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Abstract. In this paper, we study graphs with inductive neighborhood prop-
erties. Let P be a graph property, a graph G = (V, E) with n vertices is
said to have an inductive neighborhood property with respect to P if there
is an ordering of vertices v1, . . . , vn such that the property P holds on the
induced subgraph G[N(vi) ∩ Vi], where N(vi) is the neighborhood of vi and
Vi = {vi, . . . , vn}. It turns out if we take P as a graph with maximum inde-
pendent set size no greater than k, then this definition gives a natural gener-
alization of both chordal graphs and (k+1)-claw-free graphs. We refer to such
graphs as inductive k-independent graphs. We study properties of such fami-
lies of graphs, and we show that several natural classes of graphs are inductive
k-independent for small k. In particular, any intersection graph of translates
of a convex object in a two dimensional plane is an inductive 3-independent
graph; furthermore, any planar graph is an inductive 3-independent graph. For
any fixed constant k, we develop simple, polynomial time approximation algo-
rithms for inductive k-independent graphs with respect to several well-studied
NP-complete problems. Our generalized formulation unifies and extends sev-
eral previously known results.

1 Introduction

The main challenge of studying many graph theoretical problems is the size and variety
of the graph itself. Large graphs arising from real applications can easily have millions

of vertices, and for graphs with n vertices, there are 2(n

2) different simple graphs. When
facing graph optimization problems that are hard to solve or approximate, a common
approach is to study restricted families of graphs; this often involves giving a specific
graph parameter to restrict the graphs that are allowed. For any parameter, we give
three criteria (GTR):

1. Generality: Be as rich and as general as possible, possibly contains interesting
known families with relatively “small” parameters.

2. Tractability: For input instances with “small” parameters, it admits simple and
relatively efficient algorithms which produce optimal or good approximation so-
lutions for some hard problems.
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version of this paper appears in ICALP 2009, Rhodes, Greece.



3. Recognizability: Allows efficient recognition algorithms at least for instances
with “small” parameters; note that this is not always the case, for example, rec-
ognizing graphs with chromatic number three is NP-hard.

One natural way of restricting a graph is to look at local neighborhoods of a given
graph. Let G = (V,E) be a graph of n vertices and m edges. If X ⊆ V , the subgraph
of G induced by X is denoted by G[X ]. For a particular vertex vi ∈ V , let d(vi) denote
its degree and N(vi) denote the neighborhood of vi, i.e., the set of neighbors of vi,
excluding vi. Given an ordering of vertices v1, v2, . . . , vn, we use Vi to denote the set
of vertices that appear after vi−1 in the ordering, i.e., Vi = {vi, . . . , vn}.

Definition 1. Let P be a graph property. A graph has a universal neighborhood
property with respect to P if for all vertices v1, v2, . . . , vn, P holds on G[N(vi)].
The set of all graphs satisfying such a neighborhood property is denoted as Ĝ(P). A
graph has an inductive neighborhood property with respect to P if there exists
an ordering of vertices v1, v2, . . . , vn such that for any vi, 1 ≤ i ≤ n, P holds on
G[N(vi)∩Vi]. The set of all graphs satisfying such an inductive neighborhood property
is denoted as G̃(P). Such an ordering of vertices is called an elimination ordering with
respect to the property P.

In fact, similar ordering-based concepts exist in the literature, especially with
regard to graph coloring; for example, graph degeneracy defined in [32], and equiva-
lently, degree inductiveness in [28]. Most relevant to this paper, Hochbaum [29] and
Halldórsson [28] studied approximation algorithms for the maximum independent set
problem, and they bounded the approximation ratios in terms of the degree inductive-
ness. In a recent paper [33], Kako et al. introduced a weighted measure of inductiveness
in order to study the weighted case of the maximum independent set problem. Jami-
son and Mulder [31] also studied an extension of chordal graphs by considering the
inductive neighborhood property defined by the vertex clique cover number. Similar
concepts are recently explored by Kammer et al. in [34].

Note that if the property P is closed on induced subgraphs, then Ĝ(P) is a sub-
family of G̃(P), and both Ĝ(P) and G̃(P) can be recognized in polynomial time
provided that the property P can be tested in polynomial time. In this paper, we focus
on graphs with their universal and inductive neighborhoods satisfying the following
three graph properties:

1. |V |k: the size of the vertex set is no more than k.
2. V CCk: the size of the minimum (vertex) clique cover is no more than k.
3. ISk: the size of the maximum independent set is no more than k.

Clearly Ĝ(P) ⊂ G̃(P) for the above three properties we study. Since |V |k ⇒ V CCk ⇒
ISk, we have

Ĝ(|V |k) ⊆ Ĝ(V CCk) ⊆ Ĝ(ISk).

Similarly, we have
G̃(|V |k) ⊆ G̃(V CCk) ⊆ G̃(ISk).

It is not difficult to construct examples to show that all inclusions are proper. A
clique of size k+1 is in G̃(|V |k) and G̃(V CC1), but is not in G̃(|V |k−1). This separates
G̃(|V |k) and G̃(V CCk). In order to separate G̃(V CCk) and G̃(ISk), we construct the



following example. Given two cycles of length 2k + 1, we connect every vertex in the
first cycle to every vertex in the second cycle. It is not hard to see that the graph is
in G̃(V CCk+1) and G̃(ISk), but it is not in G̃(V CCk).

The graph class of interest in this paper is the class of G̃(ISk). First, we give a
formal definition of G̃(ISk) and illustrate its connection to chordal graphs. We use
α(G) to denote the size of a maximum independent set of G. A graph is chordal
if it does not contain any induced cycle of size greater than three. An alternative
characterization of chordal graphs is via a perfect elimination ordering.

Definition 2. A perfect elimination ordering is an ordering of vertices v1, . . . , vn

such that for any vi, 1 ≤ i ≤ n, α(G[N(vi) ∩ Vi]) = 1.

A natural extension to this perfect elimination ordering is to relax the size of the max-
imum independent set. Surprisingly, this extension seems to have only been relatively
recently proposed in Akcoglu et al. [2] and not studied subsequently.

Definition 3. A k-independence ordering is an ordering of vertices v1, v2, . . .,
vn such that for any vi, 1 ≤ i ≤ n, α(G[N(vi)∩Vi]) ≤ k. The minimum of such k over
all orderings is called the inductive independence number 1, which we denote as
λ(G).

This extension of a perfect elimination ordering leads to a natural generalization of
chordal graphs.

Definition 4. A graph G is inductive k-independent if λ(G) ≤ k, i.e., G ∈
G̃(ISk).

For several natural classes of graphs, the inductive independence number is bounded
by a small constant.

– Chordal graphs: since a chordal graph admits a perfect elimination ordering,
chordal graphs are inductive 1-independent graphs. All sub-classes of chordal
graphs are then clearly inductive 1-independent graphs; for example, interval
graphs and trees.

– Graphs with a bounded average degree on every induced subgraph: it
is not hard to see that λ(G) is bounded above by the maximum average degree
over all induced subgraphs of G, though this bound is usually not tight.

– Claw-free graphs: a graph is (k+1)-claw-free if every vertex has most k indepen-
dent neighbors. If a graph is (k+1)-claw-free, then it is an inductive k-independent
graph. For example, line graphs are inductive 2-independent graphs. Note that
the converse is not always true since for example, a k-ary tree is not k-claw-free,
but it is an inductive 1-independent graph.

– Graphs with constant tree-width: since the tree-width of G can be viewed
as the smallest k such that G is a partial k-tree, it is not hard to see graphs
with tree-width k are inductive k-independent graphs. It is in fact in the more
restricted class of G̃(|V |k).

– Intersection graphs of geometric objects: disk graphs and unit disk graphs
are inductive 5 and 3-independent graphs, respectively. Marathe et al. [39] show
that simple heuristics achieve good approximations for various problems for unit
disk graphs. We extend most of their results in this paper, and explain a connec-
tion between the unit disk graphs and planar graphs as observed in their paper.

1 Akcoglu et al. [2] refer to this as the directed local independence number.



Akcoglu et al. [2] show that the (weighted) maximum indepedent set (MIS) problem
has a simple k-approximation algorithm for any inductive k-independent graph. We
call attention to two interesting examples.

– The interval scheduling problem (ISP) and the (discrete) job interval
scheduling problem (JISP): For a given set of (weighted) intervals on the real
line, the goal is trying to schedule a set of intervals of maximum size (or total
weight in the weighted case) without any overlapping. There are simple algorithms
that solve ISP optimally in both the unweighted and weighted cases. This is not
a surprise since if we order intervals according to non-decreasing finishing times,
then it is a perfect elimination ordering and the underlying intersection graph of
ISP is a chordal graph. The job interval scheduling problem is an extension of ISP
and has been extensively studied in the literature, for example, see [6][17][45]. In
JISP, each interval belongs to a job. A job can be scheduled onto one and only
one of its intervals. The objective is to find the maximum number (or total weight
in the weighted case) of jobs that can be scheduled without conflicts. Using the
same ordering of intervals by finishing time, it is easy to see that the intersection
graph for the JISP problem is an inductive 2-independent graph.

– The axis parallel rectangles problem: This problem is studied by Berman and
DasGupta in [12][13] and is motivated by applications to non-overlapping local
alignment problems in computational molecular biology. The input is a set of axis
parallel rectangles such that, for each axis, the projection of a rectangle on this
axis does not enclose that of another. The goal is to select a subset of independent
(non-overlapping projection on both axes) rectangles with maximum cardinality
(or total weight in the weighted case). It is not hard to see that sorting the
rectangles by (say) their rightmost x-coordinate yields a 3-independence ordering;
hence the underlying graph is an inductive 3-independent graph. This also extends
to D dimensions, where the underlying graph is an inductive (2D−1)-independent
graph.

Both of the JISP and local alignment problems are MAX SNP-hard [41][45], al-
though the current inapproximations are very weak. The existence of local ratio ap-
proximation algorithms in Bar-Noy et al. [5] and Berman and DasGupta in [12][13]
for the above two problems was our initial motivation for investigating how the in-
tersection graph structure underlies the success of those algorithms. In fact, such
“elimination structure” occurs in many natural graph classes and extends in greater
generality as we shall see.

However, not every graph has a small inductive independence number. For ex-
ample, the complete bipartite graph Kn,n has an inductive independence number n.
Some examples of bipartite inductive k-independent graphs with small k are shown
in Fig. 1.

The rest of the paper is organized as follows. In Section 2, we give some general
bounds on the inductive independence number. In Section 3, we show several nat-
ural classes of inductive k-independent graphs. We study approximation algorithms
for inductive k-independent graphs with respect to several well-studied NP-complete
problems in Section 4 and we briefly discuss the class of G̃(V CCk) in Section 5.
Section 6 concludes the paper and suggests a few open questions.



Fig. 1. Examples of inductive k-independent graphs for k = 2, 3, 4.

2 Properties of Inductive k-Independent Graphs

We have the following basic lemma.

Lemma 1. Any induced subgraph of an inductive k-independent graph is an inductive
k-independent graph.

Proof. We prove this by contradiction. SupposeG = (V,E) is an inductive k-independent
graph but some induced subgraph G1 of G is not an inductive k-independent graph,
i.e., for any vertex v in the vertex set of G1, α(G1[N(v)]) > k. Let v1, . . . , vn be the
k-independence ordering that G admits and X ⊆ V be the vertex set that induces G1.
Let vi be the first vertex in X that appears in the ordering and G2 = G[Vi]. It is clear
that the graph G1[N(vi)] is an induced subgraph of G2[N(vi)] since G1 is an induced
subgraph of G2. Therefore, any independent set of G1[N(vi)] is an independent set of
G2[N(vi)]. Since α(G1[N(vi)]) > k, we have α(G2[N(vi)]) > k, which contradicts the
fact that v1, . . . , vn is a k-independence ordering. Therefore any induced subgraph of
G is also an inductive k-independent graph. ⊓⊔

Lemma 1 ensures that we can test if a graph is an inductive k-independent graph
by repeatedly removing a vertex whose neighbors in the remaining graph have inde-
pendent set size at most k, until there is no vertex remaining or for every vertex v in
the remaining graph G, α(G[N(v)]) > k. This k-elimination process, if successful (i.e.,
no vertices remain at the end of the process), also constructs a k-independence order-
ing. Note that at each step, we can check for each vertex v to see if α(G[N(v)]) > k in
O(k2nk+1) time by enumerating all subsets of size k+1. Therefore this k-elimination
process terminates in O(k2nk+3) time. By the observation of Itai and Rodeh [30],
and results in [22], we can improve the time complexities of a 2-elimination pro-
cess to O(n4.376), a 3-elimination process to O(n5.334) and a 4-elimination process to
O(n6.220). The above algorithms only use linear space in the size of the graph. If we
allow the algorithm to use O(nk+2) space, we can further improve the time complexity
of the k-elimination process.

Proposition 1. An inductive k-independent graph can be recognized in O(k2nk+2)
time, and a k-independence ordering of an inductive k-independent graph can be con-
structed in O(k2nk+2) time.

Proof. Given a graph G we build a bipartite graph G∗ = (A,B) in the following way.
We construct a subset-node (a node in A) for each of the subsets of size k + 1 in G

and a vertex-node (a node in B) for each vertex in G. We connect a vertex-node to a



subset-node with a red edge if the vertex in the vertex-node is adjacent to all vertices
in the subset-node and the vertices in the subset form an independent set. We connect
a vertex-node to a subset-node with a black edge if the vertex in the vertex-node is
one of the vertices in the subset-node. Constructing such a graph G∗ takes O(k2nk+2)
time and O(nk+2) space. Once G∗ is constructed, we look for a vertex-node in B that
is not incident to any red edge. The vertex in such a vertex-node is then the next
vertex in the ordering. We then delete such a vertex-node in B and all its neighbors
in A together with all incident (black and red) edges, and continue. If finally there
is no node remaining in G∗, then we have constructed an inductive k-independent
ordering, otherwise at some point of time, every vertex-node in B has at least one red
edge and we conclude that G is not an inductive k-independent graph. ⊓⊔

Note that the maximum independent set problem is W[1]-complete when param-
eterized by the size of the independent set size k, see [19]. By a reduction from the
maximum independent set problem, finding the inductive independence number is also
complete for W[1], hence it is unlikely to have a fixed parameter tractable solution.
But this does not exclude the possibility to improve the current complexity bound for
a small fixed parameter k. It is interesting to note that recognizing a chordal graph,
i.e., an inductive 1-independent graph, can be done in linear time using LBFS or MCS,
while our generic algorithm runs in time O(n3). It might be possible to improve on
the bounds above by using different techniques. Note that we are mostly interested
in inductive k-independent graphs with small k’s, because in practice, we either know
a-priori that a graph is a inductive k-independent graph with some small constant
k, or we want to test whether or not it is the case. In many specific cases like JISP
and non-overlapping local alignment, the complexity of computing a k-independence
ordering can be reduced to O(n log n).

As mentioned in Section 1, the maximum average degree on every induced sub-
graph provides a trivial bound on the inductive independence number. Here we give
bounds in terms of the number of vertices and edges in a graph.

Theorem 1. A graph G with n vertices and m edges has inductive independence

number no more than min{⌊n
2 ⌋, ⌊

√
m⌋, ⌊

q

1+4[(n

2)−m]+1

2 ⌋}.

Proof. If λ(G) is the inductive independence number of G, then we can find an in-
duced subgraph such that every vertex has at least λ(G) independent neighbors and
moreover, for any such vertex v, any of its neighbors, say u, must again have at least
λ(G) independent neighbors. Furthermore, these two independent neighbor sets of u
and v are disjoint. Therefore, the total number of vertices is at least 2λ(G), the total
number of edges is at least λ(G)2 and the total number of missed edges is at least

2
(

λ(G)
2

)

. Therefore, a graph G with n vertices and m edges has inductive independence
number no more than

min{⌊n
2
⌋, ⌊√m⌋, ⌊

√

1 + 4[
(

n
2

)

−m] + 1

2
⌋}.

⊓⊔



3 Natural Classes of Inductive k-Independent Graphs

In Section 1, we saw several known examples of inductive k-independent graphs. In
this section, we show two more natural classes of graphs that fit our definition.

3.1 Translates of a Convex Object

Given a set of translates of a convex object in the two dimensional plane. We consider
the intersection graph of those translates, i.e., each translate is represented by a
vertex; two vertices are adjacent if two associated translates are overlapping. One
special case of such graphs are unit disk graphs, for which a robust PTAS for weighted
maximum independent set is known [44]. In [23], Erlebach, Jansen and Seidel consider
a more general case of geometric intersection graphs (including disk graphs) and
give PTASs for weighted maximum independent set and weighted minimum vertex
cover based on a sophisticated use of the shifting strategy [4]. The running time of

both algorithms is nO(1/ǫ2) for achieving approximation ratio 1 + ǫ. However, both
algorithms require a geometric representation as the part of the input. Kim, Kostochka
and Nakprasit [36] proved that any intersection graph of those translates with clique
number k are (3k−3)-degenerate; i.e., G̃(|V |3k−3) in our notation. Within that proof,
they showed the neighborhood of the topmost object can be covered by three cliques.
This immediately implies the following theorem.

Theorem 2. [36] The intersection graph of translates of a convex object in the two
dimensional plane is in G̃(V CC3).

Since G̃(V CC3) ⊆ G̃(IS3), the following corollary is immediate.

Corollary 1. The intersection graph of translates of a convex object in the two di-
mensional plane is a inductive 3-independent graph.

Please refer to the Appendix for a geometric alternative proof of Corollary 1. The
bound in Corollary 1 is in fact tight; see Fig. 2.

Corollary 2. The intersection graph of translates of a convex object in the two di-
mensional plane is a 6-claw free graph.

Corollary 3. The intersection graph of convex objects with different sizes (same
shape and orientation) is an inductive 5-independent graph.

Proofs for Corollaries 2 and 3 can be found in the Appendix. It follows immediately
by Corollary 3 that disk graphs and unit disk graphs are inductive 5-independent and
3-independent graphs respectively. We conjecture that Corollary 1 extends to higher
dimensions as follows:

Conjecture 1. The intersection graph of translates of a convex object in an D dimen-
sional space is a inductive (2D − 1)-independent graph.



Fig. 2. An inductive 3-independent graph induced by the intersection of unit disks.

3.2 Planar Graphs

Planar graphs have been well-studied in the literature not only because of their nu-
merous applications but also due to the existence of many non-trivial results. For
many NP-complete problems, there exist PTASs when the graph is planar [4]. In
this section, we present a nice property of planar graphs in terms of its inductive
independence number. We first show a result for general genus g ≥ 1.

Theorem 3. A graph G with genus g ≥ 1 has inductive independence number no
more than g + 4.

Proof. Let G be a graph with genus g ≥ 1 and n be the number of vertices in G,
then every induced subgraph of G has genus no more than g. We prove the theorem
by induction on n. If n < 12 then by Theorem 1, we have λ(G) ≤ 5 ≤ g + 4. Now
suppose the statement holds for n < k, we consider the case for n = k. If k = 12 then
we have three cases:

1. If λ(G) < 6, then since g ≥ 1, λ(G) ≤ g + 4 clearly holds.

2. if λ(G) = 6, then it can be shown that G has to be K6,6, which has g = 4,
therefore λ(G) ≤ g + 4.

3. If λ(G) > 6, this is impossible by Theorem 1.

If k > 12 then by Euler-Poincaré Theorem, the average degree of G is at most 6 +
12(g−1)

k < g + 5. That implies there exists a vertex v with degree ≤ g + 4. By the
inductive hypothesis, λ(G[V − {v}]) ≤ g + 4, and thus λ(G) ≤ g + 4. Therefore, a
graph G with genus g ≥ 1 has inductive independence number no more than g+4. ⊓⊔



The proof of Theorem 3 only relies on the average degree constraint from the
Euler-Poincaré Theorem, and we believe that the following conjecture holds based on
the fact that a graph with n vertices has the largest possible inductive independence
number when it is a complete bipartite graph with equal bipartition.

Conjecture 2. The inductive independence number for a graph G with genus g ≥ 1 is
O(

√
g).

For planar graphs, since the average degree is always less than 6, any planar graph
is an inductive 5-independent graph, but this is not tight.

Theorem 4. Any planar graph is in G̃(V CC3).

Proof. Let β(G) denote the size of a minimum vertex clique cover of G. Let G∗ be a
minimum counter example, so for any vertex v in G∗, we have β(G∗[N(v)]) > 3. We
look at a planar embedding of G∗, for a specific vertex v, depending on its degree,
there are three cases:

1. If d(v) = 4, then since β(G∗[N(v)]) > 3, none of the neighbors are adjacent.
Therefore, for each edge e incident to v, the face to its left has at least four edges
as its boundary and so does the face to its right. Since each edge is counted twice,
e contributes at most 1

8 to the left face and 1
8 to the right face; so the total face

contribution of e is at most 1
4 . The edge contribution of e is 1

2 due to double
counting. Therefore, for such a vertex v, the total face contributions from all v’s
edges is at most 1 and the total edge contributions from all its edges is 2. We
assume there are x such vertices.

2. If d(v) = 5, then since β(G∗[N(v)]) > 3, there are four cases:
(a) If none of the neighbors are adjacent; see Fig. 3(a). Using a similar argument,

(b)
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Fig. 3. Face contributions of edges for d(v) = 5.

we can show that for such a vertex v, the total face contribution from all its
edges is at most 5

4 and the total edge contributions from all its edges is 5
2 . We

assume there are y1 such vertices.
(b) If exactly two neighbors are adjacent; see Fig. 3(b). Exactly one face associated

with the vertex v is a triangle. We see that for such a vertex v, the total face
contribution from all its edges is at most 4

3 and the total edge contributions
from all its edges is 5

2 . We assume there are y2 such vertices.



(c) If there exists one neighbor adjacent to two other neighbors; see Fig. 3(c).
Exactly two adjacent faces associated with the vertex v are triangles. We see
that for such a vertex v, the total face contributions from all its edges is at
most 17

12 and the total edge contributions from all its edges is 5
2 . We assume

there are y3 such vertices.
(d) If there exists one neighbor adjacent to three or more other neighbors of v,

it reduces to the case (c) above since these edges would still only create two
triangles due to the fact that β(G∗[N(v)]) > 3.

3. If d(v) > 5, then we can conclude, for such a vertex v, the total face contributions
from all its edges is at most 1

3d(v) and the total edge contributions from all its
edges is 1

2d(v). We assume there are z such vertices, and we label them v1, . . . , vz .

Now by summing up for all vertices, we get the total number of edges:

|E| = 2x+
5

2
(y1 + y2 + y3) +

1

2

z
∑

i=1

d(vi).

The total number of faces:

|F | ≤ x+
5

4
y1 +

4

3
y2 +

17

12
y3 +

1

3

z
∑

i=1

d(vi).

The total number of vertices:

|V | = x+ y1 + y2 + y3 + z.

Therefore, the Euler characteristic:

|V | − |E| + |F | ≤ z − 1

4
y1 −

1

6
y2 −

1

12
y3 −

1

6

z
∑

i=1

d(vi) ≤ 0.

This contradicts the fact thatG is planar. Therefore any planar graph is is in G̃(V CC3).
⊓⊔

Corollary 4. Any planar graph is an inductive 3-independent graph.

4 Algorithmic Aspects of Inductive k-Independent Graphs

In this section, we show several algorithmic results for inductive k-independent graphs.
We do not explicitly state the time complexity for those algorithms (with the exception
of the vertex cover problem) since they depend on the complexity for constructing a
k-independence ordering. But by Proposition 1, all algorithms discussed here run in
polynomial time when k is a fixed constant.

It is well known that many NP-complete problems can be solved optimally when
restricted to chordal graphs [26][46]. We show that if we restrict the graph to be an
inductive k-independent graph, we get simple approximation algorithms for several
NP-complete problems. In fact, the structure of inductive k-independent graphs gives
a unified treatment for many previous results. Note that for both minimization and
maximization problems, we always consider approximation ratios to be greater or
equal to one.



4.1 Weighted Maximum Independent Set

The maximum independent set problem is NP-complete for general graphs and for
graphs with maximum degree ∆ it is NP-hard to approximate within ∆ǫ for some
ǫ > 0 even for the unweighted case [3], but polynomial time solvable for chordal
graphs. Akcoglu et al. [2] show that the local ratio technique ([7][11]) achieves a k-
approximation for the weighted maximum independent set on inductive k-independent
graphs. The local ratio technique is usually described as a recursive algorithm. As in
Berman and DasGupta [11], we view it as an iterative algorithm, modeled as stack
algorithms in [14].

The Stack Algorithm for packing problems

Push Phase:

while V is not empty
select the next data item v according to some rule2

decide to either push v onto the stack or discard it
end while

Pop Phase:

while the stack is not empty
pop the data item v from the stack
accept v if it is feasible with respect to current solution
otherwise discard v

end while

When restricting to the MIS graph problem, ”feasibility” simply means indepen-
dence in the above algorithm. For some graph classes such as those defined by the JISP
and axis paralell rectangles problems mentioned in section 1, the orderings satisfy the
locally defined orderings in priority algorithms [15] and hence we obtain greedy (in
the unweighted case) or greedy-like stack algorithms. For completeness, we include a
proof of the weighted MIS result in this subsection. We study a natural generalization
of the MIS problem in the next subsection from which the MIS result will follow.

Theorem 5. [2] For all fixed constant k ≥ 1, there is a polynomial time stack algo-
rithm that achieves a k-approximation for the weighted maximum independent set if
G is an inductive k-independent graph. In the unweighted case, the pop phase is not
needed.

Proof. The stack algorithm in this case always selects a vertex v according to the
inductive k-independent ordering. It then calculates the updated weight of that vertex
w̄(v) to be the weight of that vertex minus the updated total weight of its neighboring
vertices in the current stack. If the updated weight is positive, we push that vertex
onto the stack with its updated weight; otherwise, reject that vertex.

2 These rules are often “local priority rules” as defined in [14] but here we only require that
the rule is polynomial time computable.



Let v1, v2, . . . , vn be an inductive k-independent ordering, A be the output of the
stack algorithm, and O be an optimal solution. Let S be the set of vertices in the
stack at the end of the push phase, and Si be the content of the stack before vi is
being pushed onto the stack. We first prove the following claim:

Claim. The stack algorithm achieves at least the total weight of the stack.

For a given vertex vi ∈ A, let w(vi) denote the weight of vi and w̄(vi) denote the
updated weight of vi in the stack, we then have

w(vi) = w̄(vi) +
∑

vj∈Si∩N(vi)

w̄(vj).

If we sum up for all vi ∈ A, we have

∑

vi∈A

w(vi) =
∑

vi∈A

w̄(vi) +
∑

vi∈A

∑

vj∈Si∩N(vi)

w̄(vj) ≥
∑

vt∈S

w̄(vt).

The second inequality holds because for any vt ∈ S, we either have vt ∈ Si ∩ N(vi)
for some vi ∈ A or we have vt ∈ A.

Now we show that the optimal solution achieves at most k times the weight of the
stack. For a given vertex vi ∈ O, we have

w(vi) ≤ w̄(vi) +
∑

vj∈Si∩N(vi)

w̄(vj).

If we sum up for all vi ∈ O, we have

∑

vi∈O

w(vi) ≤
∑

vi∈O

w̄(vi) +
∑

vi∈O

∑

vj∈Si∩N(vi)

w̄(vj) ≤ k
∑

vt∈S

w̄(vt).

The second inequality holds because when we sum up for all vi ∈ O, each of the
terms w̄(vt) for any vertex vt ∈ S can at most appear k times, since the ordering
v1, v2, . . . , vn is an inductive k-independent ordering. Therefore, we have

∑

vi∈O

w(vi) ≤ k
∑

vi∈A

w(vi).

⊓⊔

4.2 Weighted Maximum m-Colorable Subgraph

The interval scheduling problem is often extended to scheduling on m machines. For
identical machines, the graph-theoretic formulation of this problem leads to the fol-
lowing natural generalization of the MIS problem. Given a graph G = (V,E) with a
positive weight w(v) for each vertex v, an m-colorable subgraph of G is an induced
subgraph G[V ′] on a subset V ′ of V such that G[V ′] is m-colorable. A maximum
m-colorable subgraph is an m-colorable subgraph with maximum number (or total
weight in the weighted case) of the vertices. This problem has also been referred to
as the (weighted) maximum m-partite induced subgraph problem [1] in some other



graph theory literature. For chordal graphs, the unweighted case of the problem is
polynomial time solvable for any fixed m, but NP-complete otherwise [46]. In gen-
eral, by a result in [6], the existence of a r-approximation for weighted maximum
independent set problem always implies (using the greedy algorithm that repeatedly
takes an r-approximate weighted maximum independent set in the remaining graph)

an approximation algorithm with ratio (mr)m

(mr)m−(mr−1)m for the weighted maximum m-

colorable subgraph problem, and this ratio is less than r+1− 1
m , however the running

time of the above approach is O(m(|E|+ |V |)). In a recent paper, Chakaravarthy and
Roy [16] showed that for chordal graphs the problem admits a 2-approximation for
the weighted case using a simpler and more efficient algorithm. Here we strengthen
their approximation result.

Theorem 6. For all fixed constant k ≥ 1, there is a polynomial time algorithm that
achieves a (k+ 1− 1

m )-approximation for weighted maximum m-colorable subgraph if
G is an inductive k-independent graph. The algorithm runs in time O(min{|E| logm+
|V |, |E| +m|V |}).

We first describe the algorithm. We use almost the same idea for the weighted
maximum independent set as proven in the previous subsection except that we now
use a stack Sc for each color class c. At each step i, the algorithm considers the vertex
vi in the k-independence ordering, and computes the updated weight

w̄(vi) = w(vi) −
∑

vj∈Sc∩N(vi)

w̄(vj)

for each color class c. If w̄(vi) is non-positive for every color class, then reject vi

without coloring it. Otherwise, find a color class with the largest w̄(vi) value and
assign vi with that color. We next prove the following permutation lemma.

Let M be an m by m square matrix, and σ ∈ Σ be a permutation of {1, 2, . . . ,m}.
and σi be the ith element in the permutation.

Lemma 2. There exists a permutation σ such that

∑

i

Miσi
≤ 1

m

∑

i,j

Mij .

Proof. Suppose otherwise, then for each permutation σ we have

∑

i

Miσi
>

1

m

∑

i,j

Mij .

We sum up for all σ ∈ Σ, since in total we have m! permutations, we have

∑

σ∈Σ

∑

i

Miσi
> m! · 1

m

∑

i,j

Mij .

Since each Mij is counted exactly (m− 1)! times on the left hand side, we have

(m− 1)!
∑

i,j

Mij > (m− 1)!
∑

i,j

Mij ,

which is a contradiction. ⊓⊔



Let c1, c2, . . . , cm be the color classes and S1, S2, . . . , Sm be the sets of vertices
that have been put onto the stacks at the end of the push phase. Let S be the union
of all the stacks. Now we prove the theorem.

Proof. It is not hard to see that the algorithm achieves at least the total weight
W =

∑

vt∈S w̄(vt) of all stacks. The goal is to show that the weight of the optimal

solution will be at most (k+ 1− 1
m ) ·W . Let A be the output of the algorithm and O

be the optimal solution. For each given vertex vi in O, let coi be its color class in O,
and csi be its color class in S if it is accepted into one of the stacks. Let Si

oi be the
content of the stack in color class coi when the algorithm considers vi, then we have
three cases:

1. If vi is rejected during the push phase of the algorithm then we have

w(vi) ≤
∑

vj∈Si
oi
∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to all w̄(vj) with vj ∈ Si
oi ∩N(vi),

each of which appears in the same color class coi and is charged at most k times
coming from the same color class.

2. If vi is accepted into the same color class during the push phase of the algorithm
then we have

w(vi) = w̄(vi) +
∑

vj∈Si
oi
∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to w̄(vi) and all w̄(vj) with vj ∈
Si

oi∩N(vi). Note that they all appear in the same color class coi; w̄(vi) is charged
at most once and each w̄(vj) is charged at most k times coming from the same
color class.

3. If vi is accepted into a different color class during the push phase of the algorithm
then we have

w(vi) ≤ w̄(vi) +
∑

vj∈Si
oi
∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to w̄(vi) and all w̄(vj) with vj ∈
Si

oi∩N(vi). Note that each w̄(vj) appears in the same color class coi and is charged
at most k times coming from the same color class. However w̄(vi) in this case is
in a different color class csi and is charged at most once coming from a different
color class.

If we sum up for all vi ∈ O, we have

∑

vi∈O

w(vi) ≤
∑

vi∈S∩O∧coi 6=csi

w̄(vi) + k

m
∑

i=1

∑

vt∈Si

w̄(vt).

The inequality holds when we sum up for all vi ∈ O, since the number of charges
coming from the same color class can be at most k; the number of charges coming from
a different color class can be at most one, which only appears when vi is accepted into
a stack of a different color class (comparing to the optimal) during the push phase of



the algorithm. Therefore we have the extra term
∑

vi∈S∩O∧coi 6=csi
w̄(vi). Now if we can

permute the color classes of the optimal solution so that for any vi ∈ S ∩O, coi = csi,
then the term

∑

vi∈S∩O∧coi 6=csi
w̄(vi) disappears and we achieve a k approximation.

But it might be the case that no matter how we permute the color classes of the
optimal solution, we always have some vi ∈ S ∩ O with coi 6= csi. We construct the
weight matrix M in the following way. An assignment ci → cj is to assign the color
class ci of O to the color class cj of S. A vertex is misplaced with respect to this
assignment ci → cj if it is in S ∩ O and its color class is ci in O, but is not cj in S.
We then let Mij be total updated weight of misplaced vertices with respect to the
assignment ci → cj . Note that the total weight of the matrix is (m−1)

∑

vi∈S∩O w̄(vi),
and applying Lemma 2, there exists a permutation of the color class in O such that

∑

vi∈S∩O∧coi 6=csi

w̄(vi) ≤
m− 1

m

∑

vi∈S∩O

w̄(vi) ≤
m− 1

m

∑

vi∈A

w(vi).

Therefore, we have

∑

vi∈O

w(vi) ≤
m− 1

m

∑

vi∈A

w(vi) + k

m
∑

i=1

∑

vt∈Si

w̄(vt) ≤ (k + 1 − 1

m
)

∑

vi∈A

w(vi).

Given a k-independence ordering, the running time of the above algorithm is
dominated by the push phase and can be bounded by O(min{|E| logm + |V |, |E| +
m|V |}). The first quantity is obtained as follows: for each vertex, we maintain a
priority queue of its updated weights for all the color classes. An update occurs for
each edge in the graph and the cost of such an update is O(logm). Therefore the
running time is bounded by O(|E| logm+ |V |). For the second quantity, at each step,
we basically calculate the updated weighted of that vertex for all color classes, and
then find the best color class to push that vertex onto the stack. Calculating the
update weighted for all vertices costs time O(|E|), and finding the best color class for
each vertex costs time O(m). Therefore the running time is bounded by O(|E|+m|V |).

⊓⊔

4.3 Minimum Vertex Coloring

Minimum vertex coloring is a well-studied NP-hard problem, and is not approximable
within n1−ǫ for any fixed ǫ > 0, unless ZPP=NP [24]. For chordal graphs, a greedy
algorithm on the reverse ordering of any perfect elimination ordering gives an optimal
coloring. For inductive k-independent graphs, the same greedy algorithm achieves a
k-approximation.

Theorem 7. For all fixed constant k ≥ 1, there is a polynomial time algorithm that
achieves a k-approximation for the minimal vertex coloring if G is an inductive k-
independent graph.

Proof. The algorithm just takes the reverse of a k-independence ordering, and as-
signs the minimal color number to each vertex. Let v1, v2, . . . , vn be a k-independence
ordering, and Vi = {vi, . . . , vn}. We prove by induction that the algorithm achieves
k-approximation for G[Vi] for all i from n to 1. The base case is clear, since when



i = n, G[Vn] is just a single vertex. Now we assume the statement holds for i > t, i.e.,
the number of colors ci used in the algorithm for G[Vi] satisfies

ci ≤ k · χ(G[Vi]).

Now we consider i = t. There are three cases:

1. If ct = ct+1, then the statement holds trivially since

ct = ct+1 ≤ k · χ(G[Vt+1]) ≤ k · χ(G[Vt]).

2. If χ(G[Vt]) = χ(G[Vt+1]) + 1, then the statement also holds trivially since

ct ≤ ct+1 + 1 ≤ k · χ(G[Vt+1]) + 1 ≤ k(χ(G[Vt+1]) + 1) = k · χ(G[Vt]).

3. The only remaining case is when ct = ct+1 + 1, and χ(G[Vt]) = χ(G[Vt+1]).
Suppose ct > k · χ(G[Vt]). Since we have to increase the color number in the
algorithm, there exist ct+1 neighbors of vt, each having a different color. These
ct+1 neighbors together with vt must be grouped into χ(G[Vt]) color classes in the
optimal coloring. Therefore at least one color class in the optimal coloring will
have at least ct+1+1

χ(G[Vt])
vertices from the set N(vt) ∩ Vt. Since

ct+1 + 1

χ(G[Vt])
=

ct

χ(G[Vt])
> k,

we have one color class containing more than k vertices from N(vt) ∩ Vt. This
contradicts the fact that v1, v2, . . . , vn is an inductive k-independent ordering.

This completes the induction. Therefore the algorithm achieves k-approximation for
the minimal vertex coloring if G is an inductive k-independent graph. ⊓⊔

4.4 Minimum Vertex Cover

Minimum vertex cover is one of the most celebrated problems for approximation
algorithms, because there exist simple 2-approximation algorithms, yet for general
graphs no known algorithm3 can achieve approximation ratio 2 − ǫ for any fixed
ǫ > 0. In this section, we show a (2 − 1

k )-approximation algorithm for minimum
vertex cover on inductive k-independent graphs. The algorithm shares the same spirit
of the result of Bar-Yehuda and Even [8] for the 5

3 approximation of vertex cover
for planar graphs, and can be viewed as a generalization of that algorithm. Baker’s
PTAS algorithm [4] for minimum vertex cover on planar graphs depends on a planar
embedding and would not be considered as a simple combinatorial algorithm.

Theorem 8. There is a simple polynomial time algorithm that achieves a (2 − 1
k )-

approximation for minimum vertex cover if G is an inductive k-independent graph.
Furthermore, for triangle free, inductive k-independent graphs with k > 1, the algo-
rithm is a greedy algorithm (in the sense of [15]).

3 In fact, modulo unique games conjecture, no polynomial-time algorithm can achieve that
ratio; see [35].



Proof. If k = 1 then it is a chordal graph, and hence minimum vertex cover can be
done optimally. Now assume k > 1; if the inductive k-independent graph G contains
triangles, then since finding a triangle can be done in polynomial time, we can find
a triangle, select all three vertices and delete all incident edges, hence reduce the
problem to a smaller inductive k-independent graph. We can do this because covering
three edges of the triangle requires at least two nodes, so this elimination can only
improve the approximation ratio. Therefore we can assume, at a certain point of time,
the remaining inductive k-independent graph G∗ does not contain triangles. Let v be
a vertex with the smallest degree in G∗ and N ′(v) be the set of vertices, excluding
v, adjacent to vertices in N(v). Note that since there are no triangles, N(v) is an
independent set and d(v) ≤ k. We first prove the following claim:

Claim. The size of the maximum matching betweenN(v) andN ′(v) is at least d(v)−1.

Suppose the size of the maximum matching between N(v) and N ′(v) is less than
d(v) − 1, then there must exist some vertex x ∈ N(v), which is not in the maximum
matching, such that d(x) < d(v) − 1 + 1 = d(v). This contradicts the fact that v has
the minimum degree.

Therefore, we select a d(v) − 1 matching M between N(v) and N ′(v), and let u
be the vertex in N(v) which is not selected in M , then M ∪ {uv} is a matching of
size d(v), depicted by the thick edges in Fig. 4. The algorithm then selects both end-

A d(v)−1 matching between N(v) and N’(v)      . . . . . .

v

u

. . . . . .

Selected vertices for the cover

N’(v)N(v)

Fig. 4. A large local matching in G[{v} ∪ N(v) ∪ N ′(v)].

vertices of the matching M , plus u. This set C of 2d(v)− 1 vertices covers M ∪ {uv},
which requires at least d(v) vertices to cover. At the same time, this covering C is
also maximum in the sense that for any other covering C′, where C′ is a subset of the
vertex set of matching M ∪ {uv}, the set of edges covered by C′ is always a subset
of the set of edges covered by C. Therefore by taking C the algorithm can always do
better locally. Since d(v) ≤ k, the approximation ratio is at most 2 − 1

k . ⊓⊔

The running time of this algorithm is dominated by the time to remove all triangles
which can be done in n×nmatrix multiplication time O(nω) ≈ O(n2.376); or in O(nm)



time for sparse graphs. We can further improve the ratio to 2 − 2
k+1 using a result

of Hochbaum [29], which uses Nemhauser and Trotter’s decomposition scheme [43].
This yields a 3

2 approximation for planar graphs.

Theorem 9. (Hochbaum) Let G be a weighted graph with n vertices and m edges.
If it takes only s steps to color the vertices of G in c colors then it takes only s +
O(nm log n) steps to find a cover whose weight is at most 2 − 2

c times the weight of
an optimal cover.

Lemma 3. For a triangle-free, inductive k-independent graph, a simple greedy algo-
rithm can color its vertices with k + 1 colors.

Proof. The greedy algorithm colors vertices on the reverse of a k-independence or-
dering. Since whenever the algorithm colors a vertex v, at most k neighbors of v are
already colored, the algorithm uses at most k + 1 colors. ⊓⊔
Theorem 10. For k > 2, there is a polynomial time algorithm that achieves a (2 −

2
k+1 )-approximation for minimum vertex cover if G is an inductive k-independent
graph.

Proof. Note that if we remove all triangles from an inductive k-independent graph,
the remaining graph is (k + 1)-colorable by Lemma 3. It then follows immediately
by Theorem 9 that there is a polynomial time algorithm that achieves a (2 − 2

k+1 )-
approximation for minimum vertex cover if G is an inductive k-independent graph.
The running time is O(nm logn). ⊓⊔
Theorem 11. For k > 2, there is a polynomial time algorithm that achieves a
(2 − 2

k+1 )-approximation for weighted minimum vertex cover if G is an inductive
k-independent graph.

Proof. As observed by Zimny [47], this follows directly from the Local Ratio vertex
cover algorithm of Bar Yehuda and Even [9]. Namely, for any triangle in the graph,
the local ratio algorithm removes the vertex with minimum weight and reduces the
weights of the other two vertices by that weight. The algorithm keeps doing that until
the graph is triangle free. Then it applies Theorem 9 to get (2− 2

k+1 )-approximation.
⊓⊔

5 Graph Class of G̃(V CCk)

The graph class G̃(V CCk) is a subclass of G̃(ISk). All natural examples of G̃(ISk)
studied in this paper are in G̃(V CCk) for the same corresponding value k. It is an
interesting question whether there is a natural graph class which is in G̃(ISk) but is
not in G̃(V CCk) for the same k.

For G̃(V CCk), the weighted maximum clique and minimum vertex clique cover
problem can be approximated with the ratio k if an elimination ordering with re-
spect to the k-vertex-clique-cover is given. However, constructing such an elimination
ordering, and hence testing membership in G̃(V CCk) for k > 2, is NP-hard.

The graph class G̃(V CC2) can be recognized in polynomial time, and it contains
several interesting classes such as translates of a rectangle, JISP graphs and circular-
arc graphs. Here, we give an optimal algorithm for weighted maximum clique and a
2-approximation algorithm for minimum vertex clique cover.



Theorem 12. Given a graph in G̃(V CC2), there is a polynomial time algorithm that
solves weighted maximum clique.

Proof. Let v1, v2, . . . , vn be an elimination ordering with respect to the 2-vertex-
clique-cover. For each vi, let Gi = G[(N(vi) ∪ {vi}) ∩ Vi]. Since Gi has vertex clique
cover size 2, the complement of Gi is a bipartite graph. Since a weighted maximum
independent set in a bipartite graph can be determined in polynomial time [25][27],
weighted maximum clique in Gi can be computed in polynomial time. We compute
weighted maximum clique for each Gi, and the largest one is weighted maximum
clique for G. This is because for any weighted maximum clique C of G, there exist
some vertex vj in C that appears first in the ordering. Hence, when we compute the
weighted maximum clique for Gj , we catch the weighted maximum clique C of G. ⊓⊔

Theorem 13. Given a graph in G̃(V CC2), there is a polynomial time 2-approximation
algorithm for minimum vertex clique cover.

Proof. Let v1, v2, . . . , vn be an elimination ordering with respect to the 2-vertex-
clique-cover. We construct an independent set S by repeatedly taking a vertex ac-
cording to this elimination ordering and removing all its neighbors. For each vi ∈ S,
let Gi = G[(N(vi) ∪ {vi}) ∩ Vi]. Since Gi has vertex clique cover size 2, we take both
cliques to cover vi, resulting in a clique cover of size 2|S|. Since S is an independent
set, the optimal clique cover has size at least |S|. Therefore, the algorithm achieves
approximation ratio 2. ⊓⊔

6 Conclusion and Open Questions

We considered a generalization of chordal graphs due to Akcoglu et al. [2] based on a
specific type of elimination ordering. We showed that several natural classes of graphs
have a small inductive independence number, and give a unified approach for several
optimization problems when such structure is present. Since the notion of indepen-
dence naturally extends to hypergraphs, our results also extend to hypergraphs.

There are many open questions. The first and perhaps the most immediate issue
is to improve the time complexity to recognize an inductive k-independent graph for
small constants k. As we already mentioned, the current time complexity is unsatis-
factory, and one can expect it to be improved.

Our second question is related to the intersection of graph classes. It is known [38]
that the intersection of asteroidal triple-free graphs and chordal graphs is exactly
interval graphs. One immediate question is what is the intersection of asteroidal triple-
free graphs [18] and inductive k-independent graphs for k ≥ 2? Do they present any
interesting properties?

Our third question is on the algorithmic aspects of inductive k-independent graphs.
We have studied the weighted maximum m-colorable subgraph, minimum vertex
cover, and minimum vertex coloring problems. What can be said about other ba-
sic graph problems? Several other problems can be solved optimally in polynomial
time for chordal graphs such as maximum clique and minimum clique cover. Can we
O(k)-approximate such problems for inductive k-independent graphs? A particularly
interesting problem is minimum independent dominating set. The unweighted case
can be solved optimally in polynomial time for chordal graphs, but the weighted case



is NP-complete even for chordal graphs. Can we O(k)-approximate the independent
dominating set problem for inductive k-independent graphs?

Last but not the least, we think there is a correspondence between algorithm
paradigms and problem structures. We have seen multiple evidences for simple al-
gorithms based on local decisions. The most notable one is the matroid [21] and
greedoid [37] structures in correspondence to greedy algorithms, which have been
studied extensively in the literature. As illustrated in this paper, various problems
solved (or approximated) by the local ratio technique seem to be connected with the
graphs having small sequential independence number. One other interesting class is
d-claw-free graphs. In [10], Berman gives a d

2 approximation for maximum weight
independent set in d-claw-free graphs. We also note for a given graph G, the weighted
maximum matching problem can be viewed as the weighted maximum independent set
problem for the line graph of G, which is 3-claw-free. Edmonds’s weighted matching
algorithm [20] has been extended to the weighted maximum independent set problem
for 3-claw-free graphs [40][42]. These algorithms are local search based algorithms.
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7 Appendix

7.1 A Geometric Proof of Corollary 1

For completeness, we include a geometric, alternative proof of Corollary 1 here. We
treat each translate as a closed convex set. For each translate S, we fixed an interior
point to be the center of the object, denoted as cS . Note that it does not have to be
the geometric center of S, but it has to be identically located for each translate. The
conflicting region ψ(S, cS) of S is then defined to be the set of points on the plane
such that if we place the center of another translate S′ at that point, S ∩ S′ 6= ∅; see
Fig. 5. It is not hard to see that the conflicting region ψ(S, cS) is symmetric at the
point cS .

Lemma 4. The conflicting region of a (convex) translate is convex.

Proof. We prove this by contradiction. Let S be a translate with center cS and ψ(S, cS)
be its conflicting region. Suppose that ψ(S, cS) is not convex, then there exist three
points cS1

, cS2
and cS3

of the objects S1, S2 and S3, such that cS2
is on the line

segment of cS1
cS3

, and cS1
∈ ψ(S, cS), cS3

∈ ψ(S, cS) but cS2
6∈ ψ(S, cS). Since

cS1
∈ ψ(S, cS) and cS3

∈ ψ(S, cS), we know that there are two points p1 and q3 such
that p1 ∈ S1 ∩ S and q3 ∈ S3 ∩ S; see Fig. 6(a).
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Fig. 5. A translate and its conflicting region.

(b)

c
1

cS2

cS3

q
3

q
2

q
1

p
1

p
2

p
3

Sc
1

cS2

cS3

q
3

p
1

x

(a)

S

Fig. 6. The conflicting region is convex.

We draw lines cS2
p2 q cS1

p1, cS3
p3 q cS1

p1, cS1
q1 q cS3

q3 and cS2
q2 q cS3

q3, then p1,
p3, q3 and q1 form a parallelogram with p1q3 being one of the diagonals; see Fig. 6(b).
Since p2 and q2 are on the opposite sides of the parallelogram p2q2 intersects p1q3 at
some point x. Since p2 ∈ S2, q2 ∈ S2 and S2 is convex, we know that x ∈ S2. Since
p1 ∈ S, q3 ∈ S and S is convex, we know that x ∈ S. Therefore x ∈ S ∩S2, and hence
cS2

∈ ψ(S, cS); which is a contradiction. ⊓⊔

Suppose we have a set of translates on a cartesian plane and we sort the centers by
their x-coordinates. We claim that for any translate S with center cS , the number of
centers of non-overlapping translates with larger or equal x-coordinates, which lies in
ψ(S, cS), is less than four. We can transform this problem into a simpler mathematical
problem: given a set of n real vectors X = {v1,v2, . . . ,vn} in R2 with non-negative
x-coordinates, and D(X) = {vi − vj |i 6= j}. Let C(X) be the convex set

C(X) = {
n

∑

i=1

aivi|
n

∑

i=1

|ai| ≤ 1, |ai| ≤ 1,vi ∈ X}.



How large must n be to guarantee that the two sets C(X) and D(X) are not disjoint.
It turns out n = 4 is sufficient; we have the following lemma:

Lemma 5. If n ≥ 4, then C(X) ∩D(X) 6= ∅.
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Fig. 7. Cases when n = 2 and 3.

Proof. We present a geometric proof of the lemma. We assume that there are four
points in X such that C(X) ∩D(X) = ∅, and try to derive a contradiction. Without
loss of generality, we can assume that the first two points G and H have the maximum
and minimum slope OG and OH respectively, see Fig. 7(a). Let G′ and H ′ be the
symmetric points of G and H with respect to O, and we draw GO′

q OH and HO′
q

OG; GO′ and HO′ meets at O′.
The third point therefore cannot lie to the left of OG or the right of OH . At the

same time, since △GOO′ ∼= OG′H and △HOO′ ∼= OH ′G, both △GOO′ and △HOO′

cannot be feasible regions for the third point. To see this, suppose that the third point
C lies in △GOO′, then the vector CG ∈ C(X), which is a contradiction. Therefore
the only feasible region is region (I). Let C be the third point, and we draw OB q HC

and CB q HO so that OB and CB meet at B; we draw OD q GC and CD q GO so
that OD and CD meet at D. We then draw lines H ′B and G′D, it is easy to see that
H ′B q OC q G′D. Let A be the intersection of CB and OG, E be the intersection of
CD and OH ; see Fig. 7(b).

Let P be the fourth point, so X = {OG,OH,OC,OP }, then depending the
location of P , there are four cases:

1. If P lies in △ABO or △EDO, without loss of generality, assume P lies in △ABO.
We draw lines G′Q q OB and GQ q AB; GQ meets G′Q at Q, then it is clear
that △ABO ∼= △GQG′. Since △GQG′ completely lies in C(X), it follows that
GP ∈ C(X), which is a contradiction; see Fig. 8(a).

2. If P lies in the quadrilateral OBCD, then the quadrilateral OBCD is congruent
to the quadrilateral CHOG, therefore PC ∈ C(X), which is a contradiction; see
Fig. 8(b).
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Fig. 8. Cases when n = 4.

3. If P lies in region (II) or (IV), without loss of generality, assume P in region (II),
then OB ∈ C(X), and hence HC ∈ C(X), which is a contradiction; see Fig. 8(c).

4. If P lies in region (III), then we draw lines PR q CO and OR q CP ; PR meets OR
at R. Since PR q CO and |PR| = |CO|, OR ∈ C(X), and hence CP ∈ C(X),
which is a contradiction; see Fig. 8(d).

Therefore, if n ≥ 4, then C(X) ∩D(X) 6= ∅; this completes the proof. ⊓⊔

We now prove Corollary 1.

Proof. We consider the intersection graph of the translates and show that there always
exists a vertex which has at most 3 independent neighbors. We consider the leftmost
translate S, breaking tie arbitrarily; and we set the center cS of S to be the origin
(0, 0) of coordinate system. Then the centers of all translates have non-negative x-
coordinates, furthermore, each of these centers defines a vector to the origin. Suppose
there are at least four independent translates S1, S2, S3, S4 intersecting with S then
we let v1,v2,v3,v4 be the vectors representing the centers and X = {v1,v2,v3,v4}.



Let

C(X) = {
4

∑

i=1

aivi|
4

∑

i=1

|ai| ≤ 1, |ai| ≤ 1,vi ∈ X},

then by Lemma 4, the conflicting region ψ(S, cS) of S contains C(X). Let D(X) =
{vi − vj |i 6= j}, by Lemma 5, C(X) ∩ D(X) 6= ∅. Therefore ψ(S, cS) ∩ D(X) 6= ∅.
Without loss of generality, we can assume v1 − v2 ∈ ψ(S, cS), which means that S1

intersects with S2, which is a contradiction. Therefore, in terms of the intersection
graph of the translates, the leftmost vertex has at most 3 independent neighbors;
hence the graph is inductive 3-independent. ⊓⊔

7.2 A Proof of Corollary 2

Proof. Considering any object, we draw a line passing through its center. Suppose
it has at least six independent neighbors, then by rotating the line, we can force
at least four centers to be on one side of the line (including those on the line). By
Lemma 5, and a similar argument in the proof of Corollary 1, we can conclude that
this is impossible. ⊓⊔

7.3 A Proof of Corollary 3

Proof. We order the objects by non-decreasing size. Consider the object of smallest
size. The argument in Lemma 5 and Corollary 1 shows that there are at most 5
independent objects intersecting the smallest object. ⊓⊔


