista.com AltaVista - Welcome

P-2867 | 1 home.netscape.com Empty title field

P-2871 | 5 www.excite.com My Excite Start Page

P-2873 | 2 www.mckinley.com Welcome to Magellan!

P-2874 | 5 www.lycos.com Lycos

P-3130 | 2 www.city.net/countries/kyrgyzstan Excite Travel

P-3131 | 2 www.bishkek.su/krg/Contry.html ElCat. 404: Not Found.

P-3132 | 4 www.pitt.edu/ ¢jp/rees.html REESWeb: Programs:

P-3133 | 2 www.ripn.net RIPN

P-3135 | 2 www.yahoo.com/.../Kyrgyzstan Yahoo! Regional Countries Kyrgyzstan

P-3161 | 2 151.121.3.140/fas/fas-publications/... | Error 404 Redirector

P-3162 | 2 www.rferl.org/BD/KY RFE/RL Kyrgyz Service : News

P-3163 | 4 www.usa.ft.com Empty title field

P-3166 | 2 www.pathfinder.com/time/daily TIME.COM

P-3168 | 1 www.yahoo.com/News Yahoo! News and Media

P-3170 | 1 www.financenet.gov ...FinanceNet is the government’s official home...

P-3172 | 1 www.oecd.org OECD Online

P-3173 | 2 www.worldbank.org The World Bank Group

P-3177 | 2 www.envirolink.org EnviroLink Network

P-3180 | 3 www.lib.utexas.edu/.../Map_collection | PCL Map Collection

P-3193 | 2 www.wiesenthal.com Simon Wiesenthal Center

P-3536 | 5 www.shareware.com CNET.com - Shareware.com
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Kleinberg | SALSA | HubAvg | AThresh | HThresh | FThresh | BFS | SBayesian | Bayesian
Kleinberg | 10 1 1 2 3 3 1 1 8
SALSA 1 10 6 6 1 1 7 10 2
HubAvg 1 6 10 9 1 1 7 6 2
AThresh 2 6 9 10 1 1 7 6 3
HThresh 3 1 1 1 10 10 1 1 3
FThresh 3 1 1 1 10 10 1 1 3
BFS 1 7 7 7 1 1 10 7 2
SBayesian | 1 10 6 6 1 1 7 10 2
Bayesian 8 2 2 3 3 3 2 2 10
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A.3 Query: Movies (Base Set size = 5757)

Kleinberg | pSALSA | HubAvg | AThresh | HThresh | FThresh | BFS SBayesian | Bayesian
1. | P-678 P-999 P-999 P-999 P-678 P-1989 | P-999 P-999 P-999
2. | P-2268 | P-2832 | P-2832 | P-2832 | P-2266 | P-2832 | P-1911 | P-2832 P-2832
3. | P-2304 | P-6359 | P-2101 | P-6359 | P-2263 | P-1980 | P-2827 | P-6359 P-2827
4. | P-2305 | P-2827 | P-803 | P-2827 | P-2264 | P-1983 | P-2803 | P-2827 P-6359
5. P-2306 P-2120 | P-1539 | P-2838 P-2265 | P-1984 | P-5470 P-1374 P-678
6. P-2308 P-1374 | P-1178 | P-6446 P-2268 | P-1986 | P-2120 | P-2120 P-2838
7. | P-2310 | P-803 P-6359 | P-5 P-2280 | P-1987 | P-4577 | P-803 P-2266
8. | P-2266 P-1539 | P-1082 | P-2803 | P-2299 | P-1993 | P-5 P-6446 P-2268
9. | P-2325 | P-6446 | P-2827 | P-2839 | P-2300 | P-1995 | P-2838 | P-1539 P-2308
10. | P-2299 | P-2838 | P-6446 | P-2840 | P-2301 | P-3905 | P-4534 | P-2838 P-2330
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Index

o
T

Title

URL

P-5
P-678
P-803
P-999
P-1082
P-1178
P-1374
P-1539
P-1911
P-1980
P-1983
P-1984
P-1986
P-1987
P-1989
P-1993
P-1995
P-2101
P-2120
P-2263
P-2264
P-2265
P-2266
P-2268
P-2280
P-2299
P-2300
P-2301
P-2304
P-2305
P-2306
P-2308
P-2310
P-2325
P-2330
P-2803
P-2827
P-2832
P-2838
P-2839
P-2840
P-3905
P-4534
P-4577
P-5470
P-6359
P-6446
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WWW.Imovies.com
chatting.about.com

www.google.com
www.moviedatabase.com
wWww.amagzon.com,/
www.booksfordummies.com
WWW.onwisconsin.com

206.132.25.51
people2people.com/...nytoday
newyork.urbanbaby.com/nytoday
tunercl.va.everstream.com/nytoday /
nytoday.opentable.com/
www.nytimes.com/.../jobmarket
www.cars.com/nytimes
www.nytodayshopping.com
www.nytimes.com/.../nytodaymediakit
http://www.nytimes.com/subscribe...
www2.ebay.com/aw/announce.shtml
www.mylifesaver.com
clicks.about.com/...nationalinterbank
clicks.about.com/
membership.about.com/...
home.about.com/movies
a-zlist.about.com

sprinks.about.com
home.about.com/aboutaus
http://home.about.com/aboutcanada
http://home.about.com/aboutindia
home.about.com/arts
home.about.com /autos
home.about.com/citiestowns
home.about.com/compute
home.about.com /education
home.about.com/musicperform
home.about.com /recreation
www.allmovie.com

www.film.com

www.hollywood.com

WWW.ITCa.COIm

WWW.INEIMUA.com
WWW.miramax.com
http://theadvocate. webfriends.com
www.aint-it-cool-news.com

go.com

www.doubleaction.net
www.paramount.com
www.disney.com

Movies.com

Empty title field

Google

The Internet Movie Database (IMDb).
Amazon.com—FEarth’s Biggest Selection
Empty title field

On Wisconsin

Washingtonpost.com - News Front
People2People.com - Search

Kids & Family

Empty title field

OpenTable

The New York Times: Job Market

New York Today cars.com - new and used car ...
New York Today Shopping - Shop for computers, ...

New York Today - Online Media Kit
The New York Times on the Web
eBay Announcement Board

welcome to mylifesaver.com

Banking Center

Credit Report, Free Trial Offer
Member Center

About - Movies

About.com A-Z

Sprinks : About Sprinks

About Australia

About Canada

About India

About - Arts/Humanities

About - Autos

About - Cities/Towns

About - Computing/Technology
About - Education

About - Music/Performance

About - Recreation/Outdoors

All Movie Guide

Film.com Movie Reviews, News, Trailers...
Hollywood.com - Your entertainment source...
Universal Studios

MGM - Home Page

Welcome to the Miramax Cafe
Empty title field

Ain’t It Cool News

GO.com

Double Action - Stand. Point. Laugh.
Paramount Pictures - Home Page
Disney.com — Where the Magic Lives Online!
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Kleinberg | SALSA | HubAvg | AThresh | HThresh | FThresh | BFS | SBayesian | Bayesian
Kleinberg | 10 0 0 0 4 0 0 0 4
SALSA 0 10 7 6 0 0 5 10 5
HubAvg 0 7 10 5 0 0 3 7 4
AThresh 0 6 5 10 0 0 6 6 5
HThresh 4 0 0 0 10 0 0 0 3
FThresh 0 0 0 0 0 10 0 0 0
BFS 0 5 3 6 0 0 10 5 4
SBayesian | 0 10 7 6 0 0 5 10 5
Bayesian 4 5 4 5 3 0 4 5 10
A.4 Query: genetic (Base Set size = 3468)
Kleinberg | pSALSA | HubAvg | AThresh | HThresh | FThresh | BFS SBayesian | Bayesian

1. | P-2187 P-2187 | P-2187 | P-2187 | P-2187 | P-2187 | P-2187 | P-2187 P-2187
2. | P-1057 P-258 P-1057 | P-1057 | P-1057 | P-1057 | P-3932 | P-258 P-1057
3. | P-2168 P-1057 | P-3932 | P-2168 | P-2168 | P-2168 | P-1538 | P-1057 P-2168
4. | P-2200 P-3932 | P-2095 | P-2200 | P-2200 | P-2200 | P-1057 | P-3932 P-2095
5. | P-2219 P-2095 | P-2168 | P-2219 | P-2219 | P-2219 | P-2095 | P-2095 P-2200
6. | P-2199 P-1538 | P-2186 | P-2095 | P-2199 | P-2095 | P-258 P-1538 P-2219
7. | P-2095 P-2 P-941 P-3932 | P-2186 | P-3932 | P-2168 | P-2 P-3932
8. | P-2186 P-2168 | P-0 P-2199 | P-2095 | P-2199 | P-2200 | P-2168 P-2199
9. | P-2193 P-941 P-2200 | P-2186 | P-2193 | P-2186 | P-2 P-941 P-2186
10. | P-3932 P-23 P-2199 | P-2193 | P-3932 | P-2193 | P-2199 | P-2200 P-2193

Index pop | URL Title

P-0 1 www.geneticalliance.org Genetic Alliance, Washington, DC

P-2 3 www.genetic-programming.org | genetic-programming.org-Home-Page

P-23 1 www.geneticprogramming.com | The Genetic Programming Notebook

P-258 3 www.aic.nrl.navy.mil /galist The Genetic Algorithms Archive

P-941 3 www3.ncbi.nlm.nih.gov/Omim | OMIM Home Page — Online Mendelian Inheritance in Man

P-1057 | 9 gdbwww.gdb.org The Genome Database

P-1538 | 3 www.yahoo.com Yahoo!

P-2095 | 9 www.nhgri.nih.gov National Human Genome Research Institute (NHGRI)

P-2168 | 9 www-genome.wi.mit.edu Welcome To the ..... Center for Genome Research

P-2186 | 6 www.ebi.ac.uk EBI, the European Bioinformatics Institute ........

P-2187 | 9 www.ncbi.nlm.nih.gov NCBI HomePage

P-2193 | 5 www.genome.ad.jp GenomeNet WWW server

P-2199 | 7 www.hgmp.mrc.ac.uk UK MRC HGMP-RC

P-2200 | 8 www.tigr.org The Institute for Genomic Research

P-2219 |5 www.sanger.ac.uk The Sanger Centre Web Server

P-3932 |9 www.nih.gov National Institutes of Health (NTH)
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Kleinberg | pSALSA | HubAvg | AThresh | HThresh | FThresh | BFS | SBayesian | Bayesian
Kleinberg | 10 5 8 10 10 10 7 6 10
pSALSA 5 10 6 5 5 5 8 9 5
HubAvg 8 6 10 8 8 8 7 7 8
AThresh 10 5 8 10 10 10 7 6 10
HThresh 10 5 8 10 10 10 7 6 10
FThresh 10 5 8 10 10 10 7 6 10
BFS 7 8 7 7 7 7 10 9 7
SBayesian | 6 9 7 6 6 6 9 10 6
Bayesian 10 5 8 10 10 10 7 6 10
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A.5 Query: +computational +geometry (Base Set size = 1226)

Kleinberg | pSALSA | HubAvg | AThresh | HThresh | FThresh | BFS SBayesian | Bayesian
1. | P-161 P-161 P-634 | P-161 P-0 P-161 P-0 P-161 P-161
2. | P-0 P-1 P-632 | P-0 P-161 P-0 P-161 | P-1 P-0
3. | P-1 P-0 P-633 | P-1 P-1 P-1 P-1 P-0 P-1
4. | P-162 P-3 P-1406 | P-162 P-162 P-162 P-300 | P-3 P-162
5. | P-3 P-280 P-161 P-3 P-280 P-280 P-299 | P-280 P-3
6. | P-280 P-634 | P-162 P-280 P-3 P-3 P-162 | P-634 P-280
7. | P-275 P-162 P-1369 | P-275 P-275 P-275 P-3 P-162 P-275
8. | P-299 P-2 P-351 P-299 P-299 P-299 P-280 | P-2 P-299
9. | P-300 P-632 | P-1308 | P-300 P-300 P-848 P-375 | P-633 P-300
10. | P-848 P-633 | P-1 P-848 P-848 P-300 P-551 | P-632 P-848
Index pop | URL Title
P-0 8 www.geom.umn.edu/software/cglist Directory of Computational Geometry Software
P-1 9 www.cs.uu.nl/CGAL The former CGAL home page
P-2 2 link.springer.de/link /service /journals/00454 | LINK: Peak-time overload
P-3 8 www.scs.carleton.ca/ " csgs/resources/cg.html | Computational Geometry Resources
P-161 9 www.ics.uci.edu/ eppstein/geom.html Geometry in Action
P-162 9 www.ics.uci.edu/ eppstein/junkyard The Geometry Junkyard
P-275 5 www.ics.uci.edu/ eppstein David Eppstein
P-280 8 www.geom.umn.edu The Geometry Center Welcome Page
P-299 6 www.mpi-sb.mpg.de/LEDA /leda.html LEDA - Main Page of LEDA Research
P-300 6 www.cs.sunysb.edu/ algorith The Stony Brook Algorithm Repository
P-351 1 http://www.ics.uci.edu/ eppstein/gina/... Geometry Publications by Author
P-375 1 graphics.les.mit.edu/“seth Seth Teller
P-551 1 www.cs.sunysb.edu/ skiena Steven Skiena
P-632 |3 www.w3.org/Style/CSS/Buttons CSS button
P-633 3 Jjigsaw.w3.org/css-validator W3C CSS Validation Service
P-634 3 validator.w3.org W3C HTML Validation Service
P-848 5 www.inria.fr/prisme/...... /cgt CG Tribune
P-1308 | 1 http://netlib.bell-labs.com/...compgeom /netlib/compgeom
P-1369 | 1 http://www.adobe.com/... Adobe Acrobat Reader
P-1406 1 www.informatik rwth-aachen.de/..... Department of Computer Science, Aachen
Kleinberg | SALSA | HubAvg | AThresh | HThresh | FThresh | BFS | SBayesian | Bayesian
Kleinberg | 10 6 3 10 10 10 8 6 10
SALSA 6 10 6 6 6 6 6 10 6
HubAvg 3 6 10 3 3 3 3 6 3
AThresh 10 6 3 10 10 10 8 6 10
HThresh 10 6 3 10 10 10 8 6 10
FThresh 10 6 3 10 10 10 8 6 10
BFS 8 6 3 8 8 8 10 6 8
SBayesian | 6 10 6 6 6 6 6 10 6
Bayesian 10 6 3 10 10 10 8 6 10
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