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Abstract

A common assumption in matching markets is that both sides fully specify

their preferences. However, with many participants, this becomes unreasonable.

Facing numerous alternatives, many of which they are unfamiliar with, agents

focus on alternatives they consider likely, studying them more carefully.

Using the setting of hospitals and residents with Deferred Acceptance, we

examine Nash equilibria arising when hospitals have a master list of residents

(e.g., by grade), while residents have some uncertainty, and need to choose a

subset of hospitals to interview in so they can rank them. Assuming residents’

preferences are drawn from a Mallows distribution, we show assortative equilib-

rium (k top residents interview with k top hospitals, etc.) arise only with small

interview sizes. Surprisingly, they do not happen in larger interview sizes, even

when residents’ preferences are almost identical. We examine simulations on

possible outcome equilibrium, showing residents may be pursuing a reach/safety

strategy.
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1. Introduction

Since Gale-Shapley’s groundbreaking work [1], matching algorithms, in which

elements of disjoint sets are matched to one another based on each agent’s pref-

erences of being matched to the different elements of the other set, have pro-

liferated in a variety of useful settings. These range from matching children to5

schools to matching refugees to countries [2]. The main goal of most of these

algorithms is to create stable matchings, i.e., assignments which are stable and

in which no agent has a way to change their behavior in a way that will improve

the outcome for them.

We will take our inspiration and terminology from medical residencies [3]10

which are one of the main settings implementing matching algorithms in the

real world. That is, matching medical students to residencies in hospitals. Such

systems are prevalent in many countries, such as the US, Canada, and others.

For example, the National Residency Matching Program (NRMP), an American

program for matching medical residents to hospitals, offered in 2015 27,29315

positions in 4,012 hospital programs [4].

However, many of the proposed matching mechanisms make assumptions

that do not hold in the real world. Many actual settings include partial pref-

erences [5, 6], quotas imposed on matching outcomes [7], distributional con-

straints [8], and computational constraints, for which compact representations20

of preferences are useful (e.g., [9, 10]).

In this paper we will focus on a particular problem, arising when the number

of options in front of residents is large (as noted above, US residents needed to

choose from over 4000 positions, and they apply to only 11, on average! [11]), and

they have uncertainty regarding the best hospitals for them. That is, residents25

may have a vague intuition of which hospitals are better than others1, but their

1There are publicly available rankings, such as the US News and World Report ranking.
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own ranking may be influenced by specific, personal considerations (e.g., the

personal chemistry with the people in the hospital) . The common way to deal

with such a case is to interview with a set of hospitals, allowing the resident

to figure out their “real” ranking between the possible hospitals. However, this30

requires the resident to choose the set of hospitals they will interview, based on

the limited information they have.

The selection of this interviewing set gives rise to strategic concerns, and

widely used mechanisms – which are strategyproof when assuming every resident

knows their full ranking of the hospitals – are no longer strategyproof [23, 24].35

Every resident will try, naturally, to maximize the outcome according to their

own welfare function, but where will we end up, and what will be the resulting

stable state? To examine the Nash equilibrium strategies, we will look at a

particular matching mechanism – one of the most widely used ones – Resident-

Proposing Deferred Acceptance (rp-da). We will also assume that hospitals40

have a ranking of residents (e.g., according to their GPA or exam grades, which

are used to determine acceptance throughout the world [12, 13, 14, 15]), and, of

course, prefer higher ranked residents over lower ones (we do not need to assume

residents have this list, but we do assume they know their own ranking).

One possible strategy – indeed, the one that the authors of this paper initially45

assumed would be a Nash equilibrium in many cases – is an assortative one, in

which hospitals and residents are stratified: highly ranked residents interview at

well-regarded hospitals; medium residents interview at medium hospitals; and

low ranked residents interview at low ranked hospitals. Such an equilibrium

seems almost “natural” in construct – residents are divided into cohorts, and50

each cohort interviews in hospitals with equivalent quality. Such an equilibrium

is desirable, as it makes sense for residents to interview where there is a good

chance they will get in. We know some applicants in matching settings try to

interview above their level and fail [16], while if they interview below their level

they sell themselves short. Moreover, such a structure, should it exist in Nash55

equilibria allows for easier analysis and for focusing on only analyzing these

cohorts.
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Indeed, there is some anecdotal evidence such a strategy is pursued in some

matching settings [15]. A different possible strategy (which also has some anec-

dotal evidence that it is used [16, 17]) is a reach/safety one, in which residents60

apply to hospitals “above” their approximate ranking (i.e., they try to “reach”

to better hospitals) as well as hospitals where they are almost guaranteed to get

in, so about their ranking or slightly below (i.e., “safe” hospitals).

Of course, while we use the terminology of hospitals and residents, our results

hold for any setting in which one side cannot fully rank the other side and has65

uncertainty regarding its ranking, necessitating a preliminary decision on which

options to focus on ranking. This can happen for students interviewing at

schools, universities inviting candidates for a job opening2, or prospective PhD.

students choosing which potential advisors to meet.

Our Contribution. We explore the structure of Nash equilibria when hospitals70

have a joint list ranking of residents, while residents are unsure regarding their

rankings of the hospitals, and need to select k hospitals to interview in, which

result in a ranking of those k hospitals. We assume residents have a similar

utility valuation (i.e., the value they get from getting their 1st choice, 2nd

choice, etc.). We focus, in particular, on the case where residents’ hospital75

ranking are sampled from a Mallows’ distribution. This means, broadly, that

there is a widely shared basic (ground truth) ranking σ and a parameter ϕ. The

parameter determines, in a sense, the likelihood of choosing a preference order

significantly different from σ. We define the Mallow’s model in Section 3.3. As

can be seen from the definition, as ϕ approaches 1, every possible preference80

ranking becomes almost equally likely. And as ϕ approaches 0, it becomes more

and more probable that the preference ranking will not deviate far from the

ground truth ranking.

Beyond several existence proofs for pure equilibria and conditions for assor-

2In this case, the candidates may have a shared ranking over universities (e.g., from one

of the international rankings), and the universities are the “resident”-equivalents, choosing

which potential candidates they wish to invite for a job talk.
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tative equilibria, we show that for a very small interviewing set (k = 2, 3), there85

are utility functions for which, as long as the probability of having a wildly

different ranking than the ground truth is not very high, equilibria will be as-

sortative. However, if the sets are larger, this no longer holds. Even though

when rankings are identical to the ground truth an assortative strategy is a

Nash equilibrium, that is not true even if rankings are infinitesimally close to90

the ground truth, regardless of the utility functions. We also show how the equi-

librium looks like for several choices of larger interview sets (k = 4, 6), and we

are able to observe reach/safety strategies being an equilibrium in some cases,

even in cases where agents are close to the ground truth (e.g, the worst resident

also applying to the top hospital).95

2. Related Research

While there is a large body of research on the problem of finding stable

matchings for various markets and market conditions (including when master

lists are present, e.g., Irving et al. [18]), there has been significantly less work

on the interviewing problem which we deal with. One research direction looked100

at interviewing policies that attempt to minimize the number of interviews con-

ducted while ensuring that a stable matching is found. Rastegari et al. [6]

showed that while finding the minimal interviewing policy is NP-hard in gen-

eral, there are special cases where a polynomial-time algorithm exists. They also

provide a model for minimal interviewing, and an MDP framework for minimal105

interviewing (with no fixed quota). Drummond and Boutilier [5] looked at a

similar problem, using minimax regret and heuristic approaches for interview-

ing policies. However, neither of these papers examined strategic issues arising

when agents get to choose where they wish to interview.

Several papers [19, 20, 21, 22] addressed a limited/fixed set of interviews, but110

unlike this paper, they assume uncorrelated preferences (that is, every hospi-

tal/resident has its own ranking of residents/hospitals, independent of others3),

3In addition to the independent, uniform distribution of preferences, Immorlica and Mah-

5



which we believe is less realistic, though that is also a particular case of our

model. In any case, their assumptions allow for truthfulness to be a Nash equi-

librium or a highly probable best-response, which is not applicable in our model.115

Kadam [20] considers the Nash equilibrium both when all preferences are uncor-

related, or exactly the same, but does not allow a small variance (their model

also includes hospitals ruling out candidates after interviews, which our model

does not support). In two linked papers [23, 24], Haeringer and Klijn [23] showed

that when limiting the number of interviews, the Nash equilibria becomes less120

efficient, and possibly not stable. Then, in an experiment, Calsamiglia et al.

[24] show that in various cases, when you limit people’s ability to show their full

preferences they can become less truthful (for example, increasing the rank of

a school they are likely to be able to enter), and their behavior creates various

issues for the mechanism. He and Magnac [25] show experimentally the effects125

of an interview cost (of sorts) in decreasing the matching quality, noting that a

low cost both decreases loads as well as maintaing quality.

Motivated by the college admissions problem, Chade et al. [27, 26] looked

at how students may strategically apply to colleges, where they assume that

there is an agreed-upon ranking of the colleges, but that students’ quality or130

caliber is determined by a noisy signal. That work investigates how students

decide where to apply in a decentralized market (as well as the applying students

being those with the fixed list). Unlike them, we focus on centralized matching

markets which result in stable matchings. Recently, Shorrer [28] analyzed a

case in which residents do not know their own ranking, and the rankings of135

the hospitals is fixed (similar to the setting in Chade et al. [27, 26]). While

this setting is quite different from ours (we focus, in a sense, on how varied the

ranking of hospitals is between agents, by tweaking the Mallows’ distribution ϕ

parameter), it is interesting that the results have some similarity to our own:

dian [19] also examines the case in which each hospital has a fixed probability of being selected,

and preferences are formed by continuous sampling. Beyhaghi et al. [21] divides both hospitals

and residents into two groups, and preferences are uniform within each group.
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that without outside options, mixing “safe” and “reach” options makes sense.140

Indeed, in his case, this structure is a result of players not being sure of their

own ranking by others, while for us it is the combination of not knowing one’s

own preferences, as well as not knowing other people’s preferences. So while

the safe/reach structure would disappear in the Shorrer [28] model if one knew

their own ranking, that is not the case in our setting.145

Coles et al. [29] discuss signaling in matching markets. They assume that

agents’ preferences are distributed according to some (restricted) distributions,

known a priori, and each agent knows their own preferences. Firms can make

at most one job offer, and workers can send one signal to a firm indicating

their interest, paralleling, in some sense, a very restricted interviewing prob-150

lem. Under this setting, firms can often do better than simply offering their

top candidate a job, though there are also examples where signaling may be

harmful [30]. Again, the market structure in these works is quite different than

the centralized matching markets we are interested in.

The work most closely related to this paper is Lee and Schwarz [31]. They155

studied an interviewing game where firms and workers (or hospitals and res-

idents) interview with each other in order to be matched. They formulate a

two-stage game where firms were required to first choose workers to interview

for some fixed cost. The interview action reveals both workers’ and firms’ prefer-

ences, which are then revealed to a market mechanism running (firm-proposing)160

DA. They showed that if there is no coordination then firms’ best response is

picking k workers at random to interview. However, if firms can coordinate

then it is best for them to each select k workers so that there is perfect overlap

(forming a set of disconnected complete bipartite interviewing subgraphs). This

result relies heavily on the assumption that all firms and workers are ex-ante165

homogeneous, with agents’ revealed preferences being idiosyncratic and inde-

pendent. This assumption is very strong; for the results to hold either agents

have effectively no information about their preferences before they interview,

or the market must be perfectly decomposable into homogeneous sub-markets

that are known before the interviewing process starts. In this paper we study a170
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similar interviewing game, but use a different (and arguably more realistic) set

of assumptions on the structure and knowledge of preferences. The timeline of

events for this game is given in Section 3.1.

3. Model

There are n residents and n hospital programs4. The set of residents is175

denoted by R = {r1, . . . , rn}; the set of hospital programs is denoted by H =

{h1, . . . , hn}. Both hospitals and residents have (strict) preferences over each

other, and let H≻ and R≻ denote the sets of all possible preference rankings

over H and R respectively.

We are interested in one-to-one matchings, i.e., residents can only do their180

residency at a single hospital, and hospitals can accept at most one resident.5 A

matching is a 1-1 function µ : R∪H → R∪H, such that ∀r ∈ R, µ(r) ∈ H∪{r},

and ∀h ∈ H, µ(h) ∈ R∪ {h}. If µ(r) = r or µ(h) = h then we say that r or h is

unmatched. We assume that residents prefer to be assigned to any hospital over

not being matched, and hospitals prefer to have any resident over not filling the185

position at all. A matching µ is stable if there does not exist some (r, h) ∈ R×H,

such that h ≻r µ(r) and r ≻h µ(h).

Hospitals have identical preferences over all residents, which we call the

master list, ≻ML
6. Without loss of generality, let ≻ML= r1 ≻ r2 ≻ . . . ≻ rn,

where ri ≻ML rj means that ri is preferred to rj according to ≻ML.190

Each resident, r, has idiosyncratic preferences over the hospitals7, which we

4The assumption that there are an equal number of residents and hospitals is without loss of

generality. If there are more residents than hospitals, then the lowest ranked residents will not

obtain any interview and can therefore be ignored. If there are more hospitals than residents,

we can add “dummy” residents having the lowest ranks and the matching mechanism can

ignore the match of any dummy resident.
5This is a simplifying assumption that eases understanding of the equations. Generally,

our results hold without this assumption as well.
6This can be thought of as a list based on grades. As in our model, these are usually known

to hospitals, allowing them to rank candidate residents.
7This may be based on location, relationship status, etc.
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assume are drawn i.i.d. from some common distribution D , and that this is

common knowledge as well. If resident r draws preference ranking η from D ,

then hi ≻η hj means that hi is preferred to hj by r under η. We also assume

residents are aware of their own ranking in the master list.195

Finally, we will assume (as in Coles and Shorrer [32]) there is some common

scoring function v : H × H≻ 7→ R, applied to rankings η drawn from D such

that, given any η ∈ H≻ with hi ≻η hj , v(hi, η) > v(hj , η).

Critical to our model is the assumption that residents do not initially know

their true preferences, but refine their information by conducting a number of200

interviews, not exceeding their interviewing quota k. We let I(rj) ⊂ H denote

the interview set of resident rj , and |I(rj)| ≤ k for some fixed k < n. Once

rj has finished interviewing, rj knows their preference ranking over I(rj). This

information is then submitted to the matching algorithm, resident-proposing

deferred acceptance (rp-da). The matching proceeds in rounds, where in each205

round unmatched residents propose to their next favourite hospital from their

interview set to whom they have not yet proposed. Each hospital chooses its

favourite resident from amongst the set of residents who have just proposed and

its current match, and the hospital and its choice are then tentatively matched.

This process continues until everyone is matched. The resulting matching, µ,210

is guaranteed to be stable, resident-optimal, and hospital-pessimal [1]. This

matching is also guaranteed to be unique, as stable matching problems with

master lists have unique stable solutions [18]. Thus our results directly hold

for any mechanism that returns a stable matching, including hospital-proposing

deferred acceptance and the greedy linear-time algorithm [18].215

3.1. Description of the Game

We now describe the Interviewing with a Limited Quota game. We attempt

to formalize this game in a manner consistent with previous literature on inter-

viewing, particularly with Rastegari et al. [6]. The game follows the following

timeline.220
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1. A master list ranking all residents becomes known to all hospitals. Resi-

dents know their own ranking.

2. Each resident r ∈ R simultaneously selects an interviewing set I(r) ⊂ H,

based on their knowledge of D and the hospitals’ master list ≻ML, where

|I(r)| ≤ k.225

3. Each resident r interviews with hospitals in I(r) and learns their own

preference over members of I(r).

4. Each resident reports their learned preferences over I(r) and reports all

other hospitals as unacceptable. Each hospital reports the master list to

a centralized clearinghouse, which runs resident-proposing deferred accep-230

tance (rp-da), resulting in the matching µ. Note that thanks to the DA

mechanism’s strategyproofness, there is no reason for residents to misre-

port their preferences once they have learned their personal ranking as

they have already strategized in choosing their interview set. This con-

trasts with the mechansims studied in [23, 24] where students strategize235

without interviews in choosing their schools.

Example 1. Suppose k = 2 and we have 4 hospitals – h1, h2, h3, h4, and 4

residents – r1, r2, r3, r4. All hospitals know the residents’ quality (r1 being the

best, followed by r2, then r3, and r4 is the worst), and every resident knows

their position in the hospitals’ ranking. Suppose residents have two possible240

rankings of hospitals: with probability 0.5 a resident’s ranking of hospitals is

h1 ≻ h2 ≻ h3 ≻ h4, and with probability 0.5, it is h2 ≻ h1 ≻ h4 ≻ h3.

Residents r1 and r2 can choose to interview at h1 and h2, while residents

r3 and r4 can choose to interview at hospitals h3 and h4. Such a choice is both

assortative and stable – both r1 and r2 know they will never prefer h3 and h4245

over the hospitals they interview in; and because of this, both r3 and r4 know

hospitals h1 and h2 will surely be taken already by the time it is their turn to

interview, so no point in interviewing there. In this case, there is no other stable

choice.

If the probability of any ordering is as likely as any other, then many other250
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interviewing strategies are stable, including non-assortative ones. For example,

r1 and r3 interviewing at h2 and h4 while r2 and r4 interview at h1 and h3.

3.2. Payoff function for Interviewing with a Limited Quota

Let M be the set of all matchings, and let µ denote the ex-post matching

resulting from all agents playing the Interviewing with a Limited Quota game.255

In order for resident rj to choose their interview set I(rj) ⊂ H, they have to

be able to evaluate the payoff they expect to receive from that choice, where

the payoff depends on both the actual preference ranking they expect to draw

from distribution D , the interview sets of the other residents, and the expected

matching achieved from the mechanism as described.260

Crucially, we observe that rj need only be concerned about the interview set

of resident ri when ri ≻ML rj . If rj ≻ML ri then, because we run rp-da, rj

would always be matched before ri with respect to any hospital they both had

in their interview set. Thus, we can denote rj ’s expected payoff for choosing

interview set S by: urj (S) = urj (S|D , I(r1), . . . , I(rj−1)).265

Given fixed interviewing sets I(r1), . . . , I(rj−1), and some partial matching

m = µ|r1,...,rj−1
, we compute the probability (with respect to the realized prefer-

ences of the residents) that matching m happened via rp-da. Let m(ri) denote

which hospital resident ri is matched to under m. For any ri, there is a set of

rankings consistent with ri being matched with m(ri) under rp-da (and the270

hospitals’ master list ≻ML). That is, we are looking for all preference orders

such that for every hospital resident i interviewed at, those he prefers over the

one he got were matched (by m) to residents ranked above him in the master

list. Such preference orders are consistent with the matching m. Denote this

set as T (ri,m). Formally, T (ri,m) ⊆ H≻ is:275

T (ri,m) = {ξ ∈ H≻|∀h′ ∈ H

s.t. h′ ∈ I(ri) ∧ h′ ≻ξ m(ri),∃ra s.t. ra ≻ML ri ∧m(ra) = h′}
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Note that T (ri,m) ̸= ∅ for all ri and T (r1,m) is the set of all rankings over

hospitals.

Given the interviewing sets of residents r1, . . . , rj−1, the probability of partial

match m is

P (m|I(r1), . . . , I(rj−1)) =

j−1∏
i=1

∑
ξ∈T (ri,m)

P (ξ|D). (1)

where P (ξ|D) is the probability that some resident drew ranking ξ ∈ H≻ from

D .

Using Equation 1, we determine the probability that some hospital h is280

matched to rj using rp-da, when rj has interviewed with set S, and has pref-

erence list η. We sum over all possible matches in which this could happen.

Because rp-da is resident optimal, and all hospitals share a master list, any

hospital that rj both interviews with and prefers to h must already be matched.

That is, we define M∗ as the set of matchings that given the interview sets of285

residents 1, . . . , j − 1, resident j’s preference η and their interview set S, assign

resident j with hospital h and any hospitals resident j ranks above it are all

assigned to resident 1, . . . , j− 1, which also interviewed them. Formally, the set

of such (partial) matchings is:

M∗(S, η, I(r1), . . . , I(rj−1), h) = {m ∈ M |m(rj) = h;

∀ri ∈ {r1, . . . , rj−1}m(ri) ∈ I(ri);

∀x ∈ S, if x ≻η h,∃ri ∈ {r1, . . . , rj−1}

s.t. x ∈ I(ri) and m(ri) = x}

Thus, the probability that h is matched to rj using rp-da given preference

ranking η, S, and the interviewing sets for all residents preferred to rj on the

hospitals’ master list is

P (µ(h) = rj |η, S, I(r1), . . . , I(rj−1)) =
∑

m∈M∗(S,η,I(r1),...,I(rj−1),h)

P (m|I(r1), . . . , I(rj−1)). (2)
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For readability, we refer to P (µ(h) = rj |η, S, I(r1), . . . , I(rj−1)) as P (µ(h) =

rj |η, S). We now have all the building blocks to formally define the payoff

function. Recall that v(h, η) is the imposed utility function, dependent on η:

for any given η, v(h, η) is fixed. Then, our payoff function is:

urj (S) =
∑
h∈S

∑
η∈H≻

v(h, η)P (η|D)P (µ(h) = rj |η, S, I(r1), . . . , I(rj−1)) (3)

Intuitively, what the payoff function in Equation 3 does is weight the value290

for some given alternative by how likely rj is to be matched to that item, given

the interview sets of the “more desirable” residents, r1, . . . , rj−1.

Example 2. Suppose there are two residents, r1 and r2, each of whom inter-

viewed with hospitals h1 and h2. Resident r1 will be matched with whomever they

most prefer, while r2 will be assigned the other. The probability that r2 will be295

assigned h1 is the probability that r1 drew ranking h2 ≻ h1, while the probability

that r2 is matched to h2 is the probability that r1 drew ranking h1 ≻ h2.

3.3. Probabilistic Preference Models

While our payoff function formulation, as just described, is general in that it

can be instantiated using any scoring function and distribution over rankings, in300

this paper we are interested both in general results and results under particular

assumptions and constraints on both the scoring function classes and ranking

distributions. In this section we introduce the preference ranking distribution

we use, the ϕ-Mallows model, and discuss some of its properties.

The ϕ-Mallows model (or just Mallows model [33]) is characterized by a305

reference ranking σ, and a dispersion parameter ϕ ∈ (0, 1], which we denote

as Dϕ,σ. Let A denote the set of alternatives that we are ranking, and let A≻

denote the set of all permutations of A (for i ∈ {1, . . . , n}, ai ∈ A indicates the

alternative’s rank in σ). The probability of any given ranking η is:

P (η|Dϕ,σ) =
ϕd(η,σ)

Z
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Here d is Kendall’s τ distance metric8, and Z is a normalizing factor; Z =310 ∑
η∈A≻

ϕd(η,σ) = (1)(1 + ϕ)(1 + ϕ+ ϕ2) . . . (1 + . . .+ ϕ|A|−1) [34].

As ϕ → 0, the distribution approaches drawing the reference ranking σ with

probability 1; when ϕ = 1, the Mallows distribution is equivalent to drawing

from the uniform distribution. Hence, ϕ marks, in a sense, the likelihood of

choosing a preference order significantly different from σ. The Mallows model315

(and mixtures of Mallows) have plausible psychometric motivations and are

commonly used in machine learning [35, 36, 34]. Mallows models have also

been used in previous investigations of preference elicitation schemes for stable

matching problems as in Drummond and Boutilier [37, 5].

Intuitively, a Mallows model can be iteratively generated by repeated inser-320

tions of alternatives in a growing preference set, where the particular insertion

point is weighted according to the dispersion parameter. Because of this, when

comparing a small subset of elements in the whole ranking, the probability that

any two given alternatives are in a specific order may not depend on the total

number of alternatives. Additionally, this repeated insertion procedure can be325

used to determine the probability any given alternative will be placed in a cer-

tain slot in any given ranking: we simply look at the probability it gets inserted

in that particular slot, after all other alternatives have been inserted. These

insights on the Mallows model, which to the best of our knowledge have not

been previously stated, are captured in the following results. The proofs appear330

in the appendix.

We first observe that adding more alternatives to the beginning or end of a

reference ranking does not change the probability of drawing two alternatives

in a given order.

Lemma 1. Given some Mallows model Dϕ,σ with a fixed dispersion parameter335

ϕ and reference ranking σ ordering n agents, in which ai ≻ aj (1 ≤ i, j ≤ n),

the probability that a ranking η is drawn from Dϕ,σ such that ai ≻η aj is equal to

8The Kendall τ distance between two ordering of m items is the number of pairwise dis-

agreements between them (e.g. in one a ≻ b and in the other b ≻ a).
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drawing from some distribution Dϕ,σ′
where σ is a suffix or prefix of σ′ (that is,

there is σ, an ordering of n agents, and σ′, an ordering of n′ agents (n′ > n),

and σ′ can be divided into σ, an ordering of the first/last n agents, and an340

ordering of the last/first n′ − n agents).

In particular, we instantiate Lemma 1 to the case where two alternatives are

adjacent to each other in the original ranking, ai and ai+1.

Corollary 1. Given any reference ranking σ and two adjacent alternatives in

σ: ai, ai+1,

P (ai ≻ ai+1|Dϕ,σ) =
1

1 + ϕ
.

We similarly extend Corollary 1 to include three consecutive items.

Corollary 2. Given any reference ranking σ and alternatives ai, ai+1, ai+2 and

some η ∈ {ai, ai+1, ai+2}≻, the probability that some ranking β is drawn from

Dϕ,σ that is consistent with η is:

P (β|Dϕ,σ) =
ϕd(η,ai≻ai+1≻ai+2)

(1 + ϕ)(1 + ϕ+ ϕ2)

It is useful to know the probability that any one alternative will be in any345

particular position in a rank ordered list. We show that this is effectively equiv-

alent to ordering all other alternatives, and then calculating the probability that

we can put the alternative in question in its desired slot.

Lemma 2. The probability that a1 will be ranked in place j is ϕj−1

1+ϕ+...+ϕn−1 .

Furthermore, the probability that an will be ranked in place j is ϕn−j

1+ϕ+...+ϕn−1 .350

Similarly, the probability aj will be ranked in first place is ϕj−1

1+ϕ+...+ϕn−1 .

It is possible to bound the probability that any two alternatives will be “out

of order” in any given ranking;

Lemma 3. Let η ∈ Dϕ,σ be such that aj ≻η ai for some i < j, then P (η) <

ϕj−i

Z .355

Finally, we include an observation that follows from the definition of the

Mallows’ model:
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Observation 1. If |j − i| > |j − i′|, probability ai is in place j is smaller than

probability ai′ is in place j. Similarly, probability aj is in place i is smaller than

probability aj is in place i′.360

4. Equilibria for Interviewing Markets with General Preferences and

Master Lists

We provide an equilibrium analysis for the Interviewing with a Limited Quota

Game. We first show that a pure strategy equilibrium for this game always

exists, even under arbitrary distributions and scoring functions. We further365

explore our model by assuming that preference rankings are drawn from the ϕ-

Mallows model, and we then analyze when and how the Mallows parameter ϕ,

different scoring functions, and quota sizes k, support assortative interviewing

4.1. General Equilibria for Interviewing Markets with Master Lists

We start our analysis by studying the most general form of the Interviewing370

with a Limited Quota game, and show that a pure strategy equilibrium always

exists.

Theorem 1. A pure strategy equilibrium always exists for the Interviewing with

a Limited Quota game.

Proof. We wish to show that if every resident chooses their expected utility375

maximizing interviewing set, this forms a pure strategy. Given any resident rj

who is jth in the hospitals’ rank ordered list, rj ’s expected payoff function only

depends on residents r1, . . . , rj−1. As rj knows that each other resident ri is

drawing from distribution D i.i.d., they can calculate r1, . . . , rj−1’s expected

utility maximizing interview set, using Equation 3. Their payoff function de-380

pends only on D and I(r1), . . . , I(rj−1), all of which they now have. They

then calculate the expected payoff for each
(
n
k

)
potential interviewing sets, and

interview with the one that maximizes their expected utility.
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Note that this game is sequential in nature: each resident rj ’s best response

only depends on the j−1 agents that are ranked higher than them in the hospi-385

tals’ master list. Thus, a large portion of the strategy space can be eliminated,

as the behaviour of residents rj+1 to rn does not affect rj at all. We then

continue solving for the best strategy by using iterated deletion of dominated

strategies.

Let us number the hospitals such that r1’s best response is to interview390

with I(r1) = {h1, . . . , hk} (and subsequently, hk+1, . . . , h2k are those that r1

would choose should h1, . . . , hk be gone). Note that this numbering of hospitals

is determined by the scoring function and the distribution D from which all

residents draw i.i.d. their actual preferences. Note also that in the absence

of other residents, every ri would have the same ordering of all hospitals (we395

will assume there is a consistent way to break ties so that the ordering is a

total ordering). For a Mallows model, this would be the reference ranking σ.

Knowing that r1 will be preferred over all other residents by every hospital, the

known interviewing set for r1 will then eliminate many strategies for r2, which

in turn eliminates strategies for r3, and so on. Moreover, when there are no ties400

between the payoffs for interviewing with various sets for any given resident, one

unique strategy per player will remain, thus resulting in a unique equilibrium.

We note that Theorem 1 is an existence theorem and does not provide any

additional insight into the equilibrium behaviour, nor does it provide guidance

as to how such an equilibrium might be computed. The only known way to405

calculate it is directly (brute-force), which is computationally infeasible

We are interested in understanding whether and when a particular class of

natural interviewing strategies form an equilibrium. In particular, if residents

have interviewing quotas of size k, we ask the question Will residents interview

assortatively? And if not, what different strategies will they pursue?410

Definition 1. When residents have a quota of k interviews, we say that an

interviewing strategy profile is assortative iff for j = 0, 1, 2, . . . , n
k − 1, each

resident r ∈ {rjk+1, . . . , rjk+k} chooses to interview with the set of k hospitals
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{hjk+1, . . . , hjk+k}.9

This is a very strict definition of assortative interviewing that one might415

initially believe should hold when one side (i.e., the hospitals) have a mas-

ter list and there is some publicly known reference ranking. A weaker con-

cept might be called weakly assortative interviewing or consecutive interviewing,

where every resident ri will interview with some “appropriate tier” of hospitals

{hj , . . . , hj+k−1} for some j and furthermore that j is “close” to i. Our theo-420

retical results will only consider the strict definition in Definition 1. However,

our computational studies will also show that residents will often deviate even

from weak assortative interviewing.

We begin our theoretical analysis by deriving conditions that ensure assor-

tative interviewing. Namely, we will prove that we can focus mainly on the425

behaviour of rk (k being the interviewing quota), under some conditions. We

do so by showing that if assortative interviewing is a best response for resident

rk if all other residents i < k interview assortatively, then assortative inter-

viewing is a best response for every resident ri (i < k) when all other residents

interview assortatively. In other words, determining if assortative interviewing430

is a best response for rk is sufficient to show that assortative interviewing is a

best response for the first k residents (and is thus an equilibrium for them in

this game).

Proposition 1. Consider an interviewing quota of k interviews, some known

distribution D from which all residents draw their preferences, a scoring function435

v, and a strategy profile for residents r1, . . . , rk−1 such that they all interview

assortatively. Then, if resident rk’s best response is to interview assortatively

under this setting, it is a best response for any resident r1, . . . , rk to interview

assortatively. Moreover, this then forms a unique equilibrium for r1, . . . , rk in

this setting.440

9We are assuming for convenience that k divides n. When k does not divide n, there

will be some remaining k′ < k residents that will interview with the remaining k′ hospitals:

h⌊n
k
⌋k+1, . . . , hn.
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Proof. We introduce an indicator function to simplify notation for when a hos-

pital is a resident’s top available choice. For any hospital h and agent i, let

bi(h, η) = 1 iff h is available when ri makes their choice (i.e., r1, . . . , ri−1 have

not been allocated h), and is their most-desirable available alternative (i.e.,

h ≻η hj for all other hj available); and 0 otherwise. Directly following from

the utility function, the utility of resident ri when interviewing with hospitals

S ⊂ H can thus be written as:

uri(S) =
∑
h∈S

∑
η∈H≻

v(h, η)P (η,D)bi(h, η)

Since for r1, it is always true that b
1(h, η) = 1 for any desired h (since r1 goes

first, no h ∈ H has been allocated by another r ∈ R), suppose it will interview

in a set of k hospitals {h1, . . . , hk} (the numbering according to r1’s choices as

determined by the distribution D). We are concerned with the best response

strategy of rk which only depends on the strategies of ri for i < k. Suppose445

there is no assortative equilibrium, and let ri, i < k, be the resident with the

lowest index for which it is better off interviewing in set S′ ̸= {h1, . . . , hk}. Then

bi(h, η) ≥ bk(h, η), with the inequality being strict for some h ∈ {h1, . . . , hk}.

Note that for any h /∈ {h1, . . . , hk}, bi(h, η) = 1.

Hence, if uri({h1, . . . , hk}) < uri(S
′), this means if all agents r1, . . . , rk−1450

are being assortative (so bk(h, η) = 1 = bi(h, η) for h ∈ S′ \ {h1, . . . , hk}),

urk({h1, . . . , hk}) < urk(S
′). That is, if it is not beneficial for ri to be as-

sortative, it would not be beneficial for rk to be assortative if r1, . . . , rk−1 are

assortative.

Note that, as all these players have a strictly dominant strategy, this is a455

unique equilibrium for this game.

If the proposition applies to the first k residents (and hospitals), this means

all of the hospitals h1, . . . , hk are occupied by one of residents r1, . . . , rk. We

can simply remove these hospitals and residents, and ask ourselves if the distri-

bution is such that Proposition 1 applies to residents rk+1, . . . r2k and hospitals460

hk+1, . . . , h2k. If it does, we continue inductively, checking for if the proposition
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applies for each batch of k hospitals and residents. If it does, each group of k

residents interviews assortatively. Being able to examine only the first k agents

allows us to simplify the notations of our proofs.

4.2. Interviewing Equilibria Under Mallows Models with Master Lists465

Having proven the existence of a pure strategy equilibria for the interviewing

game, we instantiate the distribution from which residents are drawing their

preferences to a Mallows model, to gain a deeper understanding of the results

(and their limitations). In particular, we provide a characterization for when

assortative interviewing forms an equilibrium without imposing any particular470

additional restrictions on the utility functions of the residents.

Before proving our main result in Theorem 2, we provide some observations

and lemmas addressing characteristics of assortative interviewing in Mallows

models. We first consider the situation where all residents draw the reference

ranking, σ, with probability 1.10 Any strategy profile such that each resident475

ri interviews with hospital hi is an equilibrium in this case. Thus, trivially,

assortative interviewing forms an equilibrium.

For ease of notation, let Ψ = ⟨k, ϕ, v⟩ be an instance of the Interviewing

with a Limited Quota game with quota k, a Mallows model with dispersion pa-

rameter ϕ, and a scoring function v. We show that if, for resident rk, replacing480

any alternative hj ∈ {h1, . . . , hk} with alternative hk+1 is not an improvement

to their expected utility, then interviewing with {h1, . . . , hk} is their best re-

sponse when they draw their preferences from a Mallows model. This allows

us to greatly simplify the analysis: we must only investigate k possible inter-

viewing sets, instead of
(
n
k

)
possible interviewing sets to determine if assortative485

interviewing is the best strategy for rk.

Lemma 4. Given an Interviewing with a Limited Quota game Ψ = ⟨k, ϕ, v⟩, if

resident rk’s expected payoff from interviewing with hospitals {h1, . . . , hk} (when

10We note that even though the Mallows model is not defined at ϕ = 0, as ϕ → 0, the

probability of drawing the reference ranking σ goes to 1.
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residents r1, . . . , rk−1 have interviewed with them as well) is higher than their

expected payoff from interviewing with hospitals {h1, . . . , hk+1}\{hj} for all j ∈490

{h1, . . . , hk}, then resident rk’s best response is to interview with {h1, . . . , hk}

(i.e., assortatively).

Proof. The idea behind the proof is that if there is a set of hospitals that are

better than interviewing assortatively, since no other resident prior to rk inter-

views there, the hospitals in this set that are outside of {h1, . . . , hk} have an495

ordering. That is, the expected utility from adding hk+1 is larger than that

of adding hk+2, since, in expectation hk+1 is likely to be ranked higher by the

resident than hk+2. Therefore, taking out the hospital with the least expected

utility from {h1, . . . , hk} and adding hk+1 in its stead should already be benefi-

cial, since any other hospital added to the interviewing set will remove a hospital500

with a higher utility (than the one removed for hk+1), and replace it with lesser

utility hospital (since an hospital from hk+2, . . . , hn has smaller expected util-

ity). Therefore, if there is a set that is better than assortative, it should show

up already when replacing some hospital in {h1, . . . , hk} by hk+1.

More formally, following the proof in Proposition 1, we use an indicator

function to simplify when a hospital is a resident’s top available choice. For any

hospital h, let b(h, η) = 1 iff h is available for rk, and h ≻η hj for all other

hj available; and 0 otherwise. Directly following from the utility function, the

utility of resident rk when interviewing with hospitals S = {h1, . . . , hk} can thus

be written as:

urk(S) =
∑
h∈S

∑
η∈H≻

v(h, η)P (η,Dϕ,σ)b(h, η)

As we assume knowledge of the strategies for residents r1, . . . , rk−1, we can505

calculate the probability that any given hospital is available. We thus can calcu-

late the contribution of each hospital interview to the total utility, as P (η,Dϕ,σ)

and v(h, η) are known a priori. Moreover, when r1, . . . , rk all interview with the

same k hospitals, b(h, η) is equivalent to the probability that hospital h is avail-

able for rk (which we denote by P (h avail)): resident rk gets whatever hospital510
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r1, . . . , rk−1 do not take.

Now, assume there exists some set S′ of hospitals such that urk(S
′) > urk(S).

Define S̄ = S \ S′; denote the members of S̄ as h′
1, . . . , h

′
l. Also, note that hk+1

must be in S′\S, as S̄ ̸= S and hk+1 dominates all alternatives in {hk+1, . . . , hn}:

hk+1 is available for rk with probability 1 (as are all other alternatives not in

S), and has higher expected value than any other hj s.t. hk+1 ≻σ hj . Without

loss of generality, let h′
1 be the hospital in S̄ that minimizes the benefit gained

from swapping some element in S̄ with one of the more “desirable” elements in

S′. More formally, h′
1 is the hospital in S̄ that minimizes

y1 =
∑

η∈H≻

P (η|Dϕ,σ)b(h′
1, η)

[
v(h′

1, η)− v(hk+1, η)
]

y1 is the value that is lost when h′
1 is the only available hospital from

h1, . . . , hk, and hk+1 must be chosen instead. The value added by interviewing

in hk+1 instead of h′
1 is formally: z1 =

∑
η∈H≻

P (η|Dϕ,σ)b(hk+1, η)v(hk+1, η).

Then, urk(S ∪ {hk+1} \ {h′
1}) = urk(S) − y1 + z1. If y1 ≤ z1, the lemma is515

proven; Otherwise, we assume z1 − y1 < 0 and establish a contradiction.

Without loss of generality, let h′
2 be the hospital in S̄ \ {h′

1} that minimizes

y2 =
∑

η∈H≻

P (η|Dϕ,σ)b(h′
2, η)

[
v(h′

2, η)−max(v(hk+1, η), v(hk+2, η))
]

=
∑

η∈H≻|hk+1≻hk+2

P (η|Dϕ,σ)b(h′
2, η)

[
v(h′

2, η)− v(hk+1, η)
]

+
∑

η∈H≻|hk+2≻hk+1

P (η|Dϕ,σ)b(h′
2, η)

[
v(h′

2, η)− v(hk+2, η)
]

Again, y2 is the benefit we get from h′
2, the alternative we are swapping out for

hk+2. The value added from hk+2 is z2 =
∑

η∈H≻
P (η|Dϕ,σ)b(hk+2, η)v(hk+2).

Since hk+1 and hk+2 have the same probability of being available, but the

expected value of v(hk+1) is more than that of v(hk+2), we know z2 < z1.520

Thanks to Corollary 1:

∑
η∈H≻|hk+1≻hk+2

P (η|Dϕ,σ)b(h′
2, η)

[
v(h′

2, η)− v(hk+1, η)
]
=

1

1 + ϕ
y2
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Looking at the equivalent section of y1:∑
η∈H≻|hk+1≻hk+2

P (η|Dϕ,σ)b(h′
1, η)

[
v(h′

1, η)− v(hk+1, η)
]
>

1

1 + ϕ
y1

but thanks to y1 minimality:∑
η∈H≻|hk+1≻hk+2

P (η|Dϕ,σ)b(h′
2, η)

[
v(h′

2, η)− v(hk+1, η)
]

>
∑

η∈H≻|hk+1≻hk+2

P (η|Dϕ,σ)b(h′
1, η)

[
v(h′

1, η)− v(hk+1, η)
]

and therefore y2 > y1. Thus:

urk(S \ {h′
1, h

′
2} ∪ {hk+1, hk+2}) = urk(S)− y1 + z1 − y2 + z2

< urk(S)− 2y1 + 2z1

< urk(S)

Note that due to similar considerations, all other alternatives in S \S′ must

also have yi such that yi > y1 and zi < z1, by the construction of y1 and z1.

Let l = |S̄|. Thus:

urk(S
′) = urk(S \ S̄) +

l∑
i=1

zi − yi < urk(S)− ly1 + lz1 < urk(S)

This contradicts our assumption that urk(S
′) > urk(S); thus, if such an S′

exists, y1 ≥ z1, and showing that S dominates S \ {hj}∪{hk+1} is sufficient for

all hj ∈ S.525

We now provide a necessary and sufficient condition for assortative inter-

viewing to hold when residents draw their preference from a Mallows model

with dispersion ϕ. Let P (hi avail) denote the probability that hospital hi is

available for resident rk (i.e., residents r1, . . . , rk−1 are all matched to different

alternatives). As we assume residents r1, . . . , rk−1 interview assortatively, only530

one of {h1, . . . , hk} will be available.
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Lemma 5. Given an Interviewing with a Limited Quota game Ψ = ⟨k, ϕ, v⟩,

if residents r1, . . . , rk−1 all interview assortatively (i.e., with hospital set S =

{h1, . . . , hk}), then assortative interviewing is a best response for resident rk if

and only if the following inequality is satisfied for all hj ∈ {h1, . . . , hk} when535

S′ = S \ {hj} ∪ {hk+1}:

P (hj avail)E(v(hj)|Dϕ,σ) ≥ P (hj avail)E(v(hk+1)|Dϕ,σ)+

+
∑

η∈H≻

P (η|Dϕ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)
]

where

χ(hi ≻η hj) =

1, if hi ≻η hj

0, otherwise

Proof. By Lemma 4, showing that the marginal contribution from hj is bigger

than the marginal contribution from hk+1 is sufficient to show that S dominates

any other interviewing set. Using the payoff function in Section 3.2, this means

that we want to find conditions such that the utility to rk provided by hj is

larger than that of hk+1 :∑
η∈H≻

v(hj , η)P (µ(hj) = rk|S, η,Dϕ,σ)P (η|Dϕ,σ) ≥

∑
η∈H≻

v(hk+1, η)P (µ(hk+1) = rk|S′, η,Dϕ,σ)P (η|Dϕ,σ)

(4)

Note that, when interviewing with set S, the probability µ(hj) = rk is simply

the probability that no resident in r1, . . . , rk−1 chooses hj . Thus, the left hand

side of Equation 4 simplifies to:

∑
η∈H≻

v(hj , η)P (µ(hj) = rk|S, η,Dϕ,σ)P (η|Dϕ,σ)

= P (hj avail)
∑

η∈H≻

v(hj , η)P (η|Dϕ,σ)

= P (hj avail)E(v(hj)|Dϕ,σ) (5)
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We now also wish to simplify the right hand side. Note that there are two540

cases in which resident rk is matched with hk+1 when interviewing with set S′:

either hj is the only hospital available (i.e., r1, . . . , rk−1 have all been matched

with {h1, . . . , hk} \ {hj}), or for some hi ∈ {h1, . . . , hk} \ {hj}, hi is available

and under the ranking η in consideration, hk+1 ≻η hi. Again, χ(y) denote an

indicator function, where χ(y) = 1 iff y is true, and 0 otherwise. More formally,545

we express the RHS of the condition in Equation 4 using the indicator function,

and simplify:

∑
η∈H≻

P (η|Dϕ,σ) ·
[
v(hk+1, η)P (hj avail)+

∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)
]
=

= P (hj avail)E(v(hk+1)|Dϕ,σ)

+
∑

η∈H≻

P (η|Dϕ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)
]

(6)

Combining the simplifications provided in Equations 5 and 6 completes the

proof.

By combining the lemmas, we show that we need only check k interviewing550

sets for resident rk to prove that assortative interviewing forms an equilibrium

for this game.

Theorem 2. Given an Interviewing with a Limited Quota game Ψ = ⟨k, ϕ, v⟩,

then satisfying the inequality found in Lemma 5 for all hj ∈ {h1, . . . , hk} is both

sufficient and necessary to show that all residents interviewing assortatively form555

an equilibrium for this game.

Proof. For the first k residents, this follows directly from combining Proposition

1 and Lemma 5. The theorem would be correct if we could apply this proposition

and lemma iteratively, one group of k hospitals and residents at a time. Thanks

to the Mallows distribution’s properties, we can: If rk’s best response was assor-560

tative, we know that all the residents r1, . . . , rk interviewed assortatively, thus
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all hospitals h1, . . . , hk are taken. This means that the same equations that told

us that rk’s best response (to r1, . . . , rk−1) was assortative tell us that r2k’s best

response (to rk+1, . . . , r2k−1) is assortative: Since a switch between h1 and h2

has the same probability as switching between hk+1 and hk+2, if Proposition565

1 and Lemma 5 can be applied once on hospitals and residents 1, . . . , k, they

can be applied again for k+1, . . . , 2k, as all equations remain the same, due to

the practical “disappearance” of the hospitals h1, . . . , hk for agents rk+1, . . . , r2k

(thus their order can be ignored). Now that we have shown that the first two

groups of k residents interview assortatively, we can use the same argument570

iteratively for the next k residents, and so on.

We provide a simplified condition for assortative interviewing that is suffi-

cient though not necessary. This condition is easier to compute than the con-

dition in Lemma 5, and thus will be valuable later on, when verifying whether

specific valuation functions admit assortative interviewing equilibria.575

Lemma 6. Given an interviewing quota of k interviews, a dispersion parameter

ϕ, and a scoring function v, if residents r1, . . . , rk−1 all interview assortatively

(i.e., with hospital set S = {h1, . . . , hk}), then satisfying the following inequality

for all hj ∈ {h1, . . . , hk} when S′ = S \ {hj} ∪ {hk+1} is sufficient to show that

assortative interviewing is a best response for resident rk:580

P (hj avail)E(v(hj)|Dϕ,σ) ≥ P (hj avail)E(v(hk+1)|Dϕ,σ)

+
∑
hi∈S′

P (hi avail)E(v(h′
k)|Dϕ,σ′

)
ϕ

Z(1− ϕ)
(7)

(where σ′ is equivalent to the reference ranking σ with one element hi s.t.

hj ≻σ hi removed, and h′
k is the kth item in σ′.)

Proof. We begin from the sufficient and necessary condition stated in Lemma

5. Note that we can generate any ranking such that hk+1 ≻ hi (for some given

i) by iterating over all permutations of H \ {hi}, and for each permutation,585
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placing hk+1 in every slot above hi. There are at most n− 1 slots that hi could

be placed in (i.e., when hk+1 is drawn as the last element).

Let σ′ be identical to the reference ranking σ, except with hi removed.

Rename every element after hi such that it corresponds to its current index: in

other words, h′
j = hj+1 for all j ≥ i. Let η′ be some arbitrary ranking drawn590

from Dϕ,σ′
. Let H ′ = H \ {hi}. Remember, S′ = {h1, . . . , hk+1} \ {hj}. Thus,

we note that:

∑
η∈H≻

∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)P (η|Dϕ,σ)

≤
∑
hi∈S′

[
P (hi avail)

( ∑
η′∈H′

≻

v(h′
k, η

′)P (η′|Dϕ,σ′
)(

n∑
l=1

ϕl

Z
)
)]

(8)

However, note that ϕl is a geometric series. We let n → ∞, giving us:

∑
hi∈S′

[
P (hi avail)E(v(h′

k)|Dϕ,σ′
)

n∑
l=1

ϕl

Z

]
≤

∑
hi∈S′

P (hi avail)E(v(h′
k)|Dϕ,σ′

)
ϕ

Z(1− ϕ)

(9)

Thus, because Equation 9 is an upper bound, it is sufficient to show the

following, as required:

P (hj avail)E(v(hj)|Dϕ,σ) ≥ P (hj avail)E(v(hk+1)|Dϕ,σ)

+
∑
hi∈S′

P (hi avail)E(v(h′
k)|Dϕ,σ′

)
ϕ

Z(1− ϕ)

While we have focused on the existence of assortative interviewing, we note

that other interviewing equilibria may also exist. For example, if ϕ = 1 in the595

Mallows model, then residents draw rankings from the uniform distribution. As

first noted by Lee and Schwarz [31] under a different model, when residents and

hospitals are divided into n/k subsets and matched inside these subsets, this

also forms an equilibrium.
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Example 3. Suppose residents draw their preferences i.i.d. from the uniform600

distribution. As we are drawing from a uniform distribution, E(v(hj)|D) is iden-

tical for any hospital hj, eliminating all terms involving the valuation function,

simply leaving probabilities that any alternative is available. This allows us to

use the condition in Lemma 5. When r1 makes their choice, they are indifferent

between any alternatives, as they have equal likelihood (probability 1) to get any605

of them. Suppose they chooses h1, . . . , hk. Then, r2 prefers hk+1, . . . , h2k, as

they are indifferent between any alternatives that r1 has not interviewed with.

This continues until all hospitals have one interviewer. Once again, the next

resident is indifferent between all alternatives, and can choose to interview like

r1, the next one like r2, and so on. This results that for j ≤ k, any resident610

rik+j interviews with hospitals {h(i−1)k+1, . . . , hik}.

5. Assortative Equilibria for Small Interviewing Quotas

We now discuss assortative equilibria when participants’ interviewing quota

is k ≤ 3. To ground the work we instantiate the scoring or utility functions of

the residents using different classes of scoring rules. In particular, we consider615

three different scoring rules, inspired by the social choice literature [38, 39, 40],

in order to better ascertain the effect of resident utility-structure on assortative

equilibria.

Let si be the ith ranked hospital in a residents ranking η. The first function

we consider is plurality-based, where v(s1) = 1 and v(si) = 0 for all i > 1.11620

This utility function captures extreme situations where residents only get utility

from being matched to their top choice. The second function we consider is

Borda-based. In this function, the residents’ utility drops linearly in proportion

to the rank of the alternative to which they are matched. Formally, for any

slot si, v(si) = n − i + 1 where n is the number of alternatives (hospitals)625

in the market (Coles and Shorrer [32] also examine such a scoring function).

11We define all scoring rules with a multiplicative factor of 1, and an additive factor of 0,

as these terms do not affect the analysis.
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Finally, we investigate a scoring function in between plurality and Borda. The

exponential scoring function allows for utility to exponentially decrease as a

resident is matched to a lower ranked alternative; v(si) = ( ϵ2 )
i−1, 0 < ϵ < 1.

These scoring rules can be viewed as conveying something about the utility630

of residents. For example, plurality indicates residents only want to get their top

choice and do not care for anything else. Borda, on the other hand, indicates

a gradual, linear, decrease in the value of the hospital. Similar framing can be

done for any scoring rule. Such a framing implies, of course, how willing would

a resident be to take a risk, considering they may end up with less-desirable635

choice. If the difference between getting one’s top choice and getting the least-

desirable choice is miniscule, one might be willing to take a far-fetched chance

on getting the top choice, since the potential damage is small [41].

Our first result is a condition for when a resident with plurality-based scoring

functions will interview assortatively.640

Lemma 7. A necessary and sufficient condition for assortative interviewing

under plurality is:

P (hj avail) ≥ ϕk−j+1 (10)

Proof. We begin with the condition in Lemma 5:

P (hj avail)E(v(hj)|Dϕ,σ) > (11)

P (hj avail)E(v(hk+1)|Dϕ,σ)+∑
η∈H≻

P (η|Dϕ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)
]

(12)

We instantiate this condition for the plurality function, noting that v(h, η) >

0 iff h is top-ranked in η. This allows us to simplify Equation 12:

P (hj avail)E(v(hk+1)|Dϕ,σ) +

j−1∑
i=1

P (hi avail)E(v(hk+1)|Dϕ,σ)

+

k∑
i=j+1

P (hi avail)E(v(hk+1)|Dϕ,σ) =

k∑
i=1

P (hi avail)E(v(hk+1)|Dϕ,σ) (13)
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But, again, as the expected value for any hospital h is simply the probability

that h is in s1 this further simplifies to:

P (hk+1 in s1)

k∑
i=1

P (hi avail) = P (hk+1 in s1)

Note that
∑k

i=1 P (hi avail) = 1 as all residents r1, . . . , rk−1 have been

matched with exactly k − 1 hospitals in h1, . . . , hk, leaving exactly one hos-

pital left with probability 1.

Applying Lemma 2 to both sides of the inequality (recall that E(v(hj)|Dϕ,σ)

is simply P (hj in s1)):

P (hj avail)
ϕj−1

1 + . . .+ ϕn−1
≥ ϕk

1 + . . .+ ϕn−1

P (hj avail) ≥ϕk−j+1 (14)

We note that there is a strong relationship between the strategic behaviour645

of plurality-based residents and exponential-based residents. In particular, if

assortative interviewing is an equilibrium for plurality, then there exists some

set of exponential valuation functions that likewise admit an assortative inter-

viewing equilibrium.

Lemma 8. If for a given interviewer quota k and dispersion parameter ϕ,650

the condition of Lemma 7 is satisfied for a plurality valuation function with

strict inequality, then there exist exponential valuations under which assortative

interviewing is an equilibrium.

In particular, any exponential valuation dominated by ( ε2 )
(i−1) (for i, index

of the valuation ranking) satisfies this condition, with ε > 0 determined by k.655

Proof. Looking at the condition of Lemma 5

P (hj avail)E(v(hj)|Dϕ,σ) ≥

P (hj avail)E(v(hk+1)|Dϕ,σ)+∑
η∈H≻

P (η|Dϕ,σ)
[ ∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)
]
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We will first expand the value expectation (E):

P (hj avail)

n∑
i=1

P (hj in si)v(si) (15)

≥ P (hj avail)

n∑
i=1

P (hk+1 in si)v(si)

+
∑

η∈H≻|
hk+1 in s1

P (η|Dϕ,σ)
∑

hi∈S′
P (hi avail)χ(hk+1 ≻η hi)v(s1)

+ . . .+
∑

η∈H≻|
hk+1 in sn−1

P (η|Dϕ,σ)
∑

hi∈S′
P (hi avail)χ(hk+1 ≻η hi)v(sn−1) (16)

Note that for any 1 ≤ ℓ ≤ n,

v(sℓ) > P (hj avail)P (hj in sℓ)v(sℓ)+∑
η∈H≻|

hk+1 in sℓ

P (η|Dϕ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(sℓ)

Thus, combining Equation 16 and Lemma 5, it is sufficient to show the fol-

lowing holds whenever plurality admits an assortative interviewing equilibrium:

P (hj avail)P (hj in s1)v(s1) ≥ P (hj avail)P (hk+1 in s1)v(s1) +

n∑
ℓ=2

v(sℓ) (17)

We assume that for plurality valuation, the condition has a strict inequality.

In other words:

P (hj avail)P (hj in s1) > P (hj avail)P (hk+1 in s1)

Hence, there is an ϵ̄ ≤ 1 such that for all 1 ≤ j ≤ k,

P (hj avail)P (hj in s1)− ϵ̄ > P (hj avail)P (hk+1 in s1)

Now, for ϵ < ϵ̄
2 , examine the valuation function v(sℓ) = ϵℓ−1. Note that∑n

ℓ=2 ϵ
ℓ−1 ≤

∑∞
ℓ=1 ϵ

ℓ = ϵ
1−ϵ ≤ 2ϵ. This simplifies such that it satisfies Equa-

tion 17, as required:

P (hj avail)P (hj in s1) > P (hj avail)P (hk+1 in s1) + 2ϵ

≥ P (hj avail)P (hk+1 in s1) +

n∑
ℓ=2

v(sℓ)
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5.1. Assortative Interviewing with Two Interviews

We start by studying the case where residents are only allowed to interview

with two hospitals. We show that for sufficiently small dispersion, ϕ, in the

Mallows model from which residents are drawing their preferences, assortative660

interviewing is an equilibrium for plurality-based, Borda-based, and exponential

scoring functions. Furthermore, we show that the equilibrium is sensitive to both

the dispersion and the structure of the scoring functions.

Theorem 3. Using plurality as the residents’ scoring function and a quota of

k = 2 interviews, for a Mallows model with dispersion parameter ϕ such that665

0 < ϕ ≤ 0.6180, assortative interviewing forms an equilibrium.

Proof. We begin by using the condition from Lemma 7 for h1. We thus wish to

show conditions on ϕ s.t. P (h1 avail) ≥ ϕ2, when resident r2 is choosing their

interview set. For r2, h1 is available iff r1 happened to draw a ranking over their

preferences s.t. h2 ≻ h1. Then, by Corollary 1, P (h1 avail) = ϕ
1+ϕ , implying we670

need to satisfy the equation ϕ
1+ϕ ≥ ϕ2, which is true whenever 0 < ϕ ≤ 0.6180.

Doing the same for h2 provies a bound of 0 < ϕ ≤ 0.7549, so we take the tighter

bound of 0.618.

Though we do not formally state it, combining Theorem 3 and Lemma 8

shows that for exponential scoring functions, when 0 < ϕ < 0.6180, there exists675

an ε such that if residents’ scoring function is an exponential function dominated

by ( ε2 )
(i−1) with ε > 0, assortative interviewing is an equilibrium for that ϕ.

We now similarly show that when k = 2, assortative interviewing is also

an equilibrium for Borda. We again directly compute the expected payoffs for

the interviewing sets in question, finding that {h1, h2} has the highest expected680

payoff (and is thus a best response).

Theorem 4. Given Borda as residents’ scoring function and a quota of k = 2

interviews, for a Mallows model dispersion parameter ϕ such that 0 < ϕ ≤

0.265074, assortative interviewing forms an equilibrium.

32



Proof. We begin by noting that, because of Lemma 1, we only need to show that685

assortative interviewing is an equilibrium when 0 < ϕ ≤ 0.265074 for resident

r2, and it will hold for all ri. Furthermore, by Lemma 4, we only need to prove

that {h1, h2} dominates both {h1, h3} and {h2, h3} to show that it dominates

all other possible interviewing sets of size 2.

We prove that choosing {h1, h2} is better than choosing {h2, h3}, for all690

values of ϕ such that 0 < ϕ ≤ 0.265074. We prove this by summing over all

possible preference rankings that induce a specific permutation of the alterna-

tives h1, h2, h3. We then pair these summed permutations in such a manner

that makes it easy to find a lower bound for ur2({h1, h2})−ur2({h2, h3}). This

lower bound is entirely in terms of ϕ, meaning that for any ϕ such that this695

bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations of h1, h2, h3 as

follows:

Case 1: all rankings η consistent with h2 ≻ h1 ≻ h3 or η′ consistent with

h2 ≻ h3 ≻ h1;700

Case 2: all rankings η consistent with h1 ≻ h2 ≻ h3 or η′ consistent with

h3 ≻ h2 ≻ h1;

Case 3: all rankings η consistent with h1 ≻ h3 ≻ h2 or η′ consistent with

h3 ≻ h1 ≻ h2.

Note that as we have enumerated all possible permutations of h1, h2, h3,705

these three cases generate every ranking in H≻. Furthermore, for any one of the

three cases, we can iterate only over all possible rankings η that are consistent

with the first member of the pair, and generate the ranking η′ consistent with

the second member of the pair by simply swapping two alternatives in the rank.

Moreover, given some η, the number of discordant pairs in η′ is simply the710

number of discordant pairs in η, plus the number of additional discordant pairs

between h1, h2, h3 caused by swapping the two alternatives.

For clarity, let ur2({h1, h2})−ur2({h2, h3}) = U1+U2+U3, where U1, U2, U3

correspond to our three cases. We also introduce the notation Pµ(ri)(h) to

denote the probability that ri is matched to hospital h under matching µ. That715

33



is, Pµ(ri)(h) = P (µ(ri) = h).

Case 1. Because we have fixed h2 ≻ h1 ≻ h3 or h2 ≻ h3 ≻ h1, we know

exactly what r2’s match will be. As we know r1’s interviewing set ({h1, h2}),
and the distribution r1’s preferences are drawn i.i.d., we know the likelihood

that either h1 or h2 is available; by Lemma 1, P (µ(r1) = h1) = 1
1+ϕ . Using

this information, the payoff function, and the definition of η, η′, we find a lower

bound:

U1 =
∑

η∈P (H)h2≻h1≻h3

Pµ(r1)(h2)
[
(v(h1, η)− v(h3, η))P (η|Dϕ,σ) + (v(h1, η

′)− v(h3, η
′))P (η′|Dϕ,σ)

]
U1 ≥ Pµ(r1)(h2)(1)(1− ϕ)P (h2 ≻ h1 ≻ h3) =

(
ϕ

1 + ϕ

)(
ϕ

(1 + ϕ)(1 + ϕ+ ϕ2)

)
(1− ϕ)

(18)

Case 2. We fix h1 ≻ h2 ≻ h3 or h3 ≻ h2 ≻ h1. This case is analogous to Case

1:

U2 =
∑

η∈P (H)h1≻h2≻h3

Pµ(r1)(h1)
[
(0)P (η|Dϕ,σ) + (v(h2, η

′)− v(h3, η
′))P (η′|Dϕ,σ)

]
+ Pµ(r1)(h2)

[
(v(h1, η)− v(h3, η))P (η|Dϕ,σ) + (v(h1, η

′)− v(h3, η
′))P (η′|Dϕ,σ)

]
U2 ≥ P (h1 ≻ h2 ≻ h3)

2

1 + ϕ
(ϕ− ϕ3 − ϕ4) (19)

Case 3. We fix h1 ≻ h3 ≻ h2 or h3 ≻ h1 ≻ h2. Again, we look at pairs of

rankings η, η′, where η is consistent with h1 ≻ h3 ≻ h2, and η′ is identical to η,

except rank(h1, η) = rank(h3, η
′), and rank(h3, η) = rank(h1, η

′).

Then, as before, we sum over all possible rankings consistent with h1 ≻ h3 ≻
h2, but we break this into two subcases, so that U3 = U3a + U3b:

U3a =
∑

η∈H≻|h1≻h3≻h2

Pµ(r1)(h1)[(v(h2, η)− v(h3, η))P (η|Dϕ,σ) + (v(h2, η
′)− v(h3, η

′))P (η′|Dϕ,σ)]

U3b =
∑

η∈H≻|h1≻h3≻h2

Pµ(r1)(h2)[(v(h1, η)− v(h3, η))P (η|Dϕ,σ) + (v(h1, η
′)− v(h3, η

′))P (η′|Dϕ,σ)]

Case U3b is similar to Cases 1 and 2:

U3b =
∑

η∈P (H)h1≻h3≻h2

Pµ(r1)(h2)[(v(h1, η)− v(h3, η))
ϕd(η,σ)

Z
+ (v(h3, η)− v(h1, η))

ϕd(η,σ)+1

Z

U3b ≥
ϕ

ϕ+ 1
(1− ϕ)P (h1 ≻ h3 ≻ h2) (20)
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Case U3a, however, is different from all other cases, in that all terms are negative.

We note that U3a as above is a monotonically decreasing function in terms of

n. Thus, if U3a converges as n → ∞, we have found a lower bound for all n.

Using this technique, we show the following bound holds:

U3a ≥ Pµ(r1)(h1)
−ϕ

(1 + ϕ)(1 + ϕ+ ϕ2)

( ϕ

(1− ϕ)4
+

1

3(1− ϕ)3
+

2

3

)
(1 + ϕ) (21)

We have considered all cases, and can now combine them together. We add

the bounds for U1 (Equation 18), U2 (Equation 19), U3a (Equation 21), and U3b

(Equation 20). We simplify using Corollaries 1 and 2, giving us:

ur2
({h1,h2})−ur2

({h2,h3})≥ ϕ2

(1+ϕ)(1+ϕ)(1+ϕ+ϕ2)
(1−ϕ)+

2(ϕ−ϕ3−ϕ4)

(1+ϕ)(1+ϕ)(1+ϕ+ϕ2)

− ϕ

(1+ϕ)(1+ϕ)(1+ϕ+ϕ2)

(
ϕ

(1−ϕ)4
+ 1

3(1−ϕ)3
+ 2

3

)
(1+ϕ)

+ ϕ2

(1+ϕ)(1+ϕ)(1+ϕ+ϕ2)
(1−ϕ) (22)

Thus, Equation 22 gives us a lower bound for the difference in expected720

utility between {h1, h2} and {h2, h3} for resident r2, for all n. Using numerical

methods to approximate the roots of Equation 22, we get that there is a root

at 0, and a root at ϕ ≈ 0.265074.

As the calculations are analogous, we omit the discussion of their derivation,

but it can be shown that:725

ur2
({h1,h2})−ur2

({h1,h3}) ≥ 1
(1+ϕ)(1+ϕ+ϕ2)

[
1+ϕ−2ϕ2−2ϕ3−2ϕ3

(
ϕ

(1−ϕ)4
+ 1

3(1−ϕ)3
+ 2

3

)]
(23)

Using numerical methods, it can be shown that this is positive for 0 < ϕ <

0.413633.

Thus, for the interval 0 < ϕ ≤ 0.265074, we have shown that r2’s best move

in this interval is to interview with {h1, h2}. Then, by Lemma 1, this is an

equilibrium for all ri as required.730

5.2. Assortative Interviewing with Three Interviews

Interestingly, when residents can interview with up to three hospitals, as-

sortative interviewing continues to be an equilibrium for plurality-based and
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exponential scoring functions but is no longer an equilibrium if residents have

Borda-based scoring functions.735

We begin with the counter-example for Borda and k = 3. In particular,

assortative interviewing is not an equilibrium for a market with 4 residents, 4

hospitals, and 3 interviews. We prove this by directly computing the marginal

value for r3 interviewing with h1 instead of interviewing with h4. In our example,

for all ϕ > 0 the expected marginal value for interviewing with h4 is better740

than interviewing with h1, and hence assortative interviewing cannot be an

equilibrium.

Theorem 5. Assortative interviewing is not always an equilibrium under the

Borda valuation function for any 0 < ϕ ≤ 1.

Proof. We provide a counterexample for n = 4, k = 3. Suppose residents r1745

and r2 interview assortatively, both interviewing with S = {h1, h2, h3}. We

show that for resident r3, interviewing with interviewing set S′ = {h2, h3, h4}

dominates interviewing with S = {h1, h2, h3} for all ϕ.

By Lemma 4, it is sufficient to show that if the marginal value in interviewing

with h4 dominates the marginal value in interviewing with h1 (as these two sets750

only differ by these two items), then interviewing with {h2, h3, h4} dominates

{h1, h2, h3}. We thus instantiate Equation 4 for n = 4, k = 3, S, and S′ as

above for resident r3. Note that Z = (1 + ϕ)(1 + ϕ + ϕ2)(1 + ϕ + ϕ3). Let

E(u(hi, S)) denote the expected marginal value in interviewing alternative hi in

set S; remember v(si) = 5− i.755

E(u(h1, S)) =
∑

η∈H≻

v(h1, η)P (µ(h1) = r3|S, η,Dϕ,σ)P (η|Dϕ,σ) (24)

E(u(h4, S
′)) =

∑
η∈H≻

v(h4, η)P (µ(h4) = r3|S′, η,Dϕ,σ)P (η|Dϕ,σ) (25)

As before, Equation 24 is simply the probability that h1 is available times

the expected value of h1. As noted, E(v(h1)|Dϕ,σ) =
∑4

i=1 P (h1 in si) · v(si) =∑4
i=1 P (h1 in si)·(5−i). However, using Lemma 2, we know that P (h1 in si) =
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ϕi−1

1+ϕ+ϕ2+ϕ3 , giving:

E(u(h1, S)) = P (h1 avail)E(v(h1)|Dϕ,σ) = P (h1 avail)
4 + 3ϕ+ 2ϕ2 + ϕ3

1 + ϕ+ ϕ2 + ϕ3
(26)

Let P (hi taken) denote the probability that either r1 is matched to hi, or

r2 is matched to hi (i.e., hi is taken by the time we get to resident r3). Also let

P (µ(r3) = h4|h4 in si) denote the probability that r3 is matched to h4 if h4 is in

slot si in r3’s ranking. This is easily calculable by enumerating over the subset of

possible rankings such that this occurs, given that r1 and r2 have already taken760

certain alternatives. Then, using Lemma 2 again and an analogous approach as

above, we adapt Equation 25:

E(u(h4, S
′)) =

4∑
i=1

v(si)P (h4 in si)P (µ(r3) = h4|h4 in si)

=
4ϕ3

1 + ϕ+ ϕ2 + ϕ3

+
3

Z

(
ϕ2 + ϕ3 + P (h2 taken)(ϕ3 + ϕ4) + P (h3 taken)(ϕ4 + ϕ5)

)
+

2

Z

(
P (h2 taken)(ϕ+ ϕ2) + P (h3 taken)(ϕ2 + ϕ3) + P (h1 avail)(ϕ3 + ϕ4)

)
+

P (h1 avail)

1 + ϕ+ ϕ2 + ϕ3
(27)

As we assume that residents r1 and r2 both interview with S, the probability

that h1 is available, or h2 (resp. h3) is taken is the same across both E(u(h1, S))

and E(u(h4, S
′)). We instantiate these as follows, by determining the probabil-765

ity that r1 is matched to some hospital hj other than h∗, and enumerate the

probabilities of all rankings such that r2 is matched to some hospital h′
j ̸= h∗

given that r1 is matched to hj :
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P (h1 avail)=P (µ(r1)=h2|S,Dϕ,σ)( ϕ2

1+ϕ+ϕ2+ϕ3 +ϕ2+ϕ3+ϕ4+2ϕ5+ϕ6

Z )

+P (µ(r1)=h3|S,Dϕ,σ)( ϕ

1+ϕ+ϕ2+ϕ3 +ϕ3+2ϕ4+2ϕ5+ϕ6

Z )

P (h2 taken)=P (µ(r1)=h2|S,Dϕ,σ)+P (µ(r1)=h3|S,Dϕ,σ)( ϕ

1+ϕ+ϕ2+ϕ3 +ϕ3+2ϕ4+2ϕ5+ϕ6

Z )

+P (µ(r1)=h1|S,Dϕ,σ)( ϕ

1+ϕ+ϕ2+ϕ3 + 1+ϕ+ϕ2+ϕ3+ϕ4+ϕ5

Z )

P (h3 taken)=P (µ(r1)=h3|S,Dϕ,σ)+P (µ(r1)=h2)(
ϕ2

1+ϕ+ϕ2+ϕ3 +ϕ2+ϕ3+ϕ4+2ϕ5+ϕ6

Z )

+P (µ(r1)=h1|S,Dϕ,σ)( ϕ2

1+ϕ+ϕ2+ϕ3 + 1+ϕ+ϕ2+ϕ3+ϕ4+ϕ5+ϕ6

Z )

It is also possible to calculate exact values for the probability that r1 is

matched to h1, h2, h3. We do this by calculating the probability that alternative

is first, or the probability that alternative is second, and h4 is first:

P (µ(r1) = h1|S,Dϕ,σ) = P (h1 in s1) + P (h1 in s2 and h4 in s1)

=
1

1 + ϕ+ ϕ2 + ϕ3
+

ϕ3 + ϕ4

Z

P (µ(r1) = h2|S,Dϕ,σ) = P (h2 in s1) + P (h2 in s2 and h4 in s1)

=
ϕ

1 + ϕ+ ϕ2 + ϕ3
+

ϕ4 + ϕ5

Z

P (µ(r1) = h3|S,Dϕ,σ) = P (h3 in s1) + P (h3 in s2 and h4 in s1)

=
ϕ2

1 + ϕ+ ϕ2 + ϕ3
+

ϕ5 + ϕ6

Z

By combining the equations for the probabilities we are left with two equa-

tions depending only on ϕ. Moreover, after instantiating E(u(h1, S)) and770

E(u(h4, S
′) above, we note that both functions are continuous on the inter-

val (0, 1]. Using numerical techniques, it can be shown that there are no zeros

for the function E(u(h1, S))−E(u(h4, S
′)) on the interval (0, 1], and the function

is negative on the interval (0, 1] providing the counterexample as required.

By directly computing expected payoffs, we show that assortative interview-775

ing is an equilibrium for plurality (and thus exponential scoring functions) for

k = 3:

Theorem 6. Given an interviewing quota of k = 3 interviews, and the plurality

scoring function, assortative interviewing is an equilibrium for 0 < ϕ ≤ 0.4655.
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Proof. For k = 3, we simply check Equation 10 from Lemma 7 with hj =780

h1, h2, h3. We find that the marginal contribution from h1 is less than the

marginal contribution of h2 or h3, and thus only present the calculation for h1.

We directly compute P (h1 avail), by multiplying the probability that r1 did not

take h1, and multiplying it by the probability that r2 did not take h1, given

that r1 also did not take h1. To calculate this we enumerate the probabilities785

of any possible rankings:

P (h1 avail) = P (µ(r1) ̸= h1)P (µ(r2) ̸= h1|µ(r1) ̸= h1)

P (h1 avail) = (
ϕ+ 2ϕ2 + ϕ3

(1 + ϕ)(1 + ϕ+ ϕ2)
)(

ϕ2 + 2ϕ3

(1 + ϕ+ ϕ2)
)

The first parenthesis is using Corollary 2, and the second the probability h3 is

preferred over h2 using Corollary 1. Using numerical methods to find the roots of

P (h1 avail)−ϕ3, we can show that Equation 10 holds when 0 < ϕ ≤ 0.5462.

This means that for a small reviewing set, interviewing is assortative not790

only when residents know their probability of having a ranking much different

than h1, h2, . . . , hn is low, but also when it approaches quite significant numbers

(probability of being exactly truthful are smaller than ( 23 )
n). Of course, because

of the small interview size, the probability of actually interviewing in those

in which one is different from the ground truth is smaller than with a larger795

interviewing set. But the larger ϕ means it is quite a significant likelihood.

6. Assortative Equilibria for Large Interviewing Quotas

We begin by showing that when there is a setting for which there is no assor-

tative equilibria for plurality, then there is no scoring function with assortative

equilibria. We use this result to show that, for sufficiently small dispersion pa-800

rameter ϕ and for k > 3 interviews, assortative interviewing cannot be an equi-

librium under any scoring function. We then provide a specific counterexample

for all ϕ when k = 4 for plurality, implying there is no assortative equilibrium
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for any scoring function. This suggests that, for a wide category of resident

valuation functions under a Mallows distribution, contrary to some real-world805

behaviour, assortative interviewing is not an equilibrium.

We provide one additional lemma regarding a bound on the availability of

any given alternative hi at the time resident rk is being matched by the mecha-

nism to their favourite remaining hospital. This probability is dependent on ϕ:

for any hospital hi such that i < k, as ϕ → 1, the probability hi is available goes810

to 1
k ; as ϕ → 0, this probability goes to 0. Instead of looking at the probability

directly, we look at the probability that a preference profile will admit a stable

match such that hi is available, and bound that.

Lemma 9. Given a Mallows model with dispersion parameter ϕ, assortative

interviewing for residents r1, . . . ., rk−1, and a hospital hi ∈ {h1, . . . , hk} (i.e.,815

the residents’ interview set), then any profile η1, . . . , ηk−1 ∈ Dϕ,σ of k − 1

preferences (for r1, . . . , rk−1) such that hi is available for rk has probability

P (r1 = η1, r2 = η2, . . . , rk−1 = ηk−1) ≥ ϕγ

Zk−1 , where γ =
∑k−i

j=1 j and Z is the

normalizing factor for a Mallows model.

Proof. In order for hi to be available, there need to be r′i+1, . . . , r
′
k with prefer-820

ence orders ηi+1, . . . , ηk ∈ Dϕ,σ such that they were assigned hospitals hi+1, . . . , hk.

Hence, at the very least, hi+1 ≻ηi+1
hi, . . . , hk ≻ηk

hi. According to Lemma 3,

the probability for each of these events is at most ϕ
Z , . . . , ϕk−i

Z (respectively).

Since they are independent of each other, and since the maximum probability

for any particular η ∈ Dϕ,σ is 1
Z , the probability of a particular preference set825

occurring in which hi is available is at least ϕγ

Zk−1 .

We further note that showing that plurality fails assortative interviewing is

a strong indication that other monotonic valuation functions will also not admit

assortative interviewing equilibria. In some sense, intuitively, because plurality

only provides a payoff when residents get their most preferred alternative, this830

benefits assortative interviewing: everyone wants a chance at the alternatives

with the highest probability of being first in their ranking (that still have non-

zero chance of being available). Thus, if h1’s marginal utility for being included

40



in the interviewing set is less than hk+1’s under plurality, it will also be less

under any other scoring rule.835

Theorem 7. Fix an instance of the Interviewing with a Limited Quota game

Ψ = ⟨k, ϕ, plurality⟩. If hospital h1 causes the condition in Lemma 5 to be

falsified (i.e., {h2, . . . , hk+1} has a better expected payoff than {h1, . . . , hk}),

then for k and ϕ (the Mallows’ model parameter), assortative interviewing is

not an equilibrium for any valuation function.840

Proof. Looking at the condition of Lemma 5 (recall S′ = {h1, . . . , hk} \ {hj} ∪
{hk+1} for any hj ∈ {h1, . . . , hk})

P (hj avail)E(v(hj)|Dϕ,σ) ≥

P (hj avail)E(v(hk+1)|Dϕ,σ)+∑
η∈H≻

P (η|Dϕ,σ)
[ ∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)v(hk+1, η)
]

We again begin by expanding the value expectation (E), as we did in Equa-

tion 16: This can be divided into n different inequalities:

P (hj avail)P (hj in s1)v(s1) ≥v(s1)[P (hj avail)P (hk+1 in s1)

+
∑

η∈H≻|
hk+1 in s1

P (η|Dϕ,σ)
∑

hi∈S′
P (hi avail)χ(hk+1 ≻η hi)]

...

P (hj avail)P (hj in sn−1)v(sn−1) ≥v(sn−1)[P (hj avail)P (hk+1 in sn−1)

+
∑

η∈H≻|
hk+1 in sn−1

P (η|Dϕ,σ)
∑

hi∈S′
P (hi avail)χ(hk+1 ≻η hi)]

P (hj avail)P (hj in sn)v(sn) ≥v(sn)P (hj avail)P (hk+1 in sn)

We shall show that under the theorem’s assumptions, none of these inequal-

ities hold for h1, and therefore the general inequality (Lemma 5) does not hold.

Note that for each inequality we can simply ignore v(sℓ) (1 ≤ ℓ ≤ n), since845

they appear on both sides of the inequality. The assumption of the theorem,

since we are using plurality, is that the first inequality does not hold, i.e.,
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P (h1 avail)P (h1 in s1) < P (h1 avail)P (hk+1 in s1)

+
∑

η∈H≻|
hk+1 in s1

P (η|Dϕ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)

As noted in Observation 1 (end of Section 3), for any 1 < ℓ ≤ k the prob-

ability of h1 being in any spot sℓ is monotonically decreasing with ℓ, while the

probability of hk+1 being in spot sℓ is monotonically increasing with ℓ. Hence,850

P (h1 avail)P (h1 in s1) > P (h1 avail)P (h1 in sℓ).

Similarly, P (h1 avail)P (hk+1 in s1) < P (h1 avail)P (hk+1 in sℓ). We analo-

gously see that:

∑
η∈H≻|

hk+1 in s1

P (η|Dϕ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi) <

∑
η∈H≻|

hk+1 in sℓ

P (η|Dϕ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)

Simply put, the LHS gets smaller, while the RHS increases. Hence, for

1 ≤ ℓ ≤ k:855

P (h1 avail)P (h1 in sℓ) < P (h1 avail)P (hk+1 in sℓ)

+
∑

η∈H≻|
hk+1 in sℓ

P (η|Dϕ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)

By Observation 1, for any ℓ > k, P (h1 in sℓ) < P (hk+1 in sℓ) which gives us:

P (h1 avail)P (h1 in sℓ) < P (h1 avail)P (hk+1 in sℓ) =⇒

P (h1 avail)P (h1 in sℓ) < P (h1 avail)P (hk+1 in sℓ)+

+
∑

η∈H≻|
hk+1 in sℓ

P (η|Dϕ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 ≻η hi)

Starting with the assumption that assortative interviewing does not hold

for plurality, we show that none of the inequalities above hold for any slot sℓ,
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and therefore that the condition in Lemma 5 does not hold for j = h1 for any

valuation function.

Intuitively, there is a tradeoff between the likelihood that a hospital will860

be available for resident rk by the time it is their turn to be matched, and the

expected value of that hospital. Both of these are strongly tied to the dispersion

parameter ϕ of the Mallows model: as the dispersion parameter grows, the

difference in expected value of any given hospital goes to 0. As the dispersion

parameter gets small (i.e., goes to 0), the expected value of any hospital hi goes865

to the value of its slot in expectation, v(si). However, the likelihood it is taken

by some higher ranked rj (i.e., with j < i) also approaches 1. The following

theorem addresses the latter case: for sufficiently small dispersion, even though

the expected value of a hospital is high, the likelihood it will be available is so

low that residents are disincentivized from choosing to interview with it.870

We first show that for k = 4, assortative interviewing is not an equilibrium

for any ϕ < 1 and any scoring rule.We then continue to show that for k > 4

and ϕ sufficiently small, assortative interviewing is not an equilibrium.

Theorem 8. Given an interviewing quota of k = 4 interviews and any scor-

ing function, assortative interviewing is not an equilibrium for any dispersion875

parameter 0 < ϕ < 1.

Proof. By Theorem 7, if assortative interviewing is not an equilibrium for plu-

rality due to h1, it is never an equilibrium for any scoring rule. As noted before,

Equation 10 is tight, so if we compute the marginal contribution from some

h∗ ∈ {h1, h2, h3, h4}, and the contribution from h∗ is strictly less than the con-880

tribution from h5 for any ϕ, assortative interviewing is not an equilibrium for

k = 4 and plurality. We find that the contribution from h1 is less than the

marginal contribution from h5.

To calculate P (h1 avail), we simply iterate over all six possible allocations

for r1, r2, r3 such that h1 is not taken, and directly calculate the probabilities

of each ranking profile for r1, r2, r3 that allows that to happen. In the interest

of clarity, we only provide a symbolic representation. Let a permutation of
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h2, h3, h4 be denoted as (a1, a2, a3), and let A be the set of all such permutations

(i.e., (a1, a2, a3) ∈ A is a particular permutation of h2, h3, h4).

P (h1 avail) =∑
(a1,a2,a3)∈A

P (µ(r1) = a1)P (µ(r2) = a2|µ(r1) = a1)P (µ(r3) = a3|µ(r1) = a1, µ(r2) = a2)

We instantiate the above equation using the probabilities of each potential

match, and use numerical methods to show the function P (h1 avail) − ϕ4 is885

negative for any ϕ in 0 < ϕ < 1.

We now consider the case of k > 4.

Theorem 9. Given an interviewing quota of n > k > 4 interviews, there exists

0 < ε < 1 such that for any scoring function v no assortative interviewing forms

an equilibrium for dispersion parameter 0 < ϕ < ε.890

Proof. Due to Theorem 7, it is enough to show there is no assortative equilib-

rium under plurality (and that h1 violates Lemma 5’s condition). We use the

simplification from Lemma 7: P (hj avail) ≥ ϕk−j+1, and we will show it does

not hold. Appealing to Lemma 9, we know P (hj avail) is of the form:

P (hj avail) =
X(k)

Zk−1
ϕ
∑k−j

i=1 i+
X1(k)

Zk−1
ϕ1+

∑k−j
i=1 i+. . .+

Xℓ(k)

Zk−1
ϕ(k

∑k−j
i=1 i)−1+

1

Zk−1
ϕk

∑k−j
i=1 i

(28)

(X(k), X1(k), . . . , Xℓ(k) are functions that calculate the number of different895

sets of possible preference orders for r1, . . . , rk, with each set being a particu-

lar distance from the ground truth σ, thus having the probability ϕ
∑k−j

i=1 i for

X(k), ϕ1+
∑k−j

i=1 i for X1(k), etc.)

When ϕ → 0, Zk−1 → 1, Equation 28 becomes P (hj avail) → X(k)ϕ
∑k−j

i=1 i.

In particular, there is ε′, such that P (h1 avail) < X(k)ϕ(
∑k−j

i=1 i)−1, and there is

ε = min(ε′, 1
X(k) ) such that for ϕ < ε, for k > 3:

ϕk−j+1 ≥ ϕk ≥ ϕ(
∑k−j

i=1 i)−2 > X(k)ϕ(
∑k−j

i=1 i)−1 > P (h1 avail)

Contradicting our condition (Equation 10).
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It seems quite unlikely that for k > 4, assortative interviewing is an equi-900

librium. Intuitively, if it is an equilibrium it should be for low ϕ: this is when

the expected value of hospital hi is very close to v(si). However, this is also

when residents r1, . . . , rk−1 are all most likely to be matched with hospitals

h1, . . . , hk−1. We leave open the possibility that there may exist some δ such

that when 0 < ε < ϕ < δ ≤ 1, assortative interviewing is an equilibrium for905

plurality.

7. Reach and Safety Strategies for a Small Interviewing Quota

Our analysis has shown that assortative interviewing equilibria are not the

norm and essentially can only be guaranteed for a very small number of inter-

views. This suggests that there may not be a simple characterization of inter-910

viewing equilibria. In this section we empirically explore small interview quotas

to better illustrate the impact of the Mallows model dispersion parameter on

equilibria structure.

Consider the case for k = 2 interviews where (for the Borda scoring rule)

we only guarantee assortative interviewing for some sufficiently small dispersion915

parameter ϕ. To gain better insight into the strategic behaviour of the residents

as a function of ϕ, we calculated the exact values of ϕ where the interviewing

equilibria changes in small markets. In doing so, we see that the structure of

the interviewing equilibria contain both “reach” and “safety” schools, where

participants diversify their interviewing portfolio to get both the benefit of a920

desirable, unlikely option, and a likely, but less desirable option.

Figure 1 depicts a market with 4 hospitals, 4 residents, and 2 interviews (n =

4, k = 2). The figure shows what sets are being chosen by the different residents

for any dispersion ϕ. As ϕ increases, we explicitly see the trade-off between a

safer choice, and a better expected payoff value for individual alternatives. For925

small ϕ, as the theoretical results showed, assortative interviewing is optimal,

and r2 chooses {h1, h2}, while r3 and r4 choose {h3, h4}.

Interestingly, for ϕ ∈ [0.5, 0.62], r2’s best option is to split the difference, and

45



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 2

3 4

1

2

2

4

3

3

4

{1,2}

{3,4}

{2,3}

{1,4}

Φ
1 2 3 4r1 : r2 : r3 : r4 :

Figure 1: Interviewing sets of residents as a function of ϕ when using the Borda scoring

function, with 4 participants, and interview set size of 2.

interview with one hospital (h3) he is guaranteed to get and one hospital (h2)

that will be available with sufficiently high probability, and has a higher expected930

value. This choice available to r2 further results in some of the “reach” vs. safe

behaviour we see in college admissions markets; namely, r3’s best response now

is to interview with h1, h4 (i.e., a “reach” choice, and a “safe” bet), while r4,

being left without any truly “safe” option, aims slightly higher than its rank.

As ϕ grows and approaches 1, any ordering of hospitals is as likely as another,935

making r2’s choice {h3, h4}, which are as likely as any to be highly ranked,

and are available. The desire to avoid interviewing hospitals that are already

chosen by many other residents also drives r3 and r4 to {h2, h3} and {h1, h4},

respectively; that is, they both want to avoid competing with r1 and r2.

We expand on these results and now consider the case of n = 6 residents with940

k = 2, 3 and 4 interviews per resident. Here we see in Figures 2,3, and 4, similar

equilibrium strategies as for the n = 4, k = 2 case. For k = 2, and ϕ ≤ 0.4,

we again see that assortative interviewing is an equilibrium. When ϕ = 0.5, we
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Figure 2: Interviewing sets of residents as a function of ϕ when using the Borda scoring

function, with 6 participants, and interview set size of 2.

Figure 3: Interviewing sets of residents as a function of ϕ when using the Borda scoring

function, with 6 participants, and interview set size of 3.

47



Figure 4: Interviewing sets of residents as a function of ϕ when using the Borda scoring

function, with 6 participants, and interview set size of 4.

observe that the second resident departs from strict assortative interviewing in

favor of a weak version of assortative interviewing and this in turn affects the945

other players, as, for example, the third resident applies what is basically a safety

move (hospital 4, which is theirs if they want it) with a reach move (hospital

1, the top choice). Of some interest, for ϕ ≥ 0.7, all residents except r1 use

a weak assortative strategy, that is, they interview in sets of hospitals which

are adjacent in rank, rather than splitting their interviews between radically950

different ranked hospitals.

Turning to k = 3 interviews per resident, we see as Theorem 5 claimed, that

the third resident does not interview assortatively. While residents 3,4, and

5 are mostly weakly assortative (with the exception of the third resident and

ϕ = 0.8, where it tries a small reach choice), the sixth resident goes consistently955

for a reach and safety strategy, as it interviews in the top hospital as well.

The resident’s behaviour only changes when ϕ is large enough (ϕ > 0.6), when

the chance of the true ranking being different from the ground truth is much
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higher. Of interest, when ϕ = 0.9, the second resident chooses hospitals 4,5,6

(even knowing that at least two of the hospitals in {1,2,3} will be available. But960

when ϕ is sufficiently close to 1, the distribution is approaching the uniform

distribution so that this resident might as well choose hospital 4,5,6 as they

might very well be as desirable as 1,2,3 where the residents top choices might

be taken.

Finally for k = 4, we see that resident 1 (as we know must happen) interviews965

assortatively for all settings of ϕ while other residents are much more willing

to experiment. Not included in Figure 4 are further results, showing that even

for very small ϕ (ϕ ≤ 10−20), there are residents which are not even weakly

assortative. We hypothesize that this “reach” and “safety” behaviour is present

in markets with larger interviewing quotas.970

8. Conclusions and Future Directions

We investigate equilibria for interviewing (for example, between residents

and hospitals) with a limited quota when a master ranked list (say, of residents)

is known. We provide a generic payoff (or utility) function that is indifferent

to participants’ interviewing quotas, preference distributions, and scoring func-975

tions. We show that a pure strategy interviewing equilibrium always exists.

We instantiate the payoff functions using different scoring functions (plurality-

based, exponential, and Borda-based) when residents’ preferences are drawn

independently from the same Mallows model distribution. While assortative in-

terviewing is an equilibrium when interviewing quotas are small and residents’980

preferences are sufficiently similar (i.e., the dispersion parameter in the Mal-

lows model is small), in general it is not an equilibrium. This was a surprising

result since assortative interviewing is observed in certain matching markets,

and, when it is an equilibrium, supports several highly desirable properties such

as maximizing the number of matched residents. Furthermore, it seems natural985

that close to ϕ = 0, assortative equilibrium is sensible, since at that value almost

any agent is sure to take their exact ranking. Moreover, if residents interview
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assortatively, then they naturally form a bipartite graph interviewing structure

with n/k disconnected complete components. Under very different modelling

assumptions (i.e., the impartial culture model), Lee and Schwarz [31] showed990

the existence of a similarly structured equilibrium, and so it was somewhat sur-

prising that the existence of this equilibria was so highly dependent on both

the scoring-function structure and the distribution from which the underlying

preferences were drawn. Beyond this, our simulations (in particular, Figures 3

and 4) seem to indicate even weaker forms of assortative interviewing (e.g., con-995

tiguous interviewing, in which interviews are a contiguous set; or a limited range

of interviewing variance) do not seem to hold either.

There are numerous future research questions raised by our results, to which

at least some of out technical results and techniques may also contribute. Most

concretely, we hypothesize Theorem 9 could be replaced by extending Theo-1000

rem 8 for all k ≥ 4. Second, while we believe that the space of scoring functions

used in this paper was broad in its scope, we always assumed that residents’

underlying ranked preferences were drawn from a distribution generated by the

ϕ-Mallows model. While the ϕ-Mallows model is standard in the literature, it

is possible that other preference distributions (e.g., Plackett-Luce) may better1005

support assortative interviewing. Second, the analysis relies on the assumption

that one side of the market maintained a master list. While master-lists do occur

in real-world matching markets, lifting this assumption will obviously generalize

the setting, and may invalidate our results. More specifically, the removal of

the master-list assumption would complicate the analysis significantly, increas-1010

ing the complexity of the payoff function formulation. Furthermore, we could

consider modifying our definition of an interview set. Currently we assume that

residents could interview up to k hospitals for free, but an alternative model to

consider would be to allow each resident r to have a “budget” br, and incur a

cost, cr(h), when interviewing hospital h, with the constraint that if S is the1015

set of hospitals interviewed by resident r, then
∑

h∈S cr(h) ≤ br.

A long-term research goal is to better understand the extent to which “nat-

ural equilibria” exist in matching games, and how such equilibria correspond
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with observed behaviour in actual markets. While assortative interviewing is

often not an equilibrium, it is possible that some form of “nearly assortative1020

interviewing” will more generally be an equilibrium. For example, our defini-

tion of assortative interviewing is very strict and there may be ways to relax the

definition in meaningful ways that better capture interesting behaviour. One

such possibility is for interviewing to be assortative for “safety” programs while

allowing for one or a few “reach” programs. (See for example the strategy of1025

resident 6 for small values of the Mallows’ parameter in Figure 3.) Further-

more, we are interested in techniques that could reduce the cognitive burden

placed on participants in matching markets, while also reducing inefficiencies.

For example, there may be ways to leverage research on preference elicitation

for matching markets (e.g., Drummond and Boutilier [5]) with matching market1030

design so as to guide participants to interview with the appropriate programs

so as to improve the overall quality of the match.
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Appendix A. Proofs From Section 3.3

Proof. (Lemma 1) Suppose σ is a prefix of σ′. Then, let σ be some ranking with

p elements, including elements ai and aj . Let σ
′ be a ranking of p+ 1 elements

with σ as its prefix, and an additional element ap added at the end. We prove1145

this by starting from the definition of P (ai ≻ aj |Dϕ,σ′
), and using algebraic

manipulations to show this is equivalent to the definition of P (ai ≻ aj |Dϕ,σ).

P (ai ≻ aj |Dϕ,σ′
) =

∑
η′∈{a0,...,ap−1,ap}

ai≻aj
≻

ϕd(η′,σ′)

1(1 + ϕ) . . . (1 + . . .+ ϕp−1 + ϕp)
(A.1)
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However, because ai, aj are in ranking σ, the only difference between sum-

ming over the set of all rankings in {a0, . . . , ap}
ai≻aj

≻ and {a0, . . . , ap−1}
ai≻aj

≻

is that there for each permutation generated by {a0, . . . , ap−1}≻, there are p

permutations in {a0, . . . , ap}≻, each one with ap in a different place (and thus

a different Kendall-τ distance). Fixing some η ∈ {a0, . . . , ap−1}≻, if ap is in the

last rank position (as it is in σ′), the distance is simply d(η, σ). If ap is in the

second-to-last position, we have now added in an additional discordant pair, so

the distance is d(η, σ) + 1. Using this, we generate the following:

P (ai ≻ aj |Dϕ,σ′
) =

∑
η∈{a0,...,ap−1}

ai≻aj
≻

∑p
l=0 ϕ

d(η,σ)+l

1(1 + ϕ) . . . (1 + . . .+ ϕp)

=

[∑
η∈{a0,...,ap−1}

ai≻aj
≻

ϕd(η,σ)
][∑p

l=0 ϕ
l
]

1(1 + ϕ) . . . (1 + . . .+ ϕp)

=

[∑
η∈{a0,...,ap−1}

ai≻aj
≻

ϕd(η,σ)
]
(1 + . . .+ ϕp)

1(1 + ϕ) . . . (1 + . . .+ ϕp−1)(1 + . . .+ ϕp)
=

∑
η∈{a0,...,ap−1}

ai≻aj
≻

ϕd(η,σ)

1(1 + ϕ) . . . (1 + . . .+ ϕp−1)

= P (ai ≻ aj |Dϕ,σ)

By symmetry, this also holds when σ is a suffix of σ′.

Proof. (Corollary 1) Consider σ = ai ≻ ai+1, a reference ranking with two

elements in it. Then, the set of all potential rankings such that ai ≻ ai+1 under1150

Dϕ,σ is solely the ranking a0 ≻ a1. By the definition of the Mallows model,

this ranking has probability 1
1+ϕ . We add some arbitrary prefix σ′ to σ and

some arbitrary suffix σ′′ to σ to create a new reference ranking γ. By Lemma

1, the probability that some η is drawn from Dϕ,γ such that ai ≻η ai+1 is 1
1+ϕ

as required.1155

Proof. (Corollary 2) Consider σ∗ = ai ≻ ai+1 ≻ ai+2, a reference ranking

with three elements in it. The set of all potential rankings under Dϕ,σ∗
such

that ai ≻ ai+1 ≻ ai+2 is solely that ranking. Using the same argument as in

Lemma 1, we note that creating some new reference ranking γ = σ′ ≻ σ∗ ≻ σ′′

and drawing from Dϕ,γ does not change the likelihood that we draw a ranking1160

consistent with ai ≻ ai+1 ≻ ai+2.
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Therefore, the probability that we draw a ranking β consistent with some

permutation η of ai, ai+1, ai+2 under the distribution Dϕ,γ is simply the proba-

bility that we drew η under the distribution Dϕ,σ∗
, which is ϕd(η,σ∗)

(1+ϕ)(1+ϕ+ϕ2) .

Proof. (Lemma 2) This is equivalent to generating the set of all (n−1)! possible1165

rankings excluding alternative a1 (an), and then adding a1 (an) in place j.

Whatever the ranking, adding a1 (an) in place j adds j − 1 (n − j) to each

possible ranking’s Kendall’s τ distance from σ \ {a1} (σ \ {an}) , making the

distance from σ grow by exactly j−1 (n− j). Similarly, adding aj in first place

adds j−1 to the distance from σ \{aj}, increasing the distance from σ by j−1.1170

However, we also added in an additional element to the ranking (growing

from n − 1 to n), and must include that in the normalization factor Z. The

normalization factor for n− 1 alternatives is (1+ϕ)(1+ϕ2) . . . (1+ . . .+ϕn−2).

The normalization factor for n elements is identical, but multiplied by 1+ . . .+

ϕn−1.1175

Proof. (Lemma 3) For aℓ, i > ℓ > j. if aℓ ≻η ai, this adds 1 to the Kendall

τ distance of η from σ (due to ai ≻σ aℓ). But if ai ≻η aℓ, this means that

aj ≻η aℓ, again adding 1 to the Kendall τ distance of η from σ.

So the Kendall τ distance of η from σ is at least
∑j−1

ℓ=i 1 = j−i, and therefore,

P (η) < ϕj−i

Z .1180
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