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lv occurring tagks in numencal co nputations. In fact,
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many algorithms entail the evaluation of one or more
polynomials at a large number of values. The purpose
of this note, is to reflect on this evaluation problem,
more from a theoretical than practical point of view.
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arithmetics (+, —, X, +) required for a set of specified

evaluations. For defuuteness, we shall restrict our re-
marks to polynomials in one indeterminant over the
field of real numbers, assuming exact arithmetic. Our
discussion couid easi'y be exiended io muliivariaie

nalunamicls and fwith enma cara) ta avelatinr: nver
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th: integers. The avoidance of roundoff considerations
and the consideration of general polynomials of high
degree are the reason: why we disclaim practical signi-
ficance.

2. Some known resulis

Suppose we wish to evaluate an nth degree poly-
nomial 2,.0 a,x' atone point If nothing is known

sbout the coefficients {q,} in advance, then QOstrowski
"1 and Ralana ‘l‘ ‘\ a chaum that " additinms ae
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mbtmctionn (a/s) are required for the evaluation, and

Garcia [3] and Pan {6] have shown that 2 multiplica-
tions or divisions (m/d) are needed. Thus, Hon.i1's

rule is optimal in this regard. These resul:s were ex-
tended by wmograd {8] who has shown that the evalu-
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preconditioning

fast matrix multiplication

one point requires 2 n;afsand T, n; mid oprra.

Annﬂwr way to formulats the evaluation nrobiem
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is to count only those opersiions that involve i in-
determinant. That is, we can “‘preconditior” or
“adapt” the coefficients {¢;} without cost ' fact,
we might even allow analytic functions u, =

@Aao, ey a,,) 10 occur as pammexcxs inap. Ogiam

for nolunamial svaluation Thue wa arm -
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many operations are required when we «1. allowed to
reexpress the polynomial in something - cher than the
standard form. Motzkin [4] introduce: this concept
of pmonditioning and (incorponténg an mprove-
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ment by Pan {6]) he showed thai {3 n_| + i m/d opera-
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polynomials, even with preconditio:ing. Belaga {1}
showed that n afs were still required with srecondi-
tioning. The important point is thxt schen es have
been developed which nearly achieve thesx bounds.
The application should be obvious, I one wishes
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greater” than a, the cost of p: :coaditioning can be a»-
sumed to be negligible, t..u2 precondit ioning af-
fords a saving of approximately k X §n mltiplications.
Winograd [8] has also extended thesg res Its tc the
evaiuation of severai poiynomiais.

3. A better scheme for non-iterative evalu.ii-on

The preceding remarks lead one to belizve tiat if
the number of points is iarge, pmcon&ith ung the co-
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to proceed. By “iterative evaluation™, we shall mean
that the (i + 1)st point is not given until all required
evaluations at the ith point are completed. Such a re-
striction is, of course, quite common. Looking at the
proofs of the preconditioning results, it is quite easy
to see Mfmixmﬁﬁevalmﬁoudn!%ﬂmﬁn;mmt
hold:

1. The evaluation of an nth degree polynomial at k

points requires at least k(L1 nj + 1) m/d and kn

a/s operations, not accounting operations involving

anly the coeflicients. In particular, if k = n, the

evaluations require O(n2) operations.
2. The evaluation of m polynomials of degree n,

(! << m) at k points requires at jeast

k@I, 4n;) + ) m/d and k T, g, a/s operations,

not counting operations involving only the coeffi-

cients. In particular, if n = m = n, for all i, the evalu-
ations require O(r3) operations.

There are circumstances, however, where all the
points of evaluation may be given at once. Problems
in approximatiun theory often satisfy this condition.
We should also note that Fourier transforms essentially
involve evaluation of nth degree polynomials st n + 1
points and subsequent interpolation to recover the co-
efficients. Of course, in this regard, we are able to
choose the points of evaluation.

Let a denote sn upper bound on the order of diff}-
culty for matrix multiplication; that is, two 2 X n ma-
trices 3n be mul'iplied in O(n?®) basic operations. In
light cf Strassen’s [7] fundamental discovery, we know
that 2 < a < log; 7 = 2.81. The fol:owing observation
is made:

3. n polynomials each of degree n car be evaluated at

n points {x,, ..., x,} in KO(n*)
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Since all the powers {x' } can be gvaluated in O(n?),
and since a 2 2, it foﬂows that the required evalu-
ations can be obtained in O(n2) < O(n24!) opera-
tions.

It is perhapgnot quite as obvious how one can use
fast matrix mumplication for the evaluation of a single
polynomial at several points,

4. An nth degree polynomial can be evaluated at m
points (m > v/) in < (m/\/n)O(n*2) =
mO(n@-1¥2), Without oss of generality, we will
assume the- nisa perfec' square. Suppose we want
to evaluate £ g; xi, i <j < /n. Let

a 8...a./p Xy
A=|a /7. ; X={ x

2
1
e, | \"iﬁ "%
LetY”AX‘ (y‘i). Then

Lhoax=agtyy+ 200 vy xK-Dvn,
The evaluation of
{xu<i,j<Vn}

and
{(xkVr2&K< -1}

require only O(n) multiplications. Thus the required
evaluations can be accomplished in < O((\/n)®) +
O(+/71- V/n) + O(n) = O(n®/2). Therefore, an nth
degree polynomial can be evaluated at /n points in
< O(n141) operations, and at n points in < O(2!91)
operations. In matrix terminology, a row vector

(a;, ..., @) can be multiplied by a Vandermonde

...XJ’I'

matrix
[ Xy .. Xp
in < O(n!91) operations.

4. Lower bounds and conclusion

It is now appropriate to ask how good are t}}e
upper bounds developed in the ‘ast section. This
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question remains open. In the c: se of » polynomials,

each of deg-ee n, evaluated at n oints, the best lower

bound that we can establish is tt ¢ lowe1 oound for

evaluaticr: 4. e poirt; namely. 12 m/d and n? a/s

operations. In the cace of one n: 1 degree polynorial

evaluaied at m points, we can st yw the followmg

5. It is not Jifficult tc argue tha: ZiLg g5, 2.y 2,
rees EH, m' a; recires at least 7 + m — 1 afs and,
therefore, this many a/s are re yired for ZiL ¢;x ,i,
iI<i<m.

6. It is easy to show that there a1 2 no non-trivial real
vectors W, v such that

!xl ...x'{

Byxm Vax1=U.

Xm oo Xl

Using s theorem by Fiduccia [2], it follows that
2R a,xj. 1 <j < m requires m + n — 1 m/d opera-

Obvicusly, there is a considerable gap between the
~ provable lower bounds and the achievable upper
" bounds, We note that even if it should be the case that
&= 2, sur method will only yield an O(n!-5) upper
taund for ik, a,x}, 1 <j <n in contrast to the best
known lower bound O(n). We conclude with another

related open problem. Is there an algorithm for ex .ot
interpolation which requires less than O(n?) operatins?
That is, given (xo, Yo - (32, Y) can we compute
the {g;1Z}%, a,x,, 0<j<n} in less than Xn?) arith-
metics?
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