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Stable matching problems are ubiquitous, though much of the work on stable matching assumes that both
sides of the market are able to fully specify their preference orderings. However, as the size of matching
markets grow, this assumption becomes unrealistic, and so there has been interest in understanding how
agents may use interviews to refine their preferences over subsets of alternatives. In this paper we study a
market where one side (hospital residency programs) maintains a common preference master list, while the
other side (residents) have idiosyncratic preferences which they can refine by conducting a limited number
of interviews. The question we study is How should residents choose their interview sets, given the choices
of others? We provide a payoff function for this imperfect information game, and find that this game always
has a pure strategy equilibrium. Moreover, when residents are restricted to two interviews and their pref-
erences are distributed according to a φ-Mallows model with low dispersion, there is a unique Bayesian
equilibrium in which residents interview assortatively: each resident pair r2j , r2j+1 interviews with hospi-
tals h2j , h2j+1. We observe that with high dispersion, assortative interviewing is not an equilibrium.

CCS Concepts: rTheory of computation→ Algorithmic game theory and mechanism design; Exact
and approximate computation of equilibria;
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1. INTRODUCTION
Real world matching problems are ubiquitous, and cover many domains. One of the
most widely studied matching problems in economics is the canonical stable matching
problem (SMP) [Gale and Shapley 1962]. Finding a stable matching is a goal of many
real-world matching markets, including college admissions, school choice, reviewer-
paper matching, various labor market matching problems [Niederle et al. 2008], and,
famously, the residency matching problem, where residents are matched to hospital
programs via a centralized matching program (such as the National Residency Match-
ing Program, NRMP, in the United States) [Roth 2002].

This notion of stability, where no one in the market has both the incentive and abil-
ity to change their partner, has been empirically shown to be a very valuable property
in real-world markets. Repeated improvement to stable matching mechanisms for the
American medical market halted unraveling in that market and in other matching
markets, centralized mechanisms that produced a stable match tended to halt unrav-
eling, while unstable mechanisms tended to be abandoned [Roth 2002]. Many of these
markets implement the Deferred Acceptance (DA) mechanism, first introduced in Gale
and Shapley’s seminal paper [1962].
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However, in practice all of these mechanisms assume that participants provide their
full preferences to the mechanism. Even if it is in participants’ best interest to do
so (as DA is strategy-proof for one side of the market), it is frequently infeasible for
participants to list all alternatives they find acceptable. In the NRMP in 2015, there
were 4,012 first year hospital programs that residents could apply to [Program 2015],
however residents tend to apply to an average of only 11 programs, spending between
$1,000 to $5,000 to do so [Anderson et al. 2000].

This implies that, even if resident-proposing Deferred Acceptance (RP-DA) is the
mechanism used, residents must be strategic about what hospital programs they
choose to interview with, as they cannot be matched to a program they do not interview
with. If there is too much competition for the hospitals they choose to interview with,
residents risk not being matched at all. There is significant evidence of this happen-
ing, as an aftermarket (SOAP) exists for the NRMP, having matched 1,666 programs
to doctors in 2015, out of roughly 30,000 initial available positions [Program 2015].

While the residency matching market is one prominent example of this, these diffi-
culties arise in other markets as well: university departments have limited budgets to
interview faculty candidates, and candidates have limited time to interview; reviewers
only have limited time to screen papers for their ability to review; high school students
have limited funds to apply to colleges. However, little work has investigated (from a
game-theoretic viewpoint) participants’ strategic considerations in markets like these.
Of the papers that have (e.g., [Chade et al. 2014; Chade and Smith 2006]), the mar-
kets studied have been decentralized matching markets. To the authors’ knowledge,
the only previous work that has investigated the strategic considerations participants
in the market make when they know they will be matched via a centralized matching
mechanism, such as DA, has assumed all participants in the market are ex-ante in-
different between all alternatives [Lee and Schwarz 2009]. Our goal is to extend this
work, and investigate when residents know their preferences are drawn according to
some known (non-uniform) distribution, but, like Lee and Schwarz, do not know their
idiosyncratic instantiation of that draw until after they choose their interviewing set.

To begin investigating this problem, we focus on using the residency matching prob-
lem as our motivating example, though we do make some simplifying assumptions
when modeling to begin investigating the equilibria of this interviewing market. We
assume that residents choose their interviewing sets (as they are the ones who have
to pay to interview), that hospitals will find anyone who interviews with them accept-
able, and that hospitals list their true preferences (i.e., there is no strategic behavior
after the interviewing process is complete1). We also assume that residents only know
their idiosyncratic preferences after having conducted their interviews. More impor-
tantly, we assume that there is a fixed ranking a priori over all residents that all
hospitals share, and residents know their ranking (a “master list”). While a signifi-
cant restriction, we note that this assumption mimics some real-world markets. For
example, university entrance in Turkey is determined solely by a universal test score,
and participants know their test score before applying to universities [Hafalir 2008].
Chinese university matching markets likewise use a master list, and the market runs
a centralized mechanism [Zhu 2014].

We first formalize a payoff function for any given resident in this game, and show
that a pure strategy equilibrium for this game always exists (with very little restric-
tions on the distribution that residents’ preferences are drawn from). We then inves-
tigate equilibria under one specific distribution, a φ-Mallows model. While we also
restrict residents to two interviews to obtain initial results and gain insight, we con-

1Residents have no incentive to be strategic after they choose their interviewing set, as the matching mech-
anism is RP-DA.



jecture the same conclusions hold for arbitrary, fixed number of interviews.2 Under
this model, there is some consistent, agreed upon reference ranking (e.g., the US News
& World Report’s Best College Rankings), and all residents’ preferences are drawn
according to a dispersion parameter φ. When dispersion is low (i.e., residents believe
their preferences and others’ preferences are very similar to the reference ranking), we
show that it is an equilibrium for residents to interview assortatively in tiers: the best
residents apply to the best hospitals, and the worst residents apply to the worst hospi-
tals. This characterizes an equilibrium similar to that presented in Lee and Schwarz
[2009], however, our equilibrium arises naturally via the incentives in the market, and
covers a very different range of ex-ante preference distributions than theirs does.

Furthermore, our results are consistent with the intuition that residents interview
with the best hospitals that they think they have a good chance of being matched with.
Interestingly, when preferences are not highly dispersed, we find no benefit for “reach”
or “safety” choices, unlike previous work with decentralized matching mechanisms
(e.g., [Chade et al. 2014; Chade and Smith 2006]). However, we also find evidence
of a strong trade-off between participants favoring more choice over higher expected
valuation of an alternative when residents’ preferences are highly variable.

In Section 2, we further discuss previous literature, and define a φ-Mallows model
distribution. In Section 3, we formally describe the game we investigate in this paper.
Section 4 provides an equilibrium analysis, showing that under an arbitrary number of
interviews and with an arbitrary preference distribution for residents, a pure equilib-
rium always exists. We then explicitly characterize that equilibrium for two interviews
and residents’ preferences drawn from a Mallows model with low dispersion. Our anal-
ysis suggests many extensions which we discuss in Section 5. We finish with a brief
conclusion in Section 6.

2. BACKGROUND
In this paper we investigate the stable matching problem, as standardly defined [Gale
and Shapley 1962]. A stable matching is a matching that is individually rational (no
one would rather go unmatched than be matched to the alternative they are matched
to) and does not contain any blocking pairs. A blocking pair is a resident/hospital pair
that both prefer to be matched with each other than their assigned match.

The Deferred Acceptance (DA) algorithm [Gale and Shapley 1962] is one of the most
famous algorithms for solving stable matching problems. In this algorithm, one side
of the market “proposes” to the other, which chooses to be tentatively matched to the
best alternative out of all proposals received thus far. Resident-proposing DA (RP-DA)
runs in polynomial time, and has several nice properties: the resulting matching is
guaranteed to be stable and resident-optimal (and hence resident strategy-proof) [Roth
2002].

While there has been great interest in finding stable matchings for various markets,
little work has investigated how residents choose who they interview with, particu-
larly in a game theoretic setting. Some work has investigated interviewing and partial
preferences in stable matching problems. Rastegari et al. investigate minimal inter-
viewing policies [2013]. They show that, in general, finding such a policy is NP-hard,
but under certain preference restrictions, an algorithm that finds a minimal interview-
ing policy exists. Note that their result relies on a few assumptions: first, they assume
that participants give all known preference information (i.e., any information that is
known without having to perform interviews). Importantly, they also require that the
resulting matching is stable and resident-optimal under all possible completions of the

2Additionally, some real-world markets only have one interview (e.g., [Zhu 2014]).



currently known partial preferences. This guarantees that there are no potential block-
ing pairs after all interviews have been performed, no matter what agents’ underlying
preferences are. Thus, the number of interviews required is highly dependent on the
amount of initial information agents provide; unless agents can provide a large amount
of information initially to the algorithm, they will be forced to perform a large num-
ber of interviews. Thus, while this algorithm provides strong guarantees, participants
in the market must still provide a great deal of information. Furthermore, Rastegari
et al. do not investigate any incentive compatibility issues regarding their algorithm.
Using heuristics, Drummond and Boutilier [2014] investigate a similar problem and
likewise do not investigate incentive compatibility.

Chade et al [2014] investigate search frictions in the college admissions problem.
This problem investigates a Bayesian approach to students deciding where to inter-
view. Under this model, students know which college is more desirable, and colleges
have noisy information about which students are most desirable. They then investi-
gate equilibria under this model, finding a tractable separable solution. This work im-
portantly differs from our model in that the admissions process is decentralized, and
thus any student’s chance of admission is modeled independent of any other students’
behavior. As our matching mechanism is RP-DA, we cannot make this independence
assumption.

Chade and Smith [2006] investigate a similar problem, with similar motivations as
those discussed here. They assume that all residents agree perfectly on the hospital
ranking, whereas hospitals’ preferences are dependent on noisy signals of students’
caliber. However, they investigate a decentralized market, instead of one running DA.

Coles et al. [2010] discuss signaling in matching markets. Agents’ preferences are
distributed according to some (restricted) a priori known distributions, and each agent
knows their own preferences. Firms can send at most one job offer, and workers can
send one signal to a firm indicating their interest. Under this setting, firms can do bet-
ter than simply offering their top candidate a job. In some ways, this achieves more of
the overlap desired by the Lee and Schwarz perfect overlap equilibrium [2009] without
having any firm coordination, but requires extra machinery not explicitly present in
matching markets like the NRMP. Furthermore, Kushnir [2013] provides an example
where signaling is harmful.

The work most closely related to the problem posed in this paper investigates an
interviewing game, where firms and workers interview with each other in order to
be matched [Lee and Schwarz 2009]. This is a two-stage game, where firms choose to
interview with workers for some fixed cost. These interviews reveal both firms’ and
workers’ preferences. Then, all participants in the market submit the results of their
interviews to the matching mechanism, firm-proposing deferred acceptance. Their re-
sults show that unless firms coordinate when picking their interviewing set, picking k
workers to interview at random is the firm’s best strategy. If firms do coordinate, it is
best for them to interview with perfect overlap (i.e., the interviews form n/k complete
bipartite disconnected components).

Lee and Schwarz make the following assumptions: firms bear all cost of interviewing
workers; firms and workers must interview with each other to be matched; firms may
find some workers they interview unemployable; workers prefer all firms over being
unemployed; and, most importantly, all firms and workers are ex-ante homogeneous,
with agents’ revealed preferences idiosyncratic and independent [2009].

This last assumption is an incredibly strong one; for their results to hold, either
agents have effectively no information about their preferences before they interview,
or the market must be perfectly decomposable into homogeneous sub-markets that
are known before the interviewing process starts. (That is, everyone knows and agrees
on who the most desirable firms and workers are, but preferences between those top



workers are ex-ante homogeneous; note that this is equivalent to all agents having
block-correlated preferences, and those blocks are known ex-ante). In this paper, we
thus focus on investigating a very different set of assumptions from Lee and Schwarz,
but find a similar, naturally arising equilibrium.

2.1. Probabilistic Preference Models
While the payoff function as formulated in Section 3.2 is indifferent with respect to
the probability distribution, it is currently formulated as a distribution over rankings.
Two commonly studied distributions over rankings are the Plackett-Luce model [Luce
1959; Plackett 1975] and the φ-Mallows model [Mallows 1957; Marden 1995].

When characterizing equilibria for a specific distribution, we focus on the φ-Mallows
model, as there is an intuitive relationship between the parameters of the model, and
how “similar” market participants’ preferences are. The Mallows model is character-
ized by a reference ranking σ, and a dispersion parameter φ ∈ (0, 1], 3 which we denote
as Dφ,σ. Let A denote the set of alternatives that we are ranking, and let P (A) denote
the set of all permutations of A. The probability of any given ranking r is:

Pr(r|Dφ,σ) =
φd(r,σ)

Z

Here d is Kendall’s τ distance metric, and Z is a normalizing factor; Z =∑
r′∈P (A) φ

d(r,σ) = (1)(1+φ)(1+φ+φ2)...(1+ ...+φ|A|−1), as shown in [Lu and Boutilier
2011].

As φ → 0, the distribution approaches drawing the reference ranking σ with prob-
ability 1; when φ = 1, this is equivalent to drawing from the uniform distribution.
The Mallows model (and mixtures of Mallows) have plausible psychometric motiva-
tions and are commonly used in machine learning [Lebanon and Mao 2008; Lu and
Boutilier 2011; Murphy and Martin 2003]. Mallows models have also been used in
previous investigations of preference elicitation schemes for stable matching problems
(e.g., [Drummond and Boutilier 2013, 2014]).

3. MODEL
There are n residents and n hospital programs. The set of residents is denoted by
R = {r0, r1, ..., rn−1}; the set of hospital programs is denoted by H = {h0, h1, ..., hn−1}.
We are interested in one-to-one matchings which means that residents can only do
their residency at a single hospital, and that hospitals can accept at most one resident.
A matching is a function µ : R ∪ H → R ∪ H, such that ∀r ∈ R, µ(r) ∈ H ∪ {r}, and
∀h ∈ H, µ(h) ∈ R ∪ {h}. If µ(r) = r or µ(h) = h then we say that r or h is unmatched.
A matching µ is stable if there does not exist some (r, h) ∈ R ×H, such that h �r µ(r)
and r �h µ(h).

Both hospitals and residents have (strict) preferences over each other, and we let
P (H) and P (R) denote the sets of all possible preference rankings overH andR respec-
tively. We assume that hospitals have identical preferences over all residents, which we
call the master list, �H . Without loss of generality, let �H= r0 � r1 � . . . � rn−1 where
ri �H rj means that ri is preferred to rj , according to �H . We further assume that
the master list is common knowledge to all members of H and R. That is, all hospitals
agree on the preference ranking over residents and each resident knows where they,
and all others, rank in the list. While each resident, r, has idiosyncratic preferences
over the hospitals, we assume that these are drawn i.i.d. from some common distribu-
tion D , and that this is common knowledge. If resident r draws preference ranking η

3A φ-Mallows model is not well defined for φ = 0, but if all residents are guaranteed to draw the reference
ranking, the equilibrium is trivial.



from D , then hi �η hj means that hi is preferred to hj by r under η. We assume there
is some common valuation function v : H × P (H) 7→ R, applied to rankings η drawn
from D such that, given any η ∈ P (H) with hi �η hj , v(hi, η) > v(hj , η).

Critical to our model is the assumption that residents do not initially know their true
preferences, but can refine their knowledge by conducting interviews. We let I(rj) ⊂ H
denote the interview set of resident rj , and assume that |I(rj)| ≤ k for some fixed k ≤ n.
Once rj has finished interviewing, rj knows their preference ranking over I(rj). It
then submits this information to the matching algorithm, resident-preferred deferred
acceptance (RP-DA). The matching proceeds in rounds, where in each round unmatched
residents propose to their next favorite hospital from their interview set to whom they
have not yet proposed. Each hospital chooses its favorite resident from amongst the
set of residents who have just proposed and its current match, and the hospital and its
choice are then tentatively matched. This process continues until everyone is matched.
The resulting matching, µ, is guaranteed to be stable, resident-optimal, and hospital-
pessimal [Gale and Shapley 1962].

3.1. Description of the Game
We now describe the Interviewing with a Limited Budget game:

(1) Each resident r ∈ R simultaneously selects an interviewing set I(r) ⊂ H, based on
their knowledge of D and the hospitals’ master list �H , where |I(r)| ≤ k.

(2) Each resident, r, interviews with hospitals in I(r) and discovers their preferences
over members of I(r).

(3) Each resident reports their learned preferences over I(r) and reports all other hos-
pitals as unacceptable, and each hospital reports the master list to a centralized
clearinghouse, which runs resident proposing deferred acceptance (RP-DA), result-
ing in the matching µ.

3.2. Payoff function for Interviewing with a Limited Budget
Let M be the set of all matchings, and let µ denote the ex-post matching resulting from
all agents playing the Interviewing with a Limited Budget game. In order for resident
rj to choose their interview set I(rj) ⊂ H, it has to be able to evaluate the payoff
it expects to receive from that choice, where the payoff depends on both the actual
preference ranking it expects to draw from D , the interview sets of the other residents,
and the expected matching achieved when running RP-DA using the hospitals’ master
list. Crucially, we observe that rj need only be concerned about the interview set of
resident ri when ri �H rj . If rj �H ri then, because we run RP-DA, rj would always
be matched before ri with respect to any hospital they both had in their interview set.
Thus, we can denote rj ’s expected payoff for choosing interview set S by:

urj (S) = urj (S|D , I(r0), ..., I(rj−1)).

Given fixed interviewing sets I(r0), I(r1), ..., I(rj−1), and some partial match m =
µ|r0,r1,...,rj−1

, we must compute the probability that m happened via RP-DA. Let m(ri)
denote who resident ri is matched to under m. For any ri, there is a set of rankings
consistent with ri being matched with m(ri) under RP-DA (and hospitals’ master list
�H ). Denote this set as T (ri,m). Formally, T (ri,m) ⊆ P (H) is defined as:

T (ri,m) = {ξ ∈ P (H)|∀h′ ∈ H s.t. h′ ∈ I(ri) ∧ h′ �ξ m(ri),∃ra �H ri,m(ra) = h′}



Given the interviewing sets of residents r0, . . . , rj−1, the probability of partial match m
is

Pr(m|I(r0), ..., I(rj−1)) =
∏

ri∈{r0,...,rj−1}

∑
ξ∈T (ri,m)

Pr(ξ|D). (1)

where Pr(η|D) is the probability that some resident drew ranking η ∈ P (H) from D .
Using Eq. 1, we can now determine the probability that some hospital h is matched

to rj using RP-DA, when rj has interviewed with set S, and has preference list η. We
simply sum over all possible matches in which this could happen. Because RP-DA is
resident optimal, and all hospitals have a master list, any hospital that rj both inter-
views with and prefers to h must already be matched. We formally define the set of
such matchings, M∗(S, η, I(r0), ..., I(rj−1)):

M∗(S, η, I(r0), ..., I(rj−1), h) =

{m ∈M |m(rj) = h;∀ri ∈ {r0, ..., rj−1}m(ri) ∈ I(ri);
and ∀x ∈ S, if x �η h,∃ri ∈ {r0, ..., rj−1} s.t. x ∈ I(ri) and m(ri) = x}

Thus, the probability that h is matched to rj using RP-DA given η, S, and the inter-
viewing sets for all residents preferred to rj on the hospitals’ master list is

Pr(µ(h) = rj |η, S, I(r0), ..., I(rj−1)) =
∑

m∈M∗(S,η,I(r0),...,I(rj−1),h)

Pr(m|I(r0), ..., I(rj−1)). (2)

Finally, we have all of the building blocks to formally define the payoff function.
Recall that v(h, η) is the imposed utility function, which is deterministic given η. Then,
our payoff function is:

urj (S) =
∑
h∈S

∑
η∈P (H)

v(h, η)Pr(η|D)Pr(µ(h) = rj |η, S, I(r0), ..., I(rj−1)) (3)

Intuitively, what the payoff function in Eq. 3 does is weight the value for some given
alternative by how likely rj is to be matched to that item, given the interview sets of
the “more desirable” residents, r0, . . . , rj−1.

As an illustrative example, imagine there are two residents, r0 and r1, each of whom
have interviewed with hospitals h0 and h1. Resident r0 will be matched with whom
ever she most prefers, while r1 will be assigned the other. The probability that r1 will
be assigned h0 is simply the probability that r0 drew ranking h1 � h0, while the prob-
ability that r1 is matched to h1 is the probability that r0 drew ranking h0 � h1.

4. EQUILIBRIUM ANALYSIS
We provide an equilibria analysis for the game as presented in Section 3. We first show
that a pure equilibrium for this game always exists, but may be difficult to calculate.
We then show that under some additional distributional assumptions, for two inter-
views, residents’ best response is easy: any two residents r2j , r2j+1 will both interview
with hospitals h2j , h2j+1, forming the perfect overlap interviewing structure found in
the Lee and Schwarz paper [2009], but under very different modelling assumptions.

THEOREM 1. A pure strategy always exists for the Interviewing with a Limited
Budget game.

Proof: We wish to show that if every resident chooses their expected utility maxi-
mizing interviewing set, this forms a pure strategy. Given any resident rj who is jth in
the hospitals’ rank ordered list, rj ’s expected payoff function only depends on residents
r0, ..., rj−1. As rj knows that each other resident ri is drawing from distribution D iid,



she can calculate r0, ..., rj−1’s expected utility maximizing interview set. Her payoff
function depends only on D and I(r0), ..., I(rj−1), both of which she now has. She then
calculates the expected payoff for each

(
n
k

)
potential interviewing sets, and interviews

with the one that maximizes her expected utility. �
Our equilibrium analysis for two interviews when all residents draw preferences

from a Mallows model with low dispersion requires some additional results regarding
Mallows models, as shown in Lemma 2, Corollary 3, and Corollary 4. To the best of
our knowledge, the following results regarding Mallows models have not been stated
previously, and may be of more general interest. The proofs are provided in appendix
(A.1).

LEMMA 2. Given some Mallows model Dφ,σ with fixed dispersion parameter φ and
reference ranking σ = ai � aj , then the probability that a ranking η is drawn from Dφ,σ

such that ai �η aj is equal to drawing from some distribution Dφ,σ′ where σ is a prefix
of σ′. By symmetry, this proof also holds when σ is a suffix of σ′.

COROLLARY 3. Given any reference ranking σ and two alternatives ai, aj such that
rank(aj , σ) = rank(ai, σ) + 1, then Pr(ai � aj |Dφ,σ) = 1

1+φ .

COROLLARY 4. Given any reference ranking σ and three alternatives aw, ax, ay such
that rank(ax, σ) = rank(aw, σ) + 1 and rank(ay, σ) = rank(ax, σ) + 1 and some η ∈
P ({aw, ax, ay}), then the probability that we draw some ranking β consistent with η is:
Pr(β|Dφ,σ) = φd(η,aw�ax�ay)

(1+φ)(1+φ+φ2) .

We now begin the proofs for the main equilibrium characterization. We show that,
for two interviews (k = 2) with a sufficiently small dispersion parameter, there is a
naturally arising equilibrium for all residents to interview assortatively in tiers. As
discussed in Section 5, we note that the following result does not hold for all values of
φ.

THEOREM 5. Given residents’ valuation function v(h, η) = n−rank(h|η) (i.e., Borda
score) for any ranking η and market size n, for a Mallows model with reference ranking
σ = h0, h1, ..., hn−1 with dispersion parameter φ such that 0 < φ ≤ 0.265074, resident r1
maximizes her expected payoff by interviewing with {h0, h1}.

Proof: As resident r0 greedily chooses to interview with {h0, h1}, we note that resident
r1 must calculate a trade-off between a higher expected value for hospitals in a poten-
tial interviewing set, and competition for those hospitals. We prove that r1 maximizes
her expected payoff in this interval by bounding the difference in expected payoff be-
tween interviewing sets: ur1(h0, h1|Dφ∗,σ)− ur1(hi, hj |Dφ∗,σ) ≥ 0, for all i, j.

Note that for any pair of alternatives hi, hj such that hi and hj have the same proba-
bility of being available, if hi �σ hj , interviewing with hi dominates interviewing with
hj . When applied to elements of an interviewing set, these swaps create a chain of
dominated sets. Instead of comparing all

(
n
k

)
sets to find the best interviewing set, we

can just compare the undominated ones. Thus, for r1, the set of undominated inter-
viewing sets is: {h0, h1}, {h0, h2}, {h1, h2}, {h2, h3}. Intuitively, the difference between
these sets is a trade-off between a higher expected valuation of the hospitals, versus
more competition with resident r0. We compute lower bounds comparing the difference
in expected utility between interviewing with {h0, h1} and each of the potential inter-
view sets independently. We present the case for {h1, h2} (as we find it imposes the
tightest bound), but leave the remainder of the sets to the appendix, as the arguments
are analogous.



We prove that choosing {h0, h1} is better than choosing {h1, h2}, for all values of φ
such that 0 < φ ≤ 0.265074. We prove this by summing over all possible preference
rankings that induce a specific permutation of the alternatives h0, h1, h2. We then pair
these summed permutations in such a manner that makes it easy to find a lower bound
for ur1({h0, h1})−ur1({h1, h2}). This lower bound is entirely in terms of φ, meaning that
for any φ such that this bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations of h0, h1, h2 as follows:
Case 1: all rankings η consistent with h1 � h0 � h2 or η′ consistent with h1 � h2 � h0;
Case 2: all rankings η consistent with h0 � h1 � h2 or η′ consistent with h2 � h1 � h0;
Case 3: all rankings η consistent with h0 � h2 � h1 or η′ consistent with h2 � h0 � h1.

Note that as we have enumerated all possible permutations of h0, h1, h2, these three
cases generate every ranking in P (H). Furthermore, for any one of the three cases, we
can iterate over only all possible rankings η that are consistent with the first member
of the pair, and generate the ranking η′ consistent with the second member of the pair
by simply swapping two alternatives in the rank. Moreover, given some η, the number
of discordant pairs in η′ is simply the number in η, plus the number of additional
discordant pairs between h0, h1, h2 caused by swapping the two alternatives.

For clarity, let ur1({h0, h1})−ur1({h1, h2}) = U1+U2+U3, where U1, U2, U3 correspond
to our three cases. We also introduce the notation Prµ(ri)(h) to denote the probability
that ri is matched to hospital h under matching µ. That is, Prµ(ri)(h) = Pr(µ(ri) = h).

Case 1. Because we have fixed h1 � h0 � h2 or h1 � h2 � h0, we know exactly
what r1’s match will be, given h0’s match. Additionally, given any η consistent with
h1 � h0 � h2, we generate η′ consistent with h1 � h2 � h0 by letting rank(h0, η) =
rank(h2, η′) and rank(h2, η) = rank(h0, η′). This adds one additional discordant pair, so
d(η′, σ) = d(η, σ) + 1.

We first note that if r0 is assigned h0, r1 gets h1 in either interviewing set, and thus
the difference in expected utility is 0. Focusing on when r0 is assigned h1, we calculate
the difference in r1’s expected utility between the two interviewing sets:

U1 =
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)
[
(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η

′)− v(h2, η′))Pr(η′|Dφ,σ)
]

By construction, we can rewrite all η′ in terms of η, switching the rank as constructed,
and adding 1 to all distances (as d(h1 � h0 � h2, h1 � h2 � h0) = 1):

U1 =
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)
[
(v(h0, η)− v(h2, η))

φd(η,σ)

Z
+ (v(h2, η)− v(h0, η))

φd(η,σ)+1

Z

]
(4)

=
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)(v(h0, η)− v(h2, η))
φd(η,σ)

Z
(1− φ) (5)

Note that by Corollaries 3 and 4,
∑
η∈P (H)h1�h0�h2

φd(η,σ)

Z = Pr(h1 � h0 � h2), and
Prµ(r0)(h1) = φ

1+φ . Also note that by construction, everything in Eq. 5 is positive.
Therefore, v(h0, η)− v(h2, η) ≥ 1, which implies that:

U1 ≥ Prµ(r0)(h1)(1)(1− φ)Pr(h1 � h0 � h2) (6)

=

(
φ

1 + φ

)(
φ

(1 + φ)(1 + φ+ φ2)

)
(1− φ) (7)



Case 2. For this case we fix h0 � h1 � h2 or h2 � h1 � h0. Again, we list all η such
that h0 � h1 � h2, and transform that into an η′ that is identical to η, except except
rank(h0, η′) = rank(h2, η) and rank(h2, η′) = rank(h0, η). Note that d(η′, σ) = d(η, σ)+3.

U2 =
∑
η∈P (H)h0�h1�h2

Prµ(r0)(h0)
[
(0)Pr(η|Dφ,σ) + (v(h1, η

′)− v(h2, η′))Pr(η′|Dφ,σ)
]

+ Prµ(r0)(h1)
[
(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η

′)− v(h2, η′))Pr(η′|Dφ,σ)
]

=
∑
η∈P (H)h0�h1�h2

Prµ(r0)(h0)(v(h1, η)− v(h0, η))
(
φd(η,σ)+3

Z

)

+ Prµ(r0)(h1)

[
(v(h0, η)− v(h2, η))

(
φd(η,σ)

Z

)
+ (v(h2, η)− v(h0, η))

(
φd(η,σ)+3

Z

)]
By the definition of the valuation function v, v(h1, η) − v(h0, η) ≥ v(h2, η) − v(h0, η).

Then:

U2 ≥
∑

η∈P (H)h0�h1�h2

Prµ(r0)(h0)(v(h2, η)− v(h0, η))
φd(η,σ)+3

Z

+ Prµ(r0)(h1) (v(h0, η)− v(h2, η))
(
φd(η,σ) − φd(η,σ)+3

Z

)
(8)

=
∑

η∈P (H)h0�h1�h2

φd(η,σ)

Z

[ 1

1 + φ
(−φ3) + φ

1 + φ
(1− φ3)

]
(v(h0, η)− v(h2, η)) (9)

=
∑

η∈P (H)h0�h1�h2

φd(η,σ)

Z(1 + φ)
(v(h0, η)− v(h2, η))(φ− φ3 − φ4) (10)

Note that if 0 < φ ≤ 0.7548, φ − φ3 − φ4 ≥ 0, all terms in Eq 10 are positive, as
v(h0, η) − v(h2, η) ≥ 2. We thus impose our first restriction on φ; we now only look at
the range where 0 ≤ φ ≤ 0.7548. Making the substitution that v(h0, η)− v(h2, η) ≥ 2 by
construction, we get the following:

U2 ≥ Pr(h0 � h1 � h2)
2

1 + φ
(φ− φ3 − φ4) (11)

Case 3. We fix h0 � h2 � h1 or h2 � h0 � h1. Again, we look at pairs of rankings η, η′,
where η is consistent with h0 � h2 � h1, and η′ is identical to η, except rank(h0, η) =
rank(h2, η′), and rank(h2, η) = rank(h0, η′).

Then, as before, we sum over all possible rankings consistent with h0 � h2 � h1:

U3 =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h0)[(v(h1, η)− v(h2, η))Pr(η|D
φ,σ) + (v(h1, η

′)− v(h2, η′))Pr(η′|Dφ,σ)]

+ Prµ(r0)(h1)[(v(h0, η)− v(h2, η))Pr(η|D
φ,σ) + (v(h0, η

′)− v(h2, η′)Pr(η′|Dφ,σ)]

We break this equation into two subcases, so that U3 = U3a + U3b:

U3a =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h0)[(v(h1, η)− v(h2, η))Pr(η|D
φ,σ) + (v(h1, η

′)− v(h2, η′))Pr(η′|Dφ,σ)]

U3b =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)[(v(h0, η)− v(h2, η))Pr(η|D
φ,σ) + (v(h0, η

′)− v(h2, η′))Pr(η′|Dφ,σ)]



Case U3b is similar to Cases 1 and 2:

U3b =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)[(v(h0, η)− v(h2, η))
φd(η,σ)

Z
+ (v(h2, η)− v(h0, η))

φd(η,σ)+1

Z
(12)

=
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)(v(h0, η)− v(h2, η))[
φd(η,σ)

Z
− φd(η,σ)+1

Z
] (13)

≥ φ

φ+ 1
(1− φ)Pr(h0 � h2 � h1) (14)

Case U3a is different from all other cases, in that all terms are negative. Further-
more, we note that as a function of n (keeping φ constant), the equation in U3a is
monotonically decreasing. Thus, if this function converges as n→∞, we have found a
lower bound for U3a for all n.

We analyze v(h1, η)−v(h2, η) independently of v(h1, η′)−v(h2, η′), though the analysis
is symmetrical. Take v(h1, η) − v(h2, η). Intuitively, we sum over all permutations of
h3, ..., hn−1, and place h0, h1, h2 in all possible indices consistent with the ranking h0 �
h2 � h1. This generates all rankings in the set P (H)h0�h1�h2 . Let σ∗ = h3 � h4 � ... �
hn−1 (σ with elements h0, h1, h2 removed).

We note that we can calculate the number of discordant pairs via the indices of
h0, h1, h2. Given some permutation γ ∈ P (H \ {h0, h1, h2}), suppose we insert h0, h1, h2
into γ such that rank(h0) = w; rank(h2) = x; rank(h1) = y. Then, there are w alter-
natives from γ before h0, x − 1 alternatives from γ before h2, and y − 2 alternatives
from γ before h1. As every item in γ before h0, h1, or h2 causes a discordant pair, we get
w+x−1+y−2 discordant pairs due to our indices, and 1 discordant pair from h2 � h1,
giving us a total of w+x+ y− 2 discordant pairs. Counting the discordant pairs in this
manner we get:

∑
η∈P (H)h0�h2�h1

(v(h1, η)− v(h2, η))
φd(η,σ)

Z
=

∑
γ

n−2∑
w=0

n−1∑
x=w+1

n∑
y=x+1

1

Z
(x− y)φd(γ,σ∗)+w+x+y−2 (15)

To simplify the exponent, we make a substitution. Let x = a + 1, and let y = b + 2.
Then, for x ∈ {1, ..., n − 1}, a ∈ {0, ..., n − 2}, and for y ∈ {2, ..., n}, b ∈ {0, ..., n − 2}. We
use this substitution, and then consider the worst-case of (a− b− 1) by setting a = 0:

1

Z

n−2∑
w=0

n−1∑
x=w+1

n∑
y=x+1

(x− y)φd(γ,σ∗)+w+x+y−2 =
1

Z

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

(a− b− 1)φd(γ,σ∗)+w+a+b+1

(16)

≥ 1

Z

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

(−1− b)φd(γ,σ∗)+w+a+b+1

(17)

Note that
∑
γ∈P (H\{h0,h1,h2}) φ

d(γ,σ∗) = (1 + φ)(1 + φ + φ2)...(1 + φ + ... + φn−4), and
Z = (1+φ)...(1+...+φn−4)(1+...+φn−3)(1+....+φn−2)(1+...+φn−1). Then, since (1+φ)(1+

φ+φ2) ≤ (1+ ...+φn−3)(1+ ...+φn−2)(1+ ...+φn−1), for n ≥ 3,
∑
γ∈P (H\{h0,h1,h2})

φd(γ,σ∗)

Z ≤
1

(1+φ)(1+φ+φ2) , allowing us to further simplify the bound.
We also note that−1−b is always negative for all values of w, a, b > 0. Thus summing

from a = 0 (resp. b = 0) to n−2 is a lower bound for summing from a = w (resp. b = a) to



n − 2. We then simplify Eq 15 by using the substitution for
∑
γ∈P (H\{h0,h1,h2})

φd(γ,σ
∗)

Z ,
and summing from 0:

1

(1 + φ)(1 + φ+ φ2)

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

(−b− 1)φw+a+b+1

≥ −φ
(1 + φ)(1 + φ+ φ2)

[( n−2∑
w=0

n−2∑
a=0

n−2∑
b=0

bφw+a+b
)
+
( n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

φw+a+b
)]

(18)

Further note that:

n−2∑
w=0

n−2∑
a=0

n−2∑
b=0

bφw+a+b = (

n−2∑
w=0

φw)(

n−2∑
a=0

φa)(

n−2∑
b=0

bφb) (19)

As n→∞, we know that
∑n−2
a=0 φ

a converges to 1
1−φ , as it is simply a geometric series.

It is also well known that
∑n−2
b=0 bφ

b converges to φ
(1−φ)2 .

To get a tighter bound on
∑n−2
w=0

∑n−2
a=w

∑n−2
b=a φ

w+a+b, we do a bit more analysis. First,
we note the following:

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

φw+a+b ≤
n−2∑
w=0

n−2∑
a=0

n−2∑
b=0

→ 1

(1− φ)3
(20)

When summing from a = 0 (resp. b = 0) instead of a = w (resp. b = a), we count any
given φw+a+b thrice (except for w = a = b = 0). Intuitively, this is because we look at all
permutations of the values w, b, a could take, instead of only those such that w ≤ a ≤ b
as required. The full proof is in Appendix A.2, where we show:

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 1

3(1− φ)3
+

2

3
(21)

Thus, as n→∞, the RHS of Eq 18 converges, giving us:∑
η∈P (H)h0�h2�h1

1

Z
(v(h1, η)− v(h2, η))φd(η,σ) ≥

−φ
(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
A lower bound on v(h1, η) − v(h0, η) can be found identically, though switching from

η to η′ incurs an additional discordant pair, giving us:∑
η∈P (H)h0�h2�h1

1

Z
(v(h1, η)− v(h0, η))φd(η,σ) ≥

−φ2

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
This then gives us the final bound for U3a:

U3a ≥ Prµ(r0)(h0)
−φ

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ) (22)



We have considered all cases, and can now combine them together. We add the
bounds for U1 (Eq. 7), U2 (Eq. 11), U3a (Eq. 22), and U3b (Eq. 14) giving us:

U1 + U2 + U3 ≥ Prµ(r0)(h1)(1− φ)Pr(h1 � h0 � h2)

+ Pr(h0 � h1 � h2)
2

1 + φ
(φ− φ3 − φ4)

− Prµ(r0)(h0)Pr(h0 � h2 � h1)
( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

+ Prµ(r0)(h1)(1− φ)Pr(h0 � h2 � h1) (23)

From Corollary 3, we know that Prµ(r0)(h0) =
1

1+φ and Prµ(r0)(h1) =
φ

1+φ . From Corol-
lary 4, we know that Pr(h1 � h0 � h2) = Pr(h0 � h2 � h1) = φ

(1+φ)(1+φ+φ2) and
Pr(h0 � h1 � h2) =

1
(1+φ)(1+φ+φ2) . Substituting this into Eq. 23, we get the final, full

bound for ur1({h0, h1})− ur1({h1, h2}):

ur1({h0, h1})− ur1({h1, h2}) ≥
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ)

+
2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(φ− φ3 − φ4)

− φ

(1 + φ)(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

+
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ) (24)

Thus, Eq. 24 gives us a lower bound for the difference in expected utility between
{h0, h1} and {h1, h2} for resident r1, for all n. Using numerical methods to approximate
the roots of Eq. 24, we get that there is a root at 0, and a root at φ ≈ 0.265074.

We have now proven the bound showing that when 0 < φ ≤ 0.265074, r1 choosing the
interview set {h0, h1} dominates choosing the interview set {h1, h2}. In the appendix,
we provide bounds such that ur1({h1, h2})− ur1({h2, h3}) ≥ 0 if 0 < φ < 0.3550107, and
that ur1({h0, h1}) − ur1({h0, h2}) ≥ 0 if 0 < φ < 0.413633 (the proofs are analogous to
the one presented here). Thus, for the interval 0 < φ ≤ 0.265074, we have successfully
shown that r1’s best move in this interval is to interview with {h0, h1} as required. �

THEOREM 6. Given residents’ valuation function v(h, η) = n − rank(h|η) for any
ranking η and market size n, for a Mallows model with dispersion parameter φ such
that 0 < φ < 0.1707951, if all residents r2f , r2f+1 have interviewed with hospitals
h2f , h2f+1 for f < j, then residents r2j , r2j+1 will interview with hospitals {h2j , h2j+1}.

Proof: We first note that for any hospital ha such that ha �σ h2j , interviewing with
any other hospital dominates interviewing with ha, because the probability r2j or r2j+1

will be matched with ha is 0, as ha is already matched to a more desirable doctor.
Likewise, interviewing with any alternative hb such that h2j+3 �σ hb is dominated by
interviewing with h2j+3.

Resident r2j does best by greedily choosing the top two hospitals left, h2j
and h2j+1. Resident r2j+1 must again investigate the following interviewing sets:
{h2j , h2j+1}, {h2j+1, h2j+2}, {h2j+2, h2j+3}, {h2j , h2j+2}. We provide a proof of the com-
parison between {h2j , h2j+1} and {h2j+1, h2j+2}, leaving the remainder for the ap-
pendix.

We adapt the proof used in Theorem 5. We again break the expected payoff function
into three subcases; unr2j+1

({h2j , h2j+1}) − unr2j+1
({h2j+1, h2j+2}) = U∗1 + U∗2 + U∗3 . For



clarity, let h2j = a0; h2j+1 = a1; h2j+2 = a2. As in the proof for Theorem 5, we look at
three cases, pairing all possible permutations of a0, a1, a2 in the following manner:
Case 1: all rankings consistent with a1 � a0 � a2 or a1 � a2 � a0;
Case 2: all rankings consistent with a0 � a1 � a2 or a2 � a1 � a0;
Case 3: all rankings consistent with a0 � a2 � a1 or a2 � a0 � a1.
We again, for some fixed ranking η derive a ranking η′ by substituting ai for aj in the
ranking, to switch between the paired rankings.

Case 1. This case is completely analogous to Case 1 presented in Theorem 5. The
keystone of the argument is that h0, h1, h2 are all adjacent in the reference ranking σ,
which is again the case with a0, a1, a2. The minimum distance is again the same, and
swapping a0 and a2 again gives us only one additional discordant pair (as a0, a1, a2 are
all adjacent). Therefore, U∗1 ≥

(
φ

1+φ

)(
φ

(1+φ)(1+φ+φ2)

)
(1− φ)

Case 2. This case is likewise completely analogous to Case 2 presented in Theorem
5, for the same reason as above. Thus, U∗2 ≥ Pr(a0 � a1 � a2) 2

1+φ (φ− φ
3 − φ4).

Case 3. We again break this case up in to U∗3a and U∗3b. Again, for the same reasons
as in Cases 1 and 2 in this proof, case U∗3b is identical to the one provided in U3b in
Theorem 5. However, the bound calculated in U3a requires that h0, h1, h2 are in the first
three indices in the reference ranking to accurately calculate the number of discordant
pairs. We modify the bound shown in U3a to be for a0, a1, a2, but in doing so significantly
loosen it. Given empirical findings (described in the next section), we believe it is likely
that U∗ ≥ U , and thus our final bound could be tightened significantly.

To begin, we note that U∗3a is quite similar to U3a:

U∗3a =
∑
η∈P (H)a0�a2�a1

Prµ(r2j)(a0)[(v(a1, η)− v(a2, η))Pr(η|D
φ,σ) + (v(a1, η

′)− v(a2, η′))Pr(η′|Dφ,σ)]

Again, U∗3a is a monotonically decreasing function in n. To get a lower bound we again
analyze convergence as n → ∞. We likewise analyze v(a1, η) − v(a2, η) independently
of v(a1, η)− v(a0, η), though the analysis is again symmetrical. We start with v(a1, η)−
v(a2, η). Note that by construction, we have 2j alternatives that are more desirable
than a0, a1, a2 in reference ranking σ. Fix some ranking γ ∈ P (H \ {a0, a1, a2}).

In the proof for U3a, we noted that h0, h1, h2 were better than all other alternatives,
and so we knew exactly how many additional discordant pairs we were adding. We
do a similar argument here, but must be more careful, as there are 2j elements that
are better than alternatives a0, a1, a2. We again start by summing over all potential
rankings γ ∈ P (H \ {a0, a1, a2}). Again, let σ∗ = σ \ {a0, a1, a2}. We note that the order
of γ is important for two reasons: first, calculating the number of discordant pairs
within γ, and secondly, counting the number of discordant pairs between γ and a2.

Let γ′ be the set of all alternatives γi ∈ γ such that under the reference ranking σ,
γi �σ a0. Let γ′′ be the set of all alternatives γq ∈ γ such that under the reference
ranking σ, a2 �σ γq. By construction, |γ′| = 2j. While the number of discordant pairs
between γ′ � γ′′ and γ have changed, this does not affect the analysis for counting the
discordant pairs when placing a0, a1, a2 in different indices of γ. We now sum over all
indices that we can place a0, a1, a2 in under this new ranking γ′ � a0 � a2 � a1 � γ′′:



∑
η∈P (H)a0�a2�a1

(v(a1, η)− v(a2, η)Pr(η|Dφ,σ) ≥ (25)

n−2j−2∑
w=−2j

n−2j−1∑
x=w+1

n−2j∑
y=x+1

[(2j + x)− (2j + y)]φd(γ,σ∗)+|w|+|y|+|x|−2 (26)

=

n−2j−2∑
w=−2j

n−2j−1∑
x=w+1

n−2j∑
y=x+1

(x− y)φd(γ,σ∗)+|w|+|y|+|x|−2 (27)

Breaking this into two parts, one consisting of when w, x, y are positive, and one
consisting of when w, x, y are negative, we get that:∑

η∈P (H)a0�a2�a1

(v(a1, η)− v(a2, η))Pr(η|Dφ,σ) ≥ −2φ
(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

φ

3(1− φ)3
+

2

3

)
(28)

Likewise:∑
η∈P (H)a0�a2�a1

(v(a1, η)− v(a0, η))Pr(η|Dφ,σ) ≥ −2φ2

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

φ

3(1− φ)3
+

2

3

)
(29)

Combining this all together, we find that this has a zero at roughly 0.1707951. Thus
r2j+1 chooses to interview with {h2j , h2j+1} over {h2j+1, h2j+2} whenever 0 ≤ φ ≤
0.1707961. As in Theorem 5, the interviewing set that imposes the tightest bound on
φ is {h2j , h2j+1}; we leave the remainder of the calculations to the appendix, as they
are symmetrical to those in Theorem 5 with the additional factor of 2 as added here.
Therefore, h2j+1 chooses to interview with {h2j , h2j+1} whenever 0 ≤ φ ≤ 0.1707961, as
required �

COROLLARY 7. Given residents’ valuation function v(h, η) = n − rank(h|η), and a
set of n Mallows models, each with reference ranking σ = h0 � h1 � ... � hn−1, but
each with different dispersion parameter φj such that 0 < φj < 0.1707951, every pair of
residents r2j , r2j+1 interviewing with {h2j , h2j+1} forms an equilibrium.

Proof: This is a direct result of combining Theorems 5 and 6. First, resident r0 must
greedily pick interviewing with the two hospitals with the best expected valuation, h0
and h1. As there is no competition for r0, the payoff function becomes:

ur0(S) =
∑

η∈P (H)

Pr(η|D)max
a∈S

v(a, η)

Then, by Theorem 5, resident r1 interviews with hospitals h0, h1 at φr1 . By Theorem
6, r2, r3 also maximize their expected utility by interviewing with h2, h3. This process
iteratively continues, and by Theorem 6, every pair r2j , r2j+1 maximizes their expected
utility by interviewing with h2j , h2j+1 �.

5. OBSERVATIONS AND CONJECTURES
While Section 4 provides theoretical guarantees for equilibria under specific distribu-
tions and valuation functions, we hypothesize that this natural equilibrium—residents
r2j , r2j+1 interview with h2j , h2j+1 for all j— is present in a much larger range of dis-
tributions and valuation functions.
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We note that Figures 1 and 2 provide evidence that the bounds from Theorems 5
and 6 are loose. The markets in Figures 1 and 2 are small (n ≤ 10), so we can exactly
calculate the payoff function. We find that the φ such that r1 is indifferent between
interviewing with {h0, h1} and {h1, h2} appears to converge quickly to approximately
0.46, as shown in Figure 1. We also find that, contrary to the bound provided in Theo-
rem 6, the value of φ such that r2j+1 is indifferent between {h2j , h2j+1}, {h2j+1, h2j+2}
actually increases as j increases. This is shown in Figure 2. This leads us to the follow-
ing conjecture:

CONJECTURE 8. Given residents’ valuation function v(h, η) = n − rank(h|η), and a
Mallows model with some reference ranking σ = h0 � h1 � ... � hn−1 and dispersion
parameter φ∗ such that 0 < φ∗ ≤ 0.46, every pair of residents r2j , r2j+1 interviewing
with h2j , h2j+1 forms an equilibrium.

We find evidence that the perfect interviewing overlap equilibrium noted in the Lee
and Schwarz paper extends to models that are close to uniform. We provide evidence of
this when n = 4, as shown in Figure 3. The expected payoff of the three best interview-
ing sets are shown as φ increases from almost identical preferences to fully uniform
preferences. Here, we explicitly see the trade-off between more choice (interviewing
with h2, h3 for distributions close to uniform) and expected value. Interestingly, when
φ ∈ [0.5, 0.6], r1’s best option is to split the difference, and interview with one hospital
he is guaranteed to get (h2) and one hospital that will be available with sufficiently
high probability, but has a higher expected value (h1). This choice from r1 also causes
some of the “reach” behavior we see in college admissions markets; r2’s best response
now is to interview with h0, h3 (a “reach” choice, and a “safe” bet). We hypothesize that
there may be many interesting results for preferences located in this parameter range.

We note that the desired n/k complete bipartite interviewing subgraphs equilibrium
as described by Lee and Schwarz appears to hold for two large regions of the distribu-
tion space: when φ is sufficiently close to 0, and when φ is sufficiently close to 1. When
φ is close to 1, residents choose the set that has the least competition; when φ is close
to 0, they choose the set that has the best hospitals. We thus conjecture:
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CONJECTURE 9. Given residents’ valuation function v(h, η) = n − rank(h|η), and
residents’ preferences distributed according to some φ-Mallows model with reference
ranking σ, for φ sufficiently close to 0 or φ sufficiently close to 1, the interview graph
forms n/k complete bipartite components.

We also hypothesize that Theorem 5, Theorem 6, and Corollary 7 can be generalized
to an arbitrary number of interviews. While k = 2 greatly simplifies the payoff function
calculation, the intuition stays the same as the number of interviews increases: when
residents are fairly certain their preferences are all very similar, residents choose to
apply to the best set of hospitals they have non-zero probability of getting matched to.

CONJECTURE 10. Given residents’ valuation function v(h, η) = n−rank(h|η) for any
ranking η and market size n, for a fixed interviewing budget of k interviews, there ex-
ists some φ(k) (which may be dependent on k) such that for all φ with 0 < φ ≤ φ(k),
every block of residents r2j , r2j+1, ..., r2j+k−1 interviewing with the set of hospitals
{h2j , h2j+1, ..., h2j+k−1} forms an equilibrium.

6. CONCLUSION
We investigate equilibria for interviewing with a limited budget when master lists
are present in the market. We provide a generic payoff function, that is indifferent to
both the number of interviews provided and the distribution used, and use this payoff
function to show that a pure strategy equilibrium always exists for this game.

We then focus on this game when residents’ preferences are drawn from the same
distribution and residents are allowed to interview with two hospitals. We show that
there is a naturally arising equilibrium where the maximum number of residents are
matched: residents assortatively interview in tiers, forming an n/k bipartite inter-
viewing graph structure seen in work by Lee and Schwarz. However, this structure
naturally arises in our model, and we characterize a very different preference space
than the Lee and Schwarz paper, which investigates the impartial culture model.

This work raises a number of interesting questions. First, we believe that the bounds
on the Mallows model parameters used to characterize the equilibria can be improved,
and conjecture that the assortive equilibrium exists for φ < 0.46. We also hypothesize
that similar results also hold for different valuation functions (e.g. harmonic valua-
tions) and preference distributions (e.g. Plackett-Luce). Perhaps the most important
direction for future work is relaxing the master lists assumption; we hypothesize that
similar equilibria arise if preferences on both sides of the market are distributed ac-
cording to a Mallows model with low dispersion.
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APPENDIX
A.1. Proofs of Mallows Lemmas

LEMMA 11. Given some Mallows model Dφ,σ with fixed dispersion parameter φ and
reference ranking σ given two alternatives ai and aj such that ai �σ aj , then the proba-
bility that a ranking η is drawn from Dφ,σ such that ai �η aj is equal to drawing from
some distribution Dφ,σ′ where σ is a prefix of σ′. By symmetry, this proof also holds
when σ is a suffix of σ′.

Proof: First, let σ be some ranking with p elements, including elements ai and aj . Let
σ′ be a ranking of p+1 elements with σ as its prefix, and an additional element ap added
at the end. We prove this by starting from the definition of Pr(ai � aj |Dφ,σ′), and using
algebraic manipulations to show this is equivalent to the definition of Pr(ai � aj |Dφ,σ).

Pr(ai � aj |Dφ,σ′) =

∑
η′∈P ({a0,...,ap−1,ap})ai�aj φ

d(η′,σ′)

1(1 + φ)...(1 + ...+ φp−1 + φp)
(30)

However, because ai, aj are in ranking σ, the only difference between summing over the
set of all rankings in P ({a0, ..., ap})ai�aj and P ({a0, ..., ap−1})ai�aj is that there are p
times as many rankings, one for each permutation generated by P ({a0, ..., ap−1}), each
one with ap in a different place (and thus a different Kendall-τ distance). Fixing some
η ∈ P ({a0, ..., ap−1}), if ap is in the last rank position (as it is in σ′), the distance is sim-
ply d(η, σ). If ap is in the second-to-last position, we have now added in an additional
discordant pair, so the distance is d(η, σ) + 1. Using this, we generate the following:

Pr(ai � aj |Dφ,σ′) =

∑
η∈P ({a0,...,ap−1})ai�aj

∑p
l=0 φ

d(η,σ)+l

1(1 + φ)...(1 + ...+ φp)
(31)

=

[∑
η∈P ({a0,...,ap−1})ai�aj φ

d(η,σ)
][∑p

l=0 φ
l
]

1(1 + φ)...(1 + ...+ φp)
(32)

=

[∑
η∈P ({a0,...,ap−1})ai�aj φ

d(η,σ)
]
(1 + ...+ φp)

1(1 + φ)...(1 + ...+ φp−1)(1 + ...+ φp)
(33)

=

∑
η∈P ({a0,...,ap−1})ai�aj φ

d(η,σ)

1(1 + φ)...(1 + ...+ φp−1)
(34)

= Pr(ai � aj |Dφ,σ) (35)

�

COROLLARY 12. Given any reference ranking σ and two alternatives ai, aj such that
rank(aj , σ) = rank(ai, σ) + 1, then Pr(ai � aj |Dφ,σ) = 1

1+φ .

Proof: Consider σ = ai � aj , a reference ranking with two elements in it. Then, the
set of all potential rankings such that ai � aj under Dφ,σ is solely the ranking a0 � a1.
By the definition of the Mallows model, this ranking has probability 1

1+φ . We add some
arbitrary prefix σ′ to σ and some arbitrary suffix σ′′ to σ to create a new reference
ranking γ. By Lemma 2, the probability that some η is drawn from Dφ,γ such that
ai �η aj is 1

1+φ as required. �

COROLLARY 13. Given any reference ranking σ and three alternatives aw, ax, ay
such that rank(ax, σ) = rank(aw, σ) + 1 and rank(ay, σ) = rank(ax, σ) + 1 and some



η ∈ P ({aw, ax, ay}), then the probability that we draw some ranking β consistent with η
is: Pr(β|Dφ,σ) = φd(η,aw�ax�ay)

(1+φ)(1+φ+φ2) .

Proof: Consider σ∗ = aw � ax � ay, a reference ranking with three elements in it. The
set of all potential rankings under Dφ,σ∗ such that aw � ax � ay is solely that ranking.
Using the same argument as in Lemma 2, we note that creating some new reference
ranking γ = σ′ � σ∗ � σ′′ and drawing from Dφ,γ does not change the likelihood that
we draw a ranking consistent with aw � ax � ay.

Therefore, the probability that we draw a ranking β consistent with some permuta-
tion η of aw, ax, ay under the distribution Dφ,γ is simply the probability that we drew η

under the distribution Dφ,σ∗ , which is φd(η,σ
∗)

(1+φ)(1+φ+φ2) . �

A.2. Convergence Proof
LEMMA 14. Given 0 < φ < 1:

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 1

3(1− φ)3
+

2

3
(36)

As noted in the paper, as n → ∞,
∑∞
w=0

∑∞
a=0

∑∞
b=0 φ

w+a+b → 1
(1−φ)3 . However, by

dropping a and b all the way down to 0, we are counting many items multiple times.
We want to show that:

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 2

3
+

1

3

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (37)

We investigate 3 cases based on the indices of w, a, b: when all three are different, when
exactly two are equal, and when all are the same.
Case 1: w 6= a 6= b. Let w = r, a = s, b = t. The only valid permutation is r < s < t,
as in

∑∞
w=0

∑∞
a=w

∑∞
b=a φ

w+a+b. However, as
∑∞
w=0

∑∞
a=0

∑∞
b=0 φ

w+a+b allows for all
permutations of r, s, t, we end up adding φr+s+t 6 times.
Case 2: Exactly 2 of w, a, b are equal. Then, there are two integers r, s such that r < s
and the two valid permutations for

∑∞
w=0

∑∞
a=w

∑∞
b=a φ

w+a+b are: w = r, a = r, b = s
and w = r, a = s, b = s. One of these permutations adds up to 2r + s, and the other
adds up to r + 2s. However, when summing over all possible permutations, there are
three permutations that add up to 2r + s, and three that add up to r + 2s, so we are
adding φ2r+s three extra times, and φr+2s three extra times.
Case 3: w = a = b. Note that in this case there are exactly as many permutations in
both. However, note that we have added 6 times as many φr+s+t in Case 1. Then, for
all w > 0 such that w = a = b, there exists some r, s, t such that r + s+ t = 3w. Looking
at all 6 of those permutations such that r + s+ t = 3w and adding in 3w, we now have
7 permutations for

∑∞
w=0

∑∞
a=0

∑∞
b=0 φ

w+a+b when we should have 2. As 7/2 > 3, and
Case 2 also has 3 times as many permutations, we have added 3φw+a+b more than we
should have for any w, a, b except for w = a = b = 0.



This gives us:

3
( ∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b
)
− 2φ0+0+0 ≤

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (38)

3
( ∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b
)
− 2 ≤

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (39)

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 2

3
+

1

3

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (40)

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 2

3
+

1

3(1− φ)3
(41)

A.3. Symmetric Interview Sets Proofs
LEMMA 15. For resident r1, interviewing with {h1, h2} dominates interviewing with

{h2, h3} when 0 < φ < 0.3550107.

We again show this by breaking the utility function into three cases:
Case 1: all rankings consistent with h2 � h1 � h3 or h2 � h3 � h1;
Case 2: all rankings consistent with h1 � h2 � h3 or h3 � h2 � h1;
Case 3: all rankings consistent with h1 � h3 � h2 or h3 � h1 � h2.

Note, for Case 1, there is no difference between choosing h1, h2, or h2, h3, because h2
will always be chosen no matter what resident r0 does.

For Case 2, if η = h1 � h2 � h3 and η′ = h3 � h2 � h1, when µ(r0) = h0, under η,
we are looking at the difference between v(h1, η) − v(h2, η), and under η′, we look at
the difference between v(h3, η) − v(h2, η). Adding η and η′ together gives us a total of:
Prµ(r0)(h0)[v(h1, η) − v(h2, η)](1 − φ). When µ(r0) = h0, there is no difference under η,
but η′ contributes v(h2, η)−v(h1, η). Thus, η′ contributes−Prµ(r0)(h1)[v(h1, η)−v(h2, η)].
Combining this with when µ(r0) = h0, we get the following contribution from Case 2:

Pr(h1 � h2 � h3)
1

1 + φ
(1− φ3 − φ4) (42)

For Case 3, again when µ(r0) = h0, with η we get v(h1, η) − v(h3, η) and with η′ we
get v(h3, η)− v(h1, η), giving us Prµ(r0)(h0)[v(h1, η)− v(h3, η)](1− φ). When µ(r0) = h1,
however, all terms are negative again. Under η, we get v(h3, η) − v(h2, η) and under
η′ we get v(h1, η) − v(h2, η). As in Case 3 in the main body of the paper, we simply let
n→∞, and bound using the bound proved there. This means Case 3 contributes:

Pr(h1 � h2 � h3)
(
Prµ(r0)(h0)(1− φ)− Prµ(r0)(h1)

[ φ

(1− φ)4
+

1

3(1− φ)3
+

2

3
(1 + φ)

]
(43)

This means that our bound is:

ur1({h1, h2})− ur1({h2, h3}) ≥
1

(1 + φ)2(1 + φ+ φ2)

[
(2− φ− φ3 − φ4)− (φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(44)

as required �.



LEMMA 16. For resident r1, interviewing with {h0, h1} dominates interviewing with
{h0, h2} when 0 < φ < 0.413633.

We break the utility function into three cases:
Case 1: all rankings consistent with h0 � h1 � h2 or h0 � h2 � h1;
Case 2: all rankings consistent with h1 � h0 � h2 or h2 � h0 � h1;
Case 3: all rankings consistent with h1 � h2 � h0 or h2 � h1 � h0.

For Case 1, when µ(r1) = h1, r1 is indifferent between the two interviewing sets, so
the difference is:

Pr(h0 � h1 � h2)Prµ(r0)(h0)(1− φ) (45)

For Case 2, when µ(r0) = h0, we again compare h1 and h2 standardly. When µ(r0) =
h1, r1 is indifferent for η, and η′ contributes φ[v(h0, η)− v(h1, η)] > φ[v(h2, η)− v(h1, η)]:

Pr(h1 � h0 � h2)[2(1− φ)− 2φ2] (46)

For Case 3, when µ(r0) = h0, we have the standard case again. When µ(r0) = h1, we
again need to bound as n→∞. Also note, d(η, σ) = d(η′, σ) in this case.

Pr(h1 � h2 � h0)
[
− 2Prµ(r0)(h1)

( φ

(1− φ)4
+

1

3(1− φ)2
+

2

3

)]
(47)

We combine this all to get:
1

(1 + φ)(1 + φ+ φ2)

[
1 + φ− 2φ2 − 2φ3 − 2φ3

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(48)

As required �

LEMMA 17. When r2f , r2f+1 all interview with h2f , h2f+1, both the interview sets
a0, a2 and a2, a3 are dominated by a0, a1.

This proof is identical to the one presented in Theorem 6. Using the two functions
presented in Lemmas 15 and 16, we modify them in the same way as we did in Theorem
6: we keep all positive terms identical, and double any terms that we let go to infinity.

For a2, a3, this means that the difference between a1, a2 and a2, a3 is:
ur2j+1 ({a1, a2})− ur2j+1 ({a2, a3}) ≥

1

(1 + φ)(1 + φ)(1 + φ+ φ2)

[
(1− φ3 − φ4) + (1− φ)− 2φ

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

]
(49)

This difference is greater than 0 whenever 0 < φ < 0.296649.
Likewise, for a0, a2, the difference between a0, a1 and a0, a2 is:

ur2j+1 ({a0, a1})− ur2j+1 ({a0, a2}) ≥
1

(1 + φ)(1 + φ)(1 + φ+ φ2)

[
2 + φ− 2φ2

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(50)

This difference is greater than 0 whenever 0 < φ < 0.439098.
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