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Her yigitin bir yoqurt yeyisi vardir
(Free vinegar is sweeter than honey)

Turkish Proverb

Abstract

We study online matching settings with selfish agents when everything is free. Inconsiderate
agents break ties arbitrarily amongst equal maximal value available choices, even if the maximal
value is equal to zero. Even for the simplest case of zero/one valuations, where agents arrive
online in an arbitrary order, and agents are restricted to taking at most one item, the resulting
social welfare may be negligible for a deterministic algorithm. This may be surprising when
contrasted with the 1/2 approximation of the greedy algorithm, analogous to this setting,
except that agents are considerate (i.e., they don’t take zero-valued items). We overcome
this challenge by introducing a new class of algorithms, which we refer to as prioritization
algorithms. We show that upgrading a random subset of the agents to “business class” already
improves the approximation to a constant. For more general valuations, we achieve a constant
approximation using log n priority classes, when the valuations are known in advance. We
extend these results to settings where agents have additive valuations and are restricted to
taking up to some q ≥ 1 items. Our results are tight up to a constant.

1 Introduction

Almost universally, market efficiency is achieved by setting prices on goods. We consider an online
market setting where buyers arrive over time. Mechanisms for social welfare in such markets have
been studied in, e.g., [14, 12, 17]. A measure of the quality of such mechanisms is “how well do
they approximate the maximal social welfare?” As in these previous studies, we assume that the
order of arrival is adversarial.

The key issue considered in this paper is “What efficiency can be achieved in online markets
where goods are given away for free?”. Unfortunately, it is easy to see that without prices only a
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negligible fraction of the social welfare is achievable. This holds even if we restrict agents to take at
most one item (or some q items). Moreover, this poor efficiency holds even if the agent valuations
are zero/one, given that the agents are inconsiderate. An inconsiderate agent will choose to take
an item of no value to them if they have no better option. Also, an inconsiderate agent will break
ties amongst equally valuable items in an arbitrary (and inconsiderate) manner. There is much
research to suggest agents may in fact behave so. E.g., see [20, 15] and references therein.

The key idea in this paper is to categorize agents into priority classes, where agents from
a higher priority class always precede those from a lower class, but the order within a class is
arbitrary.

We begin by considering the simplest setting with zero/one valuations and inconsiderate agents
about whom we know nothing.

Free distribution to Inconsiderate Strangers

Consider the following scenario: prior to departing on vacation, we seek to distribute our
remaining food to passers-by (agents). Every agent is unit demand with zero/one valuations, but
we know nothing about their preferences, nor do we know the order in which they arrive. Every
agent, upon arrival, is allowed to choose a single item from those remaining.

If agents are “well behaved” and only choose an item that they like then the resulting distribu-
tion is a maximal matching (in a bipartite unweighted graph of agents and items, where an edge
indicates that the agent likes the item), which is know to be a 1/2 approximation to the maximum
matching.

However, human nature being what it is [20, 15], agents who see nothing of value to themselves
may be inconsiderate and may take an item for which they have no perceived value 1

Figure 1: An example showing that inconsiderate agents may result in low social welfare.

It is easy to construct an example where such inconsiderate agents “steal” items of value from
subsequent passers-by, despite having no value for these items themselves (albeit, such subsequent
agents need know nothing of this). To see this, consider the scenario depicted in Figure 1. There
are n agents, `1, . . . , `n, and n items, r1, . . . , rn, and every agent `i has value 1 for item ri, with
the exception of agent `1 that has value 1 also for item r2. Suppose agents arrive in an increasing
order of their indices (`1, . . . , `n), and agent `1 arbitrarily chooses item r2 over r1, thereafter every
agent `i, i < n, takes item ri+1, and `n takes r1. The resulting social welfare is negligible when
compared with the maximum social welfare (1 instead of n).

1 An alternate explanation for agents taking “zero value” items (and for breaking ties arbitrarily) is that the true
valuations are a slight perturbation of some underlying ground truth, see, e.g.,[21].
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A natural approach to overcome this problem is to reject (or delay) such problematic agents that
have no item of value remaining. If we knew the items that agents care about, we could prioritize
agents with an item of value remaining, delaying others and still get a maximal matching.

Note that the problem presented above assumes no prior knowledge about the agents, and,
moreover, as no prices are used, strategic agents may claim to like everything when in fact they
like nothing from the leftover items . Thus, it seems on first glance that blindly prioritizing some
agents over others is useless.

We argue that this intuition is both true and false: We show that prioritizing some agents
deterministically gives negligible social welfare (See Section 3). In contrast, if there is a perfect
matching, then by selecting a random set of prioritized agents, we obtain a 1/4 approximation
to the optimum. Moreover, if there is an assignment of items to agents where αn agents get an
item (for some α ≤ 1) — then, by selecting a random set of prioritized agents — we obtain an
α/4 approximation to the optimum (see Theorem 1). Unfortunately, this is also tight (up to a
constant). For large α this is fine but is not great if α is small. Moreover, this problem is inherent
for more general valuations.

We remark that this trivial prioritization algorithm (prioritize a random subset of agents) is
oblivious in the sense that it knows nothing about the agents (i.e., the graph is unknown), the
order of arrival, agent identities, how agents break ties, and what items are leftover. We also note
that this prioritization algorithm can be run on the fly, where all agents arrive in some adversarial
order and are classified into priority classes on the fly.

To give good approximations in the case of small α and for more general valuations we turn
to a model of “Inconsiderate Friends”. The distinction between strangers and friends is that for
strangers we know nothing about their valuation for items whereas for friends we know how much
they like each item (but not how they break ties). This allows us to get much better approximations
than in the case of strangers.

In particular, knowing agent valuations gives a constant factor approximation for zero/one
valuations and for arbitrary α (see Theorem 3). The more interesting case is that of general unit
demand valuations (the agent valuation for every item is arbitrary).

Free distribution to Inconsiderate Friends with Unit Demand Valuations

The rules of the game are that we can prioritize our friends (with the goal of maximizing
social welfare). For example, we can invite some set of friends in the morning and another in
the evening. The morning friends arrive in some arbitrary unknown order and arbitrarily break
ties, the same holds for friends that arrive in the evening (and choose only amongst the morning
leftovers). The key issue is the number of such priority classes. Obviously, having more classes
yields better approximation ratios.

Here, agents are unit demand and valuations are described as an edge weighted bipartite graph.
Our main result is that, for arbitrary such valuations, and assuming worst case order and worst
case tie breaking, one can achieve a c ·r/ log n approximation if allowed r priority classes, for some
constant c, and that this is tight. See Theorem 7.

We remark that rather than insisting on unit demand valuations, our results also hold where
agent valuations are completely arbitrary (even complementarities are allowed). In this case we
still insist that an agent can take no more than one item. Critically, in this general valuation
setting, the benchmark is not the maximal social welfare for the original valuations but rather the
maximum social welfare achievable given that agents are restricted to taking one item. E.g., the
value for a single shoe which could be much less than the value of a pair of shoes.
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Furthermore, we consider additional extensions such as additive valuations in which agents
have additive valuations, and they are restricted to take up to q ≥ 1 items rather than only one
item. (Inconsiderate agents will always take the full allotment). See Section 5.

1.1 Related Work

1.1.1 Online bipartite matching

The unweighted online matching problem can be represented by a bipartite graph, where nodes on
the left represent agents, nodes on the right represent items, and the existence of an edge between
an agent and an item means that the agent has value 1 for the item. In such problems, agents
arrive over time, choosing an arbitrary adjacent remaining item. It is well known that irrespective
of how agents make their choices, this process results in a maximal matching, thus yields at least
half of the maximum matching. This is the best deterministic algorithm for unweighted graphs
[13].

In their seminal paper, Karp, Vazirani and Vazirani [13] show that a randomized algorithm
performs better. In particular, by imposing a random preference order on the items, the greedy
algorithm gives at least 1− 1/e of the optimal matching.

If agents have arbitrary valuations for items and can choose only one item (represented as a
weighted bipartite matching), in general no guarantees on the efficiency can be obtained. Special
cases have been considered in the literature [8, 1]. More generally, online bipartite matching has
been an active area of theoretical computer science research for almost 30 years. The survey by
Mehta [16] provides a excellent overview as to the various variants of online bipartite matching
with applications to online advertising.

1.1.2 Posted pricing for known valuations

In the context of posted pricing, one should distinguish between considerate and inconsiderate tie
breaking. If ties are broken appropriately, then Walrasian pricing exists for all gross substitute
valuations [11]. This means that all items are assigned prices, and agents arrive sequentially, each
offered a specific most desired bundle. Given such considerate tie breaking, such a process results
in maximum welfare.

In [9] this approach has been generalized for arbitrary valuations, yielding half of the optimal
welfare. However, prices are now attached to bundles of items, rather than to individual items.

To deal with inconsiderate tie breaking, Cohen-Addad et al. [6] give a dynamic variant of
Walrasian pricing for unit-demand valuations, that achieves optimal welfare. With static posted
prices, one can achieve half of the optimal welfare, but no more than 2/3.

1.1.3 Posted pricing for Bayesian settings

Feldman et al. [10] show that if the valuations are drawn (independently) from known probability
distributions over submodular valuations, then half of the optimal welfare can be obtained in
expectation using posted pricing. This work was later extended to more general stochastic settings,
using the framework of prophet inequality [7].
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1.1.4 Mechanisms without Money

The question of maximizing social welfare without recourse to prices has previously been studied in
numerous settings such as facility location [19], common goods [3], cake cutting [18], social choice
functions [5], and kidney exchange [2].

1.1.5 Relation to Priority Model

The priority model [4] was introduced to model greedy or more generally myopic algorithms. In
the fixed order priority model, every input is given a distinct priority. Our prioritization model
allows for a finer grained approach distinguishing intermediate problems between the standard
online model and the priority model. The parameter of interest is the number of priority classes.

2 Model and Preliminaries

We model agent valuations using an edge weighted bipartite graph G = (L,R;E), where R =
{r1, . . . , rm} represents the set of items, and L = {`1, . . . , `n} the set of agents. The weight w(e)
of an edge e = (`i, rj) from `i ∈ L to rj ∈ R is the value agent `i has for item rj . We sometime
abuse notation and write w(i, j) to denote the weight of the edge (`i, rj).

In this paper, items never have prices, everything is free. However, agents are restricted in
how many items they can take. We first consider allowing one item, and discuss generalizations
subsequently.

We consider prioritization algorithms where agents can be assigned to some priority class.
Agents with higher priority make their selection before agents of lower priority. The highest
priority class is C1, for multiple priority classes, agents belonging to priority class Ci choose items
before agents belonging to priority classes Cj , j > i. Items that have been selected by some agent
disappear and are unavailable for an agent to arrive subsequently.

Agents assigned to no priority class (the plebeians) are last to choose. Within a single priority
class, (and within the plebeian class) the order of arrival and how ties are broken are determined
adversarially.

For randomized algorithms, we consider an oblivious adversary. In our setting, this means
that the adversary determines both a global order of arrival, and how agents break ties (should
they arise). The adversary determines these issues, in advance, without knowing the random bits
used by the algorithm. The global order determines how priority classes are ordered. The relative
order of two agents that belong to the same priority class is implied by their relative position in
the global order. (Likewise for plebeians).

Positive results (a lower bound on the social welfare), using at least one priority class, can
ignore the plebeians in the analysis. Thus, for all positive results we simply ignore the plebeians.
For negative results the contribution of the plebeians can be viewed as having one additional
priority class.

We consider two different scenarios:

1. Strangers. In this setting nothing is known about the agents, the prioritization algorithm
assigns [indistinguishable] agents to one of r priority classes, C1, . . . , Cr, or to none (the ple-
beians). I.e., the agent/item graph is unknown, the order within a priority class is unknown,
and how ties are broken is unknown. We say that such an algorithm is oblivious since it
makes its decisions blindly, all agents are indistinguishable.
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2. Friends. In this setting agent valuations to items are known before assigning agents to
priority classes. I.e., the agent/item graph is known, but not the order within a priority
class nor how ties are broken. Prioritization algorithms assigns agents to one of r priority
classes, C1, . . . , Cr, or to none (the plebeians).

3 Results for Inconsiderate Strangers

We consider a setting where we select some subset of agents to have priority, who can choose
whatever item they want. Subsequently, the remaining (non-prioritized) agents can be allowed
to choose items too2. Amongst the prioritized agents, the order in which they choose items is
arbitrary.

As all strangers are indistinguishable, the only question is if to prioritize an agent (and allow
the stranger to choose an item immediately) or not. As agents are asked no questions (and agents
cannot be trusted anyway), and as agents are free to choose whatever maximizes their utility —
it follows that strategic agents have no impact on the procedure and this process is inherently
truthful.

It is trivial to observe that any algorithm that deterministically chooses what agents are priori-
tized results in an unbounded approximation ratio. Consider some deterministic priority algorithm,
two agents a and b, and only item, for which one has value 1 and the other zero. As nothing is
known, the prioritization algorithm will prioritize one of a and b, both of which are indistinguish-
able. Clearly, the agent chosen will have value zero for the item, yet, annoyingly, will choose it
nonetheless.

Next, we consider a randomized prioritization algorithm (with a single priority class, in addition
to the plebeians), and show the following:

Theorem 1. For any 0 ≤ α ≤ 1, prioritizing every agent with probability α
2 gives an α

4 approxi-
mation to the size of the maximum matching, for any unweighted graph with a maximum matching
of size ≥ αn.

Proof. Given an unweighted graph G, fix some maximum matching M . Index the agents by the
adversary global order starting with agent 1. Let M(k), 1 ≤ k ≤ n, be the item matched to agent
k in the matching M , and M(k) = ⊥ if no item was matched to agent k in M . Note that we do
not know the adversary global order, nor do we know the M(k)’s.

For the purpose of analysis imagine that all agents arrive in the adversary global order where
the ith event is the arrival of agent i. Agents are either allowed to make a choice or assigned to
the plebeian class (and thus delayed). This assignment to the plebeian class is done on the fly.

We say that item j is unavailable after event i, 0 ≤ i ≤ n if it was taken by a prioritized agent
j such that j ∈ {1, . . . , i}.

For 0 ≤ i < k ≤ n define nik as follows:

nik :=

{
1 if M(k) 6= ⊥ and M(k) is not available after event i

0 otherwise.

2In the analysis of the positive results (a lower bound on the social welfare) we assume that they give zero
contribution to the social welfare, ergo, choosing not to prioritize an agent is equivalent to discarding the agent.
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Let Si :=
∑

k>i n
i
k. The following holds:

Si+1 ≤ Si − nii+1 + Ii+1 (1)

where Ii+1 = 1 if agent i+ 1 is prioritized and otherwise Ii+1 = 0.
The difference Si+1 − Si consists of several components. Si+1 − Si clearly decreases by nii+1,

and if Ii+1 = 1 this difference may increase by one — this happens when agent i+ 1 takes an item
in {M(i+ 2), . . . ,M(n)}.

Taking expectation over (1), using linearity of expectation, and noting that agent i + 1 takes
an item (any item) with probability α

2 , we get that:

E[Si+1] ≤ E[Si]− E[nii+1] +
α

2
,

or equivalently

E[Si+1]− E[Si] ≤ −E[nii+1] +
α

2
.

Taking the sum of i from 0 to n− 1, we get that

E[Sn]− E[S0] ≤ −
n−1∑
i=0

E[nii+1] + n · α
2
.

Note that E[Sn] = E[S0] = 0 and hence

n−1∑
i=0

E[nii+1] ≤ n ·
α

2
. (2)

Let Ri be the size of the matching after event i, the sequence Ri is [weakly] ascending. Define
Ji = 1 if M(i) = ⊥ and zero otherwise. We now show that

Ri+1 ≥ Ri + Ii+1 ·
(
1− nii+1 − Ji+1

)
, (3)

by the following case analysis

• If Ii+1 = 0 or nii+1 = 1 or Ji+1 = 1 then (3) follows directly from monotonicity of Ri.

• The only remaining case is when Ii+1 = 1 and both nii+1 = 0 (M(i + 1) was available after
event i) and Ji+1 = 0 (M(i+ 1) 6= ⊥), and then the size of the matching increases by one.

Taking the expectation over (3) we get that

E[Ri+1] ≥ E
[
Ri + Ii+1 ·

(
1− nii+1 − Ji+1

)]
.

It follows from linearity of expectation and the fact that Ii+1 is independent of nii+1 that

E[Ri+1] ≥ E[Ri] + E[Ii+1]
(

1− E[nii+1]− Ji+1

)
,
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or equivalently,

E[Ri+1]− E[Ri] ≥
α

2

(
1− E[nii+1]− Ji+1

)
.

Taking the sum for i from 0 to n− 1, we get that

E[Rn]− E[R0] ≥ n ·
α

2
− α

2

n−1∑
i=0

E[nii+1]−
α

2
· (1− α)n,

note that E[R0] = 0. Using the bound for E[nii+1] from (2) we have that

E[Rn] ≥ nα

2
− α

2
· nα

2
− nα

2
+
nα2

2
=
nα2

4
. (4)

Now, using (4) we give a bound on the approximation ratio of the algorithm:

Alg

Opt
≥ nα2/4

nα
=
α

4
.

where Opt is the size of the maximum weighted matching and Alg is the expected size of the
matching achieved by the algorithm.

Remark: Even if α is unknown, one can use standard techniques to guess the value of α to within
some constant factor and lose a factor of log n on the competitive ratio.

We now show that the approximation ratio given in Theorem 1 is tight up to a constant factor.

Theorem 2. For an unweighted graph with a maximum matching of size αn, no prioritization
algorithm can achieve an approximation to the maximum matching greater than α.

Proof. Consider an instance with n agents and n items as depicted in Figure 2. Suppose agents
break ties (amongst zero valued items) from top to bottom. The first αn agents to arrive choose
items r1, ..., rαn so there is no point in allowing more than αn agents to take an item. The adversary
can schedule αn random slots for agents `1, ..., `αn. The best way to choose a priority class, in this
case, is choosing a random subset of αn agents, resulting in an expected social welfare of value
α2n. Hence, the approximation ratio is α.

Figure 2: For an unweighted graph with a maximum matching of size αn, the approximation
ratio is at least α. In this example agents break ties in favor of higher items (i.e., items with low
indices).

8



We next turn to the problem of assigning agents, whose valuations are known, to [a small
number of] priority classes. Clearly, it cannot be harder to prioritize agents if their valuations are
known than if not. For zero/one valuations, this “friends” model (known valuations) improves
the approximation above to a constant, if the size of the maximum matching in an unweighted
graph is small (small α). Furthermore, this allows us to give good approximations to the value of
the maximum matchings in the more general setting where agents have arbitrary valuations (not
restricted to zero/one values).

4 Results for Inconsiderate Friends

Theorem 3. For unweighted graphs (valuations zero/one), it is possible to choose a [random]
subset of the agents as a higher priority class, and achieve a 1

4 approximation to the size of the
maximum matching, independent of the size of the matching (i.e., independent of α).

Proof. First, we compute a maximum matching and exclude all unmatched agents, effectively this
means that all remaining agents have a match. Then, from the remaining agents, prioritize each
one with probability 1

2 . As all agents have a match, we can apply Theorem 1 with α = 1 that
yields a 1/4 approximation.

This is almost tight:

Lemma 4. For unweighted graphs (valuations zero/one), no prioritization algorithm with one
priority classes can attain approximation ratio greater than 2

3 .

Proof. Consider an instance with n agents and n items, as depicted in Figure 3. Agents are divided
into n/3 sets {Li}i of size 3, Li = {`1i , `2i , `3i } for i = 1, . . . , n/3. Items are likewise divided into n/3

sets {Ri}i of size 3, Ri = {r1i , r2i , r3i } for i = 1, . . . , n/3. The set of edges is E = {(`ji , rki )| k ≤ j}.

Figure 3: For an unweighted known graph, no prioritization algorithm with one priority class can
achieve an approximation better than 2/3.

In the optimal solution, agent `ji takes item rji , hence each Li gives a value of 3, and in total
the value of the maximum matching is n. We claim that for any algorithm with a single priority
class, there is an adversary global order and tie breaking rule such that the resulting value of each
Li is at most 2, hence in total the social welfare is 2n/3, which gives an approximation ratio of
2/3.
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The following global ordering of the agents and tie breaking rule implies the claim for every
subset of agents: agents are ordered from high indices to low indices (bottom to top in figure), and
always break ties in favor of items with lower indices (top items in figure). Let C be the priority
class. For any set Li, there are two options:

• if Li ∩C 6= {`1i }, then agent `1i takes a zero valued item. Hence the value contributed by the
agents in Li is not greater than 2.

• if Li ∩ C = {`1i }, then `2i cannot take r2i because by the time she arrives r2i is already taken
(by either `3i or other agent) and again the value contributed by the agents in Li is not
greater than 2.

We now show that for arbitrary valuations, appropriately upgrading some agents to business
class gets an Ω(1/ log n) fraction of the social welfare.

Lemma 5. For arbitrary valuations (described as a weighted graph), there exists a prioritization
algorithm with only one priority class (in addition to the plebeians) that gives approximation ratio
of Ω( 1

logn).

Proof. Fix a maximum weighted matching M , and let W denote the weight of M . Index the agents
by adversary global order starting with agent 1. Let M(k), 1 ≤ k ≤ n, be the item matched to
agent k in the matching M , and M(k) = ⊥ if no item was matched to agent k in M . For any agent
k such that M(k) 6= ⊥, we denote the value agent k has for item M(k) by w(M(k)) = w(k,M(k)).

Discard all agents with w(M(k)) < W/(2n). Since these agents contribute in total at most
W/2 to the value of the maximum matching, discarding these agents can decrease the value of
the maximum matching by a factor of 2 at most. Assign agent k for which M(k) 6= ⊥ and
w(M(k)) > W/(2n) to classes as follows: agent k belongs to class Ci, 0 ≤ i ≤ log n+1, if and only
if W/2i+1 ≤ w(M(k)) < W/2i (where class C0 includes also agent k s.t. M(k) = W , if exists).
Let Cmax denote the class with the highest contribution to the social welfare. Agents in Cmax

contribute at least 1
2 logn fraction of the value of the maximum matching.

Now, we prioritize only agents from Cmax: every such agent is prioritized with probability 1
2 .

Let Cmax = Cj for some 0 ≤ j ≤ log n + 1. Now, consider a thought experiment where edges
(`k, rm), `k ∈ Cmax have weight zero if w(`k, rm) < W/2j+1 and weight W/2j+1 if w(`k, rm) ≥
W/2j+1. The value of a matching on a subset of these “thought experiment” agents is no greater
than the value of a matching on the same subset with the original values.

We can treat the input as if it was zero/one values (where W/2j+1 plays the role of one), and
prioritize agents as if they had zero/one values; this loses at most a factor 2 due to rounding.
Applying Theorem 3, we lose another factor of 4 of the total contribution of Cmax. Thus, this
gives a social welfare of at least W

16 logn .

This result is asymptotically tight:

Theorem 6. For arbitrary valuations, adding a business class (in addition to the default class)
does not give an approximation ratio greater than O( 1

logn). Moreover, no algorithm that uses r
priority classes can achieve an approximation ratio greater than O( r

logn).
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Proof. Consider the bipartite graph depicted in Figure 4, with n agents, `1, . . . , `n, and n items,
r1, . . . , rn. The set of edges is E = {(`i, rj)| 1 ≤ j ≤ i ≤ n}, and every edge of the form (`i, rj) has
weight 1

i . Clearly, in the maximum matching agent `i is matched to item ri, resulting in a total

weight of Hn =
n∑
i=1

1
i ≈ lnn.

Figure 4: Agents on the left and items on the right. The number that appears to the left of an
agent represents the corresponding weight of all the edges adjacent to this agent.

Fix an arbitrary subset of agents. We describe an adversary global order and tie breaking
rule, and claim that that with these order and tie breaking rule the contribution of any subset
to the social welfare is at most 1. This implies the theorem, since for a single priority class (i.e.,
partitioning the agents to two subsets) we get at most 2/ lnn of the optimal welfare, and with r
priority classes we get at most (r + 1)/ lnn of the optimal welfare.

The global ordering of the agents and tie breaking rule are as follows: agents are ordered
from high indices to low indices (bottom to top in figure), and always break ties in favor of items
with lower indices (top items in figure). Consider a subset of agents that forms a priority class
C = {i1, . . . , ik}, where ij < ij+1 for j = 1, . . . , k − 1 Clearly, there is some index, ik∗ , such that
for all j ≥ k∗ agent ij takes an item of positive value, and for all j < k∗ agent ij takes a zero
valued item.

Assume without loss of generality that ik∗ , . . . , ik are consecutive agents (i.e., for all k∗ ≤ j ≤
k− 1, ij + 1 = ij+1). This is without loss since agents with lower indices contribute higher values.
Therefore, ik − ik∗ = k − k∗.

It must hold that k−k∗ ≤ ik∗ − 1 since the left hand side is the number of agents that took an
item with strictly positive value before ik∗ arrived, and this number is at most ik∗ − 1, or else ik∗

would not be able to take an item with strictly positive value. We conclude that ik− ik∗ ≤ ik∗ − 1
or equivalently ik ≤ 2ik∗ − 1. Hence, the total value that agents ik, . . . , ik∗ contribute is no more
than

Hik −Hik∗−1 ≤ H2ik∗−1 −Hik∗−1 =

2ik∗−1∑
j=ik∗

1

j
≤ ik∗ ·

1

ik∗
= 1.

We now describe a prioritization algorithm using r priority classes that has a matching bound.

Theorem 7. For arbitrary valuations, there exists an algorithm using r ≥ 1 priority classes that
achieves an approximation ratio of Ω( r

logn).
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Proof. Given a weighted graph G, fix some maximum matching M and discard any agents not in
the matching. For any remaining agent ` ∈ L, let M(`) be the item matched to agent ` in the
matching M . Let w` be w(`,M(`)). We define sets Bi where ` belongs to Bi if 2i ≤ w` < 2i+1.
Let Z = {Bi1 , Bi2 , . . . , Bir} be the collection of the r Bi’s with the highest contribution to M ,
where ij > ij+1 for j = 1, . . . , r − 1.

The jth priority class, Cj is a random subset of Bij where every agent is taken with probability
p. As the adversary is oblivious, it can be considered as though it predetermines a global order of
agent arrivals and in particular the relative order of arrival for each of the sets Bij . In fact, only
agents from Cj will arrive and the agents in Bij \ Cj are plebeians and arrive last.

Re-index agents in ∪jBij such that the agents in Bi1 , ordered by the adversary determined
order of arrival, have indices 1, ..., n1. More generally, agents in Bij , ordered by the adversary
determined order of arrival, have indices nj−1 + 1, ..., nj . For convenience, we define n0 = 0, and
define the maximum value of an empty set to be zero.

As done in Theorem 1, we say that item j is unavailable after event i, 0 ≤ i ≤ nr, if the
item was chosen by one of the agents 1, ..., i from ∪jCj , before the arrival of agent i + 1. For all
0 ≤ i < k ≤ nr define nik as follows:

nik :=

{
1 if M(k) is not available after event i

0 else

Let Swi :=
nr∑

k=i+1

nik · wk. For 0 ≤ i ≤ nr − 1 the following holds

Swi+1 ≤ Swi − nii+1 · wi+1 + Ii+1 ·max{wj |i+ 2 ≤ j ≤ nr}, (5)

where Ii+1 = 1 if agent i+ 1 is chosen to a priority class and otherwise Ii+1 = 0.
The difference Swi+1 − Swi consists of several components. Swi+1 − Swi decreases by nii+1 · wi+1,

and if Ii+1 = 1 the difference may increase by max{wj |i+ 2 ≤ j ≤ nr} (this happens when agent
i+ 1 takes some item in {M(i+ 1), . . . ,M(nr)}).

By taking expectation over (5), using linearity of expectation, and noting that an agent takes
an item (any item) with probability p, we get that

E[Swi+1] ≤ E[Swi ]− E[nii+1 · wi+1] + p ·max{wj |i+ 2 ≤ j ≤ nr},

or equivalently

E[Swi+1]− E[Swi ] ≤ −E[nii+1 · wi+1] + p ·max{wj |i+ 2 ≤ j ≤ nr}.

By taking the sum of i over 0 to nr − 1 and noting that E[Swnr
] = E[Sw0 ] = 0 we get that

nr−1∑
i=0

E[nii+1] · wi+1 ≤ p ·
nr−1∑
i=0

max{wj |i+ 2 ≤ j ≤ nr} = p ·
nr∑
i=1

max{wj |i+ 1 ≤ j ≤ nr}.

It now follows that

nr−1∑
i=0

E[nii+1] · wi+1 ≤ p
r∑
l=1

nl∑
i=nl−1+1

max{wj |i+ 1 ≤ j ≤ nr} ≤ p
r∑
l=1

nl∑
i=nl−1+1

2wi = 2

nr∑
i=1

wi.

12



Thus, we get that

nr−1∑
i=0

E[nii+1] · wi+1 ≤ 2p

nr∑
i=1

wi. (6)

Let Ri be the weight of the matching after event i. The sequence Ri is [weakly] ascending. We
now show that

Ri+1 ≥ Ri + Ii+1 · wi+1 ·
(
1− nii+1

)
, (7)

by the following case analysis:

• If nii+1 = 1 or Ii+1 = 0 then (7) follows directly from monotonicity of Ri.

• Else, Ii+1 = 1 and nii+1 = 0, i.e., M(i + 1) was available after event i and agent i + 1
was admitted, hence the size of the matching increases by at least wi+1, and indeed (7) is
equivalent to Ri+1 ≥ Ri + wi+1.

Now, taking the expectation over (7) we derive that

E[Ri+1] ≥ E
[
Ri + Ii+1 · wi+1 ·

(
1− nii+1

)]
.

It now follows from linearity of expectation and the fact that Ii+1 is independent of nii+1 that

E[Ri+1] ≥ E[Ri] + E[Ii+1]wi+1

(
1− E[nii+1]

)
,

or equivalently

E[Ri+1]− E[Ri] ≥ pwi+1

(
1− E[nii+1]

)
.

Taking the sum of i over i = 0 to i = nr − 1 we get that

E[Rnr ]− E[R0] ≥
nr−1∑
i=0

pwi+1 − p
nr−1∑
i=0

E[nii+1]wi+1.

Note that E[R0] = 0. Using the bound for
nr−1∑
i=0

E[nii+1]wi+1 from (6) we have that

E[Rnr ] ≥ p

(
nr−1∑
i=0

wi+1 − 2p

nr−1∑
i=0

wi+1

)
= (p− 2p2)

nr−1∑
i=0

wi+1.

To maximize the expected matching we take p = 1
4 and we get

E[Rnr ] ≥ 1

8

nr−1∑
i=0

wi+1.

Note that the total contribution of the top r classes to M is at least r
2 logn of the optimal social

welfare, hence

E[Rnr ] ≥ r

16 log n
Opt,

where Opt is the weight of the maximum weighted matching.
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5 Extention to q-capped Allocations

Up to now we have restricted agents to take at most one item. We now turn to agents with
additive valuations and increase their quota to taking no more than q items each. We refer to such
allocations as q-capped allocations. The proofs of the theorems in this section appear in Appendix
A.

As in previous sections, we consider both inconsiderate strangers and friends.

5.1 Inconsiderate Strangers

Theorem 1 for unit-demand valuations extends to the case of additive valuations, with an additional
loss of factor q.

Theorem 8. For any 0 ≤ α ≤ 1, prioritizing every agent with probability α
2q gives an α

4q approxi-
mation to the size of the optimal q-capped allocation, for any unweighted graph with a maximum
q-capped allocation of size ≥ αn.

We also have a matching impossibility result.

Theorem 9. For an unweighted graph with a maximum q-capped allocation of value αn, no pri-
oritization algorithm can achieve an approximation to the maximum q-capped allocation greater
than O(αq ).

5.2 Inconsiderate Friends

Theorem 7 for unit-demand valuations extends to the case of additive valuations, with an additional
loss of factor q.

Theorem 10. For arbitrary additive valuations, there exists an algorithm using r ≥ 1 priority
classes that achieves an approximation ratio of Ω( r

q logn) to the maximum q-capped allocation.

We also have an impossibility result.

Theorem 11. For arbitrary additive valuations, adding a business class (in addition to the
default class) does not give an approximation ratio greater than max{O( 1

q logn), 1√
n
}. More-

over, no algorithm that uses r priority classes can achieve an approximation ratio greater than
max{O( r

q logn), 1√
n
}.

6 Discussion

In this paper we study nearly-efficient allocation of goods to inconsiderate agents that arrive over
time. Previous work on online resource allocation concentrate on either non-strategic agents or on
money as a tool for creating appropriate incentives for driving the agents into desired outcomes.
We consider settings in which agents are strategic and inconsiderate, yet money cannot be used
to alleviate the problem. We propose a new class of algorithms, called prioritization algorithms,
where agents are assigned to a small set of priority classes, and higher classes always precede lower
ones (order within a given class is arbitrary). We show that simple prioritization algorithms can
lead to approximately optimal welfare in various allocation settings, even when the entire inventory
is free and agents behave selfishly and inconsiderately. We hope that prioritization algorithms can
serve as a useful tool in additional online problems.

14



References

[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-
weighted bipartite matching and single-bid budgeted allocations. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 1253–1264, 2011.

[2] Itai Ashlagi, Felix A. Fischer, Ian A. Kash, and Ariel D. Procaccia. Mix and match. In Proceed-
ings 11th ACM Conference on Electronic Commerce (EC-2010), Cambridge, Massachusetts,
USA, June 7-11, 2010, pages 305–314, 2010.

[3] Haris Aziz, Hau Chan, Barton E. Lee, and David C. Parkes. Mechanism design without
money for conmmon goods. 2018. arXiv:1806.00960v1 [cs.GT].

[4] Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (incremental) priority algorithms.
Algorithmica, 37(4):295–326, 2003.

[5] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors.
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A Missing Proofs

A.1 Proof of Theorem 8

Given an unweighted graph G, fix an optimal q-capped allocation M . Index the agents by the
adversary global order starting with agent 1. Let M(k), 1 ≤ k ≤ n, be the set of items allocated
to agent k in M (recall |M(k)| ≤ q for each k ∈ L). Denote M(k) := {m1

k, ...,m
qk
k }. Note that we

do not know the adversary global order, nor do we know the M(k)’s.
For the purpose of analysis imagine that all agents arrive in the adversary global order where

the ith event is the arrival of agent i. Agents are either allowed to make a choice or assigned to
the Plebeian class (and thus delayed). This assignment to the Plebeian class is done on the fly.

We say that item j is unavailable after event i, 0 ≤ i ≤ n if it was taken by a prioritized agent
j s.t. j ∈ {1, . . . , i}.

For 0 ≤ i < k ≤ n and 1 ≤ j ≤ qk define nik,j as follows:

nik,j :=

{
1 if mj

k is unavailable after event i

0 else.

Let N i
k :=

m
qk
k∑

j=1
nik,j and Si :=

∑
k>i

N i
k. The following holds:

Si+1 ≤ Si −N i
i+1 + Ii+1 · q, (8)

where Ii+1 = 1 if agent i+ 1 is prioritized and otherwise Ii+1 = 0.
The difference Si+1 − Si consists of several components. Si+1 − Si clearly decreases by N i

i+1,
and if Ii+1 = 1 this difference may increase by q — this happens when agent i + 1 takes q items

from
n⋃

j=i+2
M(j).

Taking the expectation over (8), using linearity of expectation, and noting that agent i+ 1 is
prioritized with probability α

2q , we get that

E[Si+1]− E[Si] ≤ −E[N i
i+1] +

α

2
.

Taking the sum of i from 0 to n− 1, we get that:

E[Sn]− E[S0] ≤ −
n−1∑
i=0

E[N i
i+1] + n · α

2
.

Note that E[Sn] = E[S0] = 0 and hence:

n−1∑
i=0

E[N i
i+1] ≤ n ·

α

2
. (9)

Let Ri be the value of the allocation (i.e., number of allocated items of value 1) after event i.
The sequence Ri is [weakly] ascending. We now show that

Ri+1 ≥ Ri + Ii+1 ·
(
|M(i+ 1)| −N i

i+1

)
, (10)

by the following case analysis
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• If Ii+1 = 0 or N i
i+1 = |M(i+ 1)| then (10) follows directly from monotonicity of Ri.

• The only remaining case is when Ii+1 = 0 and N i
i+1 < |M(i + 1)|, and then the size of the

matching increases by at least the number of available valuable items from M(i+ 1).

Taking the expectation over (10) and using linearity of expectation combined with the fact
that Ii+1 is independent of N i

i+1 we get that

E[Ri+1] ≥ E[Ri] + E[Ii+1]
(
|M(i+ 1)| − E[N i

i+1]
)
,

or equivalently

E[Ri+1]− E[Ri] ≥
α

2q

(
|M(i+ 1)| − E[N i

i+1]
)
.

Taking the sum for i from 0 to n− 1, we get that

E[Rn] = E[Rn]− E[R0] ≥
α

2q
· nα− α

2q

n−1∑
i=0

E[N i
i+1] ≥

nα2

2q
− α

2q
· nα

2
=
nα2

4q
.

Where the first equality follows from E[R0] = 0 and the last inequality follows from (9). This
implies a bound on the approximation ratio of the algorithm:

Alg

Opt
≥ nα2/4q

nα
=

α

4q
.

where Opt is the size of the maximum weighted matching and Alg is the expected size of the
matching achieved by the algorithm.

A.2 Proof of Theorem 9

Consider an instance with n agents and n items as depicted in Figure 2. As agents break ties
(amongst zero valued items) from top to bottom, the first dαnq e agents to arrive choose items
r1, . . . , rαn so there is no point in allowing more than dαnq e agents to take items. The adversary
can schedule αn random slots for agents `1, . . . , `αn. The best way to choose a priority class, in
this case, is choosing a subset of dαnq e agents randomly, resulting in an expected social welfare of

size θ
(
α2n
q

)
. Hence, the approximation ratio is O

(
α
q

)
.

A.3 Proof of Theorem 10

Given a weighted graph G, fix some optimal q-capped allocation M and exclude any agent that
does not contribute a positive value. For any remaining agent ` ∈ L, let M(`) := {m1

` , . . . ,m
qi
` }

be the subset allocated to agent ` in M . Let w1
` , . . . , w

q`
` be the corresponding weights of M(`).

Denote w` =
q∑̀
j=1

wj` . We define sets Bi where ` belongs to Bi if 2i ≤ w` < 2i+1. Let Z =

{Bi1 , Bi2 , . . . , Bir} be the collection of the r Bi’s with the highest contribution to M , where
ij > ij+1 for j = 1, . . . , r − 1.

The jth priority class, Cj is a random subset of Bij where every agent is taken with probability
p, that will be defined later. As the adversary is oblivious, it can be considered as though it
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predetermines a global order of agent arrivals and in particular the relative order of arrival for
each of the sets Bij . In fact, only agents from Cj will arrive and the agents in Bij \Cj are plebeians
and arrive last.

Re-index agents in ∪jBij such that the agents in Bi1 , ordered by the adversary determined
order of arrival, have indices 1, ..., n1. More generally, agents in Bij , ordered by the adversary
determined order of arrival, have indices nj−1 + 1, ..., nj . For convenience, we define n0 = 0.

As done in Theorem 1, we say that item j is unavailable after event i, 0 ≤ i ≤ nr, if the item
was chosen by one of the agents 1, ..., i from ∪jCj , before the arrival of agent i + 1. For each
0 ≤ i < k ≤ nr and 1 ≤ j ≤ qk define nik,j as follows:

nik,j :=

{
1 if mj

k is not available after event i

0 else

Let N i
k :=

m
qk
k∑

j=1
nik,j · w

j
k, and let Swi :=

nr∑
k=i+1

N i
k. For a set of real numbers A let max(q)A

be the sum of the min{q, |A|} highest values in A. If A is empty we define max(q)A = 0. For
0 ≤ i ≤ nr − 1 the following holds:

Swi+1 ≤ Swi −N i
i+1 + Ii+1 ·max(q){wlj |i+ 2 ≤ j ≤ nr, 1 ≤ l ≤ qj} (11)

where Ii+1 = 1 if agent i + 1 is chosen to a priority class and otherwise Ii+1 = 0. The difference
Swi+1 − Swi consists of several components. Swi+1 − Swi is clearly decreases by N i

i+1, and if Ii+1 = 1
the difference may increase by max(q){wlj |i+2 ≤ j ≤ nr, 1 ≤ l ≤ qj}, this happens when agent i+1
takes q items from

⋃
i+2≤k≤nr

M(k). Taking the expectation over (11), using linearity of expectation

and noting that an agent is allowed to take items with probability p, we get that

E[Swi+1]− E[Swi ] ≤ E[N i
i+1] + p ·max(q){wlj |i+ 2 ≤ j ≤ nr, 1 ≤ l ≤ qj}.

Taking the sum of i from 0 to nr − 1 and noting that E[Swnr
] = E[Sw0 ] = 0 we get

nr−1∑
i=0

E[N i
i+1] ≤ p ·

nr−1∑
i=0

max(q){wlj |i+ 2 ≤ j ≤ nr, 1 ≤ l ≤ qj}

= p

r∑
l=1

nl∑
i=nl−1+1

max(q){wlj |i+ 2 ≤ j ≤ nr, 1 ≤ l ≤ qj}

≤ p
r∑
l=1

nl∑
i=nl−1+1

q · 2wi = 2pq

nr∑
i=1

wi.

It follows that

nr−1∑
i=0

E[N i
i+1] ≤ 2pq

nr∑
i=1

wi. (12)
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Define Ri as the total weight of the partial allocation after event i. The sequence Ri is [weakly]
ascending. We show that

Ri+1 ≥ Ri + Ii+1

m
qi+1
i+1∑
j=1

(1− nii+1,j)w
j
i+1

 , (13)

by the following case analysis:

• if I1+1 = 0 then (13) follows directly from monotonicity of Ri.

• else, the the contribution of agent i + 1 to the allocation is at least the total value of the
available items from M(i+ 1).

Now, taking the expectation over (13), and using linearity of expectation combined with the
fact that Ii+1 is independent of nii+1,j we get

E[Ri+1]− E[Ri] ≥ E[Ii+1]
(mqi+1

i+1∑
j=1

(1− E[nii+1,j ])w
j
i+1

)
,

or equivalently

E[Ri+1]− E[Ri] ≥ pwi+1 − pE[N i
i+1,j ].

Taking the over i from i = 0 to i = nr − 1 we get

E[Rnr ]− E[R0] ≥ p
nr−1∑
i=0

wi+1 − p
nr−1∑
i=0

E[N i
i+1,j ].

Note that E[R0] = 0. Using the bound from (12) we have that

E[Rnr ] ≥ p
( nr−1∑

i=0

wi+1 − 2p2q

nr−1∑
i=0

wi+1

)
= (p− 2p2q)

nr−1∑
i=0

wi+1.

To maximize the expected value of the allocation we take p = 1
4q and get

E[Rnr ] ≥ 1

8

nr−1∑
i=0

wi+1

Note that
nr−1∑
i=0

wi+1 ≥ r
logn

Opt
2 so

E[Rnr ] ≥ r

16 log n
Opt

where Opt is the weight of the maximum q-capped allocation.
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A.4 Proof of Theorem 11

First consider the case where q ≥
√
n. Let G = (L ∪ R,E) be a graph depicted in Figure 5 with

n agents, `1, . . . , `n, and n items, r1, . . . , rn. The set of edges is E = {(`i, ri)| 1 ≤ i ≤ n}, and for
all 1 ≤ i ≤ n w(`i, ri) = 1. Clearly the optimal q-capped allocation is of value n (agent `i takes

ri). After
⌈
n√
n

⌉
= d
√
ne agents arrive there is no item left. Allowing any subset of d

√
ne agents

to take items results in an allocation of value no greater than d
√
ne, hence an approximation ratio

of size O(1/
√
n).

Figure 5: Agents on the left and items on the right.

Next, consider q <
√
n. For q = 1, see Theorem 6. For q ≥ 2, consider the bipartite graph

depicted in Figure 6, with n agents, `1, . . . , `n, and n items, r1, . . . , rn. The set of edges is
E = {(`i, rj)| q ≤ i ≤ n}, and for all q ≤ i ≤ n w(`i, ri) = 1

i .

Figure 6: Agents on the left and items on the right. The number that appears on the edge
represents the weight of that edge.

Clearly, in the maximum matching agent `i, q ≤ i, is matched to item ri, resulting in a total
weight of

Hn −Hq−1 =

n∑
i=q

1

i
≈ lnn− ln(q − 1) ≈ lnn.

Fix an arbitrary subset of agents. We describe an adversary global order and tie breaking rule
such that the resulting social welfare of this subset is at most O

(
1
q

)
. This implies the theorem,

since for a single priority class (i.e., partitioning the agents to two subsets) we get at most O
(

1
q lnn

)
of the optimal welfare, and with r priority classes we get at most O

(
r

q lnn

)
of the optimal welfare.
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The global ordering of the agents and tie breaking rule is as follows: agents are ordered from
high indices to low indices (bottom to top in figure), and always break ties among zero valued items
in the favor of items with lower indices (higher items in figure). Consider a subset of agents that
forms a priority class C = {i1, ..., ik}, where ij < ij+1 for j = 1, . . . , k − 1. Clearly, there is some
index, ik∗ , such that for all j ≥ k∗ agent ij takes one item of positive value among the bundle she
takes; and for all j < k∗ agent ij takes only zero valued items. Assume without loss of generality
that ik∗ , . . . , ik are consecutive agents (i.e., when for all k∗ ≤ j ≤ k − 1, ij + 1 = ij+1). This is
without loss since agents with lower indices contribute higher values. Therefore, ik− ik∗ = k− k∗.
It must hold that (q − 1)(k − k∗) ≤ ik∗ − 1 since the left hand side is the number of items that
were taken by agents before ik∗ arrived, and it is at most ik∗ − 1, otherwise ik∗ would not be able
to take an item with strictly positive value. We conclude (q− 1)(ik− ik∗) ≤ ik∗ − 1 or equivalently
ik ≤ qik∗−1

q−1 . Hence, the total value of agents ik, . . . , ik∗ is not greater than

Hik −Hik∗−1 ≤ H⌊ qik∗−1

q−1

⌋ −Hik∗−1

=

⌊
qik∗−1

q−1

⌋∑
j=ik∗

1

j

≤
(⌊

qik∗ − 1

q − 1

⌋
− ik∗ + 1

)
· 1

ik∗

≤
(
qik∗ − 1

q − 1
− ik∗ + 1

)
· 1

ik∗

=

(
ik∗

q − 1
− 1

q − 1
+ 1

)
· 1

ik∗

=
1

q − 1
+

q − 2

ik∗(q − 1)

if ik∗ ≥ q then the expression above is not greater than

1

q − 1
+

q − 2

q(q − 1)
≤ 2

q − 1
,

and if ik∗ < q, ik∗ would be able to take a positive value item only when k = k∗, hence, only a
single agent takes a positive value item. The maximum value of an edge in the graph is 1

q , which
bounds the total contribution of the class.
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