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Abstract

Gerrymandering is the process of creating electoral districts for partisan ad-
vantage, allowing a party to win more seats than what is reasonable for their
vote. While research on gerrymandering has recently grown, many issues are
still not fully understood such as what influences the degree to which a party
can gerrymander and what techniques can be used to counter it. One commonly
suggested (and, in some US states, mandated) requirement is that districts be
“geographically compact”. However, there are many competing compactness
definitions and the impact of compactness on the gerrymandering abilities of
the parties is not well understood. Also not well understood is how the growing
urban-rural divide between supporters of different parties impacts redistricting.

We develop a modular, scalable, and efficient algorithm that can design
districts for various criteria. We confirm its effectiveness on several US states
by pitting it against maps “hand-drawn” by political experts. Using real data
from US political elections we use our algorithm to study the interaction between
population distribution, partisanship, and geographic compactness. We find
that compactness can lead to more fair plans (compared to implemented plans)
and limit gerrymandering potential, but there is a consistent asymmetry where
the party with rural supporters has an advantage. We also propose and explore
a definition of compactness, one based around creating political districts where
the residents all are similar with respect to their housing density. A priori,
it is not clear if such a plan should help combat gerrymandering, or actually
inflame the issue. Finally, we show there are plans which are fair from a partisan
perspective, but they are far from optimally geographically compact.
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(a) NC population density

(b) NC voting intention

Figure 1: Top, the natural log of population density in NC (population divided by area)
according to the 2010 census. More yellow hue indicates higher density, while black indicates
lower density. Bottom, the partisan vote share of each precinct in the 2012 presidential
election; more red favours the Republican party, more blue favours the Democratic party.
The three largest metropolitan areas, by population, are indicated on both figures.

1. Introduction

In many democracies, politicians are elected to represent the people of par-
ticular geographic areas, called districts.1 There is no global aggregation of
votes over the whole country, and instead voters within a district pick a win-
ner from the alternatives vying to represent their district. Political power is
based on the number of districts won by each party. This method of decision-
making, using bottom-up structures, is not unique to countries, and can be seen
in organizations (e.g., universities reaching decisions by approving them at the

Email addresses: bor@cs.toronto.edu (Allan Borodin), omerlev@bgu.ac.il (Omer
Lev), nisarg@cs.toronto.edu (Nisarg Shah), tyrone@cs.toronto.edu (Tyrone Strangway)

1Many countries use different names for these, such as constituencies or ridings. In this
paper, we will use the term “district”.
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departmental level, and if enough departments support, at the Faculty level,
etc.), and other structures where sub-unit divisions make sense.

How voters are partitioned into these districts directly affects the makeup of
the legislative body. The partitioning is often governed by hard constraints.
For example, most jurisdictions require that the districts be geographically
connected (with certain exceptions) and have roughly equal populations. In
addition to connectivity and population balance constraints, there are many
competing goals when designing a districting plan [1]. One could prioritize not
breaking up communities of interest, such as those with a shared culture and
history.2 It may also be desirable to be as compatible as possible with estab-
lished city and county boundaries, a consideration studied by Wheeler and Klein
[2]. Another reasonable goal would be to obtain geographically compact regions
(a goal enshrined in some US states’ laws and regulations3). A less defensible
goal is gerrymandering : designing districts for partisan gain, i.e., creating dis-
tricts which help a particular party gain a number of seats beyond its popular
support. Such a goal is termed gerrymandering after Massachusetts governor
Elbridge Gerry, who approved a supposedly salamander-shaped district for such
motives in the early 19th century.

While many countries have tried to take district drawing out of political
hands, partisan districting is still a common, legal practice in some countries,
most evidently in the US congressional system. In the US, following every 10-
year census, state legislatures decide their new federal congressional and state
legislative districts, and partisan concerns are often part of the consideration
[3]. For example, in the 2020 federal election in North Carolina, a state accused
of gerrymandering (partially overturned by courts [4]), the Democratic party
received 49.96% of the vote and won five districts; the Republican party received
49.41% of the vote and won eight districts. Of course, gerrymandering is just
one reason for problematically formed districts – prior to the Great Reform
Bill of 1832, British district boundaries had remained static for hundreds of
years. Due to changing population patterns, this resulted in “rotten boroughs”
– districts containing very few (e.g., single digit) voters. That being said, in
the United States, strict requirements on population balance between districts
would prevent such situations. As noted above, due to the many competing
goals, even with clearly stated goals it is not clear what is fair or optimal when
it comes to non-partisan redistricting (see Wasserman [1] for further discussion
and a comparison of objectives). Indeed, it may be impossible to satisfy all
these goals simultaneously.

Parallel to the political partisan redistricting process there is a more com-
plex, ongoing population-wide process, where a person’s neighbourhood is cor-
related with their political leanings. As Figure 1 shows, in North Carolina
voters of the Democratic party tend to cluster in dense urban centres, while

2Regarding ethnic minorities, this is required by the US’ Voting Rights Act of 1965.
3For example, California’s constitution states, in article XXI, “districts shall be drawn to

encourage geographical compactness”.

3



voters of the Republican party are spread out in the surrounding rural regions.
We will explore and quantify this density and partisan relationship later on
in North Carolina and several other states. This urban-rural divide in voting
intentions is the norm in the United States [5], Britain [6], and in several Euro-
pean countries [7, 8]. In democracies around the world voters are “reorganizing”
themselves for various economic and social reasons, creating this striking divide.
Along with anger over lagging rural economies, the divide has been blamed for
the resurgence of populist politicians and the success of movements like the
United Kingdom leaving the European Union [9].

Our contribution. Our work explores aspects of both of these processes – the
immediate partisan one and the process of population dynamics. In the first part
of our work (Section 5), we introduce our automated redistricting procedure,
which is flexible and can be used to design plans for various objectives, both
partisan and nonpartisan. To prove the utility of our algorithm, we compare its
performance against hand-drawn plans from election experts. We also explore
(Section 6) the social contribution of our algorithm.

Once we show the power of our algorithm, we begin using it to understand the
interplay between population distribution, geographic compactness constraints,
and political power. Our algorithm allows us to examine possible requirements
that have been suggested as a means to mitigate or eliminate gerrymandering.
In particular, we study the impact of a compactness requirement. In Section 7,
a few compactness measures are considered and we see that in the US, the
more rural party (Republicans) still consistently outperforms the more urban
party (Democrats). Moreover, we see that this advantage is robust even in
a non-gerrymandered, geographically-compact plan. This advantage is not due
to political gaming of the division process, but rather due to the geographic
spread of each party’s supporters. That being said, we show the existence of
“fair” but not ideally compact plans. In addition, we introduce a novel metric
for compactness, not one based on geography, but instead on population density.
Taking inspiration from the idea of keeping like minded communities together,
we create plans which place people of similar housing density into districts with
each other. How the urban-rural divide and districts designed in such a way
would impact outcomes is not obvious.

In Section 8 we examine how compactness constraints affect gerrymander-
ing possibilities. We show that demanding stringent compactness constraints
reduces the ability of parties to reach extreme gerrymanders. However, in most
cases, the compactness requirement allows for relatively greater rural-party ger-
rymandering. Indeed, under the most stringent compactness constraints, the
urban party sometimes cannot even achieve its vote proportion.4

4This is a significantly expanded version of a paper published in AAMAS 2022 [10]. Many
details were added, including detailed descriptions of the algorithm, as well as new metrics,
such as the density metric, and new simulations run, allowing for more wide-ranging analysis.
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2. Related Work

Political districting, and in particular gerrymandering, has long been the
examined in the humanities and social sciences. There have been legal dis-
cussions [11, 12, 13], and recently the US Supreme Court ruled [14] partisan
gerrymandering cannot be addressed by federal courts. Gerrymandering has
long been studied by historians [15, 16] and political scientists [17, 18, 19, 20].

From a technical perspective there is a long history of trying to detect ger-
rymandering by proposing and comparing various scores in potential plans [3,
21, 22, 23]. Recently, the AI community has become interested in redistrict-
ing. Pegden et al. [24] proposed treating the redistricting process as a repeated
“cut-and-choose” game, while Bachrach et al. [25] measure how much districts
can distort voter representation. Slightly more further afield, there has been re-
search on allowing agents (or voters) to move between districts [26, 27, 28], and
research on geographical manipulation of locating polling stations, influencing
voters’ willingness to travel to their location [29].

Most related to our work is automated redistricting, which originally was
proposed as a solution to gerrymandering by Vickrey [30]. A popular auto-
mated redistricting technique uses Markov Chains to generate a sequence of re-
lated districts (see Fifield et al. [23], DeFord et al. [31] for two types of chains).
These chains allow us to see where values from a plan, such as various mea-
sures of partisanship or compactness, fall within the distribution of a random
ensemble of them. Outlier values may be a sign of poor district design or ger-
rymandering. One such analysis was used to help with the 2018 Pennsylvania
redistricting [32]. Another line of automated redistricting work focuses not on
generating ensembles of plans, but instead designing one optimized plan. Within
the AI community many published automated methods violate basic legal re-
quirements such as population balances [33, 34]; or are unable to scale to real-life
sized problems [35]. Some other methods that produce legal plans for real data
are only able to design plans for objectives based on linear combinations of in-
dividual district scores [36]. These shortcomings are not surprising since finding
an optimal gerrymandering, or even certain graph partitions (a prerequisite for
any division process), is known to be NP-hard in various settings [34, 37, 26].
For a recent survey on various automated redistricting methodologies we refer
the reader to Becker and Solomon [38].

As discussed, the growing urban-rural divide and its impact on redistricting
is an inspiration for our work. Commentators [39, 40] have argued this divide
is amplifying the effects of partisan gerrymandering. Using simulated data,
Borodin et al. [35] argue the rural party can stretch its vote share more effectively
when gerrymandering than the urban party – although at extreme levels of the
divide the opportunity to gerrymander is limited. Bishop [5] blames US cultural
cleavages and population moves for this divide, while Rodden [41] goes further,
arguing that the urban-rural divide is a fundamental disadvantage to the urban
party in almost every scenario, though his argument boils down to the advantage
of rural areas having more urban party supporters than vice versa.
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3. Model and Background

We examine gerrymandering with a graph-theoretic formulation. We shall
use US-oriented terminology (states, precincts, etc.), but the formulation rep-
resents most geographic districting settings. A state is an undirected graph
G(V,E), and each node v ∈ V represents a precinct, a small geographic region
where votes are tallied.5 An edge (u, v) ∈ E represents that precincts u and
v share a physical boundary. Creating a districting plan requires partitioning
G into K vertex-disjoint subgraphs G1, · · · , GK (the districts). We will denote
the precincts of district i (i.e., the vertices of Gi) as V (Gk). The number of
districts K is extrinsically determined (in the US, by a census every 10 years).
In all of our analysis we limit our focus to two parties: the rural party (in the
US, Republicans (R)), and the urban party (in the US, Democrats (D)). While
there are other minor parties, and even some independent politicians who have
held office, the United States is effectively a two party system, and the influence
of other parties is minimal.

3.1. Legal Requirements for Redistricting

For v ∈ V let nv be the number of people who live in precinct v. Let
N =

∑
v∈V nv be the total number of people in the state. There are two widely

accepted requirements for legal districts in the US and elsewhere:

Contiguity For each k ∈ [K], Gk must form a connected subgraph of G. In
the real world, this translates to being able to walk (or swim) from any
point in the district to any other point in the district without crossing into
another district.

Population balance-δ Given δ > 0, for each k ∈ [K],

1− δ ≤
∑

v∈V (Gk)
nv

N/K
≤ 1 + δ.

The exact value of δ required in the U.S. changes between states (and judicial
decisions). Informally, the criteria is that districts should be as near equal-sized
in population as possible [42]. We take δ = 0.005, so that the maximum popula-
tion deviation between any two districts is at most 1% of the state’s population.
This is the legal requirements in some states, and a far tighter constraint than
implemented by many previously proposed automated redistricting methods.

These two constraints, even strictly enforced, still allow for an exponential
number of plans in the number of nodes and districts. This is far too many to
enumerate, and as we will see it allows for a diverse set of plans all expressing
different combinations of goals such as partisanship, fairness, and compactness.

5In the US, census block data is more fine grained, but there is no voting information at
this level, so it is not useful for our needs.
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3.2. Measuring Partisanship

There are many ways of measuring how partisan a district is. Often, the first
choice is what historical data we use. In the United States there are elections
for various levels of government and offices. Unless otherwise stated we will use
presidential election data when measuring how partisan a hypothetical district
is6. For a particular election e and party p we let np,e

v be the number of people
who live in precinct v and vote for party p in election e. We will omit e when
the context is obvious.

While not their only goal, a primary one of political parties is winning as
many districts as they can. The party with the most voters in a district is
typically said to win that district. For example, if

∑
v∈V (Gk)

nD,President−2012
v >∑

v∈V (Gk)
nR,President−2012
v , we say the Democrats win district k according to

the 2012 presidential vote. If the inequality is reversed, we say the Republicans
win the district in that election.

When actually designing a district for partisan reasons a party would most
likely not be satisfied that they would have hypothetically won it by 1 vote
based on previous election data. Instead they would almost certainly design
districts with a “safe” margin of victory. What is considered safe is debatable,
and later on we will explore the effects of different margins of victory. For now
we say that for a particular election e with two parties p1 and p2 and margin of
victory τ ∈ R≥0, p1 wins district k if

∑
v∈V (Gk)

np1,e
v >

∑
v∈V (Gk)

np2,e
v + τ . If∑

v∈V (Gk)
np2,e
v >

∑
v∈V (Gk)

np1,e
v + τ , we say p2 won district k. If neither party

has a margin of victory of at least τ we call district k a tossup.
We finally note that measuring partisanship using only one previous election

is not a requirement. Sometimes we will use a composite, or even a function of
the composite, of previous elections. In Section 5.2 we calculate the probability
of winning a hypothetical district, based on historic vote totals and outcomes
using the 2012 and 2016 presidential elections. In Section 5.4 we take a com-
posite of various elections for various levels of government. There can be an
argument that averaging previous elections is more robust. That is, they make
a better predictor of future elections than any single election. However, there
is a certain ad-hoc nature to these composites, and we are unable to find any
results which formally, or informally, argue their advantage. Thus we only use
these composites when comparing our work against previous works on redis-
tricting which used said composites. Outside of these comparisons, we stick to
using single elections, making as few assumptions as possible.

3.3. Uniform Swing and Proportionality

At several points in this work we will want to measure how much a particular
plan deviates from the “fair outcome”. Formally, in the ideal fair plan, the
fraction of districts won by each party should match – as closely as possible –

6Because of non party influences, such as a congressional candidate’s popularity and history
with their district, presidential data is often considered less locally-biased as a measure of
partisanship.
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its fraction of overall votes. That is, want to develop metrics which measure
how much a plan deviates from what is proportionally fair.

The most obvious way of measuring the deviation from what is proportion-
ally fair would be taking the difference between the fraction of votes won and the
fraction of seats won for a fixed election, or even for some composite of elections.
However, measuring how proportional a plan is based on a fixed data point is
not very robust to changes in public opinion. To address this, the uniform swing
model [17] is widely used. In this model, hypothetical elections are generated
starting from a baseline election, or composite of elections, by shifting the vote
shares of the parties. Specifically, the vote share of a given party is increased
or decreased by an equal amount in every district. The fraction of districts
won by each party is then measured in these hypothetical elections in order to
measure the amount by which proportionality would likely be violated if vote
shares change in the future. See Figure 2 for an example of uniform swing in
WI using 2016 presidential election data with the 2011 implemented plan.

Formally, the swing model is seeded with an election e (or some composite
of elections), these are the dots in Figure 2. To measure a uniform swing of
t ∈ [−1,+1] for a particular party p, in every district k we take p′s vote fraction
(in [0, 1]) for that district and add t to it. We then measure what fraction of
districts p has a majority in after a swing of t. Note a uniform swing of +t
(−t) for party p is the equivalent of a uniform swing of −t (+t) for the other
party. Figure 2 shows what happens after a +5% uniform swing for the Ds in
WI using the 2016 presidential election data with the 2011 implemented plan.
In this particular example the Ds would have won two districts under the 2016
presidential election. In their closest two losses the Ds had a 44% and 47%
share of the vote, so a +5% uniform swing would turn one more district into a
win for them.

There are several metrics that use the uniform swing model to measure the
partisan bias in a given plan. We are interested in the partisan bias score [43].
This value measures the vertical displacement of the swing curve from the point
(1/2, 1/2).7 Intuitively, the partisan bias measures the divergence from the idea
that “half the votes should translate to half the seats”. More generally, we
can measure the vertical displacement from any point (a, a) for a ∈ [0, 1]. We
introduce a robust version of this metric. Fixing a line segment [l, r] (l, r ∈
[0, 1], l < r), we measure the average vertical distance from the swing curve to
the line y = x over this line segment. We use [0.45, 0.55] or [0.4, 0.6] as the
reasonable ranges (i.e., the vote shares of both parties are between 45% and
55% or 40% and 60%).8 The 45◦ line in the [0.4, 0.6] range is shown in green in
Figure 2. There are two ways to measure the distance between a party’s swing
curve (s(x), x ∈ [0, 1]) and a line segment [l, r]. The first is a signed version,

7We can take the distance of the swing curve of either party as both distances are guaran-
teed to be identical, see below.

8Most presidential elections fall within the smaller range, and almost every presidential
election falls within the larger range.

8



∫ r

l
(s(x)− x)dx

r − l
(1)

measuring on average how much higher or lower the swing curve is over
the proportional line. A positive (negative) value for the signed partisan bias
indicated this party, over the range of reasonable vote shares, can expect more
(fewer) seats than what is proportionally fair. Alternatively we could take the
unsigned version, ∫ r

l
|s(x)− x|dx
r − l

(2)

which measures the average deviation from proportionally fair. The unsigned
partisan bias, tells us how much does the plan deviate from “an α fraction of
the vote share should translate into an α fraction of the seats”.

Both of these measures provide important information. For a fixed party p
and its swing curve we quantify its partisan advantage (disadvantage), over [l, r],
by how positive (negative) Equation 1 is. That is, there may be portions [l, r]
where p’s swing curve is above the green line (p is getting more than what is fair)
and portions where it is under the green line (p is getting less than what is fair).
Equation 1 tells us if the advantage or disadvantage is more prominent, and by
how much. On the other hand, Equation 2 tells us, over [l, r], on average how
disproportionate p’s outcomes are, its total advantage plus total disadvantage.
That is, Equation 2 tells us how much, in both directions, p deviates from what
is proportionally fair.

The reader will notice that for any fixed plan Equation 2 is always at least
as large as the absolute value of Equation 1. While these measures are similar,
and often correlated, they can differ. For example, consider a plan where a vote
share of 50% + ϵ (50% − ϵ ) results in winning (losing) each district. For any
symmetric range about 50% vote share, this plan has the best possible score for
Equation 1 and the worst possible score for Equation 2. Thus, it need not be
that for a fixed election the optimal plan for Equation 1 bears any resemblance
to the optimal plan for Equation 2.

For any t < 0.5, the fraction of districts won by one party with 0.5− t vote
share is exactly one minus the fraction of districts won by the other party with
0.5+t vote share. Hence, for a symmetric range around the 0.5 vote share point,
their swing lines are mirrors of each other about the point (0.5, 0.5). Thus for
both parties, the value of Equation 1 is identical in magnitude (but opposite
in sign), and the value of Equation 2 will be identical. As mentioned, we only
consider our two measures for symmetric ranges about the point (0.5, 0.5).

3.4. Compactness Definitions

There are several accepted ways of measuring how compact a particular
plan is. Some are geography based, some population based, and some are a
mixture of the two. In this work we use two common geographic measures,
the Polsby-Popper and Convex Hull scores. We also use a custom compactness
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(a) Uniform swing in WI

(b) WI 2011 election outcome (c) WI 2011 election outcome with D swing

Figure 2: Top row, uniform swing for R(D) in red (blue), in the 2016 presidential election in
WI using the implemented plan. Vertical axis shows the fraction of districts won; horizontal
axis the vote fraction. The dots on the party curves indicate the actual election outcome (0
swing). The green line is the range of proportional outcomes on the range [0.4, 0.6]. A green
star marks the point (1/2, 1/2). Bottom row, WI districts implemented in 2011 (R wins in red;
D wins in blue). Left, the data using 2016 presidential election data; right, the same figure,
but after a +5% uniform swing for the Ds.
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score which blends geography and population, designed by 538, a large and well-
regarding website analyzing elections (with a US focus). We also use a custom
geographic score from Dave’s Redistricting App (DRA), a popular open-source
redistricting tool. This score blends existing geographic scores, such as Polsby-
Popper. Finally we use a population density measure, which is agnostic to the
shape of districts, which we designed.

Let us formally define each of the compactness metrics we will use. For ease
of notation, we define the following functions for a district i with subgraph Gi

and polygon Pi: Let the district’s area be A(Pi), let the length of the perimeter
be L(Pi), and let the geometric centre point be M(Pi)

9. These measures can
be defined for any arbitrary 2D polygon (not necessarily just those that belong
to a district). Let the straight line distance between two points a, b ∈ R2 be
d(a, b).

Polsby-Popper (PP) Let Ci be the circle where L(Ci) = L(Pi). The Polsby-

Popper score is equal to A(Pi)
A(Ci)

. This value ranges from the least compact 0

(a district with no area), to the most compact 1 (a circle-shaped district).
For reporting we scale the value to lie on the range [0, 100]. A plan’s PP
score is simply the mean of each district PP score.

Convex Hull (CH) Let CHi be the convex shape which bounds Pi and has

the minimal value for A(CHi). The Convex Hull score is equal to A(Pi)
A(CHi)

.

This value ranges from the least compact 0 (a district with no area), to
the most compact 1 (a convex district). For reporting we scale the value
to lie on the range [0, 100]. A plan’s CH score is simply the mean of each
district CH score.

538 metric The 538 metric is not formally explained, but it is described as
“the average distance between each constituent and his or her district’s
geographic centre” [44]. One possible interpretation of this could be∑

v∈V (Gi)
nvd(v,M(Pi)). But it is also possible there are other inter-

pretations of what centre means.

DRA metric The DRA metric is described as a blend of compactness scores
normalized by historical data, and optimal values. Because of the am-
biguity of its definition, we don’t actually calculate the score ourselves.
Instead, we upload our plans (when possible) to the DRA website and
have them calculate it for us10.

Density Deviation Finally, we introduce a novel metric based on the variance
of the population density of the precincts within a district. For a district
with subgraphGi, for a node v ∈ V (Gi) with population nv, let its polygon

9This is the point where Pi would balance on a pin tip if it was a two dimensional object.
10See https://medium.com/dra-2020/compactness-8e0ee3851126 for more information re-

garding their metric.
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be P v and the area of the polygon be given by A(P v). We define the
density of v as γv = nv

A(Pv) . We define the Density Deviation of a district i

as
StandardDeviationv∈V (Gi)

(γv)

meanv∈V (Gi)
(γv)

. This value, standard deviation divided by

mean, is known as the coefficient of variation. A plan’s Density Deviation
is the mean district Density Deviation.

While the first four measures may not be perfectly correlated with each other,
what is considered compact by one is often considered compact by another,
though there can be exceptions to this. Some states have a geography which may
be incompatible with “nicely” shaped districts according to certain definitions.
For example, Figure 2 shows howWI has a large jagged bay and lakes slicing and
poking holes in the state geography. Because a large population centre, Green
Bay, is located at the base of this bay, drawing population balanced districts
which are close in shape to a circle (optimized for the Polsby-Popper score) may
be difficult.

The reader may ask why we define a district’s Density Deviation as the
coefficient of variation instead of the standard deviation. The reason is because
when finding a plan which optimizes for this value we aim to minimize the mean
Density Deviation across all districts in the plan. That is, we want to find plans
where each node in a district is of a similar density. By dividing the standard
deviation of the densities by the mean density we normalize the scores, and
make the various districts comparable on the same scale. If we just compared
standard deviations of densities then the scores of districts with a large mean
node density would dominate the metric.

Unlike Polsby-Popper, Convex Hull, and DRA’s measure, which are pure
district shape based metric, and 538’s metric which is a a measure of population
travel distance (hence also district shapes), our novel deviation metric does not
factor in the shape of a district. We find this interesting for a few reasons.
First, as mentioned in WI the geography may make designing geographically
compact districts difficult, our measure presents a novel alternative for defining
compactness. Secondly, a common goal in redistricting is keeping communities
of interest together. How one defines a community of interest is up for debate,
but it certainly is not a stretch to say similar densities of neighbourhoods could
be a factor. It also allows us to examine if keeping urban areas separate from
rural ones (as optimizing for this metric will tend to do) helps in ameliorating
rural gerrymandering advantage.

4. Election Settings

In this paper, we use election data from three US states — Pennsylvania,
North Carolina, and Wisconsin — from the 2012 and 2016 presidential elec-
tions.11 These are states and elections for which granular, precinct-level, data

11In Sections 5.2 and 5.3 we also use data from Maryland and Massachusetts for a proof
of concept. But, because of missing votes and an overwhelming Democratic lean respectively,
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was available. The actual aggregation of data was done by the Metric Geometry
and Gerrymandering Group (MGGG), a multidisciplinary research group that
focuses on redistricting at Tufts university12. Each of these three states has a
particular election of interest. For reference of scale, we also include the number
of nodes (precincts) and edges in the graphs of each state.

Pennsylvania (PA) 2012 Sizeable Democratic advantage. The Democratic
candidate (Obama) won 51.97% of the vote, vs. 46.59% to the Republican
candidate (Romney). PA has 9,255 nodes and 25,721 edges.

North Carolina (NC) 2016 Sizeable Republican advantage. The Republican
candidate (Trump) won 49.83% of the vote, vs. 46.17% to the Democratic
candidate (Clinton). NC has 2,692 nodes and 7,593 edges.

Wisconsin (WI) 2016 Near tie. The Republican candidate (Trump) won
47.22% of the vote, vs. 46.45% to the Democratic candidate (Clinton).
WI has 6,634 nodes and 18,126 edges.

In addition to these elections, they provide a good mix of geographic features.
WI, for example, has its north-east corner carved up by lake Michigan, forming
a jagged bay. PA and NC, on the other hand, have a much more convex shape13.
Furthermore, the population distribution is varied: PA’s large urban centres are
in its east and west edges, whereas in NC, the urban centres are concentrated
in the middle of the state.

4.1. Quality of Voting Data

Because each state has different standards for reporting voting data, and the
data was aggregated from various sources by MGGG, there is a small amount of
missing vote in each election. In each state and each election we look at, for each
party there is over 99.4% of the total vote accounted for. Generally this vote
aggregation is without issue, but there is one case we should discuss further.
In PA, because the voting data and census data do not exactly overlap in their
geographic divisions, there are some cases of nodes with an adult population but
no vote. These vote-free nodes are because a few nodes in the voter data may
overlap with several nodes in the census data. In these ambiguous cases, MGGG
opted to assign voters to the census node which shared the most geographic
overlap with the voter node. In total, just under 2.5% of the populated nodes in
our data have no votes in at least one of the two presidential elections we look
at. While there are other reasonable methods for dealing with this ambiguity we
opt to use the MGGG data as is. We felt making further assumptions without
more information was not justified. Furthermore, the issue only impacts a very
small fraction of the population and nodes.

we omit them from subsequent experiments.
12Data from MGGG (https://github.com/mggg-states).
13The state government shape files for the precincts in North Carolina consider the water

features as contributing to that node’s geography. Thus the overall shape of the state is fairly
convex.

13
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4.2. Voting and the Urban-Rural Divide

State 2012 correlation 2016 correlation
NC 0.79 0.80
PA 0.47 0.58
WI 0.38 0.57

Table 1: Spearman correlation between a precinct’s fraction of D party votes and its density
(total population divided by area) in three states and two elections.

As noted above (and explored visually in Figure 1), a key geographic feature
of US political parties is the growing divide between a more rural Republican
party and a more urban Democratic party. As we have cited above, there are
numerous works that examine the geographic history and begin to explore the
consequences of this divide.

Unsurprisingly, the urban-rural divide is present in the data we work with.
We focus on three different states, with differing ethnic makeup, education pat-
terns, and history, but this feature was common across all our data: densely
populated urban centres favour the Democrats, while sparsely populated rural
regions favour the Republicans. This correlation is consistent and undeniable,
as Table 1 shows. In every state this correlation increased from 2012 to 2016,
showing the effect of the urban-rural divide has only strengthened over the last
decade.

5. The GREAT Algorithm

To study the role of compactness and population distribution in gerryman-
dering we need an algorithm that can optimize for various compactness and
partisan fairness metrics (or handle them as constraints) on real-world data. To
that end, we introduce our Goal-based Redistricting for Elections Automati-
cally using Technology (great) algorithm, that can create districts from graph
representations. As we will demonstrate, our algorithm, with minimal engineer-
ing effort, can be used to optimize various measures of partisan fairness (e.g.,
to minimize either of our robust partisan bias metrics), partisan gain (e.g., the
number of districts won by a given party either by achieving a plurality of votes,
or at least a threshold fraction of votes, or with at least a certain probability),
and compactness (both geographic and density based). Furthermore, the algo-
rithm can optimize towards one of these goals while satisfying strict constraints
on other metrics (e.g., optimize compactness while ensuring that a given party
wins at least a fixed number of districts).

To show its capabilities, we will demonstrate our algorithm is capable of
matching the performance of human experts when creating partisan plans (Sec-
tion 5.2), and compact plans (Section 5.3). In Section 5.4 we show our algorithm
is able to compete with human experts in a prestigious redistricting competition.

First, we give a brief overview of our algorithm. Our method is based on
simulated annealing, a common local-search-like method which can make non-
improvement steps, allowing it to escape local optima.
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At the core of any SA algorithm, or any local search algorithm, is the energy
function which scores each potential plan the algorithm proposes. By associating
every potential plan with a numeric score, where lower is better, a local search
algorithm can make small modifications to the current solution and propose
a neighbouring solution. If this neighbour has a lower energy, it is better for
our objective, so we make it our current solution. If the neighbour has higher
energy, we may make it the current solution (with probability that decreases as
the process continues and decreases if the difference in quality is large). Any
objective that can be expressed numerically and calculated from an arbitrary
plan may be used; that is, we only require that the energy function which
maps plans to numbers is “efficiently” computable. This gives us considerable
flexibility in optimizing, allowing for complex and highly non-linear objectives.
After some fixed number of iterations or elapsed time, the process ends and the
best of all iterated solutions is returned.

Additionally, any binary constraint (for which it can be checked whether a
given plan satisfies) can be incorporated by ensuring that the algorithm only
considers steps which satisfy the given constraint. This ensures our iterated,
and ultimate, solutions can guarantee things like a certain number of wins for
a target party, or that the solution satisfies compactness requirements.

For any given step, to generate a neighbouring plan we use a modification of
the tree-recombination procedure proposed by the Metric Geometry and Ger-
rymandering Group [45]. Briefly, the method takes a set of m adjacent districts
from the current solution, and recombines and redivides the nodes in them to
form m new districts. This is done by drawing random spanning trees over the
precincts of them districts and cutting random edges in the trees to separate the
nodes into the desired number of districts. For efficiency reasons, we generally
use m = 2. Using larger m values did not noticeably improve the results.

The final piece of our method is how do we provide the initial plan to start
the process. Almost always, we can use existing plans for our starting point.
But for a diversity of starting points, in general, we generate a random plan by
using the tree-recombination algorithm on the entire state. That is we partition
every single node of the graph by iteratively drawing k − 1 spanning trees,
each of which carves off a new district. We find that if our only constraints
are population and connectedness, this method is more than able to partition
the state into dozens of legal districts. If we have more stringent constraints,
such as target party wins, or fairness requirements, we first use our algorithm
to optimize for the constraints, then use this solution as the starting point for
another run of our algorithm.

Section 5.1 below contains further details regarding the algorithm, including
pseudo code and descriptions of each step of the process. For readers familiar
with simulated annealing and the MGGG recombination algorithm, this section
may be skipped.

Like the work before us, we are unable to provide guarantees (with respect to
optimal solutions) on our method’s performance. Instead, we compare against
the best plans human experts have created. As far as we are aware, we are the
first to publish work that compares against, let alone matches, state of the art
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hand-drawn plans.

5.1. A Detailed Description of the GREAT Algorithm

The great algorithm is built around simulated annealing (SA), a general
optimization technique that has found much success in various discrete opti-
mization problems. For those familiar with simulated annealing, one can ignore
the general overview of the algorithm below, and examine only the details on
the specifics of energy and temperature functions. In a sense, SA extends hill-
climbing, which is the discrete version of gradient descent. In hill-climbing we
have a current state and examine some neighbouring solution. We need to decide
if we should move to this neighbouring solution or not. In standard hill-climbing
methods, like (greedy) local search, only moves which improve the solution are
accepted. At a high level, simulated annealing-based optimization is essentially
a hill-climb in which sometimes moves are allowed towards inferior solutions.
The ability to accept non-improvement steps, i.e., objectively worse solutions,
becomes increasingly less permissible as the optimization proceeds. The logic of
allowing such non-improvement steps is that they allow the procedure to escape
local optima earlier in the process. If the space of solutions is non-convex (with
respect to solution quality) these local optima can act as sinks for procedures
which only allow improvement steps. The ability to accept a non-improvement
neighbour is controlled by two parameters, the “temperature” of the system (a
parameter set by us, allowing us to determine a baseline willingness to accept
such moves) and the difference in quality (also known as energy-difference) of
the current and proposed solution.

Energy:. The first component of an SA based approach is the energy of a solu-
tion. The energy of a solution is a function which maps a potential solution to
a numeric measure of quality, for our work we consider the set of solutions to
be all legal districting plans. That is, if a graph of a state has a node set with
n nodes and they must be partitioned into K districts. An energy function is a
map:

E : [n]K → R+ ∪∞. (3)

It is standard for lower energy values to correspond to superior solutions and
for zero energy to be the best any solution can take on14.

Proposal:. The second component of the SA based approach is the proposal
function. A proposal function P takes in a potential solution S and picks a
neighbour S′ of S:

P : [n]K → [n]K . (4)

14The optimal solution for a particular instance could have non-zero energy, zero just serves
as a lower bound. Generally invalid solutions have infinite energy.
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There is no fixed definition of what a neighbour is and this can vary from
domain to domain, or even within a problem itself. For our work we will use the
following recom-proposal function, which was first suggested by MGGG. The
recom-proposal is presented in the following algorithm 1:

Algorithm 1 recom-proposal(G, S, j):

Let S be the current solution (districting plan which partitions the vertices into
k components).

1: Pick at random i ∈ {2, · · · , j} connected districts from S (where j ≤ k).
▷ Let R denote the precinct nodes in these i districts.

2: for t ∈ {1, · · · , i− 1} do
3: Draw a random spanning tree using only the nodes of R. Call this

spanning tree Tt.
4: Sample a random edge e that has yet to be picked (see details in text)

in Tt. This divides Tt into 2 connected components.
5: if Tt beneath e forms a valid district then Make it one of our new

districts, remove these nodes from R.
6: else if there are edges yet to be sampled and Tt beneath e is not a valid

district then Repeat step 4.
7: else if all of the edges of Tt have been sampled and no valid district was

ever found in Tt then repeat step 3.
8: end if
9: end for

10: Let the remaining nodes of R be the final new district.
11: Let S′ be the solution identical to S but where R has been redistricted

according to steps 2-10.
12: if S′ is a valid solution then
13: Return S′

14: else
15: Retry the algorithm from step 1.
16: end if

When we say a solution or district is valid we mean that it satisfies all con-
straints we place on districts. We use Kruskal’s algorithm for drawing spanning
trees (the drawing of Tt) by randomly assigning each edge a weight and finding
a minimal spanning tree. Thus, it is done in time linear to the number of nodes
left in R.

Each time through the for loop at step 2 the algorithm may pick several
edges in the spanning tree Tt (step 4). For each iteration of the loop, we shall
require the first such e to be connected to a leaf of Tt (the first time step 4
is executed for each loop iteration). If the node under e is not a valid district
then another random edge is chosen (step 6). We shall require this next edge
to be either another edge connected to a leaf or the edge directly above e in
Tt. In subsequent steps (if they are required) the algorithm shall pick an edge
e that has not been previously selected in Tt with two conditions on this edge
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e: First, this edge is either connected to a leaf node or is the direct ancestor of
a previously chosen edge. Second, the algorithm requires that all of the edges
under e in Tt have previously been selected. Intuitively, this process works by
bubbling up through the various branches for Tt, trying edges until a sufficient
one is found.

Thus, each time through the for loop the algorithm should find one of the
districts we need. It is possible some iteration of the for loop will fail to find a
valid division, sampling every edge in Tt (step 7). In this case this iteration of
the for loop restarts, finding a new spanning tree, but all districts which were
found up to this point are still kept.

It is also possible that for some iteration of the for loop no spanning tree
can lead to a valid districting. That is, it will just draw new spanning trees
forever. We are unaware of any method that can detect this scenario, short of
sampling every spanning tree. As a heuristic solution, we put a time limit on
the algorithm. We found the algorithm tends to find solutions within 20 seconds
for the most complex instances we work with. If after 1000 seconds we do not
have a solution we restart the entire algorithm.

We note that the recombination method proposed by MGGG only worked
for recombining two districts at a time, whereas we extended it to work for
any number. In the step where we pick i random districts for recombination
we do so by sampling uniformly at random from the set of all sets of connected
districts up to size j. The intention of the MGGG method seems to be the same
(for j = 2), but their code shows that they pick districts by uniformly sampling
from all edges which cross district boundaries. This will favour picking pairs of
districts which share large boundaries (in terms of nodes). In general we found
that increasing the number of merged districts beyond two did not improve our
solution quality (but it did slow the procedure down).

Temperature:. The third part of the SA approach is the temperature, which acts
as a control for how likely negative moves are at a given state of time. Generally
the temperature is a decreasing function of the number of iterations so far in
the optimization. While there are many temperature functions and choosing the
ideal one is somewhat of a black-box in optimization, we’ve found the following
temperature function (where s denotes the iteration count) works well:

T (s) = 10000 · (0.99)s (5)

This is known as the exponential cooling schedule. From the initial temper-
ature of 10, 000 at every step we retain 99-percent of the remaining heat until
we eventually cool to a temperature of 0.

5.1.1. The simulated annealing method

The simulated annealing method is as follows for a graph G = (V,E) which
is to be partitioned into K districts:

In the first step None refers to the districting which makes no assignments.
To find the initial partition we do not need to provide the sub-routine with a
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Algorithm 2 simulated annealing for gerrymandering(G):

1: Let S0 = recom proposal(G,None,K).
2: i = 0
3: while i ≤ smax do
4: S′ = recom proposal(G,Si, j)
5: if E(Si) ≥ E(S′) then
6: Si+1 = S′

7: i = i+ 1
8: else
9: Let ∆E = E(Si)− E(S′)

10: Let r be drawn uniformly at random from [0, 1].
11: if exp ∆E

T (i) ≥ r then

12: Si+1 = S′

13: i = i+ 1
14: end if
15: end if
16: end while

valid districting since we are recombining all of the nodes. In the later iterations
we can set j (the number of created districts) to whatever value, but as we noted
above, j = 2 works well. Intuitively, the algorithm will always move to a lower
energy solution and will move to a higher energy solution with high probability
if the increase in energy is not too high and the temperature is not too low.

It is possible that the procedure will eventually end up in a local optimum (or
even a global optimum) it cannot move away from with reasonable probability.
This is especially true later on as the temperature drops. If this is the case
the main loop will, with very high probability, make no progress to completion.
Because of this we often set a hard time limit and cut off the procedure after
this point. In general with SA, or any random algorithm, one needs to run
many parallel executions of the procedure, and each of these will iterate over
many potential solutions. The best of all iterated solutions will be chosen as
the returned solution.

For the remainder of this paper, when we introduce a task for our algorithm
we will describe how we optimize for it by specifying, the number of cores we
ran our algorithm across, how long we ran the algorithm for, the exact setting of
the energy function, and any constraints. This highly modular setup allows us
to efficiently optimize for almost any objective. Furthermore, unless otherwise
stated, we always start our algorithm off by building a random initial solution.
The only exceptions to this will be when we use our algorithm to optimize
for multiple objectives. For example, to gerrymander for partisan gain while
maintaining compact districts, we use a two step approach: First, we use our
algorithm to create a partisan plan, winning as many as many districts as we
can for our target party. Then, using our partisan plan as the starting point
for another run of our algorithm, we optimize for some compactness scores, but
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with the constraint that we do not consider plans with too few wins for our
target party.

5.2. Proof of Concept: 538 Gerrymandering

Nate Silver and the election experts at 538’s gerrymandering project [46]
drew thousands of hand-crafted districts for various objectives. While there is
no guarantee their plans are optimal, they do serve as an excellent, and publicly
available, benchmark.

As noted above, winning a plurality of votes is just one of the measures
of what it means to win a district. At 538, they took a probabilistic view,
designing partisan plans that maximized the number of districts that were won
with a sufficient probability. This expanded measure of victory also serves as
an ideal goal to show the modularity of our algorithm. Unfortunately, they
released few details regarding their method. However, we believe we were able
to reconstruct it using released results.

Briefly, 538 uses the Cook Partisan Voting Index (CPVI) [47], which mea-
sures a district’s D party bias according to the 2012 and 2016 elections and
then transforms this CPVI into a probability that the Democrats win the dis-
trict. First, we show how to determine the general formula for the CPVI of a
district. After, we will show how 538 transforms the CPVI into the probability
of a Democratic win.

The CPVI:. The CPVI is a metric which measures how partisan a group of
voters, in particular those who form a congressional district, are relative to
the average voter in the United States. To calculate the CPVI there needs to
be a running value for how partisan the country is as a whole (call this value
βD). To calculate this we take the votes in the two most recent presidential
elections15 and see what fraction of these votes belong to the Democratic party.
The partisan skew expresses the average of the vote fractions for the Democrats
in the last two presidential elections as an average of averages (not weighted by
the total votes in each election). To calculate the PVI 538 used we need the
2012 election, in which:

• Barack Obama and Joe Biden of the Democratic party: 65, 915, 795 votes.

• Mitt Romney and Paul Ryan of the Republican party: 60, 933, 504 votes.

For the 2016 election the exact results were:

• Hillary Clinton and Tim Kaine of the Democratic party: 65, 853, 514 votes.

• Donald Trump and Mike Pence of the Republican party: 62, 984, 828 votes.

15The presidential election is chosen since they use the same candidate for the entire country
and thus are free of any local effects.
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Using the above information we get the value of βD would be:

65,915,795
65,915,795+60,933,504 + 65,853,514

65,853,514+62,984,828

2
(6)

Thus, we see βD is roughly 51.53%. While the US is effectively a two party
system, there are other candidates – Gary Johnson and Joe Weld of the Liber-
tarian party received 4, 489, 341 votes (over 3% of the total vote) in the 2016
elections. Since the Cook PVI is meant to be a direct comparison between the
Democratic and Republican party it does not factor in third-party votes. The
PVI of a district is how partisan that district is relative to βD. In district i,
let the total number of Democratic votes denoted by ND,1

i and the Republi-

can ones as NR,1
i for the last presidential election; and ND,2

i and NR,2
i for the

presidential election before that, then the PVI is:

100 ·

 ND,1
i

ND,1
i +NR,1

i

+
ND,2

i

ND,2
i +NR,2

i

2
− βD

 (7)

Equation 7 can range from −100βD for completely Republican dominated
districts, to 100(1 − βD) for districts with only Democratic voters, or 0 for
districts which match the national average in the last two presidential elections.
Intuitively, a district with a very positive PVI should be safely Democratic.
Even if there is a uniform swing towards Republican sentiments this particular
district should lean Democratic (the same is true for Republicans and districts
with a very negative PVI).16

The 538 probability:. Next, 538 transforms the CPVI into the probability that
the D party wins that district. The R party wins it with the remaining prob-
ability. To find this probability we believe 538 used a sigmoid function (the
inverse of the log-odds function). We now describe how we reconstructed the
sigmoid function. Recall, the sigmoid function takes the form:

σ(x) =
1

1 + e−w·x (8)

This function is fitted to data (x) by adjusting the weight parameter w.
Unfortunately 538 was not specific on what exact data was used to fit the
sigmoid, or if regularization terms were included in the fitting. Luckily, 538
did publicly report the Cook PVI and their derived probability of a Democratic
win for all the districts in their catalogue for each state.17 The probability of

16While The Cook Political Report does not actually publish the formula or exact method
for this metric, we confirmed our interpretation by measuring the reported PVI in single
district states and comparing to the formula we derived.

17In total there are 2568 districts. These districts are the entirety of all of their created plans.
This includes plans such as the partisan plans, competitive plans and plans that emphasize
compactness. They also include the current congressional plans.
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(a) 538 model (b) Our model vs 538’s

Figure 3: First figure shows the reported Cook PVI for each district created by 538 vs their
estimation of the probability that the Democrats will win that district. Second figure shows
the output of our reconstruction of the 538 model vs the 538 model itself, the inputs to these
two models were each of the districts created by 538.

a Democratic win, plotted against the Cook PVI (Figure 3a), clearly shows a
sigmoid shape. From here we just need to derive what the weight parameter
w they use is. To figure this out we first invert the sigmoid function using the
log-odds (or logit) function:

logit(σ(x)) = loge
σ(x)

1− σ(x)
(9)

Inverting the sigmoid function with the logit function would produce a line
given by y = w · x, thus we simply need to invert any two data point in the
second subfigure of Figure 3 and take the slope of the resulting line as w (since
this is a linear function of one variable any two distinct points are sufficient to
determine it). Briefly, we mention two important points. First, the sigmoid, and
hence the line from the logit, may have a bias term associated with them. We
found 538 did not include one since their sigmoid passes through (0, 50)18 and
the resulting logit line passes through (0, 0). Secondly, the points 538 published
do not perfectly follow a sigmoid, instead there is a small amount of “jitter” on
some of the points in the first subfigure of Figure 3. This deviation could simply
be a rounding issue or minor transcription errors, in either case the points still
very closely follow the sigmoid pattern. Because of the small amount of noise
the resulting inverted plot found with the logit function will not be perfectly
linear. Thus our choice of the two points for the inference of w would (very
slightly) influence the outcome. To mitigate this issue we take the ordinary
least squares (OLS) regression line, also known as the line of best fit, for all of
the points (after inverting them with the logit). We found the slope of the OLS
line was 0.304 which we ended up using for the w parameter in our sigmoid
model. Our resulting model is a near perfect fit for the 538 model since they
form the line y = x when plotted against each other (Figure 3b).

18There is exactly one data point with a PVI of 0 and a Democratic probability of winning
of 50%.
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Optimizing to match 538. When gerrymandering for party P , 538’s objective
was to maximize the number of districts for which P ’s probability of winning
was at least 82%. To guide our method, we used a combination of the expected
number of districts won by P and the total number of districts won with at least
82% probability. Thus, our energy function is based on the number of districts
won at 82% with one slight modification. Say we are gerrymandering for the
Democratic party. If a potential solution S is comprised of K districts called
S1, · · · , SK , and we want to have many districts which we win with probability
τ or more (for all of our simulations we follow 538 and use τ = 0.82), then the
energy of that solution is:

E(S) = K −
∑
i

vD(Si), (10)

where vD(Si) is equal to :

vD(Si) =

{
σ(Si) σ(Si) ≤ τ

1 otherwise

Where σ is the sigmoid function we derived from the 538 data. If the target
party is Republican party we can replace vD(Si) with vR(Si)

19 which is defined
as follows:

vR(Si) =

{
1− σ(Si) 1− σ(Si) ≤ τ

1 otherwise

Intuitively, our function is aiming to maximize the number of safe wins for
the target party. Our method would prefer a solution with several borderline
safe wins over a solution with fewer very safe wins, i.e., winning with just over
the 82% threshold and the extra votes in the districts under this threshold are
preferable to plans which use the extra votes to push the same number of wins
well over the 82% threshold. The idea here is that these loosing districts under
the threshold can become more competitive and eventually wins if we move the
extra votes into them.

Our only constraints were that districts must be connected and within half
a percent of the ideal population. For each state and party we found well before
our cutoff of 24 hours the algorithm had stopped making steps. We also limited
ourselves to 60 parallel runs for each state and party combination.

Almost as good as 538. The availability of presidential election data at the
precinct level is inconsistent, so we are unable to compare against 538 in all
states. There are five states for which we have publicly available data, and for
each of them we optimized for the 538 objective for each party. Our results are
shown in Table 2.

19Recall, the probability the Republican party wins a district is just one minus the proba-
bility the Democratic party wins it.
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State Total seats Our D 538 D Our R 538 R
MD 8 7 5 (8) 4 4 (4)
MA 9 9 9 (9) 0 0 (0)
NC 13 7 8 (8) 11 10 (10)
PA 18 8 8 (9) 13 13 (13)
WI 8 5 5 (5) 6 6 (6)

Table 2: First column is the number of seats in the state. Second and third columns are
the number of districts D take with over 82% probability with our algorithm and the 538
optimally-gerrymandered plans, respectively. Fourth and fifth columns are the same for the
R party. The 538 numbers show the number of districts won according to their districting
based on our election data. In parentheses are 538’s results from their website using absentee
data (which we did not have access to).

To actually make comparisons we needed to transfer the 538 plans into our
data format. Briefly, we needed to map the polygons describing 538’s districts
onto the precinct level data we had. To do so, we used a tool from MGGG called
MAUP. This tool assigns each precinct level polygon to exactly one of the district
level polygons. In most situations, the assignment is unambiguous, a precinct
polygon is entirely contained in a district polygon. In a few cases the data did
not line up, and a precinct could belong to several districts. In this situation we
use the default MAUP behaviour, assign the precinct to the district with which
it has the most geographic overlap. Because of these ambiguous situations, there
were some non-contiguous assignments created. For us, this was not an issue.
We only needed to count the number of districts the 538’s plans won using our
data.

Overall, there was only one case, NC for D, where we did not match 538.
Even here, we only missed by one district out of the 13. We did outperform 538
in Maryland for the Ds, but we caution we were missing 25% of their vote for
each party – the absentee data (mail-in ballots), for which we have no precinct
level data.20 In NC for the R party, we also outperformed 538, although we
caution, small differences in the voting data may account for this.

5.3. Proof of Concept: Compact Redistricting

As mentioned, compactness is often a legislated requirement, even if the
mathematical definition and the required levels are not specified. Despite this
ambiguity our algorithm is able to easily optimize for a variety of compactness
scores.

We use our algorithm to find two plans, one optimized for the mean score
across all districts of the Polsby-Popper score, and one for the mean score across
all districts for the of the Convex Hull score.

Optimizing for Compact Districts. To use Algorithm 2 to create the Polsby-
Popper and Convex Hull compact plans we had our energy function be the

20In the other 4 states there are at most 0.3% missing ballots.
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(a) PA CH

(b) PA 2011

Figure 4: PA districts (R wins in red); (D wins in blue) based on the 2016 PA election data.
Top, our plan, optimizing the convex hull score; bottom, PA’s actual 2011 districts.
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MD MA NC PA WI
PP CH 538 PP CH 538 PP CH 538 DRA PP CH 538 DRA PP CH 538

Our PP 27 75 28479 30 76 0.21 47 87 39924 97 44 86 0.31 93 40 85 55991
Our CH 18 76 29090 25 79 0.21 38 89 42319 86 37 88 0.29 85 35 87 48729
Our Fair N/A N/A 37 83 45176 78 26 76 0.34 49 29 77 56958
538 16 72 26165 20 77 0.19 36 86 37488 83 34 87 0.27 81 25 83 47728
DRA 14 72 27330 19 71 0.21 40 84 44354 78 40 82 0.29 70 37 81 5025
2011 Plan 4 47 37459 13 59 0.24 11 60 55228 10 16 62 0.41 15 21 74 52623
Updated N/A N/A 25 71 53160 36 32 78 0.30 64 N/A

Table 3: Table containing the compactness scores for various plans in each state according
to different metrics. Each row is a plan, each group of columns is a state, each column is a
compactness metrics. Within each state, for each compactness metric, the plan with the best
score is bolded. The PP, CH, and DRA, scores are on a scale of 0 to 100, where 100 is the
most compact. The 538 metric is on a scale of 0 to ∞, where 0 is the most compact; due to
different state data formats, each state is scaled differently. For Maryland and Massachusetts
we were missing some voter data, so we did not create a Compact and Fair plan. Because of
differences in our data and the data on the DRA website we are only able to calculate the
DRA score for Pennsylvania and North Carolina. Only the Pennsylvania and North Carolina
2011 plans were overturned, so there is no Updated Plan in the other states.

final objective: the mean compactness score of our plan (where the mean is
taken over the individual score of each districts). Say we are optimizing for
compactness measure M . If a potential solution S is comprised of K districts
called S1, · · · , SK , and C(Si) is the compactness score of district Si the energy
of that solution is:

E(S) =

∑
i C(Si)

K
(11)

The only constraints on a proposed districting were a population balance of
at most half a percent from ideal, and connectedness. For each metric for which
we optimized, we ran our algorithm for 24 hours across 288 cores.

Compact Districts. From a visual standpoint, our plans (see Figure 4a) pass an
“eye test” for looking compact, especially compared to the plans enacted in real
life (see Figure 4b).

As was the case for gerrymandering, 538 implemented a compact plan for
each state. These plans were designed to minimize “the average distance be-
tween each constituent and his or her district’s geographic centre”. In addition,
we have plans created by the public using Dave’s Redistricting App (DRA).
DRA is the most popular, open source tool for redistricting, and 538 also used
the DRA to help create all their plans. Amongst all plans ever published on
DRA, the website features the most compact (according to their internal met-
ric) for each state21. In addition, we have the 2011 plan for all relevant states,
and for NC and PA a court mandated updated plan as well.

Compared to all of the above mentioned plans, in every state our plans
had the best mean compactness scores for their respective metrics. They are
sometimes compact even according to metrics for which they were not optimized;

21For all plans see https://davesredistricting.org/. See https://medium.com/

dra-2020/compactness-8e0ee3851126 for a high level description of DRA’s compactness met-
ric.
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in PA and NC, our PP plans have the best DRA score). We are not claiming
the compactness measures we chose are superior to others. As Table 3 shows,
in each of the five states we examined, the four compact plans (PP, CH, 538,
DRA) have similar scores in each metric (PP, CH, 538). We only argue that
for a variety of measures our algorithm is capable of creating plans just as – or
more – compact as those from human experts.

5.4. Proof of Concept: Princeton Redistricting

Finally, we used our algorithm for a redistricting competition, The Great
American Mapoff, hosted by Princeton University’s Gerrymandering Project.
This competition was meant to raise awareness around the 2021 redistricting
cycle in the United States and to help recruit members to their Mapping Corps
(a volunteer group to help study and design potential redistricting plans). The
competition involved designing plans for several states and goals. We saw this
as an excellent proof of concept for our algorithm, and ultimately a chance for
it to improve social good.

We used our algorithm to enter the Stealth Gerrymandering for Illinois and
Partisan Fairness for Wisconsin categories. Here, we were finalists from among
almost 150 entrants22. Our plans, created in days, were judged by human
experts to be among the best, as good as the handcrafted plans submitted by
other participants. Because the contest goals were open ended, we are unable
to make a quantitative comparison, instead we can qualitatively describe our
plans and what we did. We were also invited to join the Mapping Corps.

The data used elsewhere in this paper is not the same as the data the com-
petition used. The competition used the updated 2020 precinct shape files and
interim 2019 census data. This data is still being updated to the 2020 census
data, thus it is currently in flux. Furthermore we ultimately wish to make com-
parisons against the large amount of plans, including the actual implemented
ones, published using the 2010 census and shape files.

It is also worth noting DRA, and thus the competition, didn’t use raw vote
totals in their evaluation. They used a composite score which we will describe
in detail briefly. As far as we can tell there is no presented evidence that this
composite score is a better predictor of future elections than simpler metrics.

5.4.1. Illinois Stealth Gerrymander

This plan is designed to gerrymander for the Democrats while maximizing
the Polsby-Popper compactness score. It does so with a population deviation of
only 0.75%. We used the DRA’s definition of winning a district, which is that
at least 55% of the composite vote is needed to win a district. Our map secured
12 districts for the Democrats, with one additional district being a tossup. Our
gerrymandered map compares favourably to the existing Illinois map that has
one more district (18), only 10 of which are Democratic at the 55% threshold,
and is considered to be highly gerrymandered for Democrats. Our algorithm

22See https://gerrymander.princeton.edu/map-contest for details.
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(a) IL our stealth gerrymander (b) IL existing plan

Figure 5: Congressional maps. Blue districts have at least 55% Democratic vote, red no more
than 45% Democratic vote, grey otherwise. All values calculated using the default composite
vote total specified by the Princeton Gerrymandering Project.

achieves this by avoiding several blow-out wins for the Democrats, using these
votes to convert tossups and Republican wins to Democratic wins.

Our gerrymander (Figure 5a) is far harder to detect than the existing one
(Figure 5b). It is far more subtle than the existing one and easily passes the “eye
test”. Our least compact district (Poslby-Popper 21%) is more compact than
all but 4 of the existing districts. Comparing according to other compactness
measures lead to similar results.

How we did stealth gerrymandering in Illinois. First, for our target party,
Democrats, we generated highly partisan districts. That is, given a partitioning
of the nodes of G into S = (S1, · · · , SK) set Equation 3 (the energy function)
as follows:

E(S) = K −
∑
i

vD(Si), (12)

where vD(Si) is equal to :

vD(Si) =


ND

i

ND
i +NR

i

ND
i

ND
i +NR

i
≤ τ

1 otherwise
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Here ND
i is the total Democratic vote in district i ( NR

i is the total Repub-
lican vote in district i). We set τ = 0.55, as required. This is similar to our
method for emulating 538, but now the sigmoid function’s contribution to the
energy has been replaced by a linear distance to winning the district. We tried
other definitions of vD(Si) and vR(Si), such as exponentially decreasing energy
as one gets closer to winning the district, a small decreasing contribution to
energy even if the target party is winning a district, and modifications of the
sigmoid. In the end we found the presented definitions worked best.

To generate the gerrymandered, but not compact, plans we used our algo-
rithm for 24 hours. This time limit was more than sufficient for the convergence
of the various processes. In the end, the plan with the most Democratic wins
had 13 districts at 55% or better for them. We took the plan with the most
wins as the starting point for new runs of our algorithm and optimized for the
Polsby-Popper score. This required us to set the energy function to be the mean
Polsby-Popper score across all districts. We added the additional constraint that
for a proposal to be considered in algorithm 1 we required that the number of
districts won by D at 55% is at least 13. We repeated this exact process twice,
but with the win constraint lowered to 12 and 11 Democratic wins at 55%. In
the end we decided the best solution was that found by the 12 win setting, as
it offered, in our view, the best blend of compactness and partisanship.

As mentioned, DRA uses a vote composite, and not raw presidential votes
(as we do elsewhere in the paper). Thus to calculate the Democratic “vote”
total ND

i for a district i we defined it, following DRA’s instructions, as the
mean of,

1. The mean of the Democratic votes in the previous two presidential elec-
tions.

2. The mean of the Democratic votes previous two senate elections.

3. The mean of the Democratic votes previous attorney general and governor
election.

in district i. To calculate the Republican vote total for district i (NR
i ) we

use the same formula, but instead count Republican votes.

5.4.2. Wisconsin Partisan Fairness

Unlike all other plans in this work, which are congressional plans, this is a
state senate plan. This plan is designed with fairness in mind, but in addition,
we managed to create compact districts (according to all plans published on
DRA, this is the most compact WI state senate map). In our districts, we
maintain an average population deviation of only 1% (so at most 0.5% from
ideal – far better than the 5% required).

Our fairness metric was to aim for proportionality in the range where most
vote splits happen – where each party has 40-60% of the vote. Therefore, our
districts are robust to uniform swings in the electorate, and maintain their
relative proportionality. Unlike the existing plan, where the swing curves show
a huge Republican advantage over the range we optimize for (Figure 6b), our
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(a) Our fair plan’s swing (b) Existing plan’s swing

Figure 6: Win loss Seat-Vote Curves. Red for Republicans, blue for democrats, and green
is proportional over the range 40% − 60%. All figures and statistics calculated using pub-
lished statistics and default composite vote totals specified by The Princeton Gerrymandering
Project.

plan’s swing curves tightly follows the proportional line (Figure 6a). In our
plan, if either party gets x% of the vote, then they should hold a majority in
x% of the districts (for x ∈ [40, 60]).

How we optimized for fairness in Wisconsin. First, as we did with Illinois,
we used the composite vote totals that DRA recommends. We first generate
“fair” plans for Wisconsin. Our energy function is simply Equation 2 (our
unsigned partisan bias score) over the range [40%, 60%]. The constraints are
the normal ones of a maximum half percent population deviation from ideal
and connectedness..

Afterwards we take the lowest energy solution from the previous step as
the starting point for another run of our algorithm. Now, with an additional
constraint of keeping a fixed maximum value for Equation 2, we optimize for
the Polsby-Popper score. Again, this was simply done by equating the energy
function with the mean Polsby-Popper score of the districts.

6. The Ethics of Automated Redistricting

Before discussing our main results, we wish to touch upon the ethics of au-
tomated redistricting and its implications. There is an understandable concern
our tool could be used to advance partisan interests. This point is especially
salient for our tool, which, in hours, can match what human experts take much
longer to produce.

However, the actual redistricting process takes years, and is only done once
every ten years in the United States (and in many other democracies). In these
situations, partisan groups would have years – and near unlimited resources –
to have experts craft plans by hand, limiting the utility of an automated tool
for gerrymanderers. Furthermore, the actual redistricting process involves a
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certain human element. When crafting a plan there is bargaining and dealing
between the various interested actors. To protect their position within their
district, a representative of one party may wish to keep communities of similar
ethnicity, income, or shared history together. Thus they may bargain with and
make concessions to members of the other party. While this behaviour would
be interesting to model, it is not something a one shot algorithm is capable of.

We see our tool as something researchers can use to study redistricting.
In this work, we use it to explore the impact and limitations of compactness
requirements. Furthermore, it can be used to help combat gerrymandering: if a
plan is as biased as the highly partisan plans produced by our tool, then there
is strong evidence of gerrymandering. Because our tool is highly modular, it
can be used to quickly propose alternative plans, optimizing a diverse set of
desiderata.

Finally, we wish to address the recent criticisms of the Princeton Gerryman-
dering Project, challenging the Project’s impartiality with regard to the New
Jersey redistricting cycle, as they were brought in as independent advisors [48].
As noted above, we were invited to work with the Princeton group to help them
and their state partners with the 2021 redistricting cycle. Because of other
commitments our involvement with the project was limited, we only submitted
one plan for Illinois. This plan was designed to maximize compactness, respect
county boundaries, and ensure minority representation. We have never been
involved in any activities regarding the New Jersey map, and at no time during
our involvement were we aware of any partisan activities. As stated, our goal
is to use this tool to help advance the knowledge of redistricting. We have no
desire to see our tool used to advance any partisan interests.

7. Fairness in Districting

We now examine the interactions of fairness and compactness using the
uniform swing model, and our two robust partisan bias measures (Equations 1
and 2). Recall that the uniform swing model involves modeling hypothetical
elections by adjusting actual election results by increasing (or decreasing) the
vote share a target party gets in each district by the same amount.

7.1. Geographic Compactness Can Improve Fairness

As previously discussed, geographic compactness is often a primary goal in
redistricting processes, and has even been suggested it is a path to partisan
neutrality [49, 50]. A priori, it is not clear if geographically compact plans are
more free of partisan bias than less compact ones. Thus, in this section we
study plans designed to optimize various notions of compactness, contrasting
them with the currently used plans. To that end we use the two compact plans
from 538 and DRA. We also use the Polsby-Popper and Convex Hull compact
plans from our algorithm.

We find that optimizing for any form of geographic compactness yields plans
that have improved partisan fairness relative to the plans enacted in 2011, ac-
cording to our signed partisan bias score (over the range [0.4, 0.6] or over the
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(a) Swing for 2012 over 45-55 range (b) Swing for 2012 over 40-60 range

(c) Swing for 2016 over 45-55 range (d) Swing for 2016 over 40-60 range

Figure 7: Average signed distance from the R swing curve to the y = x line over the indicated
range in the specified election (Equation 1). In each state there are four compact plans,
DRA’s, 538’s, our Convex Hull, and our Polsby-Popper. In PA and NC two implemented ones
(2011 and Updated), the WI 2011 plan was not struck down so there is no WI updated plan.
Finally, there is our plan which ensures node density within a district is homogenous

range [0.45, 0.55]). This improvement is consistent across all states and indepen-
dent of the measure optimized. Figure 7 shows our signed partisan bias score
(closer to zero is fairer) for various plans in three states using either presidential
election or either comparison range.

This improvement is sometimes extreme: in NC, the 2011 districting (with a
17% robust partisan bias towards the R party) is more than two times as biased
as any of the compact plans. It is worth noting that both NC and PA 2011 plans
were struck down by the courts for being overly biased. The NC 2011 plan was
found to disenfranchise minority voters [4], while in PA the plan was found
to disenfranchise Democrats [51]. The Republican advantage, and improved
fairness with compact plans, continue to hold for each state when using using
different election data and swing ranges. When we use [45, 55] instead of [40, 60],
the only time the 2011 plan is less R-biased is the 2016 election in WI when
compared to the CH optimal plan (and this is only a 1% difference).

Interestingly, the updated plans from 2016 in NC and 2018 in PA seem
dissimilar. The updated NC plan is still significantly more R-biased than any of
the compact ones, the opposite holds for the new PA plan. The R-bias of the PA
plan is lower than in the compact plans, although it is, of course, less compact
according to almost any metric (Table 3). It has been suggested the new PA
plan was designed with partisan proportionality in mind [52], though the plan
designers have not commented on their process. In any case, of course none
of the compact plans are designed to optimize for Equation 1 (signed partisan
bias). In each state, when we use our algorithm to optimize for this metric
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specifically we find plans that have near-zero bias according to Equation 1.
These are not shown in Figure 7 because the bars would be virtually invisible.

In general, it was not the case that one definition of compactness was always
superior to others in terms of partisan fairness. For example, in NC the 538
compact plan was the closest to zero for the signed partisan bias score (Equa-
tion 1), but the opposite happened in PA. We speculate that the difference
political geography of NC and PA causes these differences. Recall, PA’s large
urban centres are in the east and west of the state. On the other hand, NC has
its urban centres in the middle of the state. This, amongst other factors, may
impact which compact plan is the fairest according to our definition. That being
said, in all states using any comparison range and either presidential election,
all of the compact plans are similarly fair. And we reiterate, they are all very
fair compared to the plans implemented in 2011.

For all plans, in all states, both elections, and both ranges of comparison
there is one near consistent pattern: The R party has a positive score in our
metric, and from symmetric considerations noted above, this means a negative
D score. That is, the more rural party can expect to gain more seats than its
proportional voter share. This includes every single plan designed to optimize
some notion of geographic compactness. And the 2018 PA plan which was
supposedly also designed to consider proportional fairness. The only exception
to this was Wisconsin, in 2012, over the 40-60 comparison range, with our plan
that optimizes for districts having nodes of similar population density. Here,
the Democrats had a slight partisan advantage beyond what is fair. We will
explore these density plans in more detail in Section 7.2.

7.2. Voting With Similar People Can Improve Fairness

NC PA WI
Updated Plan 1.21 1.28 N/A
2011 Plan 1.22 1.25 1.60
Density Variance 1.02 1.07 1.39
CH 1.28 1.27 1.61
PP 1.23 1.30 1.66
DRA Compact 1.23 1.29 1.62
538 Compact 1.27 1.29 1.68

Table 4: Measure of our density variance metric for each plan (rows) in each state (columns).
Bolded row is the best (lowest) score in each state.

We now turn to explore plans optimized for our density deviation metric.
These plans aim to place precincts of similar density together in the same dis-
trict. In other words, dense urban precincts should be in districts together, and
sparse rural precincts should be in districts together. Due to the rural/urban
divide, one could argue that such a metric would effectively be gerrymander-
ing, but beyond the qualitative argument above (such districts would maintain
communities of a a similar type together), one can argue this is not a real
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gerrymandering strategy: by “packing” rural voters together and urban voters
together, there is no clear advantage to anyone of those, and voters in mid-
density areas (which are also packed together) are not closely affiliated with a
partisan hue.

To do the actual optimization we used an identical technique as we used when
optimizing for our Convex Hull and Polsby-Popper plans (see Section 5.3).

Let us first examine the density deviation value for each plan of interest.
Unsurprisingly, as Table 4 shows, our plan optimized for the density variance is
the best for that metric. Also interesting, existing plans are the second for our
metric in each state (though there was not a large variance between the non-
density-optimized plans). While some of this may be the byproduct of packing
for gerrymandering (i.e., putting all of a party’s opponents in districts where
they achieve high – but useless – voting margins), we can not assign all of the
“blame” on it. A very reasonable goal in redistricting is keeping communities of
interest together. Although what constitutes a community of interest is often
vaguely defined, keeping similar neighbourhoods, where people live in similar
situations, and thus in similar densities, is a reasonable interpretation of com-
munities of interest. Keeping smaller towns, which may be of similar density,
with historic ties together is also reasonable interpretation of communities of
interest. Both of these goals, and many variants of these goals, would likely
contribute to lowering the score for our density deviation metric.

Regardless of the potential gerrymandering concerns, by optimizing for low
density variance we do end up with more “fair” plans. As Figure 7 shows, in
every situation our density deviation plans are far closer to fair according to
Equation 1 than the implemented 2011 plans in every state, and the updated
plan in North Carolina. In fact, the values for Equation 1 are almost always
in line with those of the compact plans. Interestingly, in Wisconsin, in every
situation, our density deviation plan gave the lowest Republican advantage.
In one situation, the [40, 60] range in 2012 the Democrats actually had a slight
advantage. Why our Density Deviation plans in Wisconsin behaved differently is
hard to explain. One obvious explanation could be the very non-convex shape
of the state: the state’s north-east is carved up by Lake Michigan, limiting
the impact of geographic compactness measures. Other issues may be at play,
including how rapidly voter preferences change as one moves from urban to rural
are different in each state. Finally, we note that while our density deviation plan
showed a slight Democratic advantage over the [40, 60] range in 2012 it was fairly
small. Furthermore, if we limit the range to [45, 55] the the Republicans again
have the advantage. That is, only when we consider the most extreme of the
reasonable elections, do we see a Democratic advantage.

7.3. An α% of the Vote can be an α% of the Seats

As we saw with the updated PA plan and the compact plans, optimizing
purely for compactness may not be the be the most effective way to eliminate
partisan bias. For each state we use our algorithm to show there is a plan that
effectively has no bias, a “fair” plan. We use use our algorithm to optimize for
the unsigned partisan bias, Equation 2, over the range [40, 60] (optimizing for

34



the signed version, Equation 1, can lead to plans with huge jumps in the swing
curve).

To actually create the fair and compact plans seen in Figure 10 we use the
following procedure: For each state and its associated election of interest, we
use our algorithm on 96 cores for 24 hours. Here we set our energy function to
be Equation 2 (the unsigned partisan bias score). The lowest energy plan for
each state is our fair plan. In each state we then take this fair plan, and use
it as the starting point for another run of our algorithm. Now, our goal is to
make these fair plans more compact. We do this by setting the energy function
to be the mean Polsby-Popper score across each district. In addition we add
a constraint that the value found for Equation 2 can not become much higher
than the value in the initial plan. For Wisconsin the initial plan had a value of
3.5% and our limit was 4%, North Carolina was initially 2.1% and limited to
2.5%, and Pennsylvania was initially 1.4% and limited to 2%. For each state we
run our algorithm across 48 cores for another 24 hours.

In each state the resulting plans (Figure 10) had an unsigned partisan bias
score from 3.5 to 10 times lower than any of the the existing plans (Figure 9)
and compact plans (Figure 8). Furthermore, in these plans there is near zero ad-
vantage at for either party, when measured by the signed partisan bias. Beyond
the value of signed/unsigned bias (Equations 2 and 1) the results are striking.
In our fair and compact and fair plans, either party having an α fraction of the
vote (for α ∈ [0.4, 0.6]) means they would have had a majority in an α frac-
tion of the districts. This is unlike the existing and compact plans where for
almost every value around the target range, either one or both parties would
get representation far beyond their vote share.

The gain in fairness over the implemented and compact plans, comes at a
certain cost of compactness. While we did make these fair plans more compact,
they are, naturally, not as compact as our most compact plans. As Table 3
shows, in each state our fair but compact plans were more compact than the
existing plans, though not as compact as the plans designed to optimize for a
particular compactness metric.

Looking at the non-optimized plans, unlike when measuring partisanship
with signed bias metric (Equation 1), the fairness advantage of the compact
plans with the unsigned metric (Equation 2) is reduced. In North Carolina the
compact plans generally score lower than the two implemented plans. But in
Pennsylvania and Wisconsin the gap between compact and implemented is far
lower, and sometimes is even reversed. As was the case with signed bais there
wasn’t any one compact plan that was universally optimal for unsigned bias. In
North Carolina our Polsby-Popper plan was by far the best out of the imple-
mented and existing plans. In Pennsylvania all the compact and implemented
plans had similar scores (the DRA plan had the lowest value). Finally, in Wis-
consin the 538 plan had the lowest score. But, all in all, both compact and
implemented plans had similar scores (with the single exception of Wisconsin’s
convex hull plan, which had a very large value compared to the rest).
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(a) NC PP 2016 (8.9%) (b) PA PP 2012 (14.8%) (c) WI PP 2016 (15.4%)

(d) NC 538 2016 (13.3%) (e) PA 538 2012 (16.5%) (f) WI 538 2016 (13.6%)

(g) NC CH 2016 (12.8%) (h) PA CH 2012 (15.2%) (i) WI CH 2016 (21.7%)

(j) NC DRA 2016 (12.2%) (k) PA DRA 2012 (12%) (l) WI DRA 2016 (13.1%)

Figure 8: Uniform swings for R(D) in red (blue), in indicated state, compact plan, and
presidential election year. The value for Equation 2 (unsigned bias metric) is given in the
parentheses. Vertical axis shows the fraction of districts won; horizontal axis the vote fraction.
The dots on the party curves indicate the actual election outcome (0 swing). The green line
is the range of proportional outcomes on the range [0.4, 0.6]. A green star marks the point
(1/2, 1/2).
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(a) NC original
2016 (16.4%)

(b) PA original
2012 (15.9%)

(c) WI original
2016 (17.1%)

(d) NC updated
2016 (19.6%)

(e) PA updated
2012 (12.5%)

Figure 9: Uniform swings for R(D) in red (blue), in indicated state, plan (either existing or
updated where applicable), and presidential election year. The value for Equation 2 (unsigned
bias metric) is given in the parentheses. Vertical axis shows the fraction of districts won;
horizontal axis the vote fraction. The dots on the party curves indicate the actual election
outcome (0 swing). The green line is the range of proportional outcomes on the range [0.4, 0.6].
A green star marks the point (1/2, 1/2).

(a) NC fair 2016 (2.1%) (b) PA fair 2012 (1.4%) (c) WI fair 2016 (3.5%)

(d) NC fair & compact
2016 (2.3%)

(e) PA fair & compact
2012 (1.9%)

(f) WI fair & compact
2016 (3.7%)

Figure 10: Uniform swings for R(D) in red (blue), in indicated state, plan (either our fair or
our fair and compact), and presidential election year. The value for Equation 2 (unsigned bias
metric) is given in the parentheses. Vertical axis shows the fraction of districts won; horizontal
axis the vote fraction. The dots on the party curves indicate the actual election outcome (0
swing). The green line is the range of proportional outcomes on the range [0.4, 0.6]. A green
star marks the point (1/2, 1/2).
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(a) Our NC 9 D wins

(b) 2016 NC plan

Figure 11: NC districts (R wins in red); (D wins in blue) based on the 2016 NC election data.
Top, our plan, optimizing the Polsby-Popper score while maintaining 9 D wins (where a win
is simple majority). Bottom, NC’s 2016 court mandated plan.

8. Designing Partisan Plans

We now focus on the limits compactness thresholds impose on partisan ger-
rymandering. As we saw, compactness as a goal can lead to more balanced
outcomes. However, if our goal is to use compactness as a constraint to improve
representability, rather than as an objective, it is not clear which restrictions are
necessary. For compactness, we shall use the average Polsby-Popper score of a
plan. Initially, to measure gerrymandering ability, we use gerrymandering power
(introduced in Borodin et al. [35]). For a particular election, the gerrymander-
ing power of party p is defined as the difference between the share of seats it
can optimally gerrymander to win and the seat share it would have received in
a purely proportional election. A high gerrymandering power indicates there
is a plan that uses p’s vote geographic layout to produce a disproportionately
large number of districts. A low (or negative) gerrymandering power indicates
p’s geographic spread is such that it is unable to stretch its vote into many
extra wins (or even win a proportional number of seats). An extreme example
is when the population is completely homogenous: if each house contains 2 R
voters and 3 D voters, the R party can never win any district, and has a nega-
tive gerrymandering power, while the D party will always win 100% of districts.
We will also explore if gerrymandering while maintaining a large margin in the
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districts a party has won substantially impacts gerrymandering ability, and if
compactness restrictions are any more effective in this situation.

To gerrymander for party p while staying compact, we run our algorithm
with the objective of generating plans which are as compact as possible while
maintaining k wins23 for party p. To ensure a diversity of election outcomes
we use the elections specified in Section 4. As we saw in previous sections, our
algorithm is capable of generating highly compact districts and highly parti-
san districts. Unsurprisingly, we find it performs quite well when combining
these goals. As Figure 11 shows, our compact gerrymander for the Democrats
(Figure 11a) easily passes the eye test, especially when compared to the im-
plemented plan (Figure 11b). In NC our algorithm can stretch the number of
districts the Rs win to all 13 using the 2016 election data, all while creating a
plan more compact than the existing one (in the existing plan, the Rs won 10
of 13). We can also create a map for the Ds where they win 8 more seats than
in the existing plan, while being more compact than it.24.

To produce these maps we first generate highly partisan outcomes: assuming
we are gerrymandering for the Democrats, given a partitioning of the nodes of
G into S = (S1, · · · , SK) we set Equation 3 to:

E(S) = K −
∑
i

vD(Si), (13)

where vD(Si) is equal to :

vD(Si) =


ND

i

ND
i +NR

i

ND
i

ND
i +NR

i
≤ τ

1 otherwise

Here ND
i is the total Democratic vote in district i (NR

i is the total Republi-
can vote in district i). If we want to gerrymander for the Republicans, replace
vD(Si) with vR(Si) which is defined as follows:

vR(Si) =


NR

i

ND
i +NR

i

NR
i

ND
i +NR

i
≤ τ

1 otherwise

We do three runs, τ ∈ {0.5, 0.53, 0.56}, for defining victory as simple major-
ity and strong wins. This is similar to our method for emulating 538, but now
the sigmoid function’s contribution to the energy has been replaced by a linear
distance to winning the district.

Without loss of generality, assume we are gerrymandering for party P . For
our first phase, in each state for P we run our method 288 times for 48 hours.
This time limit was more than sufficient for the convergence of the various
processes. This first phase gives us several runs that have the most possible
wins for P in each state, call this set of solutions Wmax. Then for P in each

23By win we mean party p has at least a (50 + τ)% of the vote, for various settings of a
safety parameter τ .

24For these values, we are referring to a win as a simple majority of the vote.
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(a) NC 2016 (b) PA 2012 (c) WI 2016

Figure 12: Gerrymandering power when faced with a minimum required Polsby-Popper score
using data from the 2012 PA presidential election and 2016 NC and WI presidential elections.
R in red; D in blue. The vertical purple (grey) line is the Polsby-Popper score of the 2011
congressional plan (court mandated plan). Average distance between the two curves is a
10.8% R advantage in PA, 10.4% R advantage in NC, and 4.3% R advantage in WI.

state, we have a range of potential win values {wmax, · · · , wmin} (where wmax is
the most number of wins found for P in the first phase and wmin is the number
of wins for P in the optimally compact solution from the Polsby-Popper plan
in Section 5.3).

For each value w ∈ {wmax, · · · , wmin+1} we execute the following procedure:
dividing the solutions of Wmax among 96 cores as evenly as possible, we run
our algorithm using these solutions as the initial plans and optimize for the
Polsby-Popper score (as usual, by setting the energy function to be the mean
Polsby-Popper score across all districts). We add the additional constraint that
for a proposal to be considered in algorithm 1 we require that the total number
of wins for P is at least w (keeping the same τ used to calculate wmax). We
found the algorithm converged to a solution well before the 24 hour cutoff for
each of these simulations.

8.1. Effect of Increasing Compactness on Gerrymandering Power

While increasing the required mean Polsby-Popper score lowers the gerry-
mandering power of both parties, to have an impact, a steep increase beyond
what current plans use (and often near the most compact) is required. In each
state Figure 12 shows existing plans do not have a compactness score that con-
strains any party’s gerrymandering power.

Additionally, compactness requirements are unable to entirely remove the
urban disadvantage. For almost any Polsby-Popper score, the R gerrymandering
power is well above the D one. In PA there is no requirement level where the
Ds have an advantage. In NC and WI there is a brief period of near maximum
compactness requirements where the Ds have a small, temporary, advantage. In
WI, when the compactness requirement is lower than that of the current plan
the democrats can have a minuscule advantage, but more stringent requirements
give a large R advantage. The average distance between the two curves shows
a 10% R advantage in gerrymandering power in PA and NC, and 4% in WI.

Moreover, in every single state, even with the most extreme compactness
requirements, Rs are able to stretch their vote share beyond proportional. On
the other hand, Ds, even if they can have any legal plan they desire, have
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(a) NC 53% (b) PA 53% (c) WI 53%

(d) NC 56% (e) PA 56% (f) WI 56%

Figure 13: Ability to gerrymander at various levels of win robustness (indicated in the paren-
theses) when faced with a minimum required Polsby-Popper score. Vertical axis is the number
of winnable districts. Using data from the 2012 PA presidential election and 2016 NC and WI
presidential elections. R in red; D in blue. The vertical purple (grey) line is the Polsby-Popper
score of the 2011 congressional plan (court mandated plan). First row, was with a 53% win
threshold, second row was with a 56% win threshold.

a negative gerrymandering power when compactness requirements are high –
they cannot even reach their proportional allocation.

8.2. Robust Wins While Staying Compact

In Section 8.1, we assumed a margin of victory of a single vote was suf-
ficient. In reality, when assessing the future performance of a plan, historical
vote data is only an estimate. Thus, to protect against small (or even large-ish),
swings against their party, parties design plans with a robust margin of victory.
What is considered robust enough is a matter for debate – 538’s probabilistic
model considered an Republican advantage of about 5% from the 2012 and 2016
presidential elections a safe margin for them, while for the Democrats a 12%
advantage was considered safe. On the other hand, Dave’s Redistricting App
considers a 10% advantage in their vote composite, which is built from presi-
dential, senate, gubernatorial, and attorney general elections, as safe for either
party.

We opt for a simple interpretation of safe. We say a 6% advantage in a presi-
dential election of interest is safe, and a 12% advantage (in the same presidential
election) is very safe. We now repeat the exact same set up from Section 8.1,
but set the victory thresholds that parties are aiming for at 53% and 56%.

The advantage the urban-rural divide provides to the more rural Republican
party is even more stark here. As Figure 13 shows, in every state for either win
threshold level, there is no point where the Ds are able to gerrymander to win
more seats at than the Rs can gerrymander. That is, no matter how we define
wins, no matter how much compactness we require, the Democrats can never
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outperform the Republicans, and often trail them significantly. There is the
occasional point in WI and PA where – when faced with the same Polsby-
Popper requirement – both parties can win the same number of seats (at the
same victory threshold). But this is always temporary, The Rs always recover
their advantage. This is especially shocking since in PA in 2012 the Ds have a
significant vote advantage.

These results (and those concerning the gerrymandering power in the pre-
vious section) do not mean the Democrats are incapable of gerrymandering.
Indeed, it is quite the opposite. In every state, even when requiring a 56% win
threshold the Ds (and hence the Rs) are able to win at least half the seats. At
a 52% threshold the Ds can always take at least 65% of the seats. These facts
are even true in NC where the Ds have a severe vote disadvantage. Even if we
require the plan be at least as compact as any of the implemented ones the Ds
are able to gain at least half the seats at a 56% threshold and a strict majority
at 53% a threshold. These results only show that the Rs always have a higher
ceiling for gerrymandering potential than the Ds. For example, as Figure 13d
shows in NC the most compact outcome gives the Rs as many wins at 56% as
the Ds get when the Ds engage in unrestricted gerrymandering.

9. Discussion

In this work we introduced a modular and powerful automated redistricting
technique. Our technique can generate plans comparable to ones from human
experts for both partisan and non-partisan goals. Our method is able to gen-
erate geographically compact districts, far more compact (according to various
metrics) than the plans used in practice or the ones produced by electoral ex-
perts. While the plans, which were optimizied for geographic compactness,
reduce partisan bias, we find they do not eliminate it and still always favor the
rural party. We also used our algorithm to explore density deviation, a novel
definition of compactness based around how homogenous a district is relative
to the density of the precincts that make it up. We also saw optimizing for our
novel metric can lead to more fair plans, and in one rare case, a plan that favours
the more urban Democrats. Despite this rural-favouring voter geography, we
show there are plans which are near totally proportionally fair, but to achieve
this we must sacrifice geographic compactness to some extent. Finally, we use
our algorithm to explore the effects of an often proposed solution to gerryman-
dering: compactness restrictions. We find that while this can reduce the ability
of either party to gerrymander, the potential for some degree of gerrymandering
remains, and the rural party can still gerrymander more than its urban counter-
part. These results contribute to growing evidence that the urban-rural divide
leads to imbalanced outcomes that disadvantage the urban party.

We intend to use our algorithm to explore the tradeoff between partisan
fairness and non-partisan goals, such as not splitting counties. We began ex-
ploring the tradeoff between fairness and compactness in Section 7.3, the next
step would be mapping out its Pareto frontier.As we saw, our maps which aim
to ensure districts are homogenous in terms of population density often had low
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partisan measures, and in one situation even favoured the more urban Demo-
cratic party. We believe this effect is worth exploring further. It could be other
deviation metrics would see similar results; for example, we could have instead
used the Gini coefficient for measuring the variance in a district’s density. More
generally, perhaps other ways of grouping similar voters together would lead to
similar results. If we design plans where each district is homogenous according
to income, or minority population, or even vote intention, would we see similar
results?

We are also exploring other, novel, definitions of compactness. Many such
measures take advantage of the underlying precinct graph structure. Perhaps
the compactness of a district could be defined as the number of edges the average
person needs to traverse to reach each other person in their district. Leaving
compactness aside, the possibility of gerrymandering under multi-party systems
is not well understood, and even the effects of minor parties (as exist even today
in the US) on gerrymandering should be examined.

Possibly more important than partisan considerations is ensuring that mi-
nority voices are heard in the political process. We are investigating criteria for
ensuring that minority voters receive their deserved representation in redistrict-
ing. Beyond the basic requirements of majority-minority districts that satisfy
the US 1965 Voting Rights Act, the function for measuring minority represen-
tation could be quite intricate and difficult for human experts to analyze and
optimize for. We believe that such non-trivial objective functions, along with
restrictions such as compactness, make this problem an ideal application of our
algorithm.
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