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Abstract

While matching markets are ubiquitous, much of the work on stable matching assumes
that both sides of the market are able to fully specify their preferences. However, as the
size of matching markets grow, this assumption is unrealistic, and so there is interest in
understanding how agents may use interviews to refine their preferences over alternatives.
In this paper we study a market where one side (e.g. hospital residency programs) maintains
a common preference master list, while the other side (e.g. residents) have individual
preferences drawn from some distribution. We view the refinement of preferences as a
probabilistic process that instantiates the prior beliefs about the ranking of hospitals. The
question we study is How should residents choose their interview sets, given the choices
of others? We describe a payoff function for this imperfect information game, and show
that this game always has a pure strategy equilibrium. We then focus on the interviewing
problem when the preferences of residents are chosen from a Mallows model. Some empirical
observations of matching with a master list (e.g. students considering high schools in
Mexico) show that the side choosing the interviews will interview assortatively; that is, with
k interviews, each resident group rkj+1, ..., rkj+k interviews with hospitals hkj+1, ..., hkj+k.
For k = 2 and k = 3, we characterize when such assortative interviewing results in a
unique Bayesian equilibrium. Surprisingly, and contrary to some empirical observations as
to how some real-world participants behave in matching markets, for k = 4, assortative
interviewing is not a Bayesian equilibrium. We conjecture that the same (non equilibrium)
is true for all k > 3 and show that this indeed holds for a sufficient small Mallows dispersion
parameter φ > 0.

1. Introduction

Real world matching problems are ubiquitous and cover many domains. One of the most
widely studied matching problems is the canonical stable matching problem (SMP) (Gale
& Shapley, 1962). In this setting, we seek to find a one-to-one matching between two
sets such that no two agents (each one from a different set) would prefer to be matched
with each other, rather than their assigned matching. Finding a stable matching is key
in many real-world matching markets including college admissions, school choice, reviewer-
paper matching, various labor-market matching problems (Niederle, Roth, & Sonmez, 2008),
and, famously, the residency matching problem, where residents are matched to hospital
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programs via a centralized matching program (such as the National Residency Matching
Program, NRMP, in the United States) (Roth, 2002).

This notion of stability, where no one in the market has both the incentive and ability
to change their partner, has been empirically shown to be very valuable for real-world
markets. For example, centralized mechanisms that produced a stable match tended to
halt unraveling in residency matching programs, while unstable mechanisms tended to be
abandoned (Roth, 2002). Many matching markets that produce stable matches implement
the Deferred Acceptance (DA) mechanism, introduced in Gale and Shapley’s seminal paper
(Gale & Shapley, 1962).

However, in many actual matching markets, constraints on allowable outcomes or as-
sumptions on the participants’ underlying preferences need to be explicitly considered, and
there has been growing interest in developing and using AI and multiagent systems tech-
niques in matching markets. Such techniques are used for a variety of reasons; for example,
to compactly represent preferences (e.g. (Gelain, Pini, Rossi, Venable, & Walsh, 2009; Pini,
Rossi, & Venable, 2014)), to handle partial preferences (e.g. (Drummond & Boutilier, 2014;
Rastegari, Condon, Immorlica, & Leyton-Brown, 2013)), to model and reason about quo-
tas imposed on matching outcomes (Goto, Iwasaki, Kawasaki, Kurata, Yasuda, & Yokoo,
2016), and to consider distributional constraints (Kurata, Goto, Iwasaki, & Yokoo, 2017).
For example, to guarantee stability, stable matching mechanisms assume that participants
are able to rank as many options as they wish. However, stable matching mechanisms are
frequently used in markets where the information burden placed upon participants may
be quite severe. Assuming that participants do not have any information burden or inter-
viewing budget is simply not the case in real-world markets: for example, in the NRMP in
2015, 27,293 positions were offered by 4,012 hospital programs (National Resident Matching
Program, 2015), but residents tend to apply to an average of only 11 programs, spending
between $1,000 to $5,000 (Anderson et al., 2000). This implies that, even if resident-
proposing Deferred Acceptance (rp-da) is the mechanism used, residents must be strategic
about what hospital programs they choose to interview with, as they cannot be matched
to a program with which they do not interview. Furthermore, by not carefully choosing
with whom to interview, residents face the possibility of not being matched at all. There
is some significant evidence of this happening, as an aftermarket (SOAP) exists for the
NRMP; with SOAP having matched 1,129 positions to residents in 2015, or 4.14% of the
initial available positions (National Resident Matching Program, 2015). We thus wish to
study interviewing equilibria for matching markets.

In spite of there being many examples where it is not feasible for participants to specify
full preferences over all alternatives, there has been only limited work which has addressed
participants’ strategic considerations (notable exceptions include Chade & Smith, 2006;
Chade, Lewis, & Smith, 2014; Lee & Schwarz, 2009). Similarly, there is little work investi-
gating how people people choose their interviews in practice, though there is some work that
suggests people tend to interview assortatively (i.e. in tiers): the best candidates apply to
the best schools/hospitals, and the worst candidates apply to the worst schools/hospitals
(e.g. Ajayi, 2011).

In this paper, using the residency matching problem as a motivating example, we ini-
tiate a study of the equilibrium behaviour of participants who must decide with whom to
interview, knowing they are participating in a centralized matching market running the
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resident-proposing deferred acceptance algorithm. In particular, under the assumption that
hospitals maintain a master list, a commonly known fixed ranking over all residents (e.g.
according to grade-point average), and that residents can interview with at most k hospi-
tals, we study which subset of hospitals residents will choose to interview and then rank.
Following convention, we assume that it is the residents who are using interviews to refine
their preferences, but note that our choice of which side has the master list (and which side
chooses their interviews) is arbitrary and does not change our findings. Many real-world
matching markets use master lists; for example, university entrances in Turkey and China
are determined by test scores (Hafalir, 2008; Zhu, 2014), as is high-school choice in Mexico
City and Ghana (Chen & Pereyra, 2015; Ajayi, 2011).1 We will show that this interview
game is a complex game in terms of understanding its equilibrium behaviour and more
specifically the size k of the interview budget will significantly impact the nature of the
resulting equilibria.

We first formalize a payoff function for any resident in this game and show that a pure
strategy equilibrium always exists under general conditions on the distributions and valu-
ation functions from which residents’ underlying preferences are drawn. We then turn to
investigating when assortative interviewing forms an equilibrium, under various assump-
tions regarding residents’ preferences. We instantiate residents’ preferences as drawn from
a φ-Mallows model (i.e. resident’s idiosyncratic preferences are described as a noisy univer-
sal ranking). Under this setting, we provide a condition that is necessary and sufficient to
guarantee assortative interviewing. We further instantiate agents’ valuation functions using
classes of scoring rules from the social choice literature (Brandt et al., 2016), for which
there exists some evidence suggesting they may approximate the structure of participants
preferences (Loewenstein et al., 1989; Messick & Sentis, 1985). We study the interplay be-
tween valuation-function structure, interview-budget size and assortative interviewing. For
small interviewing budgets (of size 2 or 3), assortative interviewing may be an equilibrium
depending on the valuation functions of residents and if the dispersion is not too large.
However, for larger interviewing budgets our results indicate that assortative interviewing
is not an equilibrium.

2. Related Research

While there is a large body of research on the problem of finding stable matchings for
various markets and market conditions (including when master lists are present, e.g. (Irving,
Manlove, & Scott, 2008)), there has been significantly less work on the interviewing problem
in which we are interested. Interviews are information-gathering activities and one research
direction has looked at interviewing policies which attempt to minimize the number of
interviews conducted while ensuring that a stable matching is found. Rastegari et al. showed
that while finding the minimal interviewing policy is NP-hard in general, there are special
cases where a polynomial-time algorithm exists (Rastegari et al., 2013). They also provide
a model for minimal interviewing, and an MDP framework for minimal interviewing (with
no fixed budget). Drummond and Boutilier looked at a similar problem, using minimax

1. We further note that stating our problem using master lists also provides results for other problems: this
problem can be re-contextualized as a serial dictatorship mechanism with known picking order (Bade,
2015).
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regret and heuristic approaches for interviewing policies (Drummond & Boutilier, 2014).
Neither of these papers study strategic issues arising when agents get to choose with whom
they wish to interview.

Motivated by the college admissions problem, Chade and co-authors have looked at how
students may strategically apply to colleges, where they assume that there is an agreed-upon
ranking of the colleges, but that students’ quality or caliber is determined by a noisy sig-
nal (Chade & Smith, 2006; Chade et al., 2014). This work investigates how students decide
where to apply in a decentralized market. We instead focus on centralized matching markets
which result in stable matchings. (Coles et al., 2010) discuss signalling in matching mar-
kets. They assume that agents’ preferences are distributed according to some (restricted)
distributions, known a priori, and each agent knows their own preferences. Firms can make
at most one job offer, and workers can send one signal to a firm indicating their interest,
paralleling, in some sense, a very restricted interviewing problem. Under this setting, firms
can often do better than simply offering their top candidate a job, though there are also
examples where signalling may be harmful (Kushnir, 2013). Again, the market structure in
these works is quite different than the centralized matching markets we are interested in.

The work most closely related to the problem in this paper is by (Lee & Schwarz, 2009).
They studied an interviewing game where firms and workers (or hospitals and residents)
interview with each other in order to be matched. They formulate a two-stage game where
firms were required to first choose workers to interview for some fixed cost. The interview
action reveals both workers’ and firms’ preferences, which are then revealed to a market
mechanism running (firm-proposing) DA. They showed that if there is no coordination
then firms’ best response is picking k workers at random to interview. However, if firms
can coordinate then it is best for them to each select k workers so that there is perfect
overlap (forming a set of disconnected complete bipartite interviewing subgraphs). This
result relies heavily on the assumption that all firms and workers are ex-ante homogeneous,
with agents’ revealed preferences being idiosyncratic and independent. This assumption
is very strong; for the results to hold either agents have effectively no information about
their preferences before they interview, or the market must be perfectly decomposable into
homogeneous sub-markets that are known before the interviewing process starts. In this
paper we study a similar interviewing game, but use a different (and we believe, more
realistic) set of assumptions on the structure and knowledge of preferences.

3. Model

There are n residents and n hospital programs. The set of residents is denoted by R =
{r1, ..., rn}; the set of hospital programs is denoted by H = {h1, ..., hn}. Both hospitals and
residents have (strict) preferences over each other, and we let H� and R� denote the sets of
all possible preference rankings over H and R respectively. We are interested in one-to-one
matchings which means that residents can only do their residency at a single hospital, and
that hospitals can accept at most one resident. A matching is a function µ : R∪H → R∪H,
such that ∀r ∈ R, µ(r) ∈ H ∪ {r}, and ∀h ∈ H, µ(h) ∈ R ∪ {h}. If µ(r) = r or µ(h) = h
then we say that r or h is unmatched. A matching µ is stable if there does not exist some
(r, h) ∈ R×H, such that h �r µ(r) and r �h µ(h).
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We assume that hospitals have identical preferences over all residents, which we call the
master list, �H . Without loss of generality, let �H= r1 � r2 � . . . � rn where ri �H rj
means that ri is preferred to rj , according to �H . We further assume that the master
list is common knowledge to all members of H and R. That is, all hospitals agree on
the preference ranking over residents and each resident knows where they, and all others,
rank in the list. While each resident, r, has idiosyncratic preferences over the hospitals,
we assume that these are drawn i.i.d. from some common distribution D , and that this is
common knowledge. If resident r draws preference ranking η from D , then hi �η hj means
that hi is preferred to hj by r under η. We assume there is some common scoring function
v : H ×H� 7→ R, applied to rankings η drawn from D such that, given any η ∈ H� with
hi �η hj , v(hi, η) > v(hj , η).

Critical to our model is the assumption that residents do not initially know their true
preferences, but can refine their knowledge by conducting a number of interviews, not
exceeding their interviewing budget k. We let I(rj) ⊂ H denote the interview set of resident
rj , and |I(rj)| ≤ k for some fixed k ≤ n. Once rj has finished interviewing, rj knows her
preference ranking over I(rj). She then submits this information to the matching algorithm,
resident-proposing deferred acceptance (rp-da). The matching proceeds in rounds, where in
each round unmatched residents propose to their next favourite hospital from their interview
set to whom they have not yet proposed. Each hospital chooses its favourite resident
from amongst the set of residents who have just proposed and its current match, and the
hospital and its choice are then tentatively matched. This process continues until everyone
is matched. The resulting matching, µ, is guaranteed to be stable, resident-optimal, and
hospital-pessimal (Gale & Shapley, 1962). This matching is also guaranteed to be unique, as
stable matching problems with master lists have unique stable solutions (Irving et al., 2008).
Thus our results directly hold for any mechanism that returns a stable match, including
hospital-proposing deferred acceptance, and the greedy linear-time algorithm (Irving et al.,
2008).

3.1 Description of the Game

We now describe the Interviewing with a Limited Budget game. We attempt to formalize
this game in a manner consistent with previous literature on interviewing, particularly with
Rastegari et al. (2013):

1. Each resident r ∈ R simultaneously selects an interviewing set I(r) ⊂ H, based on
their knowledge of D and the hospitals’ master list �H , where |I(r)| ≤ k.

2. Each resident, r, interviews with hospitals in I(r) and discovers their preferences over
members of I(r).

3. Each resident reports their learned preferences over I(r) and reports all other hospitals
as unacceptable. Each hospital reports the master list to a centralized clearinghouse,
which runs resident-proposing deferred acceptance (rp-da), resulting in the matching
µ.
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3.2 Payoff function for Interviewing with a Limited Budget

Let M be the set of all matchings, and let µ denote the ex-post matching resulting from
all agents playing the Interviewing with a Limited Budget game. In order for resident rj to
choose their interview set I(rj) ⊂ H, she has to be able to evaluate the payoff she expects
to receive from that choice, where the payoff depends on both the actual preference ranking
she expects to draw from D , the interview sets of the other residents, and the expected
matching achieved from the mechanism as described. Crucially, we observe that rj need
only be concerned about the interview set of resident ri when ri �H rj . If rj �H ri then,
because we run rp-da, rj would always be matched before ri with respect to any hospital
they both had in their interview set. Thus, we can denote rj ’s expected payoff for choosing
interview set S by: urj (S) = urj (S|D , I(r1), ..., I(rj−1)).

Given fixed interviewing sets I(r1), ..., I(rj−1), and some partial matchingm = µ|r1,...,rj−1
,

we must compute the probability that m happened via rp-da. Let m(ri) denote who res-
ident ri is matched to under m. For any ri, there is a set of rankings consistent with ri
being matched with m(ri) under rp-da (and the hospitals’ master list �H). Denote this
set as T (ri,m). Formally, T (ri,m) ⊆ H� is:

T (ri,m) = {ξ ∈ H�|∀h′ ∈ H s.t. h′ ∈ I(ri) ∧ h′ �ξ m(ri), ∃ra s.t. ra �H ri ∧m(ra) = h′}

Given the interviewing sets of residents r1, . . . , rj−1, the probability of partial match m is

P (m|I(r1), ..., I(rj)) =
∏

ri∈{r1,...,rj−1}

∑
ξ∈T (ri,m)

P (ξ|D). (1)

where P (ξ|D) is the probability that some resident drew ranking ξ ∈ H� from D .
Using Eq. 1, we can now determine the probability that some hospital h is matched to rj

using rp-da, when rj has interviewed with set S, and has preference list η. We simply sum
over all possible matches in which this could happen. Because rp-da is resident optimal,
and all hospitals share a master list, any hospital that rj both interviews with and prefers
to h must already be matched. We formally define the set of such (partial) matchings,
M∗(S, η, I(r1), ..., I(rj−1)):

M∗(S, η,I(r1), ..., I(rj−1), h) = {m ∈M |m(rj) = h; ∀ri ∈ {r1, ..., rj−1}m(ri) ∈ I(ri);

and ∀x ∈ S, if x �η h,∃ri ∈ {r1, ..., rj−1} s.t. x ∈ I(ri) and m(ri) = x}

Thus, the probability that h is matched to rj using rp-da given η, S, and the inter-
viewing sets for all residents preferred to rj on the hospitals’ master list is

P (µ(h) = rj |η, S, I(r1), ..., I(rj−1)) =
∑

m∈M∗(S,η,I(r1),...,I(rj−1),h)

P (m|I(r1), ..., I(rj−1)). (2)

For readability, we will frequently refer to P (µ(h) = rj |η, S, I(r1, ..., I(rj−1))) as P (µ(h) =
rj |η, S). Finally, we have all of the building blocks to formally define the payoff function.
Recall that v(h, η) is the imposed utility function, dependent on η: for any given η, v(h, η)
is fixed. Then, our payoff function is:

urj (S) =
∑
h∈S

∑
η∈H�

v(h, η)P (η|D)P (µ(h) = rj |η, S, I(r1), ..., I(rj−1)) (3)
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Intuitively, what the payoff function in Eq. 3 does is weight the value for some given
alternative by how likely rj is to be matched to that item, given the interview sets of the
“more desirable” residents, r1, . . . , rj−1.

As an illustrative example, imagine there are two residents, r1 and r2, each of whom
have interviewed with hospitals h1 and h2. Resident r1 will be matched with whomever she
most prefers, while r2 will be assigned the other. The probability that r2 will be assigned
h1 is simply the probability that r1 drew ranking h2 � h1, while the probability that r2 is
matched to h2 is the probability that r1 drew ranking h1 � h2.

3.3 Probabilistic Preference Models

While our payoff function formulation, just described, is general in that it can be instantiated
using any scoring function and distribution over rankings, in this paper we are interested
both in general results (e.g. utility function and distribution independent) and results under
particular assumptions on both the scoring function classes and ranking distributions. In
this section we introduce the preference ranking distribution we use, the φ-Mallows model,
and discuss some of its properties.

The φ-Mallows model (or just Mallows model) is characterized by a reference ranking
σ, and a dispersion parameter φ ∈ (0, 1],2 which we denote as Dφ,σ. Let A denote the set
of alternatives that we are ranking, and let A� denote the set of all permutations of A (the
index i ∈ [1, n] in ai ∈ A indicates rank in σ). The probability of any given ranking r is:

P (r|Dφ,σ) =
φd(r,σ)

Z

Here d is Kendall’s τ distance metric, and Z is a normalizing factor; Z =
∑

r′∈A� φ
d(r,σ) =

(1)(1 + φ)(1 + φ+ φ2)...(1 + ...+ φ|A|−1) (Lu & Boutilier, 2011).
As φ→ 0, the distribution approaches drawing the reference ranking σ with probability

1; when φ = 1, this is equivalent to drawing from the uniform distribution. The Mallows
model (and mixtures of Mallows) have plausible psychometric motivations and are com-
monly used in machine learning (Murphy & Martin, 2003; Lebanon & Mao, 2008; Lu &
Boutilier, 2011). Mallows models have also been used in previous investigations of prefer-
ence elicitation schemes for stable matching problems as in (Drummond & Boutilier, 2013,
2014).

For certain results later in the paper, we rely on a number of properties of Mallows
models. To the best of our knowledge, the following have not been stated previously, and
may be of more general interest. The full proofs of these results can be found in the
Appendix.

Intuitively, a Mallows model can be iteratively generated by repeated insertion, where
the random insertion is weighted according to the dispersion parameter. Because of this,
when comparing a small subset of elements in the whole ranking, the probability that
any two given alternatives are in a specific order may not depend on the total number
of alternatives. We discuss this more formally in the following lemmas and corollaries.
Additionally, this repeated insertion procedure can be used to determine the probability

2. A φ-Mallows model is not well defined for φ = 0, but if all residents are guaranteed to draw the reference
ranking, the equilibrium is trivial.
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any given alternative will be placed in a certain slot in any given ranking: we simply look
at the probability it gets inserted in that particular slot, after all other alternatives have
been inserted.

We first observe that adding more alternatives to the beginning or end of a reference
ranking does not change the probability of drawing two alternatives in a given order.

Lemma 1. Given some Mallows model Dφ,σ with a fixed dispersion parameter φ and refer-
ence ranking σ in which ai � aj, the probability that a ranking η is drawn from Dφ,σ such
that ai �η aj is equal to drawing from some distribution Dφ,σ′ where σ is a suffix or prefix
of σ′.

It is useful to instantiate the previous result to the case where two alternatives are
adjacent to each other in the original ranking, ai and ai+1.

Corollary 2. Given any reference ranking σ and two alternatives ai, ai+1,

P (ai � ai+1|Dφ,σ) =
1

1 + φ
.

We similarly extend the previous corollary to include three consecutive items.

Corollary 3. Given any reference ranking σ and alternatives ai, ai+1, ai+2 and some
η ∈ {ai, ai+1, ai+2}�, the probability that some ranking β is drawn from Dφ,σ that is
consistent with η is:

P (β|Dφ,σ) =
φd(η,ai�ai+1�ai+2)

(1 + φ)(1 + φ+ φ2)

It is useful to know the probability that any one alternative will be in any particular
position in a rank ordered list. We show that this is effectively equivalent to ordering all
other alternatives, and then calculating the probability that we can put the alternative in
question in its desired slot.

Lemma 4. The probability that a1 will be ranked in place j is φj−1

1+φ+...+φn−1 . Equivalently,

the probability that an will be ranked in place j is φn−j

1+φ+...+φn−1 . Similarly, the probability aj

will be ranked in first place is φj−1

1+φ+...+φn−1 .

We also find it useful to bound the probability that any two alternatives will be “out of
order” in any given ranking; this will later be used in some of our impossibility results.

Lemma 5. Let η ∈ Dφ,σ be such that aj �η ai for i < j, then P (η) < φj−i

Z .

Finally, we include an observation that follows from the Mallows’ model definition:

Observation 6. If |j − i| > |j − i′|, probability ai is in place j is smaller than probability
ai′ is in place j. Similarly, probability aj is in place i is smaller than probability aj is in
place i′.
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4. General Equilibria for Interviewing Markets with Master Lists

We provide an equilibrium analysis for the game presented in Section 3. We first show that
a pure strategy equilibrium for this game always exists, even under arbitrary distributions
and scoring functions, but may be computationally infeasible to directly calculate. We then
instantiate this model for various distributions and scoring functions, focusing on one family
of distributions: the φ-Mallows model. We provide a necessary and sufficient condition for
assortative interviewing under a Mallows model and then investigate what values of φ and
k will result in assortative interviewing for various scoring functions.

4.1 General Equilibria for Interviewing Markets with Master Lists

We start our analysis by studying the most general form of the Interviewing with a Limited
Budget game, and show that a pure strategy equilibrium always exists.

Theorem 7. A pure strategy equilibrium always exists for the Interviewing with a Limited
Budget game.

Proof. We wish to show that if every resident chooses their expected utility maximizing
interviewing set, this forms a pure strategy. Given any resident rj who is jth in the hospitals’
rank ordered list, rj ’s expected payoff function only depends on residents r1, ..., rj−1. As rj
knows that each other resident ri is drawing from distribution D i.i.d., she can calculate
r1, ..., rj−1’s expected utility maximizing interview set, using Eq. 3. Her payoff function
depends only on D and I(r1), ..., I(rj−1), both of which she now has. She then calculates
the expected payoff for each

(
n
k

)
potential interviewing sets, and interviews with the one

that maximizes her expected utility.

Note that this game has a very sequential nature: each resident’s best response only
depends on the j − 1 agents that are ordered before her in the hospitals’ master list. Thus,
a large portion of the strategy space can be eliminated, as the behaviour of residents rj+1 to
rn do not affect rj ’s payoff. We then continue solving for the best strategy by using iterated
deletion of dominated strategies; r1’s best response is always to interview with I(r1) =
{h1, . . . , hk}; this eliminates many dominated strategies for r2, which in turn eliminates
dominated strategies for r3, and so on. Moreover, when there are no ties between the
payoffs for interviewing with various sets for any given resident, one unique strategy per
player will remain, thus resulting in a unique equilibrium.

We note that Theorem 7 is an existence theorem and does not provide any additional
insight into the equilibrium behaviour, nor does it provide guidance as to how such an
equilibrium might be computed.

We are interested in understanding whether and when a particular class of natural
interviewing strategies form an equilibrium. In particular, if residents have interviewing
budgets of size k, we ask the question Will residents interview assortatively?

Definition 1. We say that an interviewing strategy profile is assortative iff, when residents
have a budget of k interviews, each resident r ∈ {rjk+1, . . . , rjk+k} chooses to interview with
the set of k hospitals {hjk+1, . . . , hjk+k}.

We now show that if assortative interviewing is a best response for resident rk when all
other residents interview assortatively, assortative interviewing is a best response for every
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resident ri when all other residents interview assortatively. In other words, determining
if assortative interviewing is a best response for rk is sufficient to show that assortative
interviewing is a best response for all residents (and is thus an equilibrium for this game).

Proposition 8. Consider an interviewing budget of k interviews, some known distribution
D from which all residents draw their preferences, a scoring function v, and a strategy
profile for residents r1, . . . , rk−1 such that they all interview assortatively. Then, if resident
rk’s best response is to interview assortatively under this setting, it is a best response for
any resident ri to interview assortatively. Moreover, this then forms a unique equilibrium
for this game in this setting.

Proof. We introduce an indicator function to simplify notation for when a hospital is a
resident’s top available choice. For any hospital h and agent i, let bi(h, η) = 1 iff h is
available when ri makes her choice, and is her most-desirable available alternative (i.e.
h �η hj for all other hj available); and 0 otherwise. Directly following from the utility
function, the utility of resident ri when interviewing with hospitals S ⊂ H can thus be
written as:

uri(S) =
∑
h∈S

∑
η∈H�

v(h, η)P (η,D)bi(h, η)

We first discuss some resident ri s.t. i < k (i.e. resident ri is more desirable than
resident rk). Because D can be described by a master list with noise, S = {h1, . . . , hk}
is either equivalent to or dominates any other interviewing set for r1 (as all alternatives
are available to her); thus r1 interviews with S. Suppose assortative interviewing is not
an equilibrium; let ri be the most desirable resident for which he prefers interviewing with
S′ 6= S, and suppose ri �σ rk (i.e. i < k). If all residents except ri interview assortatively,
bi(h, η) ≥ bk(h, η), with the inequality strict for h ∈ S. Hence, if uri(S) < uri(S

′), then
it follows that urk(S) < urk(S′): a contradiction. Thus residents r1, ..., rk−1 interview
assortatively if rk interviews assortatively.

Now, suppose that we have some resident rj s.t. k < j ≤ 2k (i.e. resident rj is less
desirable than resident rk). We now know that all residents r1, ..., rk have interviewed
assortatively. This implies that every hospital h1, ..., hk are completely unavailable. This
allows us to do an inductive argument: remove r1, ..., rk and h1, ..., hk from the market, and
map rj to its equivalent resident in r1, ..., rk. Thus, as shown above, rj has incentive to
interview assortatively, as required.

Note that, as all players have a strictly dominant strategy, this is a unique equilibrium
for this game.

4.2 Interviewing Equilibria Under Mallows Models with Master Lists

In the previous section we proved the existence of a pure strategy equilibria for the inter-
viewing game, and provided some evidence of the existence of an assortative interviewing
equilibrium under very general conditions. In this section, we instantiate the distribution
from which residents are drawing their preferences with a Mallows model in order to gain a
deeper understanding of the results from the previous section. In particular, we provide a
characterization of when assortative interviewing will form an equilibrium for this class of

10
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resident-preferences, without imposing any particular additional restrictions on the utility
functions of the residents.

Before proving our main result in Theorem 11, we provide some observations and lemmas
addressing characteristics of assortative interviewing in Mallows models. We first consider
the situation where all residents draw the reference ranking, σ, with probability 1.3 Any
strategy profile such that each resident ri interviews with hospital hi is an equilibrium in
this case. Thus, trivially, assortative interviewing forms an equilibrium.

For ease of notation, let Ψ = 〈k, φ, v〉 be an instance of the Interviewing with a Limited
Budget game with budget k, a Mallows model with dispersion parameter φ, and a scoring
function v. We then show that if, for resident rk, replacing any alternative hj ∈ {h1, . . . , hk}
with alternative hk+1 is not an improvement to her expected utility, then interviewing with
{h1, . . . , hk} is her best response when she draws her preferences from a Mallows model. This
allows us to greatly simplify the analysis: we must only investigate k possible interviewing
sets, instead of

(
n
k

)
possible interviewing sets to determine if assortative interviewing is the

best strategy for rk.

Lemma 9. Given an Interviewing with a Limited Budget game Ψ = 〈k, φ, v〉, if resident
rk’s expected payoff from interviewing with hospitals {h1, . . . , hk} is higher than her expected
payoff from interviewing with hospitals {h1, . . . , hk+1} \ {hj} for all j ∈ {h1, . . . , hk}, then
resident rk’s best response is to interview with {h1, . . . , hk} ( i.e. assortatively).

Proof. Following the proof in Proposition 8, we use an indicator function to simplify when a
hospital is a resident’s top available choice. For any hospital h, let b(h, η) = 1 iff h is available
for rk, and h �η hj for all other hj available; and 0 otherwise. Directly following from the
utility function, the utility of resident rk when interviewing with hospitals S = {h1, . . . , hk}
can thus be written as:

urk(S) =
∑
h∈S

∑
η∈H�

v(h, η)P (η,Dφ,σ)b(h, η)

As we assume knowledge of the strategies for residents r1, ..., rk−1, we can calculate the
probability that any given hospital is available. We thus can calculate the contribution
of each hospital interview to the total utility, as P (η,Dφ,σ), v(h, η) are known a priori.
Moreover, when r1, ..., rk all interview with the same k hospitals, b(h, η) is equivalent to
P (h avail): resident rk gets whatever hospital r1, ..., rk−1 do not take.

Now, assume there exists some set S′ of hospitals such that urk(S′) > urk(S). Define
S̄ = S \ S′; denote the members of S̄ as h′1, . . . , h

′
l. Also, note that hk+1 must be in S′ \ S,

as S̄ 6= ∅ by hypothesis, and hk+1 dominates all alternatives in {hk+1, . . . , hn}: hk+1 is
available for rk with probability 1 (as is all other alternatives not in S), and has higher
expected value than any other hj s.t. hk+1 �σ hj . Without loss of generality, let h′1 be
the hospital in S̄ that minimizes the benefit gained from swapping some element in S̄ with
one of the more “desirable” elements in S′. More formally, h′1 is the hospital in S̄ that
minimizes

y1 =
∑
η∈H�

P (η|Dφ,σ)b(h′1, η)
[
v(h′1, η)− v(hk+1, η)

]
3. We note that even though the Mallows model is not defined at φ = 0, as φ → 0, the probability of

drawing the reference ranking σ goes to 1.

11
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y1 is the value that is lost when h′1 is the only available hospital from h1, . . . , hk, and
hk+1 must be chosen instead. The value added by choosing hk+1 instead of h′1 is formally:
z1 =

∑
η∈H� P (η|Dφ,σ)b(hk+1, η)v(hk+1). Then, urk(S ∪ {hk+1} \ {h′1}) = urk(S)− y1 + z1.

If y1 ≤ z1, the lemma is proven; for contradiction, suppose z1 − y1 < 0.
Without loss of generality, let h′2 be the hospital in S̄ \ {h′1} that minimizes

y2 =
∑
η∈H�

P (η|Dφ,σ)b(h′2, η)
[
v(h′2, η)−max(v(hk+1, η), v(hk+2, η))

]
=

∑
η∈H�|hk+1�hk+2

P (η|Dφ,σ)b(h′2, η)
[
v(h′2, η)− v(hk+1, η))

]
+

∑
η∈H�|hk+2�hk+1

P (η|Dφ,σ)b(h′2, η)
[
v(h′2, η)− v(hk+2, η))

]
Again, y2 is the benefit we get from h′2, the alternative we are swapping out for hk+2. The
value added from hk+2 is z2 =

∑
η∈H� P (η|Dφ,σ)b(hk+2, η)v(hk+2). Since hk+1 and hk+2

have the same probability of being available, but the expected value of v(hk+1) is more than
that of v(hk+2), we know z2 < z1. Thanks to Corollary 2:∑

η∈H�|hk+1�hk+2

P (η|Dφ,σ)b(h′2, η)
[
v(h′2, η)− v(hk+1, η))

]
=

1

1 + φ
y2

Looking at the equivalent section of y1:∑
η∈H�|hk+1�hk+2

P (η|Dφ,σ)b(h′1, η)
[
v(h′1, η)− v(hk+1, η)

]
>

1

1 + φ
y1

but thanks to y1 minimality:∑
η∈H�|hk+1�hk+2

P (η|Dφ,σ)b(h′2, η)
[
v(h′2, η)− v(hk+1, η)

]
>

∑
η∈H�|hk+1�hk+2

P (η|Dφ,σ)b(h′1, η)
[
v(h′1, η)− v(hk+1, η)

]
and therefore y2 > y1. Thus:

urk(S \ {h′1, h′2} ∪ {hk+1, hk+2}) = urk(S)− y1 + z1 − y2 + z2 < urk(S)− 2y1 + 2z1 < urk(S)

Note that again, all other alternatives in S \ S′ must also have yi such that yi > y1 and
zi < z1, by the construction of y1 and z1. Let l = |S̄|. Thus:

urk(S′) = urk(S \ S̄) +

l∑
i=1

zi − yi < urk(S)− ly1 + lz1 < urk(S)

This contradicts our assumption that urk(S′) > urk(S); thus, if such an S′ exists, y1 ≥ z1,
and showing that S dominates S \ {hj} ∪ {hk+1} is sufficient for all hj ∈ S.

12
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We now provide a necessary and sufficient condition for assortative interviewing to
hold when residents draw their preference from a Mallows model with dispersion φ. Let
P (hi avail) denote the probability that hospital hi is available for resident rk (i.e. residents
r1, ..., rk−1 are all matched to different alternatives). As we assume residents r1, ..., rk−1

interview assortatively, only one of {h1, ..., hk} will be available.

Lemma 10. Given an Interviewing with a Limited Budget game Ψ = 〈k, φ, v〉, if residents
r1, . . . , rk−1 all interview assortatively ( i.e. with hospital set S = {h1, ..., hk}), then assor-
tative interviewing is a best response for resident rk if and only if the following equality is
satisfied for all hj ∈ {h1, ..., hk} when S′ = S \ {hj} ∪ {hk+1}:

P (hj avail)E(v(hj)|Dφ,σ) ≥

P (hj avail)E(v(hk+1)|Dφ,σ) +
∑
η∈H�

P (η|Dφ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

where χ(hi �η hj) is an indicator function that is 1 iff hi �η hj, and 0 otherwise.

Proof. By Lemma 9, showing that the marginal contribution from hj is bigger than the
marginal contribution from hk+1 is sufficient to show that S dominates any other interview-
ing set. Again, S = {h1, ..., hk} and S′ = S \ {hj} ∪ {hk+1}. Using the payoff function in
Section 3.2, this means that we want to find conditions such that the utility to rk provided
by hj is larger than that of hk+1:∑

η∈H�

v(hj , η)P (µ(hj) = rk|S, η,Dφ,σ)P (η|Dφ,σ) ≥

∑
η∈H�

v(hk+1, η)P (µ(hk+1) = rk|S′, η,Dφ,σ)P (η|Dφ,σ) (4)

Note that, when interviewing with set S, the probability µ(hj) = rk is simply the
probability that no resident in r1, ..., rk−1 chooses hj . Thus, the left hand side of Eq. 4
simplifies to:∑

η∈H�

v(hj , η)P (µ(hj) = rk|S, η,Dφ,σP (η|Dφ,σ) = P (hj avail)
∑
η∈H�

v(hj , η)P (η|Dφ,σ)

= P (hj avail)E(v(hj)|Dφ,σ) (5)

We then also wish to simplify the right hand side. Note that there are two cases in
which resident rk is matched with hk+1 when interviewing with set S′: either hj is the
only hospital available (i.e. r1, ..., rk−1 have all been matched with {h1, ..., hk} \ {hj}), or
for some hi ∈ {h1, ..., hk} \ {hj}, hi is available and under the ranking η in consideration,
hk+1 �η hi. Again, χ(y) denote an indicator function, where χ(y) = 1 iff y is true, and 0
otherwise. More formally, we express the RHS of the condition in Eq. 4 using the indicator
function, and simplify:∑

η∈H�

P (η|Dφ,σ) ·
[
v(hk+1, η)P (hj avail) +

∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

= P (hj avail)E(v(hk+1)|Dφ,σ)

+
∑
η∈H�

P (η|Dφ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

(6)
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Combining the simplifications provided in Eqs. 5 and 6 completes the proof.

By combining the lemmas, we can show that we must only check k interviewing sets for
resident rk to prove that assortative interviewing forms an equilibrium for this game (i.e.,
it is each resident’s best response to interview assortatively).

Theorem 11. Given an Interviewing with a Limited Budget game Ψ = 〈k, φ, v〉, satisfying
the inequality found in Lemma 10 for all hj ∈ {h1, ..., hk} is both sufficient and necessary
to show that all residents interviewing assortatively forms an equilibrium for this game.

Proof. This follows directly from combining Proposition 8 and Lemma 10.

We provide a more simplified condition for assortative interviewing, that is sufficient,
though not necessary. This condition is easier to compute than the condition in Lemma
10,and thus may be valuable when verifying whether specific valuation functions admit
assortative interviewing equilibria.

Lemma 12. Given an interviewing budget of k interviews, a dispersion parameter φ, and
a scoring function v, if residents r1, ..., rk−1 all interview assortatively ( i.e. with hospital
set S = {h1, ..., hk}), satisfying the following inequality for all hj ∈ {h1, ..., hk} when S′ =
S \ {hj} ∪ {hk+1} is sufficient to show that assortative interviewing is a best response for
resident rk:

P (hj avail)E(v(hj)|Dφ,σ) ≥ P (hj avail)E(v(hk+1)|Dφ,σ)

+
∑
hi∈S′

P (hi avail)E(v(h′k)|Dφ,σ′)
φ

Z(1− φ)
(7)

(where σ′ is equivalent to the reference ranking σ with one element hi s.t. hj �σ hi
removed, and h′k is the kth item in σ′.)

Proof. We begin from the sufficient and necessary condition stated in Lemma 10. Note that
we can generate any ranking such that hk+1 � hi (for some given i) by iterating over all
permutations of H \ {hi}, and for each permutation, placing hk+1 in every slot above hi.
There are at most n − 1 slots that hi could be placed in (i.e. when hk+1 is drawn as the
last element).

Let σ′ be identical to the reference ranking σ, except with hi removed. Rename every
element after hi such that it corresponds to its current index: in other words, h′j = hj+1

for all j ≥ i. Let η′ be some arbitrary ranking drawn from Dφ,σ′ . Let H ′ = H \ {hi}.
Remember, S′ = {h1, ..., hk+1} \ {hj}. Thus, we note that:∑

η∈H�

∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)P (η|Dφ,σ)

≤
∑
hi∈S′

[
P (hi avail)

( ∑
η′∈H′�

v(h′k, η
′)P (η′|Dφ,σ′)(

n∑
l=1

φl

Z
)
)]

(8)
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However, note that φl is a geometric series. We let n→∞, giving us:

∑
hi∈S′

[
P (hi avail)E(v(h′k)|Dφ,σ′)

n∑
l=1

φl

Z

]
≤
∑
hi∈S′

P (hi avail)E(v(h′k)|Dφ,σ′)
φ

Z(1− φ)
(9)

Thus, because Eq 9 is an upper bound, it is sufficient to show the following, as required:

P (hj avail)E(v(hj)|Dφ,σ) ≥ P (hj avail)E(v(hk+1)|Dφ,σ)

+
∑
hi∈S′

P (hi avail)E(v(h′k)|Dφ,σ′)
φ

Z(1− φ)
(10)

While we have focussed on existence of assortative interviewing in this section, we do
note that other interviewing equilibria may also exist. For example, if φ = 1 in the Mallows
model, then residents draw rankings from the uniform distribution. The outcome, first
noted by Lee and Schwarz under a different model (Lee & Schwarz, 2009), residents and
hospitals are divided into n/k subsets and matched inside those subsets, also forms an
equilibrium.

Observation 13. When residents draw their preferences iid from the uniform distribution,
and hospitals have a master list, an equilibrium exists such that the interviewing graph
forms n/k complete disjoint bipartite subgraphs. Moreover, any resident rik+j interviews
with hospitals {h(j−1)k+1, . . . , hjk}.

This follows from the condition in Lemma 10. As we are drawing from a uniform
distribution, E(v(hj)|D) is identical for any hospital hj , eliminating all terms involving the
valuation function, simply leaving probabilities that any alternative is available. Note that
now r1 is indifferent between any alternatives, as she has equal likelihood (probability 1) to
get any of them; say she chooses h1, ..., hk. Then, h2 prefers hk+1, ..., h2k, as he is indifferent
between any alternatives that r1 has not interviewed with. This process continues until the
desired structure is formed.

5. Assortative Equilibria for Small Budgets

We now discuss assortative equilibria when participants’ interviewing budget is k ≤ 3. To
ground the work we instantiate the scoring or utility functions of the residents using different
classes of scoring rules. In particular, we look use three different scoring rules, inspired by
the social choice literature, in order to better ascertain the effect of resident utility-structure
on assortative equilibria.

The first function we consider is plurality-based, where v(s1) = 1 and v(si) = 0 for all
i > 1.4 This utility function captures extreme situations where residents only get utility
from being matched to their top choice. The second function we consider is Borda-based. In
this function, residents’ utility drops linearly in proportion to the rank of the alternative to

4. We define all scoring rules with a multiplicative factor of 1, and an additive factor of 0, as these terms
do not affect the analysis.
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which they are matched. Formally, for any slot si, v(si) = n−i+1 where n is the number of
alternatives (hospitals) in the market. Finally, we investigate a scoring function in between
plurality and Borda. The exponential scoring function allows for utility to exponentially
decrease as a resident is matched to a lower ranked alternative; v(si) = ( ε2)i−1, 0 < ε < 1.

Our first result is a condition for when a resident with plurality-based scoring functions
will interview assortatively.

Lemma 14. A necessary and sufficient condition for assortative interviewing under plu-
rality is:

P (hj avail) ≥ φk−j+1 (11)

Proof. We begin with the condition in Lemma 10:

P (hj avail)E(v(hj)|Dφ,σ) > (12)

P (hj avail)E(v(hk+1)|Dφ,σ) +
∑
η∈H�

P (η|Dφ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

(13)

We instantiate this condition for the plurality function, noting that v(h, η) > 0 iff h is
top-ranked in η. This allows us to greatly simplify Eq. 13:

P (hj avail)E(v(hk+1)|Dφ,σ) +

j−1∑
i=1

P (hi avail)E(v(hk+1)|Dφ,σ)

+

k∑
i=j+1

P (hi avail)E(v(hk+1)|Dφ,σ) =

k∑
i=1

P (hi avail)E(v(hk+1)|Dφ,σ) (14)

But, again, as the expected value for any hj is simply the probability that hj is in s1

this further simplifies to:

P (hk+1 in s1)
k∑
i=1

P (hi avail) = P (hk+1 in s1)

Note that
∑k

i=1 P (hi avail) = 1 as all residents r1, ...rk−1 have been matched with
exactly k − 1 hospitals in h1, ..., hk, leaving exactly one hospital left with probability 1.
Applying Lemma 4:

P (hj avail)
φj−1

1 + ...+ φn−1
≥ φk

1 + ...+ φn−1

P (hj avail) ≥φk−j+1 (15)

We note that there is a strong relationship between the strategic behaviour of plurality-
based residents and exponential-based residents. In particular, if assortative interviewing
is an equilibrium for plurality, then there exists some set of exponential valuation functions
that likewise admit an assortative interviewing equilibrium.

16



Interviewing Equilibria in Matching

Lemma 15. If for a given interviewer budget k and dispersion parameter φ, the condition
of Lemma 14 is satisfied for a plurality valuation function with a strict inequality, then there
exist exponential valuations under which assortative interviewing is an equilibrium.

In particular, any exponential valuation dominated by ( ε2)(i−1) satisfies this condition,
with ε > 0 determined by k.

Proof. Looking at the condition of Lemma 10

P (hj avail)E(v(hj)|Dφ,σ) ≥

P (hj avail)E(v(hk+1)|Dφ,σ) +
∑
η∈H�

P (η|Dφ,σ)
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

We will first expand the value expectation (E):

P (hj avail)
n∑
i=1

P (hj in si)v(si) (16)

≥ P (hj avail)

n∑
i=1

P (hk+1 in si)v(si) +
∑

η∈H�|
hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(s1)

+ . . .+
∑

η∈H�|
hk+1 in sn−1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(sn−1) (17)

Note that for any 1 ≤ ` ≤ n,

v(s`) > P (hj avail)P (hj in s`)v(s`)+
∑
η∈H�|

hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(s`)

Thus, combining Eq. 17 and Lemma 10, it is sufficient to show the following holds whenever
plurality admits an assortative interviewing equilibrium:

P (hj avail)P (hj in s1)v(s1) ≥ P (hj avail)P (hk+1 in s1)v(s1) +
n∑
`=2

v(s`) (18)

We assume that for plurality valuation, the condition has a strict inequality. In other
words:

P (hj avail)P (hj in s1) > P (hj avail)P (hk+1 in s1)

Hence, there is an ε̄ ≤ 1 such that for all 1 ≤ j ≤ k,

P (hj avail)P (hj in s1)− ε̄ > P (hj avail)P (hk+1 in s1)

Now, for ε < ε̄
2 , examine the valuation function v(s`) = ε`−1. Note that

∑n
`=2 ε

`−1 ≤∑∞
`=1 ε

` = ε
1−ε ≤ 2ε. This simplifies such that it satisfies Eq. 18, as required:

P (hj avail)P (hj in s1) > P (hj avail)P (hk+1 in s1)+2ε ≥ P (hj avail)P (hk+1 in s1)+
n∑
`=2

v(s`)
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5.1 Assortative Interviewing with Two Interviews

We start by studying the case where residents are only allowed to interview with 2 hospitals.
We show that for sufficiently small dispersion, φ, in the Mallows model from which residents
are drawing their preferences, assortative interviewing is an equilibrium for plurality-based,
Borda-based, and exponential scoring functions. Furthermore, we show that the equilibrium
is sensitive to both the dispersion and the structure of the scoring functions.

Theorem 16. Given plurality as residents’ scoring function and a budget of k = 2 in-
terviews, for a Mallows model with dispersion parameter φ such that 0 < φ ≤ 0.6180,
assortative interviewing forms an equilibrium.

Proof. We begin by using the condition from Lemma 14. We provide the calculation for
h1; h2 follows analogously (providing a bound of 0 < φ ≤ 0.7549). We thus wish to show
conditions on φ s.t. P (h1 avail) ≥ φ2, when resident r2 is choosing their interview set. For
r2, h1 is available iff r1 happened to draw a ranking over her preferences s.t. h2 � h1. Then,
by Corollary 2, P (h1 avail) = φ

1+φ , implying we need to satisfy the equation φ
1+φ ≥ φ2,

which is true whenever 0 < φ ≤ 0.6180.

Though we do not formally state it, combining Theorem 16 and Lemma 15 shows that for
exponential, when 0 < φ < 0.6180, there exists an ε such that if residents’ scoring function
is an exponential function dominated by ( ε2)(i−1) with ε > 0, assortative interviewing is an
equilibrium for that φ.

We now similarly show that when k = 2, assortative interviewing is also an equilibrium
for Borda. We again directly compute the expected payoffs for the interviewing sets in
question, finding that {h1, h2} has the highest expected payoff (and is thus a best response).

Theorem 17. Given Borda as residents’ scoring function and a budget of k = 2 inter-
views, for a Mallows model dispersion parameter φ such that 0 < φ ≤ 0.2650, assortative
interviewing forms an equilibrium.

Proof. We begin by noting that, because of Lemma 8, we only need to show that assortative
interviewing is an equilibrium when 0 < φ ≤ 0.265074 for resident r2, and it will hold for all
ri. Furthermore, by Lemma 9, we only need to prove that {h1, h2} dominates both {h1, h3}
and {h2, h3} to show that it dominates all other possible interviewing sets of size 2.

We prove that choosing {h1, h2} is better than choosing {h2, h3}, for all values of φ
such that 0 < φ ≤ 0.265074. We prove this by summing over all possible preference
rankings that induce a specific permutation of the alternatives h1, h2, h3. We then pair
these summed permutations in such a manner that makes it easy to find a lower bound for
ur2({h1, h2})− ur2({h2, h3}). This lower bound is entirely in terms of φ, meaning that for
any φ such that this bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations of h1, h2, h3 as follows:
Case 1: all rankings η consistent with h2 � h1 � h3 or η′ consistent with h2 � h3 � h1;
Case 2: all rankings η consistent with h1 � h2 � h3 or η′ consistent with h3 � h2 � h1;
Case 3: all rankings η consistent with h1 � h3 � h2 or η′ consistent with h3 � h1 � h2.

Note that as we have enumerated all possible permutations of h1, h2, h3, these three
cases generate every ranking in H�. Furthermore, for any one of the three cases, we can
iterate over only all possible rankings η that are consistent with the first member of the
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pair, and generate the ranking η′ consistent with the second member of the pair by simply
swapping two alternatives in the rank. Moreover, given some η, the number of discordant
pairs in η′ is simply the number in η, plus the number of additional discordant pairs between
h1, h2, h3 caused by swapping the two alternatives.

For clarity, let ur2({h1, h2})−ur2({h2, h3}) = U1 +U2 +U3, where U1, U2, U3 correspond
to our three cases. We also introduce the notation Pµ(ri)(h) to denote the probability that
ri is matched to hospital h under matching µ. That is, Pµ(ri)(h) = P (µ(ri) = h).

Case 1. Because we have fixed h2 � h1 � h3 or h2 � h3 � h1, we know exactly
what r2’s match will be. As we know r1’s interviewing set ({h1, h2}), and the distribution
r1’s preferences are drawn i.i.d., we know the likelihood that either h1 or h2 is available;
by Lemma 2, P (µ(r1) = h1) = 1

1+φ . Using this information, the payoff function, and the

definition of η, η′, we find a lower bound:

U1 =
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)
[
(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η

′)− v(h2, η
′))Pr(η′|Dφ,σ)

]
U1 ≥ Pµ(r1)(h2)(1)(1− φ)P (h2 � h1 � h3) =

(
φ

1 + φ

)(
φ

(1 + φ)(1 + φ+ φ2)

)
(1− φ)

(19)

Case 2. We fix h1 � h2 � h3 or h3 � h2 � h1. This case is analogous to Case 1:

U2 =
∑
η∈P (H)h0�h1�h2

Prµ(r0)(h0)
[
(0)Pr(η|Dφ,σ) + (v(h1, η

′)− v(h2, η
′))Pr(η′|Dφ,σ)

]
+ Prµ(r0)(h1)

[
(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η

′)− v(h2, η
′))Pr(η′|Dφ,σ)

]
U2 ≥ P (h1 � h2 � h3)

2

1 + φ
(φ− φ3 − φ4) (20)

Case 3. We fix h1 � h3 � h2 or h3 � h1 � h2. Again, we look at pairs of rankings
η, η′, where η is consistent with h1 � h3 � h2, and η′ is identical to η, except rank(h1, η) =
rank(h3, η

′), and rank(h3, η) = rank(h1, η
′).

Then, as before, we sum over all possible rankings consistent with h1 � h3 � h2, but
we break this into two subcases, so that U3 = U3a + U3b:

U3a =
∑
η∈H�|h1�h3�h2

Pµ(r1)(h1)[(v(h2, η)− v(h3, η))P (η|Dφ,σ) + (v(h2, η
′)− v(h3, η

′))P (η′|Dφ,σ)]

U3b =
∑
η∈H�|h1�h3�h2

Pµ(r1)(h2)[(v(h1, η)− v(h3, η))P (η|Dφ,σ) + (v(h1, η
′)− v(h3, η

′))P (η′|Dφ,σ)]

Case U3b is similar to Cases 1 and 2:

U3b =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)[(v(h0, η)− v(h2, η))
φd(η,σ)

Z
+ (v(h2, η)− v(h0, η))

φd(η,σ)+1

Z

U3b ≥
φ

φ+ 1
(1− φ)P (h1 � h3 � h2) (21)
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Case U3a, however, is different from all other cases, in that all terms are negative. We
note that U3a as above is a monotonically decreasing function in terms of n. Thus, if U3a

converges as n→∞, we have found a lower bound for all n. Using this technique, we show
the following bound holds:

U3a ≥ Pµ(r1)(h1)
−φ

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ) (22)

We have considered all cases, and can now combine them together. We add the bounds
for U1 (Eq. 19), U2 (Eq. 20), U3a (Eq. 22), and U3b (Eq. 21). We simplify using Corollaries
2 and 3, giving us:

ur2 ({h1,h2})−ur2 ({h2,h3})≥ φ2

(1+φ)(1+φ)(1+φ+φ2)
(1−φ)+

2(φ−φ3−φ4)
(1+φ)(1+φ)(1+φ+φ2)

− φ

(1+φ)(1+φ)(1+φ+φ2)

(
φ

(1−φ)4
+ 1

3(1−φ)3
+ 2

3

)
(1+φ)

+ φ2

(1+φ)(1+φ)(1+φ+φ2)
(1−φ) (23)

Thus, Eq. 23 gives us a lower bound for the difference in expected utility between
{h1, h2} and {h2, h3} for resident r2, for all n. Using numerical methods to approximate
the roots of Eq. 23, we get that there is a root at 0, and a root at φ ≈ 0.265074.

As the calculations are analogous, we omit the discussion of their derivation, but it can
be shown that:

ur2 ({h1,h2})−ur2 ({h1,h3}) ≥ 1
(1+φ)(1+φ+φ2)

[
1+φ−2φ2−2φ3−2φ3

(
φ

(1−φ)4
+ 1

3(1−φ)3
+ 2

3

)]
(24)

Using numerical methods, it can be shown that this is positive for 0 < φ < 0.413633.
Thus, for the interval 0 < φ ≤ 0.265074, we have shown that r2’s best move in this

interval is to interview with {h1, h2}. Then, by Lemma 8, this is an equilibrium for all ri
as required.

5.2 Assortative Interviewing with Three Interviews

Interestingly, when residents can interview with up to three hospitals, assortative interview-
ing continues to be an equilibrium for plurality-based and exponential scoring functions but
is no longer an equilibrium if residents have Borda-based scoring functions.

We begin with the counter-example for Borda and k = 3. In particular, assortative
interviewing is not an equilibrium for a market with 4 residents, 4 hospitals, and 3 interviews.
We prove this by directly computing the marginal value for interviewing with h1 instead
of interviewing with h4. In our example, for all φ > 0 the expected marginal value for
interviewing with h4 is better than interviewing with h1, assortative interviewing cannot be
an equilibrium.

Theorem 18. Assortative interviewing is not always an equilibrium under the Borda val-
uation function for any 0 < φ ≤ 1.

Proof. We provide a counterexample for n = 4, k = 3. Suppose residents r1 and r2 interview
assortatively, both interviewing with S = {h1, h2, h3}. We show that for resident r3, inter-
viewing with interviewing set S′ = {h2, h3, h4} dominates interviewing with S = {h1, h2, h3}
for all φ.
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By Lemma 9, it is sufficient to show that if the marginal value in interviewing with
h4 dominates the marginal value in interviewing with h1 (as these two sets only differ
by these two items), then interviewing with {h2, h3, h4} dominates {h1, h2, h3}. We thus
instantiate Equation 4 for n = 4, k = 3, S, and S′ as above for resident r3. Note that
Z = (1 +φ)(1 +φ+φ2)(1 +φ+φ3). Let E(u(hi, S)) denote the expected marginal value in
interviewing alternative hi in set S; remember v(si) = 5− i.

E(u(h1, S)) =
∑
η∈H�

v(h1, η)P (µ(h1) = r3|S, η,Dφ,σ)P (η|Dφ,σ) (25)

E(u(h4, S
′)) =

∑
η∈H�

v(h4, η)P (µ(h4) = r3|S′, η,Dφ,σ)P (η|Dφ,σ) (26)

As before, Equation 25 is simply the probability that h1 is available times the expected
value of h1. As noted, E(v(h1)|Dφ,σ) =

∑4
i=1 P (h1 in si) · v(si) =

∑4
i=1 P (h1 in si) · (5− i).

However, using Lemma 4, we know that P (h1 in si) = φi−1

1+φ+φ2+φ3
, giving:

E(u(h1, S)) = P (h1 avail)E(v(h1)|Dφ,σ) = P (h1 avail)
4 + 3φ+ 2φ2 + φ3

1 + φ+ φ2 + φ3
(27)

Let P (hi taken) denote the probability that either r1 is matched to hi, or r2 is matched
to hi (i.e. hi is taken by the time we get to resident r3). Also let P (µ(r3) = h4|h4 in si)
denote the probability that r3 is matched to h4 if h4 is in slot si in r3’s ranking. This is
easily calculable by enumerating over the subset of possible rankings such that this occurs,
given that r1 and r2 have already taken certain alternatives. Then, using Lemma 4 again
and an analogous approach as above, we show:

E(u(h4, S
′)) =

4∑
i=1

v(si)P (h4 in si)P (µ(r3) = h4|h4 in si)

=
4φ3

1 + φ+ φ2 + φ3
+

3

Z

(
φ2 + φ3 + P (h2 taken)(φ3 + φ4) + P (h3 taken)(φ4 + φ5)

)
+

2

Z

(
P (h2 taken)(φ+ φ2) + P (h3 taken)(φ2 + φ3) + P (h1 avail)(φ3 + φ4)

)
+

P (h1 avail)

1 + φ+ φ2 + φ3
(28)

As we assume that residents r1 and r2 both interview with S, the probability that h1

is available, or h2 (resp. h3) is taken is the same across both E(u(h1, S)) and E(u(h4, S
′)).

We instantiate these as follows, by determining the probability that r1 is matched to some
hospital hj other than h∗, and enumerate the probabilities of all rankings such that r2 is
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matched to some hospital h′j 6= h∗ given that r1 is matched to hj :

P (h1 avail)=P (µ(r1)=h2|S,Dφ,σ)( φ2

1+φ+φ2+φ3
+φ2+φ3+φ4+2φ5+φ6

Z
)

+P (µ(r1)=h3|S,Dφ,σ)( φ

1+φ+φ2+φ3
+φ3+2φ4+2φ5+φ6

Z
)

P (h2 taken)=P (µ(r1)=h2|S,Dφ,σ)+P (µ(r1)=h3|S,Dφ,σ)( φ

1+φ+φ2+φ3
+φ3+2φ4+2φ5+φ6

Z
)

+P (µ(r1)=h1|S,Dφ,σ)( φ

1+φ+φ2+φ3
+ 1+φ+φ2+φ3+φ4+φ5

Z
)

P (h3 taken)=P (µ(r1)=h3|S,Dφ,σ)+P (µ(r1)=h2)( φ2

1+φ+φ2+φ3
+φ2+φ3+φ4+2φ5+φ6

Z
)

+P (µ(r1)=h1|S,Dφ,σ)( φ2

1+φ+φ2+φ3
+ 1+φ+φ2+φ3+φ4+φ5+φ6

Z
)

We note that it is also possible to calculate exact values for the probability that r1 is
matched to h1, h2, h3. We do this by calculating the probability that alternative is first, or
the probability that alternative is second, and h4 is first:

P (µ(r1) = h1|S,Dφ,σ) = P (h1 in s1) + P (h1 in s2 and h4 in s1) =
1

1 + φ+ φ2 + φ3
+
φ3 + φ4

Z

P (µ(r1) = h2|S,Dφ,σ) = P (h2 in s1) + P (h2 in s2 and h4 in s1) =
φ

1 + φ+ φ2 + φ3
+
φ4 + φ5

Z

P (µ(r1) = h3|S,Dφ,σ) = P (h3 in s1) + P (h3 in s2 and h4 in s1) =
φ2

1 + φ+ φ2 + φ3
+
φ5 + φ6

Z

Note that, by combining the equations for the probabilities, we are left with two
equations that are dependent only on φ. Moreover, after instantiating E(u(h1, S)) and
E(u(h4, S

′) as above, we note that both functions are continuous on the interval (0, 1]. Us-
ing numerical analysis techniques, it can be shown that there are no zeros for the function
E(u(h1, S))−E(u(h4, S

′)) on the interval (0, 1], and the function is negative on the interval
(0, 1] providing the counterexample as required.

By directly computing expected payoffs, we now show that assortative interviewing is
an equilibrium for plurality (and thus exponential) for k = 3:

Theorem 19. Given an interviewing budget of k = 3 interviews, and the plurality scoring
function, assortative interviewing is an equilibrium for 0 < φ ≤ 0.4655.

Proof. For k = 3, we simply check Eq. 11 from Lemma 14 with hj = h1, h2, h3. We find that
the marginal contribution from h1 is less than the marginal contribution of h2 or h3, and
thus only present the calculation for h1. We directly compute P (h1 avail), by multiplying
the probability that r1 did not take h1, and multiplying it by the probability that r2 did not
take h1, given that r1 also did not take h1. To calculate this we enumerate the probabilities
of any possible rankings:

P (h1 avail) = P (µ(r1) 6= h1)P (µ(r2) 6= h1|µ(r1) 6= h1)

P (h1 avail) = (
φ+ 2φ2 + φ3

(1 + φ)(1 + φ+ φ2)
)(

φ2 + 2φ3

(1 + φ+ φ2)
)

Using numerical methods to find the roots of P (h1 avail)−φ3, we can show that Eq. 11
holds when 0 < φ ≤ 0.4655.
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6. Assortative Equilibria for Large Budgets

We begin by showing that when there is a setting for which there is no assortative equilibria
for plurality, then there is no scoring function with assortative equilibria. We use this
result to show that, for sufficiently small dispersion parameter φ and for k > 3 interviews,
assortative interviewing cannot be an equilibrium under any scoring function. We then
provide a specific counterexample for all φ when k = 4 for plurality, implying there is no
assortative equilibrium for any scoring function. This suggests that, for a wide category
of resident valuation functions under a Mallows distribution, contrary to some real-world
behaviour, assortative interviewing is not an equilibrium.5

We provide one additional lemma regarding a bound on the availability of any given
alternative hi at the time resident rk is being matched by the mechanism to her favourite
remaining hospital. This probability is dependent on φ: for any hospital hi such that i < k,
as φ → 1, the probability hi is available goes to 1

k ; as φ → 0, this probability goes to 0.
Instead of looking at the probability directly, we look at the probability that a preference
profile will admit a stable match such that hi is available, and bound that.

Lemma 20. Given a Mallows model with dispersion parameter φ, assortative interviewing
for residents r1, ...., rk−1, and a hospital hi ∈ {h1, ..., hk} ( i.e. the residents’ interview set),
then any profile η1, . . . , ηn−1 ∈ Dφ,σ of k − 1 preferences (for r1, . . . , rk−1) such that hi
is available for rk has probability P (r1 = η1, r2 = η2, . . . , rk−1 = ηk−1) < φγ

Zk−1 , where

γ =
∑k−i

j=1 j and Z is the normalizing factor for a Mallows model.

Proof. In order for hi to be available, there need to be r′i+1, . . . , r
′
k with preference orders

ηi+1, . . . , ηk ∈ Dφ,σ such that they were assigned hospitals hi+1, . . . , hk. Hence, hi+1 �ηi+1

hi, . . . , hk �ηk hi. According to Lemma 5, the probability for each of these events is at

least φ
Z , . . . ,

φk−i

Z (respectively). Since they are independent of each other, and since the
maximum probability for any particular η ∈ Dφ,σ is 1

Z , the probability of a particular

preference set occurring in which hi is available is at least φγ

Zk−1 .

We further note that showing that plurality fails assortative interviewing is a strong
indication that other valuation functions will also not admit assortative interviewing equi-
libria. In some sense, because plurality only provides a payoff when agents get their most
preferred alternative, this benefits assortative interviewing: everyone wants a chance at
the alternatives with the highest probability of being first in the ranking (that still have
non-zero chance of being available). Thus, if h1’s marginal utility for being included in the
interviewing set is less than hk+1’s under plurality, it will be less under any other scoring
rule.

Theorem 21. Fix an instance of the Interviewing with a Limited Budget game Ψ =
〈k, φ, plurality〉. If hospital h1 causes the condition in Lemma 10 to be falsified ( i.e. {h2, . . . ,
hk+1} has a better expected payoff than {h1, . . . , hk}), then for k and φ, assortative inter-
viewing is not an equilibrium for any valuation function.

5. We note that the definition of assortative investigated here is fairly restrictive, but has desirable proper-
ties. In Section 7 we provide an example showing that even a relaxed version of assortative interviewing
may not be an equilibrium in this setting.
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Proof. Looking at the condition of Lemma 10

P (hj avail)E(v(hj)|Dφ,σ) ≥

P (hj avail)E(v(hk+1)|Dφ,σ) +
∑
η∈H�

P (η|Dφ,σ)
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

We again begin by expanding the value expectation (E), as we did in Eq. 17: This can be
divided to n different inequalities:

P (hj avail)P (hj in s1)v(s1) ≥v(s1)[P (hj avail)P (hk+1 in s1)

+
∑
η∈H�|

hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)]

...

P (hj avail)P (hj in sn−1)v(sn−1) ≥v(sn−1)[P (hj avail)P (hk+1 in sn−1)

+
∑
η∈H�|

hk+1 in sn−1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)]

P (hj avail)P (hj in sn)v(sn) ≥v(sn)P (hj avail)P (hk+1 in sn)

We shall show that under the theorem’s assumptions, none of these inequalities hold for
h1, and therefore the general inequality (Lemma 10) does not hold.

Note that for each inequality we can simply ignore v(s`) (1 ≤ ` ≤ n), since they appear
on both sides of the inequality. The assumption of theorem is that first inequality does not
hold, i.e.

P (h1 avail)P (h1 in s1) < P (h1 avail)P (hk+1 in s1)+
∑
η∈H�|

hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

As noted in Observation 6, for any 1 < ` ≤ k the probability of h1 being in any spot
s` is monotonically decreasing with `, while the probability of hk+1 being in spot s` is
monotonically increasing with `. Hence, P (h1 avail)P (h1 in s1) > P (h1 avail)P (h1 in s`).

Similarly, P (h1 avail)P (hk+1 in s1) < P (h1 avail)P (hk+1 in s`). We analogously see
that:∑
η∈H�|

hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi) <
∑
η∈H�|

hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

Simply put, the LHS gets smaller, while the RHS increases. Hence, for 1 ≤ ` ≤ k:

P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`)+
∑
η∈H�|

hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)
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By Observation 6, for any ` > k, P (h1 in s`) < P (hk+1 in s`) which gives us:

P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`) =⇒
P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`)+

+
∑
η∈H�|

hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

Starting with the assumption that assortative interviewing does not hold for plurality,
we show that none of the inequalities above hold for any slot s`, and therefore that the
condition in Lemma 10 does not hold for j = h1 for any valuation function.

Intuitively, there is a tradeoff between the likelihood that a hospital will be available for
resident rk by the time it is her turn to be matched, and the expected value of that hospital.
Both of these are strongly tied to the dispersion parameter φ of the Mallows model residents
are drawing from: as the dispersion parameter grows, the difference in expected value of
any given hospital goes to 0. As the dispersion parameter gets small (i.e. goes to 0), the
expected value of any hospital hi goes to the value of its slot in expectation, v(si). However,
the likelihood it is taken by some higher ranked rj (i.e. with j < i) also approaches 1. The
following theorem addresses the latter case: for sufficiently small dispersion, even though
the expected value of a hospital is high, the likelihood it will be available is so low that
residents are disincentivized from choosing to interview with it.

We first show that for k = 4, assortative interviewing is not an equilibrium for any φ < 1
and any scoring rule. As it does not seem as though there is anything special about four
interviews, we further conjecture that likewise assortative interviewing is not an equilibrium
for k > 4. We can show that for k > 4 and φ sufficiently small that assortative interviewing
is not an equilibrium.

Theorem 22. Given an interviewing budget of k = 4 interviews and any scoring function,
assortative interviewing is not an equilibrium for any dispersion parameter 0 < φ < 1.

Proof. By Theorem 21, if assortative interviewing is not an equilibrium for plurality, it is
never an equilibrium for any scoring rule. As noted before Eq. 11 is tight, so if we compute
the marginal contribution from some h∗ ∈ {h1, h2, h3, h4}, and the contribution from h∗

is strictly less than the contribution from h5 for any φ, assortative interviewing is not an
equilibrium for k = 4 and plurality. We find that the contribution from h1 is less than the
marginal contribution from h4.

To calculate P (h1 avail), we simply iterate over all 6 possible allocations for r1, r2, r3

such that h1 is not taken, and directly calculate the probabilities of each ranking profile for
r1, r2, r3 that allows that to happen. In the interest of clarity, we only provide a symbolic
representation. Let A be the set of all permutations of h2, h3, h4, so that (a1, a2, a3) ∈ A.

P (h1 avail) =
∑

(a1,a2,a3)∈A

P (µ(r1) = a1)P (µ(r2) = a2|µ(r1) = a1)P (µ(r3) = a3|µ(r1) = a1, µ(r2) = a2)

We instantiate the above equation using the probabilities of each potential match, and
use numerical methods to show the function P (h1 avail) − φ4 is negative for any φ in
0 < φ < 1.

25



Drummond, Lev, Borodin, & Larson

We now consider the case of k > 4.

Theorem 23. Given an interviewing budget of k > 4 interviews, there exists 0 < ε < 1
scuh that for any scoring function v no assortative interviewing forms an equilibrium for
dispersion parameter 0 < φ < ε.

Proof. Thanks to Theorem 21, it is enough for us to shown there is no assortative equilibrium
under plurality (and that h1 violates Lemma 10’s condition). We again begin with the
simplification from Lemma 14: P (hj avail) ≥ φk−j+1. Once again, appealing to Lemma 20,
we know P (hj avail) is of the form:

P (hj avail) =
X(k)

Zk−1
φ
∑k−j
i=1 i +

X1(k)

Zk−1
φ1+

∑k−j
i=1 i + . . .+

X`(k)

Zk−1
φ(k

∑k−j
i=1 i)−1 +

1

Zk−1
φk

∑k−j
i=1 i

(29)
(X(k), X1(k), . . . , X`(k) are functions that calculate the number of different sets of possible

preference orders for r1, . . . , rk, with each set being of probability φ
∑k−j
i=1 i for X(k), φ1+

∑k−j
i=1 i

for X1(k), etc.)

When φ→ 0, Zk−1 → 1, and Equations 29 becomes P (hj avail)→ X(k)φ
∑k−j
i=1 i. In par-

ticular, there is ε′, such that P (h1 avail) < X(k)φ(
∑k−j
i=1 i)−1, and there is ε = min(ε′, 1

X(k))
such that for φ < ε, for k > 3:

φk ≥ φ(
∑k−j
i=1 i)−2 > X(k)φ(

∑k−j
i=1 i)−1 > P (h1 avail)

Contradicting our condition (Equation 11).

It seems quite unlikely that for k > 4, assortative interviewing is an equilibrium. In-
tuitively, if it is an equilibrium it should be for low φ: this is when the expected value of
hospital hi is very close to v(si). However, this is also when residents r1, ..., rk−1 are all
most likely to be matched with hospitals h1, ..., hk−1. We leave open the possibility that
there may exist some δ such that when 0 < ε < φ < δ ≤ 1, assortative interviewing is an
equilibrium for plurality.

7. Reach and Safety Strategies for a Small Budget

Our analysis has shown that assortative interviewing equilibria are rather exceptional and
essentially can only be guaranteed for a very small number of interviews. This suggests
that there may not be a simple characterization of interviewing equilibria. Consider the
case for k = 2 interviews and the Borda scoring rule where we only guarantee assortative
interviewing for some sufficiently small dispersion parameter φ. To gain better insight into
the strategic behaviour of the residents as a function of φ, we calculated the exact values of
φ where the interviewing equilibria changes in small markets. In doing so, we see that the
structure of the interviewing equilibria contain both “reach” and “safety” schools, where
participants diversify their interviewing portfolio to get both the benefit of a desirable,
unlikely option, and a likely, but less desirable option.

Figure 1 depicts a market with 4 hospitals, 4 residents, and 2 interviews (n = 4, k = 2).
The figure shows what sets are being chosen by the different residents for any dispersion
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Figure 1: Interviewing sets of residents as a function of φ.

φ. As φ increases, we explicitly see the trade-off between a safer choice, and a better
expected payoff value for individual alternatives. For small φ, as the theoretical results
showed, assortative interviewing is optimal, and r2 chooses {h1, h2}, while r3 and r4 choose
{h3, h4}.

Interestingly, for φ ∈ [0.5, 0.62], r2’s best option is to split the difference, and interview
with one hospital (h3) he is guaranteed to get and one hospital (h2) that will be available
with sufficiently high probability, and has a higher expected value. This choice available to
r2 results in some of the “reach” vs. safe behaviour we see in college admissions markets;
namely, r3’s best response now is to interview with h1, h4 (i.e. a “reach” choice, and a
“safe” bet), while r4, being left without any truly “safe” option, aims slightly higher than
its rank. As φ grows and approaches 1, any ordering of hospitals is as likely as another,
making r2’s choice {h3, h4}, which are as likely as any to be highly ranked, and both are
available. The desire to avoid choosing hospitals that are already chosen by too many other
agents also drives r3 and r4 to {h2, h3} and {h1, h4}, respectively; that is, they both want to
avoid competing with r1 and r2. We hypothesize that this “reach” and “safety” behaviour
is present for small φ in markets with larger interviewing budgets.

8. Conclusions and Future Directions

We investigate equilibria for interviewing (for example, between residents and hospitals)
with a limited budget when a master ranked list (say, of residents) is known. We provide a
generic payoff function, that is indifferent to participants’ interviewing budgets, preference
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distributions, and scoring functions. We show that a pure strategy interviewing equilibrium
always exists.

We instantiate the payoff functions using different scoring functions (plurality-based, ex-
ponential, and Borda-based) when residents’ preferences are drawn independently from the
same Mallows model distribution. While assortative interviewing is an equilibrium when
interviewing budgets are small and residents’ preferences are sufficiently similar (i.e. the
dispersion parameter in the Mallows model is small), in general it is not an equilibrium.
This was a surprising result since assortative interviewing is observed in certain match-
ing markets, and, when it is an equilibrium, supports several highly desirable properties
such as maximizing the number of matched residents. In particular, if residents interview
assortatively, then they naturally form a bipartite graph interviewing structure with n/k
disconnected complete components. Under very different modelling assumptions (i.e. the
impartial culture model), Lee and Schwartz showed the existence of a similarly structured
equilibrium (Lee & Schwarz, 2009), and so it was somewhat surprising that the existence of
this equilibria was so highly dependent on both scoring-function structure and distribution
from which the underlying preferences were drawn.

There are numerous future research questions raised by our results. First, while we
believe that the space of scoring functions used in this paper was broad in its scope, we
always assumed that residents’ underlying ranked preferences were drawn from a distribu-
tion generated by the φ-Mallows model. While the φ-Mallows model is standard in the
literature, it is possible that other preference distributions (e.g. Plackett-Luce) may bet-
ter support assortative interviewing. Second, the analysis did rely on the assumption that
one side of the market maintained a master list. While master-lists do occur in real-world
matching markets, lifting this assumption may broaden the results. However, the removal of
the master-list assumption would complicate the analysis significantly, increasing the com-
plexity of the payoff function formulation. Furthermore, we could consider modifying our
definition of an interview set. Currently we assume that residents could interview up to k
hospitals for free, but an alternative model to consider would be to allow each resident r to
have a budget br, and incur a cost, cr(h), when interviewing hospital h, with the constraint
that if S is the set of hospitals interviewed by resident r, then

∑
h∈S cr(h) ≤ br.

Our long-term research goal is to better understand the extent to which “natural equilib-
ria” exist in matching games, and how such equilibria correspond with observed behaviour
in actual markets. While assortative interviewing is often not an equilibrium, it is possible
that some form of “nearly assortative interviewing” will more generally be an equilibirum.
For example, our definition of assortative interviewing is very strict and there may be ways
to relax the definition in meaningful ways that better capture interesting behaviour (e.g.
being assortative for “safety” programs while allowing for a “reach” program). Furthermore,
we are interested in techniques that could reduce the cognitive burden placed on partici-
pants in matching markets, while also reducing inefficiencies. For example, there may be
ways to leverage research on preference elicitation for matching markets (e.g. (Drummond
& Boutilier, 2014)) with matching market design so as to guide participants to interview
with the appropriate programs so as to improve the overall quality of the match.
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Appendix A. Proofs From Section 3.3

Proof. (Lemma 1) Suppose σ is a prefix of σ′. Then, let σ be some ranking with p elements,
including elements ai and aj . Let σ′ be a ranking of p+ 1 elements with σ as its prefix, and
an additional element ap added at the end. We prove this by starting from the definition
of P (ai � aj |Dφ,σ′), and using algebraic manipulations to show this is equivalent to the
definition of P (ai � aj |Dφ,σ).

P (ai � aj |Dφ,σ′) =

∑
η′∈{a0,...,ap−1,ap}

ai�aj
�

φd(η′,σ′)

1(1 + φ)...(1 + ...+ φp−1 + φp)
(30)
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However, because ai, aj are in ranking σ, the only difference between summing over the

set of all rankings in {a0, ..., ap}
ai�aj
� and {a0, ..., ap−1}

ai�aj
� is that there are p times as

many rankings, one for each permutation generated by {a0, ..., ap−1}�, each one with ap in
a different place (and thus a different Kendall-τ distance). Fixing some η ∈ {a0, ..., ap−1}�,
if ap is in the last rank position (as it is in σ′), the distance is simply d(η, σ). If ap is in the
second-to-last position, we have now added in an additional discordant pair, so the distance
is d(η, σ) + 1. Using this, we generate the following:

P (ai � aj |Dφ,σ′) =

∑
η∈{a0,...,ap−1}

ai�aj
�

∑p
l=0 φ

d(η,σ)+l

1(1 + φ)...(1 + ...+ φp)

=

[∑
η∈{a0,...,ap−1}

ai�aj
�

φd(η,σ)
][∑p

l=0 φ
l
]

1(1 + φ)...(1 + ...+ φp)

=

[∑
η∈{a0,...,ap−1}

ai�aj
�

φd(η,σ)
]
(1 + ...+ φp)

1(1 + φ)...(1 + ...+ φp−1)(1 + ...+ φp)
=

∑
η∈{a0,...,ap−1}

ai�aj
�

φd(η,σ)

1(1 + φ)...(1 + ...+ φp−1)

= P (ai � aj |Dφ,σ)

By symmetry, this also holds when σ is a suffix of σ′.

Proof. (Corollary 2) Consider σ = ai � ai+1, a reference ranking with two elements in
it. Then, the set of all potential rankings such that ai � ai+1 under Dφ,σ is solely the
ranking a0 � a1. By the definition of the Mallows model, this ranking has probability 1

1+φ .

We add some arbitrary prefix σ′ to σ and some arbitrary suffix σ′′ to σ to create a new
reference ranking γ. By Lemma 1, the probability that some η is drawn from Dφ,γ such
that ai �η ai+1 is 1

1+φ as required.

Proof. (Corollary 3) Consider σ∗ = ai � ai+1 � ai+2, a reference ranking with three
elements in it. The set of all potential rankings under Dφ,σ∗ such that ai � ai+1 � ai+2

is solely that ranking. Using the same argument as in Lemma 1, we note that creating
some new reference ranking γ = σ′ � σ∗ � σ′′ and drawing from Dφ,γ does not change the
likelihood that we draw a ranking consistent with ai � ai+1 � ai+2.

Therefore, the probability that we draw a ranking β consistent with some permutation
η of ai, ai+1, ai+2 under the distribution Dφ,γ is simply the probability that we drew η under

the distribution Dφ,σ∗ , which is φd(η,σ
∗)

(1+φ)(1+φ+φ2)
.

Proof. (Lemma 4) This is equivalent to generating the set of all (n− 1)! possible rankings
excluding alternative a1 (an), and then adding a1 (an) in place j. Whatever the ranking,
adding a1 (an) in place j adds j − 1 (n− j) to each possible ranking’s Kendall’s τ distance
from σ\{a1} (σ\{an}) , making the distance from σ grow by exactly j−1 (n−j). Similarly,
adding aj in first place adds j − 1 to the distance from σ \ {aj}, increasing the distance
from σ by j − 1.

However, we also added in an additional element, and must include that in the normaliza-
tion factor Z. The normalization factor for n−1 alternatives is (1+φ)(1+φ2)...(1+...+φn−2).
The normalization factor for n elements is identical, but multiplied by 1 + ...+ φn−1.
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Proof. (Lemma 5) For a`, i > ` > j. if a` �η ai, this adds 1 to the Kendall τ distance of
η from σ (due to ai �σ a`). But if ai �η a`, this means that aj �η a`, again adding 1 to
the Kendall τ distance of η from σ.

So the Kendall τ distance of η from σ is at least
∑j−1

`=i 1 = j − i, and therefore, P (η) <
φj−i

Z .
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