
How Much Can Hardware Help Routing?

ALLAN BORODIN

University of Toronto, Toronto, Ont., Canada

PRABHAKAR RAGHAVAN

IBM Almaden Research Center, San Jose, California

BARUCH SCHIEBER

IBM T. J. Watson Research Center, Yorktown Heights, New York

AND

ELI UPFAL

IBM Almaden Research Center, San Jose, California and Weizmann Institute, Rehovot, Israel

Abstract. We study the extent to which complex hardware can speed up routing. Specifically, we
consider the following questions. How much does adaptive routing improve over oblivious routing?
How much does randomness help? How does it help if each node can have a large number of
neighbors? What benefit is available if a node can send packets to several neighbors within a single
time step? Some of these features require complex networking hardware, and it is thus important to
investigate whether the performance justifies the investment. By varying these hardware parameters,
we obtain a hierarchy of time bounds for worst-case permutation routing.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems; G.3 [Probability and Statistics]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Multi-port, packet routing, permutation routing, randomized
routing algorithms, single-port

E. Upfal’s research at the Weizmann Institute was supported by The Norman D. Cohen Professorial
Chair of Computer Science.
Authors’ present addresses: A. Borodin, Department of Computer Science, University of Toronto,
Sanford Fleming Building, 10 King’s College Road, Toronto, Ontario, Canada M5S 3G4, e-mail:
borodin@theory.toronto.edu; P. Raghavan, IBM Research Division, Almaden Research Center, San
Jose, CA; B. Schieber, IBM Research Division, T. J. Watson Research Center, Yorktown Heights,
NY; E. Upfal, IBM Research Division, Almaden Research Center, San Jose, CA, and Department of
Applied Mathematics, Weizmann Institute, Rehovot, Israel.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0004-5411/97/0900-0726 $03.50

Journal of the ACM, Vol. 44, No. 5, September 1997, pp. 726 –741.

1. Introduction

The availability of novel hardware features in some technologies may enable the
realization of networks that are more powerful than existing ones. For instance,
optical technology can support networks in which each node has a large number
of neighbors and can communicate with many of them simultaneously. (See, e.g.,
Green [1991] and Ramaswami [1993].) We study the extent to which such
powerful hardware features can reduce routing time.

We study the permutation routing problem: Each of n nodes in a parallel
computation network has a packet that is to be sent to another node, and each
node receives exactly one packet. Routing proceeds in synchronous steps. The
network is modeled as an undirected graph each of whose edges has bidirectional
links; thus, an edge can carry one packet in each direction during each step. (We
remark that all our positive results hold for partial permutations as well.)

An (n, d)-routing scheme Sn,d consists of a network of n nodes each of degree
at most d, together with a permutation routing algorithm for the network. Let
T(Sn,d) denote the maximum, over all instances, of the number of steps when the
scheme Sn,d is used. Let T(n, d) denote the minimum, over all (n, d)-routing
schemes Sn,d, of T(Sn, d). We study T(n, d) as a function of n and d. The
availability of a large node degree d in some technologies (e.g., optical networks)
raises an obvious question: how does T(n, d) depend on d? In this context, we
study a number of “hardware” issues. (1) How does the time for oblivious routing
(in which the possible paths followed by a packet depend only on its own source
and destination) compare with the time for adaptive routing? Adaptive routing
usually requires more complicated routing hardware and protocols. (2) What is
the benefit of algorithms that allow nodes to send out packets along more than
one outgoing link in a single time step? While this could reduce the overall time
for routing, it means that the communications ports have to be more complex.
(3) What is the power of randomization in networks with these features? (For
randomized algorithms, we define T(n, d) to be the number of steps within
which routing is guaranteed to terminate with probability 1 2 o(1); note that for
any “reasonable algorithm” the expected running time is at most one step more.)

The reader familiar with the routing literature may immediately obtain a
succinct picture of our results from Figure 1. In this figure and elsewhere
throughout the paper, the letters A and O distinguish adaptive (A) and oblivious
(O) routing schemes. The letters R and D distinguish randomized and determin-
istic schemes. The letters M and S distinguish multi-port and single-port routing.
In multi-port routing, a node is allowed to send a packet along each of its
outgoing edges simultaneously, whereas in single-port routing only one outgoing
edge may be active at any time. (Note that this is the least restrictive model of
single-port routing. In more restrictive models, we may also limit the number of
packets coming into a node in a step.)

Clearly, there is a hierarchy among the models we consider: the ARM model is
the strongest model, while the ODS model is the weakest. Our work determines
the structure of this hierarchy, proving some models to be as strong as ARM, and
showing others to be strictly weaker.

Much is known about permutation routing in a “sparse” network. In particular,
for oblivious routing, we know that =n steps are asymptotically optimal for
deterministic routing on the butterfly. (See Borodin and Hopcroft [1985] and

727How Much Can Hardware Help Routing?

Kaklamanis et al. [1991].) On the other hand, Valiant’s two stage randomized
algorithm runs in optimal Q(log n) time1 for sparse networks [Aleliunas 1982;
Upfal 1992; Valiant and Brebner 1981]. For adaptive routing, there are Q(log n)
deterministic routing algorithms based on AKS sorting [Ajtai et al 1993] that can
be implemented on a constant degree network [Leighton 1985], as well as simpler
schemes using the multibutterfly network [Leighton and Maggs 1989; Upfal
1992]. The optimality of the O(log n) time routing algorithms for constant
degree networks follows easily from the diameter bound: in any n node, degree d
network, the diameter is at least logdn. For high degree networks, when can we
meet this V(logdn) bound?

1.1. SUMMARY OF RESULTS. In Section 2, we consider oblivious routing.
Somewhat unexpectedly, we show that oblivious randomized single-port (ORS)
routing faces an intrinsic bottleneck: for any ORS scheme there is an instance
requiring V(log n/log log n) steps even when d is nearly n (where the diameter
bound is just a constant). Thus, schemes such as Valiant’s cannot be improved
much beyond the O(log n) running time bound, even in very dense networks. We
complement this with results showing that if we strengthen the ORS model by

1 All logarithms are base e unless indicated otherwise.

NOTE: Unless indicated otherwise, all logarithms are base e.
FIG. 1. The routing hierarchy.

728 A. BORODIN ET AL.

allowing multi-port routing, this bottleneck can be overcome. Specifically, for
every n and d, we give an ORM scheme for routing that achieves the diameter
bound of Q(logd n) steps (Section 2.3). We complete our study of oblivious
routing by giving tight bounds for oblivious deterministic routing, for both the
single-port (ODS) and the multi-port (ODM) cases. In Section 3.1, we show that
we can meet the diameter bound of V(logd n) in the adaptive deterministic
multi-port (ADM) model.

In summary, our major new results are: On the positive side, we have ADM
and ORM (and thus ARM) routing schemes that meet the diameter bound. On
the negative side, we show that the diameter bound cannot be achieved by ODM
and ORS (and thus ODS) schemes. All the bounds we have are essentially tight
for the models studied. The preliminary conference version of this work [Borodin
et al. 1993] included a sketch of an ARS algorithm that does not meet the
diameter bound. The running time of that algorithm can be stated (for simplicity)
as (log log n)O(1) logd n. Because of the apparent nonoptimality of that scheme,
we omit it here and plan to reconsider ARS routing in a separate paper. The only
model we leave completely unresolved (between the diameter bound of V(logd

n) and the multibutterfly upper bound of O(log n)) is the ADS model. A
recurring feature highlighted by our results is that the single-port model presents
difficult challenges that were obscured in previous work on low-degree networks,
where the time bounds grew with node degrees.

2. Oblivious Routing

2.1. OBLIVIOUS DETERMINISTIC ROUTING—TIGHT BOUNDS. Borodin and
Hopcroft [1985] proved that for any n and d, and for any deterministic
single-port oblivious routing algorithm, there is a permutation requiring
V(=n/d) steps. A modification of this argument shows that for any n and d, and
for any deterministic multi-port oblivious routing algorithm, there is a permuta-
tion requiring V(=n/d) steps [Kaklamanis et al. 1991]. We show these bounds to
be tight.

2.1.1. Single-Port Case. In this case, the network is a Cartesian product of two
graphs: a square mesh of size =n/d 3 =n/d, and the complete graph Kd on d
nodes. Clearly the network has n nodes and degree d 1 3. It is useful to view the
network as a mesh of cliques; thus, the edges of the network can be partitioned
into mesh edges and clique edges. Address each node by a triplet (r, c, d), where
r is its row address and c its column address (in the mesh), and d is its clique
address. Routing is accomplished by alternating local steps that only use clique
edges, and systolic steps that only use mesh edges. In a local step, each node v
checks whether the destination column address of the packet it currently holds is
the same as its own column address; if so, the packet is sent to the node whose
clique address is the destination clique address. If not, the packet is sent out in
the following systolic step. In a systolic step, each node v checks whether the
destination column address of the packet it currently holds is the same as its own
column address; if not, the packet is sent along the row towards its column.
Otherwise, if the column address of the packet is the same as the column address
of v (and, in this case, the clique addresses are also identical), then the packet is
sent along the column towards its row.

729How Much Can Hardware Help Routing?

Consider a packet p. Before it is sent along a clique edge, it incurs no delay
while traveling along the row. In turning to the clique edge, and in moving along
the column edges it may be delayed only by other packets whose destination
column is the same as the destination column of p. Each such delay can be
charged to a unique packet by a “chain of delays” argument. For example,
suppose p is delayed by q which is later delayed by r and r then goes on without
any delays to its destination. Then p’s delay, as well as q’s delay, is charged to r.2

Thus, the total delay of packet p is bounded by =n/d. The time bound is now
easy to establish.

2.1.2. MULTI-PORT CASE. We make use of the following fact. The Cartesian
product of two complete graphs Kd on d nodes (which we denote by Kd

2) is a
network on which any permutation on d2 nodes can be routed in two steps using
an oblivious deterministic multi-port algorithm. To see this, address each node by
a pair (d1, d2), where d1 is its first clique address and d2 is its second clique
address. Routing from node (d1, d2) to node (e1, e2) is accomplished in two
steps: In the first step, the packet is sent to node (e1, d2) and in the second step
the packet is sent to (e1, e2). It is easy to see that in case of a permutation there
is no edge congestion, and thus the routing can be done in two time steps. Our
network is now the product of a square mesh of size =n/d 3 =n/d, and Kd

2. The
degree of this network is (d 2 1) 1 (d 2 1) 1 4 5 2d 1 2. By extending the
algorithm and analysis of the single-port case, the time bound follows.

2.2. OBLIVIOUS RANDOMIZED SINGLE-PORT—LOWER BOUND. The lower
bound uses the von Neumann minimax principle, using random inputs on an
oblivious deterministic single-port (ODS) scheme to guarantee a bad input for
any oblivious randomized single-port (ORS) scheme. Aiello et al. [1991] give a
result that resembles Theorem 2.2.1 below. However, it should be noted that
their result assumes a bit-serial model and that a packet carries a certain amount
of routing information. Our result makes no such assumptions, and is purely a
statement of expected maximum congestion.

THEOREM 2.2.1. For any n-node network of degree d # n/log3n, and any ODS
scheme, the expected routing time for a random permutation (with each permutation
chosen with uniform probability) is V(logdn 1 log n/log log n).

We remark that the limiting condition d # n/log3 n occurs in Lemma 4, and in
fact any d that is o(n/log2 n) will suffice for its proof. It is plausible that the
theorem holds for any d asymptotically smaller than n/log n.

By the von Neumann minimax principle [Yao 1977], we immediately have:

COROLLARY 2.2.2. For any n-node network of degree d # n/log3n, and any ORS
scheme, there is a permutation for which the expected routing time is V(logdn 1 log
n/log log n).

PROOF OF THEOREM 2.2.1. The logdn term is the diameter lower bound. The
second term is due to the expected congestion at some node. Note that since in a
single-port model a node is not allowed to send more than one packet at a time,
the congestion at a node provides a lower bound on the routing time. We show
that the expected maximum congestion is V(log n/log log n).

2 For a detailed discussion of the chain of delays argument, see Felperin et al. [1996].

730 A. BORODIN ET AL.

In an oblivious deterministic algorithm, the route between any source-destina-
tion pair is fixed. For (almost) every source-destination pair (u, v), we select a
specific internal node in the route from u to v, in a way described later. We call
this node the assigned node of (u, v), and denote it V(u, v).

For any permutation p and two nodes u and w define

Iuw~p! 5 H 1

0

if w 5 V~u, p~u!! .

otherwise.

Let p be a random permutation. Define Puw 5 Pr{Iuw(p) 5 1}. Thus, ¥u Puw

gives us a lower bound on the expected congestion at w.
We show that there are sufficiently many nodes w for which ¥uPuw $ d, for a

positive constant d. Then, we show that for a particular such node w, there is a
reasonably large probability that ¥uIuw $ logn/4 log log n. This will ensure the
desired expected maximum congestion is as desired.

Fix a node u. We show how to assign V(u, vi), for most vi Þ u. This
assignment will have the following properties:

(1) A node w may be the assigned node of at most (d 1 1) log n pairs (u, vi).
(2) If a node w is the assigned node of some pair (u, vi), then it is the assigned

node of at least log n such pairs.
(3) For at least n 2 d log n nodes vi, V(u, vi) is defined.

LEMMA 2.2.3. There exists an assignment with the above three properties.

PROOF. Fix u and consider the possible destinations v1, v2, . . . , vn21 with vi

Þ u. We show a procedure that determines the assignments of V(u, vi). The
procedure has two stages.

In the first stage, we iterate the following. Select an unmarked node w that is
an internal node in at least log n routes that have not been deleted (in a manner
described next), if such exists. Mark w, and assign it to log n of these routes
(chosen arbitrarily). Delete these log n routes. The first stage ends when there is
no such node w.

In the second stage, follow each of the undeleted routes (u, vi), from vi back
to u. Assign (u, vi) to the first marked node encountered on the way, if such
exists.

Now, we prove that this procedure indeed gives the desired assignment. A
marked node w is assigned exactly log n routes in the first stage. Next, we bound
the number of routes it is assigned in the second stage. At most d of these routes
may be routes that begin at one of the neighbors of w. The rest of these routes
must contain at least one of the unmarked neighbors of w as an internal node.
For each unmarked neighbor, we may have at most log n 2 1 such routes.
Hence, their number is bounded by d(log n 2 1). We conclude that the total
number of routes assigned to w is between log n and (d 1 1) log n.

To bound the number of unassigned routes at the end of the procedure,
observe that each unassigned route either begins at a neighbor of u or contains
an unmarked neighbor of u as an internal node. Thus, the number of these
routes is bounded by d(log n 2 1) 1 d 5 d log n. e

Given an assignment with these properties, Puw satisfies the following.

731How Much Can Hardware Help Routing?

(1) For any two nodes u and w, either

Puw 5 0, or
log n

n
Puw # ~d 1 1!

log n

n
.

(2) ¥w ¥u Puw 5 ¥u ¥w Puw $ ¥u

n 2 d log n

n
5 n 2 d logn.

If there exists some w such that ¥u Puw $ log n, then clearly the congestion
bound follows. Suppose that for all nodes w, ¥u Puw , log n.

We fix a node w satisfying ¥u Puw $ d and analyze the probability (for a
random permutation) that the congestion ¥u Iuw exceeds log n/4 log log n.
Intuitively, we are throwing n “balls” at a bin w. The probability of a “hit” is at
most (d 1 1) log n/n, and the expected number of hits is V(1). Our goal is to
get a lower bound on the probability that the maximum number of hits is V(log
n/log log n). As will be formalized later, this bound is achieved when V(n/(d 1
1)log n) balls are thrown with hit probability (d 1 1)log n/n, and the rest have
zero hit probability.

There is a small problem with the “ball and bin” intuition: it does not account
for the fact that the hits must correspond to a (partial) permutation. That is, the
hits must correspond to different destination nodes. (Notice that they correspond
to different source nodes.) To overcome this problem we use the property that if
Puw . 0, then Puw $ logn/n. Suppose that there is a “balls to bins” assignment
with more than h hits for some h # log n. Each such hit corresponds to some
source node u, with Puw $ log n/n. Thus, there are at least log n nodes v such
that w is V(u, v). Since h # log n, we can match at least one different
destination for each source. This matching restricts the number of possible
assignment, thus Puw may be now as small as 1/n (if it is not zero).

LEMMA 2.2.4. Let x1, . . . , xk be independent 0/1 random variables. Let Pr{ xi 5
1} 5 pi, 1 # i # k, ¥i51

k pi $ d, for some fixed d . 0, and (1/n) # pi # (d 1 1) log
n/n. Then, for d # n/log3n

PrH O
i51

k

xi $
log n

c log log nJ $ n22/c.

To prove this lemma, we first prove the following more general lemma.

LEMMA 2.2.5. Let x1, . . . , xk be independent 0/1 random variables. Let Pr{ xi 5
1} 5 pi, 1 # i # k, ¥i51

k pi $ d, for some fixed d . 0, and a # pi # b. Then, for any
Y # d/2b log(b/a),

Pr$O
i51

k

xi $ Y% $
1

2 S 1

2YD
YS d

e log~b/a!
D Y

.

PROOF. Without loss of generality assume that log(b/a) is a positive integer, and
d , 1 (larger d can only increase the probability we compute). Let P(1) 5 ¥a#pi#ae

pi, and for j 5 2, . . . , log(b/a), let P(j) 5 ¥aej21,pi#aej pi. Since ¥j51
log(b/a) P(j) $ d

there exists s [{1, . . . , log(b/a)} such that P(s) $ d/log(b/a). Let xs1
, . . . , xsm

be the
m variables with probabilities in this interval. Observe that P(s) # mb and thus m $
d/(b log(b/a)). Also, for some 1 # i # m, psi

$ d/(m log(b/a)). Since all the

732 A. BORODIN ET AL.

probabilities in this interval are within a factor of e, for all 1 # i # m, psi
$ d/(em

log(b/a)). Let B(n, p) denote a random variable with the binomial distribution with
parameters n and p. We get

Pr$ O
,51

m

xs,
$ Y% $ PrHBSm,

d

em log~b/a!
D $ YJ $ Sm

Y D S d

em log~b/a!
D Y

3 S 1 2
d

em log~b/a!
D m2Y

$ Sm 2 Y

Y D YS d

em log~b/a!
D Y

3 S 1 2
~m 2 Y!d

em log~b/a!
D $ S 1

2YD
YS d

e log~b/a!
D Y 1

2
.

The last step follows since

m $
d

b log~b/a!
and Y #

d

2b log~b/a!

and therefore Y # m/ 2. e

PROOF OF LEMMA 2.2.4. To apply Lemma 2.2.5, we consider only balls with
positive hit probabilities. Thus, we have k independent 0/1 random variables,
where Pr{ xi 5 1} 5 pi, 1 # i # k, ¥ i51

k pi $ d and 1/n # pi # (d 1 1)log
n/n. Then, setting d # n/log3n (to get that

log n

c log log n
#

nd

2e~d 1 1!log n log~~d 1 1! log n!
,

for sufficiently large n), we get the desired bound. e

Consider a node w for which ¥u Puw $ d, call it a good node. By our
assumption ¥u Puw , log n. Thus, for any fixed d , 1, the number of good
nodes is at least (n(1 2 d) 2 d log n/log n 5 V(n/log n). By Lemma 2.2.4, the
probability of a good node w having a congestion of log n/4 log log n is at least
1/=n.

We would like to conduct the following trials until the first success: pick a
good node w and check whether it has a congestion of log n/4 log log n. By the
above argument, we know that the success probability of the first trial is at least
1/=n. Later we show that this bound holds for the first n/log n trials. Hence, the
probability that in the first t 5 n/log n trials one of the nodes has congestion log
n/(4 log log n) is at least 1 2 (1 2 1/=n) t . 1 2 (1 2 1/=n)=n ' 1 2 1/e.
Thus, the expected maximum congestion is V(log n/log log n).

Fix some t # n/log n. It remains to argue that the success probability of the
tth trial given that the previous t 2 1 trials failed is at least 1/=n. Each of the
previous t 2 1 nodes that is not congested constrains the destinations of fewer
than log n/log log n source nodes. If we set the destinations for these source
nodes and eliminate the traffic originating at them, then the total expected
congestion ¥u ¥w Puw is reduced by at most (t 2 1)log n/log log n; that is, it
remains V(n). It follows that there are still V(n/log n) good nodes, even after
this traffic has been removed. Note that after removing this traffic, Iuw cannot

733How Much Can Hardware Help Routing?

decrease for the good nodes w. Thus, the probability that the good node w has
congestion log n/4 log log n is at least 1/=n. e

To conclude this section, we prove a high probability lower bound using a
variation of the von Neumann minimax principle [Yao 1977].

THEOREM 2.2.6. For any n-node network of degree d # n/log3n, and any ORS
scheme, there is a permutation for which with probability at least 1 2 n2c (for any
constant c) the routing time is V(logdn 1 log n/log log n).

PROOF. Let ! be the set of all ODS schemes, and let Sn be the symmetric
group on n elements. For an ODS scheme A [! and a permutation p [Sn,
define

TA ,p 5 H 1

0

if A routes p in at least 1
2 ~logd n 1 log n/log log n! time steps.

otherwise.

Consider a scheme A [!. From the proof of Theorem 2.2.1, it follows that with
probability 1 2 (1 2 1/=n)n/log n $ 1 2 n2c (for any constant c) A routes a
random permutation (chosen uniformly) in at least 1

2(logd n 1 log n/log log n)
time steps. This implies that ¥{p[Sn} TA,p $ (1 2 n2c)n!.

Consider any ORS scheme R. This scheme can be viewed as a distribution over
the ODS schemes. For A [!, let pA be the probability that the ORS scheme R
is identical to the ODS scheme A. It follows that for a fixed permutation p the
probability that R routes p in at least 1

2(logdn 1 logn/log log n) time steps is
¥{A[!} pA z TA,p. We claim that for at least one permutation p: ¥{A[!} pA z
TA,p $ 1 2 n2c.

To obtain a contradiction, assume that for all permutations p: ¥{A[!} pA
z

TA,p , 1 2 n2c. Then, ¥{p[Sn} ¥{A[!} pA z TA,p 5 ¥{A[!} pA ¥{p[Sn} TA,p
, (1 2 n2c)n!. However, since ¥{A[!} pA 5 1, this implies that for at least
one scheme A [! ¥{p[Sn} TA,p , (1 2 n2c)n!. A contradiction. The
theorem follows. e

2.3. OBLIVIOUS RANDOMIZED MULTI-PORT—UPPER BOUND. In this section,
we analyze Valiant’s oblivious randomized multi-port algorithm on the d-way
wrap-around butterfly network.

2.3.1. The Network. Let n 5 m logd m and suppose that logd m is an integer.
The d-way butterfly has logd m layers, each with m nodes. Number the layers
0, . . . , logd m 2 1, and the nodes in each layer by 0, . . . , m 2 1. A location in
the network is characterized by a pair (,, x), where , is the layer number, and x
is the node number in the layer. Let x0, . . . , xs denote the base d representation
of the number x. A node (,, x) is connected to d nodes in layer , 1 1 (mod
(logd m)). The numbers of these d nodes are x0, . . . , x,21, p, x,11, . . . , xs,
where p 5 0, . . . , d 2 1.

2.3.2. The Algorithm. Consider a packet at origin (,O, xO) with destination
(,D, xD). The packet travels to its destination in three stages. In the first stage,
the packet makes logd m “random” transitions, where in each random transition
the packet leaves its current location by an outgoing edge chosen at random from
the d outgoing edges of this node. Each random choice is independent of

734 A. BORODIN ET AL.

previous choices of this packet, and of the choices for other packets. At the end
of the first stage, the packet is at a random node in the same stage as its origin.
In the second stage the packet takes another (,D 2 ,O) “random” transitions. At
the end of the second stage, the packet is at random node in same stage as its
destination node. In the third stage, the packet reaches its destination in another
logd m (deterministic) transitions. Since a node can use all its outgoing edges
simultaneously, we assume that each outgoing edge has its own queue. The
queues are priority queues. The priority number of a packet in the first stage is
the number of edges already traversed. In the second stage, it is logd m plus the
number of edges already traversed in that stage, and in the third stage it is 3 logd

m minus the number of edges traversed in the third stage. Packets with lower
priority number have higher priority and ties are broken arbitrarily.

THEOREM 2.3.2.1. There is an ORM scheme that routes an arbitrary permuta-
tion on an n node d-way butterfly in O(logdn) steps with high probability.

PROOF. We analyze the delay of each stage separately. We start with the first
stage. Our analysis uses the critical delay sequence method [Uptal 1984]. Given
an execution of the algorithm, we define a critical delay sequence $ 5 e1, . . . ,
e logdm, for the first stage of the algorithm with respect to this execution. The last
edge in the sequence, e logdm, is one of the last edges to transmit packets with
priority logd m in this execution. If ei11 5 v 3 w then ei is one of the last edges
to transmit packets with priority i or less amongst ei11 and the d ingoing edges of
node v.

Let t i denote the time at which edge ei of the critical delay sequence finished
transmitting all packets of priority i or less. Let f i denote the number of packets
with priority i that traversed edge ei of the critical delay sequence.

Clearly t i # t i21 1 f i, and the run-time of the first stage is bounded by

t logdm2t05 O
i51

logdm

ti2ti21# O
i51

logdm

fi,

where we define t0 5 0.
A delay sequence is any sequence of edges e1, . . . , e logdm, such that for every

1 # i , logd m either ei 5 ei11, or ei11 5 v 3 w and ei is one of the d ingoing
edges of node v. Note that the set of delay sequences includes the critical delay
sequence(s). Let f i 5 gi 1 hi, where gi counts packets that were not counted in
¥ j,i f j (i.e., gi counts packets that were counted first in edge ei). Since in the
first stage each packet chooses its outgoing edge at each stage independently at
random, for any given edge (whether or not the edge is in the critical delay
sequence)

E@ gi# # di21
1

di21

1

d
5

1

d
,

and the distribution of gi is stochastically bounded by B(di, 1/ddi). Thus, by
Hoeffding’s theorem [Hoeffding 1958], ¥ i51

logdm gi is stochastically dominated
by B(n, 1/md).

Let G be the maximum over all delay sequences of ¥ i51
logdm gi. There are no

more than n(d 1 1)logdm # n3 possible delay sequences; thus

735How Much Can Hardware Help Routing?

Pr$G . 2e logdn% # n3 O
k.2e logdn

PrHBSn,
1

mdD $ kJ
n3 O

k.2e logdn
Sn

kD S 1

mdD
k

n3 O
k.2e logdn

S logdm

k D kS 1

dD
k

5 o~1! .

Let H be the maximum over all delay sequences of ¥ i51
logdm hi. Next, we bound

H given that G # 2e logd n. Consider a packet p, first counted in f i. Since the
packet is taking a random path, the number of transitions it makes until it leaves
a given path is stochastically bounded by a geometric distribution with probability
of success 1 2 (1/d). Due to the structure of the butterfly network, once a
packet leaves a path, it cannot return to it in that stage. Thus, the probability that
G packets traversed a total of H edges in the path is bounded by the probability
of less than G successes in H 1 G 2 1 trials each with success probability 1 2
(1/d). We get that for d $ 10

Pr$H . 4e logdn uG # 2e logdn% # n3 O
k.4e logdn

PrHBS k 1 G ,
1

dD . kJ
n3 O

k.4e logdn

2G1kS 1

dD
k

5 o~1! .

Let F be the maximum over all delay sequences of ¥ i51
logdm gi 1 hi. Thus, we

get

PrH O
i51

2 logdm

F . 6e logdnJ
Pr$G . 2e logdn% 1 Pr$H . 4e logdn uG # 2e logdn%

5 o~1! .

To analyze the second stage we need to define the delay sequence slightly
differently. Given an execution of the algorithm, let p be one of the last packets
to traverse an edge in the second stage. Let b be the priority number of this
packet in its last transition, and let eb be the last edge traversed by p. Note that
b # 2 logdm. Define a delay sequence $ 5 e logdm11, . . . , eb, with respect to this
execution, starting from eb backwards. For i , b, if ei11 5 v 3 w, then ei is one
of the last edges to transmit packets with priority i or less among ei11 and the d
ingoing edges of node v. Define f i, gi and hi as before. The remainder of the
proof is similar to the analysis of the delay sequence for the first stage. The
bound on the delay in the third stage is obtained by its symmetry to the first
stage. e

3. Adaptive Routing

3.1. ADAPTIVE DETERMINISTIC MULTI-PORT. We construct an n-input n-
output, degree d network that routes any end-to-end permutation in O(logd n)

736 A. BORODIN ET AL.

steps. Our construction generalizes the multibutterfly routing scheme [Upfal
1992] to networks of large degree and small diameter. The scheme of Upfal
[1992] already gives a (single-port) bound of O(d log2 n) for all d $ 4. We
therefore concentrate on the case of large d, any d . d0, for some large constant
d0. (To simplify the presentation, no attempt is made to obtain the best
constants.)

3.1.1. The Network. The basic building block of the network is a =d-way
m-splitter. A =d-way m-splitter has one set of m input nodes and =d output
sets, each with m/=d nodes. Each input has =d edges to each of the =d output
sets. The edges connecting the input set to each of the output sets define an
expander graph with the following properties:

(1) Even if for each input set we arbitrarily erase half of the edges to each
output set from that input set, each set X of at most m/10d inputs is
connected to more than =d uX u/10 outputs in each output set.

(2) For a given set of inputs X, let G(X, =d/4, i) denote the set of vertices in
the ith output set with at least =d/4 neighbors in X. We require that for
each set X of at most m/16e inputs, uG(X, =d/4, i) u , uX u/=d.

The network has 2 logd n 1 1 layers. The vertices at layer 0 # i # 2logd n are
partitioned into (=d) i sets of mi 5 n/(=d) i vertices. Each of the sets in layer i
is an input set of a =d-way mi-splitter. The output sets of that splitter are =d
sets of size mi11 in layer i 1 1.

LEMMA 3.1.1.1. There exists an expander graph with the above properties.

PROOF. It is enough to show the existence of the desired graph between the
set of inputs and one set of outputs. Choose a random bipartite graph with m
vertices in one side, each of degree =d, and m/=d vertices on the other side,
each with degree d. The probability that Property (1) fails is bounded by

O
k#m/(10d)

Sm

k D 1
m

Îd

k Îd

10
2 S Îd

Îd/ 2
D kS dk

10mD k Îd/ 2

,

which is o(1).
The probability that Property (2) fails is bounded by

O
k#m/(16e)

Sm

k D 1
m

Îd

k

Îd
2 1 k Îd

k Îd

4
2 S k

mD k Îd/4

,

which is also o(1). e

3.1.2. The Algorithm. Nodes at odd levels of the multibutterfly transmit in
odd stages, while nodes at even levels transmit in even stages. A stage has three

737How Much Can Hardware Help Routing?

steps. In the first step, each node in a transmitting level sends a request message
to all its neighbors in output sets to which it has packets to transmit. (Note that
the given permutation determines the output set for each packet.) A node in a
receiving level that receives fewer than =d/4 messages, and currently stores
fewer than =d/4 packets, replies in the second step with a “ready” message to its
neighbors in the previous layer. In the third step, each node in a transmitting
level sends packets to some of the nodes that reply with a “ready” message.
Suppose that a node in a transmitting level has to transmit k packets to a specific
output set, and suppose that k9 of its neighbors in this output set replied with a
“ready” message. Then, the node selects min{k, k9} neighbors out of them and
sends each one a distinct packet out of the k packets.

3.1.3. Analysis. Consider a splitter in a stage in which the inputs of the
splitter are transmitting packets to the outputs. Fix an output set Y of that
splitter. Let k (respectively, k9) be the number of packets that need to traverse
output set Y and that are stored at the beginning (respectively, end) of that stage
in input nodes of that splitter. Let , be the number of packets stored in output
set Y at the beginning of this stage.

LEMMA 3.1.3.1. For sufficiently large d,

k9 ,
20

Îd
~k 1 ,! .

PROOF. At the beginning of a stage, no node has more than =d/ 2 packets.
Thus, if a node stores packets at the end of a stage, at least =d/ 2 of its
neighbors in output set Y either received more than =d/4 requests, or started
the stage with at least =d/4 packets.

At most m/=d packets traverse nodes in output set Y. For sufficiently large d,
m/=d # m/16e. Thus, by Property (2) of the expander graphs, the number of
nodes in output set Y that received more than =d/4 requests is at most k/=d.

Let IY be the set of input nodes that, at the end of the stage, store packets that
need to be transmitted to output set Y, and let uIY u 5 p9. We claim that p9 #
m/10d. Suppose that p9 . m/10d, then IY has at least (m/10=d 2 k/=d)
neighbors in output set Y each storing at least =d/4 packets. Since k # m/=d,
the number of such neighbors is at least (m/10=d 2 m/d). But then for
sufficiently large d, the total number of packets that pass output set Y is at least
=d/4 z (m/10=d 2 m/d) . m/=d, a contradiction.

Since the input nodes in IY still store packets at the end of the stage, we know
that at least half of the neighbors of each node in IY did not accept packets at
this stage. Since p9 # m/10d, by the expansion property (Property (1)) IY has at
least p9=d/10 neighbors in output set Y that did not accept packets at this stage.
There are no more than k/=d output nodes that received more than =d/4
requests, and no more than 4,/=d of output nodes stored more than =d/4
packets at the beginning of the stage. Thus, p9=d/10 # k/=d 1 4,/=d, or

p9 #
40

d
~k 1 ,! .

738 A. BORODIN ET AL.

Since no node stores more than =d/ 2 packets k9 # 20(k 1 ,)/=d. e

Denote by Xi
t the number of packets in layer i after the execution of stage t.

COROLLARY 3.1.3.2. If layer i is transmitting packets at stage t, then

Xi
t #

20

Îd
~Xi

t21 1 Xi11
t21! .

We analyze the progress of the routing algorithm in terms of a potential
function. The analysis is a simplified version of the proof in Leighton and Maggs
[1989]. Let w 5 d1/4. The potential of a packet after stage t is wi, if after the
execution of that stage the packet is in stage 2 logdn 2 i of the network. Let
F(t) denote the sum of the potentials of the packets that have not reached their
destinations after stage t. Clearly F(0) 5 nw2logdn, and the routing terminates at
the first stage t such that F(t) , 1.

Assume that t 1 1 and i have the same parity (i.e., either both odd or both
even). Then, layer i is transmitting at stage t 1 1, and by Corollary 3.1.3.2

Xi
t11 #

20

Îd
~Xi

t 1 Xi11
t ! .

Layer i 1 1 is receiving at that stage, and clearly, Xi11
t11 # Xi

t 1 Xi11
t .

After the next stage, we get that

Xi
t12 # Xi21

t11 1 Xi
t11 # Xi22

t 1 Xi21
t 1

20

Îd
~Xi

t 1 Xi11
t ! .

Similarly,

Xi11
t12 #

20

Îd
~Xi11

t11 1 Xi12
t11! #

20

Îd
SXi

t 1 Xi11
t 1

20

Îd
~Xi12

t 1 Xi13
t !D .

Thus, for sufficiently large d, and for all i whether even or odd,

Xi
t12 # Xi22

t 1 Xi21
t 1

20

Îd
SXi

t 1 Xi11
t 1

20

Îd
Xi12

t D .

Substituting this bound into the potential function, we get that

F~t! 5 O
i50

2logdn 2 1

Xi
tw2logdn 2 i,

and

F~t 1 2! # O
i50

2 logdn 2 1 SXi22
t 1 Xi21

t 1
20

Îd
SXi

t 1 Xi11
t 1

20

Îd
Xi12

t D Dw2logdn 2 i

O
i50

2logdn 2 1 S 1

w2
1

1

w
1

20

Îd
1

20w

Îd
1

400w2

d D Xi
tw2logdn 2 1,

739How Much Can Hardware Help Routing?

where the last inequality is obtained by rearranging the sum.
Thus, the potential function is decreased by a factor of at least

1

w2
1

1

w
1

20

Îd
1

20w

Îd
1

400w2

d
5 V~d21/4!

over any two stages, and for t 5 O(logd n), F(t) , 1. Thus, we prove:

THEOREM 3.1.3.3. There is an ADM scheme on an n-input n-output degree d
multibutterfly (of depth 2logd n) that routes any end-to-end permutation in O(logdn)
steps. Using the technique in Upfal [1992] this scheme readily extends to yield a
scheme that routes any global permutation of n9 5 2nlogd n packets (one at each
node of the network) in O(logd n) steps.

4. Further Work

Our results clearly highlight the problem of devising and analyzing single-port
schemes. For ADS routing, we have no results that go beyond what is known for
small degree. We know of an apparently sub-optimal and relatively complex ARS
scheme (see the sketch in Borodin et al. [1993]). It is still an open problem to
find a simple and optimal ARS scheme and/or to derive a lower bound showing
that the diameter bound cannot be achieved for large degree. (It is plausible that
there might be an V(log log n) lower bound for degree d 5 ne.) Our algorithms
for single-port routing require nodes to receive more than one packet in a step, a
weakness that should be addressed. Our work does not consider the maximum
queue size; a natural dichotomy to be studied would be algorithms with bounded
versus unbounded queue size.

ACKNOWLEDGEMENTS. We are grateful to Alok Aggarwal and Don Coppersmith
for enlightening discussions. We also appreciate the many helpful suggestions of
an anonymous referee.

REFERENCES

AIELLO, B., LEIGHTON, F. T., MAGGS, B., AND NEWMAN, M. 1991. Fast algorithms for bit-serial
routing on a hypercube. Math. Syst. Theory 29, 253–271.

AJTAI, M., KOMLÓS, J., AND SZEMERÉDI, E. 1983. Sorting in c log n parallel steps. Combinatorica 3,
1, 1–19.

ALELIUNAS, R. 1982. Randomized parallel communication. In Proceedings of the 1st Annual
ACM–SIGOPS Symposium on Principles of Distributed Computing (Ottawa, Ont., Canada, Aug.
18 –20). ACM, New York, pp. 60 –72.

BORODIN, A., AND HOPCROFT, J. E. 1985. Routing, merging, and sorting on parallel models of
computation. J. Comput. Syst. Sci. 30, 130 –145.

BORODIN, A., RAGHAVAN, P., SCHIEBER, B., AND UPFAL, E. 1993. How much can hardware help
routing? In Proceedings of the 25th Annual Symposium on Theory of Computing (San Diego, Calif.,
May 16 –18). ACM, New York, pp. 573–582.

FELPERIN, S., RAGHAVAN, P., AND UPFAL, E. 1996. A theory of wormhole routing in parallel
computers. IEEE Trans. Comput. 45, 704 –713.

GREEN, P. 1991. The future of fiber-optic computer networks. IEEE Comput. 24, 78 – 89.
HOEFFDING, W. 1958. On the distribution of the number of successes in independent trials. Ann.

Math. Stat. 27, 713–721.
KAKLAMANIS, C., KRIZANC, D., AND TSANTILAS, T. 1991. Tight bounds for oblivious routing in the

hypercube. Math. Syst. Theory 24, 223–232.

740 A. BORODIN ET AL.

LEIGHTON, F. T. 1985. Tight bounds on the complexity of parallel sorting. IEEE Trans. Comput.
C-34, 344 –354.

LEIGHTON, F. T., AND MAGGS, B. 1989. Expanders might be practical: Fast algorithms for routing
around faults in multibutterflies. In Proceedings of the 30th Annual Symposium on Foundations of
Computer Science. IEEE, New York, pp. 384 –389.

PELEG, D., AND UPFAL, E. 1989. The token distribution problem. SIAM J. Comput. 18, 229 –243.
RAMASWAMI, R. 1993. Multiwavelength lightwave networks for computer communications. IEEE

Commun. Mag. 31, 2 (Feb.), 78 – 88.
UPFAL, E. 1984. Efficient schemes for parallel communication. J. ACM 31, 3 (July), 507–517.
UPFAL, E. 1992. An O(log N) deterministic packet routing scheme. J. ACM, 39, 1 (Mar.), 55–70.
VALIANT, L. G., AND BREBNER, G. J. 1981. Universal schemes for parallel communication. In

Proceedings of the 13th Annual ACM Symposium on Theory of Computing, Milwaukee, Wis., May
11–13). ACM, New York, pp. 263–277.

YAO, A. C-C. 1977. Probabilistic computations: Towards a unified measure of complexity. In
Proceedings of the 17th Annual Symposium on Foundations of Computer Science. IEEE, New York,
pp. 222–227.

RECEIVED FEBRUARY 1995; REVISED JULY 1996; ACCEPTED AUGUST 1997

Journal of the ACM, Vol. 44, No. 5, September 1997.

741How Much Can Hardware Help Routing?

