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Abstract. We consider auctions in which greedy algorithms, paired with first-price or critical-
price payment rules, are used to resolve multiparameter combinatorial allocation problems. We study
the price of anarchy for social welfare in such auctions. We show, for a variety of equilibrium
concepts, including Bayes–Nash equilibria, low-regret bidding sequences, and asynchronous best-
response dynamics, that the resulting price of anarchy bound is close to the approximation factor of
the underlying greedy algorithm.
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1. Introduction. The field of algorithmic mechanism design studies systems
that depend upon interaction with participants whose behavior is motivated by their
own goals, rather than those of a designer. Relevant solutions must therefore merge
the computational considerations of computer science with the game-theoretic insights
of economics. The focus of this paper is the multiparameter domain of combinatorial
allocation problems when the goal is to assign m objects to n agents in order to max-
imize the social welfare, subject to arbitrary downward-closed feasibility constraints.
This class includes all combinatorial auction problems that allow single-minded dec-
larations including multiunit combinatorial auctions, unsplittable flow problems, and
many others.

For the goal of optimizing social welfare, the celebrated Vickrey–Clarke–Groves
(VCG) mechanism addresses game-theoretic issues in a strong sense. In the absence of
collusion, it induces full cooperation (i.e., truthtelling) as a dominant strategy. How-
ever, the VCG mechanism requires that the underlying welfare maximization problem
be solved exactly. For all but the simplest settings, this optimality requirement is un-
desirable: exact maximization may be computationally intractable, it may require
an unrealistic amount of communication from the buyers, and the resulting winner
determination rules may be di�cult to explain to a typical participant. One way to
bypass these complexity issues is to design new, specially tailored mechanisms for
specific assignment problems. Indeed, there has been significant progress in designing
dominant strategy incentive compatible (DSIC) alternatives to the VCG mechanism.
While this venture has been largely successful in settings where agent preferences
are single-dimensional [1, 10, 29, 35], general settings have proven more di�cult. It
has been shown that the approximation ratios achievable by DSIC mechanisms and
their non-incentive compatible counterparts exhibit a large asymptotic gap for some
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problems [39, 17, 20, 18].
Alternatively, one might study classes of “natural” allocation algorithms, that

appear intuitive as auction allocation rules, with the hope that they have desirable
incentive properties when implemented as mechanisms. As it turns out, for many
combinatorial allocation problems, conceptually simple deterministic algorithms (e.g.,
greedy algorithms) meet or approach the best-known approximation factors subject to
computational constraints [29, 35, 10, 2]. These natural methods tend to be compu-
tationally e�cient and easy for bidders to understand, which are desirable properties
in auctions. Unfortunately, such algorithms are not, in general, DSIC [29, 8]. Rather
than abandoning these methods in favor of other, potentially more complex, mech-
anisms, we are pursuing an alternative approach. Namely, rather than striving for
dominant strategy truthfulness, it may be acceptable for a system to admit strategic
manipulation, so long as the designer’s objectives are met after such manipulation
occurs. To this end, we explore the performance of mechanisms at equilibria of bidder
behavior, given an appropriate model of beliefs. Broadly speaking, our motivating
question is: When can an algorithm be implemented as a mechanism that achieves
high social welfare at every equilibrium?1 And how robust are the resulting mecha-
nisms to variations of the equilibrium concept?

We demonstrate that for combinatorial allocation problems, any “greedy-like”
approximation algorithm can be converted into a mechanism that achieves nearly the
same approximation factor at every equilibrium of bidder behavior. Our analysis is
very general and applies to a range of di↵erent equilibrium concepts, including pure
and mixed Nash equilibria, Bayes–Nash (correlated) equilibria, no-regret equilibria,
and iterated myopic best response. We are thus able to decouple computational issues
from incentive issues for this class of algorithms, as one can design a greedy algorithm
without considering its economic implications, and then apply a straightforward pric-
ing scheme in order to achieve good performance at equilibrium.

Performance of games at equilibrium has been studied extensively in the algorith-
mic game-theory literature as the price of anarchy (POA) of a given game: the ratio
between the optimal outcome and the worst-case outcome at any equilibrium [38].2

Put into these terms, our goal is to convert an algorithm with approximation factor
c � 1 into a mechanism whose POA is not much larger than c.

This paper is a synthesis and revision of results in [32], [30], and the first author’s
thesis [31]. The paper is organized as follows. The remainder of this section outlines
our results and relates our work to recent papers in this area. Section 2 defines the
necessary concepts and applications for our results. Section 3 introduces the concept
of strong loser-independence (generalizing the loser-independence concept from [13])
which becomes the key property of greedy algorithms that we will exploit. Sections 4
and 5 analyze, respectively, POA results for first-price and critical-price mechanisms.
In sections 6 and 7 we consider solution concepts for repeated games, under regret
minimization and best-response dynamics, respectively. Section 8 concludes with
some open problems.

1Dominant strategy truthfulness of an approximation mechanism is conceptually stronger as a
solution concept than that of a mechanism that approximates the optimal social welfare at every
equilibrium. However, as noted elsewhere [14], a Bayes-Nash equilibrium is not, strictly speaking, a
relaxation of dominant strategy truthfulness. There exist truthful mechanisms whose approximation
ratios are not preserved at all Nash equilibria, such as the famous Vickrey auction.

2For the purpose of this paper, we shall not consider cost minimization problems. We note
that the POA concept was introduced in terms of cost minimization games but to the best of our
knowledge the only POA results for mechanism-induced games apply to maximization problems.
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622 BRENDAN LUCIER AND ALLAN BORODIN

1.1. Our results. The basic question of algorithmic mechanism design is this:
When can computationally e�cient algorithms be converted into mechanisms that
preserve approximation bounds when agents behave strategically? We address this
question with respect to social welfare maximization for a broad class of allocation
problems, through the lens of the POA. In the full information and Bayesian setting,
we study the POA for first-price and critical-price mechanisms derived from greedy
algorithms. Roughly speaking (and in contrast to results regarding approximation
and truthful mechanisms), we are able to show that there is often little or no loss
from the approximation ratio of a greedy algorithm to the POA of the corresponding
mechanism. We also study the long-term behavior of the use of these mechanisms
when used in repeated games.

One-shot auctions. We first consider one-shot auctions, in which the allocation
problem is resolved only once. Following Christodoulou, Kováes, and Shapira [14],
we focus our attention on the standard (in economics) incomplete information setting,
where the appropriate equilibrium concept is Bayes–Nash equilibrium. That is, we
assume that agents’ preferences are private, but drawn independently from commonly
known prior distributions, and that players apply strategies at equilibrium given this
partial knowledge. We pose the question: Can a given black-box approximation algo-
rithm be converted into a mechanism that approximately preserves its approximation
ratio at every Bayes–Nash equilibrium? We show that for a broad class of greedy
algorithms, the answer is yes.

Theorem (informal). Suppose A is a greedy c-approximate allocation rule
for a combinatorial allocation problem. Then the auction that uses A to choose
allocations, and uses a pay-your-bid payment scheme, has a Bayes–Nash POA of at
most c+O(c2/ec).

We also show that the small (and exponentially decreasing) loss in our POA
bound is necessary, by giving an example (for every c � 2) where the resulting POA
is at least c+ ⌦( c

e4c ).
We note that the mechanisms we consider are all prior-free. Thus, as in the full

information case, while we assume the existence of type distributions in order to model
rational agent behavior, our mechanism need not be aware of these distributions. In
the special case that each player’s type distribution is a point mass, Bayes–Nash
equilibrium reduces to standard Nash equilibrium. Our mechanisms therefore also
preserve approximation ratios at every (mixed or pure) Nash equilibrium of the full
information game. Our analysis also extends to the more general class of coarse
correlated equilibria. For the case of pure Nash equilibria, our POA bound improves
to c.

As is standard, our bounds on the Bayesian POA will assume that agent types
are distributed independently. However, we show that a weaker bound of O(c) holds
when agent types are drawn from an arbitrary distribution over the space of all type
profiles. This result applies to greedy algorithms that are non-adaptive, as described
in section 2.4. Thus, even if agent types are arbitrarily correlated, our mechanisms
yield performance at equilibrium asymptotically, matching that of the underlying
allocation algorithm.

A similar bound also applies to mechanisms that use the critical-price payment
scheme, which is a natural extension of second-price payments in single-item auctions.
Such a payment scheme charges each bidder the minimum bid at which he would
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have maintained his3 allocation. These bounds require a standard no-overbidding
assumption, which is that agents avoid bidding more than their value for any given
subset of items [14, 33, 44].

Theorem (informal). Suppose A is a greedy c-approximate allocation rule
for a combinatorial allocation problem. Then, under the assumption that agents do
not overbid, the auction that uses A to choose allocations, and uses a critical-price
payment scheme, has a Bayes–Nash POA of at most c+ 1.

We also show that the extra +1 term is necessary, by giving an example for every
c � 2 in which the resulting POA is exactly c + 1. As with the first-price results,
our bounds extend to coarse correlated equilibria, and a bound of O(c) holds if agent
valuations can be correlated. Furthermore, we show that a slight modification to the
mechanism allows us to replace the no-overbidding assumption with the (conceptually
weaker) assumption that bidders avoid weakly dominated strategies.

Repeated auctions. Our bounds on e�ciency at equilibrium do not explicitly
model the manner by which agents reach equilibrium, or impose upon the agents
any computational constraints whatsoever. We simply posit that equilibria (or ap-
proximate equilibria4) are predictive of the behavior of rational agents in high-stakes
auctions. However, in settings where auctions are explicitly repeated, one might nat-
urally model the dynamics under which bidder behavior evolves.

We will therefore also consider a repeated-game variant of combinatorial allocation
problems, in which an auction problem is resolved multiple times with the same objects
and bidders. Perhaps the most well-studied modern examples of repeated auctions are
auctions for advertising spaces or slots [21], but this model also applies to bandwidth
auctions (such as the FCC spectrum auction), airline landing rights auctions [15],
etc. In these settings a mechanism for the (one-shot) auction problem corresponds to
a repeated game to be played by the agents. Rather than view a repeated auction
as an extensive-form game, we consider models of limited rationality that attempt
to capture natural bidding behavior. We study two such models: external regret
minimization and asynchronous best-response dynamics.

In the first model, agents can play arbitrary sequences of strategies in the re-
peated auction, under the assumption that they obtain low regret relative to the best
fixed strategy in hindsight. More precisely, for each bidder, the di↵erence between the
average utility obtained by the bidder and the average utility that would have been
obtained by the best single declaration in hindsight must tend to 0 as the number
of auction rounds increases. Under the assumption that bidders are able to mini-
mize external regret, our goal is to design an auction mechanism that achieves an
approximation to the optimal social welfare on average over su�ciently many rounds
of the repeated auction. This is precisely the problem of designing a mechanism with
bounded price of total anarchy, as introduced by Blum et al. [6]. As observed by
Blum and Mansour [7] and Roughgarden [40], in the full information setting, POA
with respect to coarse correlated equilibria is equal to the total POA. Hence, the
bounds stated above for coarse correlated equilibria apply also to the total POA. We

3The masculine pronouns he, his, and him should be taken to refer to either male or female
bidders.

4All of our bounds on social e�ciency degrade gracefully when agents apply strategies in approx-
imate equilibrium. Namely, whenever we convert a c-approximate allocation algorithm into a mecha-
nism achieving, say, f(c) POA, the same proof shows that the mechanism achieves at least (and often
better) an f(c+ �)-approximation at every (1 + �)-approximate equilibrium. Notably, if c � 1 + �,
the c-approximation for pure equilibria of the first-price mechanism remains a c-approximation at
every approximate equilibrium.
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624 BRENDAN LUCIER AND ALLAN BORODIN

further show that for the greedy mechanisms we consider, regret-minimizing strate-
gies can be computed e�ciently, assuming a natural representation of the bidders’
valuation functions.

Theorem (informal). Suppose A is a greedy c-approximate allocation rule
for a combinatorial allocation problem. Then the auction that uses A to choose
allocations, and charges critical payments, achieves a (c + 1)-approximation to the
optimal welfare when agents apply regret-minimizing strategies. Moreover, a regret-
minimizing strategy can be implemented in time polynomial in the number of XOR
bids5 used to represent an agent’s valuation.

In the second model, we assume that agents choose strategies that are myopic
best responses to the current strategies of the other agents. We model this behavior
as follows: On each auction round, an agent is chosen uniformly at random, and
that agent is given the opportunity to change his strategy to the current myopic
best response. As in the regret-minimization model, our goal is to design auction
mechanisms that achieve approximations to the best possible social welfare on average
over su�ciently many auction rounds, with high probability over the random choices of
bidders to update. This is the concept of the price of (myopic) sinking, as introduced
by Goemans, Mirrokni, and Vetta [23].

We conjecture that any greedy c-approximate allocation rule can be implemented
as a mechanism with price of sinking O(c). As partial progress toward this conjec-
ture, we design mechanisms tailored to two particular combinatorial allocation prob-
lems: the unrestricted combinatorial auction problem and the cardinality-restricted
combinatorial auction. Each mechanism has price of sinking O(c), where c is the
approximation factor of the best-known algorithm.

We recall that one method for bounding the price of sinking is to prove that
there exists an equilibrium state that is reachable from any declaration profile by
some polynomial-length sequence of best-response steps. This would imply that an
equilibrium state would be reached with high probability after exponentially many
steps. We do not take this approach, but rather prove that the average social welfare
obtained after a polynomial number of steps will approximate the optimal welfare
with high probability.

1.2. Related work. The seminal paper in algorithmic game theory, and more
specifically algorithmic mechanism design, is that of Nisan and Ronen [37]. The basic
issue introduced in [37] is to reconcile the competing demands for revenue and social
welfare optimization with the need for computational e�ciency in the context of self-
interested (i.e., selfish) agents. The two most studied solution concepts in algorithmic
game theory are truthfulness (i.e., incentive compatability) and behavior at (all) equi-
libria (i.e., the POA concept). Initial POA results for games were first introduced to
algorithmic game theory in the seminal papers by Koutsoupias and Papadimitriou
[28], Papadimitriou [38], and Roughgarden and Tardos [42]. Christodoulou, Kovács,
and Schapira [14] initiated the study of the POA in the Bayesian setting. Whereas
the emphasis of algorithmic mechanism design has been to consider the approxima-
tions achievable by truthful mechanisms, to the best of our knowledge, our conference
paper [32] was the first to consider this constructive aspect of mechanism design
and POA.

Since the initial conference version of this work, there has been significant progress
on the understanding of the POA of mechanisms in various auction settings. Some

5Equivalently, the minimum number of (subset, value) pairs (Si, wi) needed so that valuation v
satisfies v(T ) = maxi : Si✓T {wi}.
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examples include the generalized second-price auction for sponsored search ads [12],
simultaneous single-item auctions [14, 26, 5, 22], and multiunit auctions [34, 16]. A
framework unifying much of this work was proposed by Syrgkanis and Tardos [44].

Chekuri and Gamzu [13] defined “loser-independent algorithms,” and in the
conference version of our paper [32] we argued that the basic property of greedy algo-
rithms that we were exploiting was a multiparameter version of loser-independence.
In the first author’s thesis [31], a strengthening of loser-independence, called strong
loser-independence, was introduced to simplify the proofs. Strong loser-independence
will be the basic property of greedy algorithms we will use in this paper. Loser-
independence is conceptually related to the concept of smoothness, which was in-
troduced by Roughgarden [40] as a general way to derive POA results for one-shot
and repeated games (without reference to mechanisms that derive games). Loser-
independence has been shown to be di↵erent from this original notion of smoothness
[31]. However, alternative notions of smoothness defined by Lucier and Paes Leme
[33] and Syrgkanis and Tardos [44] can also be used to derive results similar to our
results. In particular, Syrgkanis and Tardos use their smoothness condition to derive
many POA results for allocation mechanisms, including those derived from greedy
c-approximation algorithms. Their result for the (noncorrelated) mixed Bayesian and
coarse correlated equilibria improved upon our conference results: as in our current
paper, they show that the resulting POA approaches c with a term exponentially
decreasing in c. In particular, they show that the POA is never worse than c + .58.
As we will show in section 3.1, our application of strong loser-independence can be
interpreted as a proof of smoothness.

2. Preliminaries.

2.1. Feasible allocation problems. We consider a setting in which there are
n agents and a set M of m objects. An allocation to agent i is a subset xi ✓ M .
A valuation function v : 2M ! R assigns a value to each allocation. We assume
that valuation functions are monotone, meaning v(S)  v(T ) for all S ✓ T ✓ M ,
and normalized so that v(;) = 0. A valuation function v is single-minded if there
exists a set S ✓ M and a value y � 0 such that for all T ✓ M, v(T ) = y if S ✓ T
and 0 otherwise. A valuation profile v is a vector of n valuation functions, one for
each agent. In general we will use boldface to represent vectors, subscript i to denote
the ith component, and subscript �i to denote all components except i, so that
v = (vi,v�i). An allocation profile x is a vector of n allocations. The goal in our
social welfare maximization problems is to choose an allocation for each agent in order
to maximize the sum of agent values.

A combinatorial allocation problem is defined by a set of feasible allocations, which
is the set of permitted allocation profiles. We further assume in combinatorial alloca-
tion problems that this feasibility constraint is separable, meaning that if x is feasible,
then (;,x�i) is also feasible6 for all i. Note that separability is a weaker assumption
than the standard downward-closure property of packing problems, which would stip-
ulate that if x is feasible, then (yi,x�i) is also feasible for all yi ✓ xi. An allocation
rule A assigns to each valuation profile v a feasible outcome A(v); we write Ai(v) for
the allocation to agent i. An allocation rule is componentwise monotone if it satisfies
the following property for every agent i:

If vi(S) < ṽi(S), vi(T ) = ṽi(T ) 8T 6= S, and Ai(vi,v�i) = S, then Ai(ṽi,v�i) = S.

6We note that many “public” allocation problems, such as the combinatorial public projects
problem [39], are not separable.
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626 BRENDAN LUCIER AND ALLAN BORODIN

We will tend to write A for both an allocation rule and an algorithm that implements
it. We will sometimes abuse notation and use x for an allocation rule, rather than a
specific allocation.

Each agent i 2 [n] has a private valuation function vi, his type, which defines
the value he attributes to each allocation. The social welfare obtained by alloca-
tion profile x, given type profile v, is SW (x,v) =

P
i vi(xi). We write SWopt(v)

for max
x

{SW (x,v)} and say that algorithm A is a c-approximation algorithm7 if
SW (A(v),v) � 1

cSWopt(v) for all v.
A type profile v and an allocation rule A for a combinatorial allocation problem

define critical values, ✓i(S,v�i), for any agent i and set S ✓M . The value ✓i(S,v�i)
is the minimum value that agent i could have for set S and still win S, assuming the
other agents have profile v�i. That is,

✓i(S,v�i) = inf{z : 9vi such that vi(S) = z and Ai(vi,v�i) = S}.

We note that this notion of critical values is defined even if it is not the case that
increasing one’s value for a set necessarily increases the probability of obtaining that
set. However, most of the mechanisms we consider in this work do satisfy this mono-
tonicity property, which motivates the terminology of a critical price.

2.2. Mechanisms. A direct revelation mechanism M(A, P ) is composed of an
allocation rule A and a payment rule P that assigns a vector of n payments to each
declared valuation profile. The mechanism proceeds by eliciting a valuation profile d
from each of the agents, called the declaration profile. It then applies the allocation
and payment rules to d to obtain an allocation and payment for each agent. Crucially,
we do not assume that d is equal to v. We will write SW (d) for SW (A(d),v) when
the allocation rule and type profile are clear from the context.

We will be concerned with two di↵erent payment rules: first price and critical
price. In a first-price mechanism, an agent is charged their declared bid di(S) for any
allocated set S. For notational convenience, we let M1(A) denote the mechanism
using allocation rule A and the first-price payment rule. In the critical-price payment
rule, an agent is charged his critical value ✓i(S,d�i) for any allocated set S. We
will let M2(A) denote the mechanism using allocation rule A and the critical-price
payment rule.

2.3. Equilibria of one-shot auctions. The utility of agent i in mechanism
M = (A, P ), given declaration profile d and type profile v, is ui(d; vi) = vi(Ai(d))�
Pi(d). We will often omit the dependence on vi when it is clear from the context,
and write simply ui(d). We say that declaration di weakly dominates d0i if, for all
d�i, ui(di,d�i) � ui(d0i,d�i), and that there exists at least one d�i for which the
inequality is strict.

We consider a Bayesian setting in which the true types of the agents are not
fixed, but are rather drawn from a known probability distribution F over the set
of valuation profiles. We first assume that F = F1 ⇥ · · · ⇥ Fn is the product of
independent distributions, where Fi(vi) is the probability that agent i has type vi.
(Later we will also consider correlated distributions over type profiles.) We write
SWopt(F) for Ev⇠F

[SWopt(v)].
A bidding strategy for agent i is a function bi that maps a type vi to a distribution

over declarations for agent i. We think of bi(vi) as the (randomized) bidding strategy
employed by agent i given that his true type is vi. We will abuse notation slightly
and also write bi(vi) for the random variable representing a declaration chosen from

7Our convention will be to have approximation ratios c � 1.
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the corresponding distribution. We write b(v) = b1(v1) ⇥ · · · ⇥ bn(vn) for the (dis-
tribution over) declaration profiles resulting from applying the bid functions in b to
type profile v. The strategy profile b forms a (mixed) Bayes-Nash equilibrium (BNE)
if, for every i 2 [n] and every vi in the support of Fi, agent i maximizes his expected
utility by making a declaration drawn from distribution bi(vi). That is, for each agent
i, each possible type vi, and every declaration d0i,

E
v�i⇠F�i [ui(b(v))] � E

v�i⇠F�i [ui(d
0
i,b�i(v�i))].

Note that since there is no strictly profitable deviation to a fixed strategy d0i, there
also cannot be any profitable deviation to a distribution !0

i over declarations.
For a mechanism M = (A, P ), we will write SWM(F,b) to mean the expected so-

cial welfare given type distribution F and strategy profile b, i.e., E
v⇠F

[
P

i

vi(Ai(b(v)))].
The (mixed) Bayesian POA (BPOA) of mechanism M is defined as

sup
F,b

SWopt(F)

SWM(F,b)
,

where the supremum is over all type distributions F and mixed BNE b for F. In
other words, the BPOA of M is the worst-case ratio between the expected welfare at
BNE and the expected optimal welfare.

We can further extend the definition of BNE to allow a correlated distribution
over type profiles. The definition for correlated BNE and correlated BPOA is then the
same as the above definitions, where we would no longer assume that F is a product
of independent distributions.

Returning to the case in which F is a product distribution, a number of special
cases deserve mention. When all type distributions are point masses (i.e., each agent’s
type is determined), a BNE is referred to as a (mixed) Nash equilibrium. The POA
of a mechanism M is defined analogously to the BPOA, but with respect to fixed-
type profiles and mixed Nash equilibria. It follows that the BPOA is always at least
the POA for a given mechanism. A BNE (or Nash equilibrium) is called pure if its
constituent bidding strategies are deterministic. In general, a pure Nash equilibrium
may not exist for a given mechanism and type profile; see Appendix A.

One can generalize mixed Nash equilibria by relaxing the assumption that the
declaration distributions are independent. That is, one might allow b(v) to be an
arbitrary distribution over declarations, rather than a product distribution. A distri-
bution ! over declaration profiles is a coarse correlated equilibrium for type profile v
if, for all i and all declaration distributions !0

i,

(2.1) E
d⇠![ui(d)] � E

d⇠(!0
i,!�i)[ui(d)].

Note that when the agent declaration distributions are independent, the course
correlated equilibrium is equivalent to a mixed Nash equilibrium. We define the
analogous POA concepts; it follows that the pure POA is at most the mixed POA,
which in turn is at most the coarse correlated POA.

2.4. Greedy allocation rules. We describe a special type of allocation rule,
which we will refer to as greedy allocation rules. These are motivated by the priority
framework in Borodin, Nielsen, and Racko↵ [9] and the monotone greedy algorithms
of Mu’alem and Nisan [35], extended to be applied to combinatorial auctions as in
Borodin and Lucier [8]. We begin with some definitions. A priority function is a
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628 BRENDAN LUCIER AND ALLAN BORODIN

Priority algorithm

Input: Declaration profile d = d1, . . . , dn.
1. Fix a priority function r. Set N = ; and xi = ; for all i 2 [n].
2. Repeat until N = [n]:
3. Choose (i, S) 2 argmaxi,S{r(i, S, di(S)) | i 62 N, (S,x�i) is feasible}
4. Set xi = S; add player i to N
5. return x = (x1, . . . , xn)

Fig. 1. The framework for a non-adaptive priority algorithm.

function r : [n] ⇥ 2M ⇥ R ! R. We think of r(i, S, v) as the priority of allocating
S ✓ M to player i when vi(S) = v. We say that r is monotone if it is nondecreasing
in v and monotone nonincreasing in S with respect to set inclusion.

We consider two types of greedy allocation algorithms. A non-adaptive greedy
allocation algorithm A is an allocation algorithm as defined in Figure 1. This algo-
rithm is specified by a fixed rank function r, and proceeds by repeatedly allocating
the feasible (agent, set) pair with maximum rank. We say that A is monotone when
the priority function r is monotone. We assume that ties in step 3 are broken in an
arbitrary but fixed manner. That is, we assume that the priority function is a 1-1
function inducing a total ordering.

A non-adaptive algorithm fixes a single priority function that is used throughout
its execution. By constrast, an adaptive greedy allocation algorithm can change its
priority function on each iteration, depending on the partial allocation formed on the
previous iterations.

2.5. Applications. We now describe some applications of greedy algorithms for
particular combinatorial allocation problems.

Combinatorial auctions. The general combinatorial auction problem is defined by
the feasibility constraint that no two allocations can intersect. Lehmann, O’Callaghan,
and Shoham [29] show that the (non-adaptive) greedy allocation rule with r(i,S,v)= vp

|S|

achieves a
p
2m approximation ratio for combinatorial auctions.

Cardinality-restricted combinatorial auctions. In the special case that players’
desires are restricted to sets of size at most s, the non-adaptive greedy algorithm with
r(i, S, v) = v is s-approximate assuming single-minded agents. This translates to a
(s+ 1)-approximate algorithm for general (i.e., multiminded) agents.

Multiple-demand unsplittable flow problem. In the unsplittable flow problem we
are given an undirected graph with edge capacities. The objects are the edges, and
each valuation function is such that agent i has some value v(s, t) for being given
a path from s to t. Each agent additionally specifies a fractional demand di 2 [0, 1]
corresponding to a desired amount of flow to send along the given path. An allocation
is feasible if the total allocated flow along each edge is no more than its capacity. Let
B be the minimum edge capacity. A primal-dual algorithm, which is an adaptive
greedy allocation rule, obtains an O(m1/(B�1)) approximation for any B > 1 [10].

Convex bundle auctions. In a convex bundle auction, M is the plane R2, and
allocations must be nonintersecting compact convex sets. We suppose that agents
declare valuation functions by making bids for such sets. Given such a collection of
bids, the aspect ratio, R, is defined to be the maximum diameter of a set divided by the
minimum width of a set. A non-adaptive greedy allocation rule using a geometrically
motivated priority function yields an O(R4/3)-approximation, and alternative greedy
algorithms yield better approximation ratios for special cases, such as rectangles [2].
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Max-profit unit job scheduling. In this problem, each bidder has a job of unit time
to schedule on one of multiple machines. A bidder has various windows of time of the
form (release time, deadline, machine) in which his job could be scheduled, with a
potentially di↵erent profit resulting from each window. The profits and windows are
private information to each bidder. The goal of the mechanism is to schedule the jobs
to maximize the total profit. The greedy algorithm that orders bids by value obtains
a 3-approximation, and is symmetric with respect to agents and objects.

Unlike the previous examples, for the case of single-minded bidders, there is an
optimal dynamic programming algorithm that runs in time O(n7) [3]. Since this
algorithm solves the problem optimally, it can be used to implement the incentive
compatible VCG mechanism in polynomial time. In this case, the resulting POA
for the greedy algorithm is appealing primarily due to its linear runtime and simple
allocation rule.

3. Strong loser-independence. Chekuri and Gamzu [13] introduced a prop-
erty known as loser-independence for combinatorial allocation algorithms in single-
parameter domains. They define an algorithm for a combinatorial allocation problem
to be loser-independent if, whenever Ai(di,d�i) = Ai(d0i,d�i) = ; for some i, d�i, di,
and d0i, then it must be that A(di,d�i) = A(d0i,d�i). That is, if a “losing” agent (i.e.,
an agent who is allocated no items) modifies his declaration in such a way that he
still receives no items, this cannot a↵ect the outcome of algorithm A. Note that loser-
independence is a condition on declaration profiles, rather than on bidding functions,
since the loser-independence notion is purely algorithmic and is not a condition on
equilibria. In our results we will make use of a stronger property of greedy algorithms,
which we call strong loser-independence.

Definition 3.1. An allocation rule A is strongly loser-independent if, whenever
d and d0 satisfy A(d) 6= A(d0), there exists an agent i and set S 6= ; such that
di(S) 6= d0i(S) and either Ai(d) = S or Ai(d0i,d�i) = S.

Roughly speaking, if A is a strongly loser-independent algorithm, then whenever a
valuation profile changes from d to d0 via modifications to “losing bids” (i.e., an agent
i’s declared value for sets that are not allocated to him, when others bid according to
d�i), algorithm A will return the same outcome on inputs d and d0. We note that our
definition requires that either Ai(d) = S or Ai(d0i,d�i) = S, rather than Ai(d0) = S.
The intuition is that we think of “losing bids” as being losers with respect to the
original declaration profile d.

The property of strong loser-independence strengthens the definition of loser-
independence due to Chekuri and Gamzu in two ways. First, we extend from single-
parameter settings to multiple-parameter settings by considering losing bids rather
than losing agents. Second, we require that the algorithm outcome be una↵ected if
multiple agents simultaneously modify losing bids.

It is clear from the definitions that all strongly loser-independent algorithms are
loser-independent (i.e., by considering the case when d and d0 di↵er only on the
declaration of a single agent). However, not all loser-independent algorithms are
strongly loser-independent, even in single-minded domains. For example, consider
the combinatorial auction problem and suppose that A is an algorithm that optimizes
social welfare exactly and breaks ties consistently. Then A is loser-independent, since
a losing agent’s bid does not a↵ect the optimal allocation. However, A is not strongly
loser-independent, as the following instance shows. Consider an auction of two items
{a, b} to three bidders. If the (single-minded) bidder declarations are d1({a, b}) = 10,
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630 BRENDAN LUCIER AND ALLAN BORODIN

d2({a}) = 3, and d3({b}) = 3, then the outcome is that agent 1 wins his desired set.
On the other hand, if the bidder declarations are given by d0 where d01({a, b}) = 10,
d02({a}) = 6, and d03({b}) = 6, then the outcome changes: agents 2 and 3 win their
desired sets. However, d and d0 do not di↵er in their declarations for any sets allocated
by A(d), A(d01,d�1), A(d02,d�2), or A(d03,d�3), as agent 1 wins his desired set in each
of these four cases. This contradicts the definition of strong loser-independence.

As we now show, all greedy algorithms satisfy the strong loser-independence
property.

Lemma 3.2. Every (monotone) adaptive greedy algorithm is (componentwise
monotone and) strongly loser-independent.

Proof. The monotonicity property follows immediately when the priority function
in the greedy algorithm is a monotone function.

Let A be an adaptive greedy allocation rule, and choose any d and d0 such that
A(d) 6= A(d0). We will show that there exists some i and S such that di(S) 6= d0i(S)
and either Ai(d) = S or Ai(d0i,d�i) = S.

Recall the definition of an adaptive greedy algorithm, and consider the iterations
of A on inputs d and d0. Let k be the first iteration in which the allocation of A
di↵ers on these two inputs. Suppose that A allocates set U to agent ` on iteration k
when the input is d, and allocates T to agent j on iteration k when the input is d0.

For each iteration q < k, write iq for the agent allocated to by A (on either input
profile) and Sq for the set allocated to iq. Note that if diq (Sq) 6= d0iq (Sq) for any q < k,
then we have the desired result with i = iq and S = Sq. We can therefore assume
that diq (Sq) = d0iq (Sq) for all q < k. This implies that the bids resolved by A are
identical on all iterations preceding k on inputs d and d0, and therefore the values of
ranking functions used in each iteration up to k must be identical for inputs d and d0.
Write rq for the ranking function used in iteration q for each q  k. Thus, since the
allocation on iteration k changed from choosing set U for agent ` to choosing set T for
agent j, it must be that either rk(`, U, d`(U)) 6= rk(`, U, d`

0(U)) or rk(j, T, dj(T )) 6=
rk(j, T, dj

0(T )). This implies that either d`(U) 6= d0`(U) or dj(T ) 6= d0j(T ).
If d`(U) 6= d0`(U), then we have the desired result with i = ` and S = U , since

A`(d) = U . We can therefore assume that d`(U) = d0`(U) and dj(T ) 6= d0j(T ). Con-
sider now the behavior of algorithmA on input (d0j ,d�i). We claim thatAj(d0j ,d�i) =
T . Note that this implies the desired result with i = j and S = T . To prove the claim,
recall that diq (Sq) = d0iq (Sq) for all q < k. Thus, for each q < k and each feasible set
S that could be allocated to agent j on iteration q,

rq(iq, Sq, diq (Sq)) = rq(iq, Sq, d
0
iq (Sq)) > rq(j, S, d

0
j(S)),

sinceA allocates Sq to iq on input d0. We conclude that, on input (d0j ,d�i), A allocates
Sq to agent iq on each iteration q < k. On iteration k, we have rk(j, T, d0j(T )) >
rk(j, T 0, d0j(T

0)) for any feasible T 0 6= T (since A allocates T to j on input d0) and

rk(j, T, d
0
j(T )) > rk(`, U, d

0
`(U)) = rk(`, U, d`(U)) � rk(i, S, di(S))

for any feasible i 6= j, due to our assumption that d0`(U) = d`(U) and the fact that A
allocates U to ` on iteration k for input d. We therefore conclude thatAj(d0j ,d�i) = T
as required.

We next explore an implication of a strongly loser-independent algorithm A being
a worst-case c-approximation. If A is a c-approximate algorithm, then (on any input)
the sum of the declared values for its output profile approximates the sum of the
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EQUILIBRIA OF GREEDY COMBINATORIAL AUCTIONS 631

declared values for the optimal allocation. We now show that it also approximates
the sum of the critical values of the optimal allocation profile.

Lemma 3.3. If A is a c-approximate strongly loser-independent algorithm, then
for any type profile v and allocation profile y,

P
i2[n] vi(Ai(v)) � 1

c

P
i2[n] ✓i(yi,v�i).

Proof. Choose any ✏ > 0. For all i, let v0i be the single-minded declaration for set
yi at value ✓i(yi,v�i) � ✏. Let v⇤i be the pointwise maximum of v0i and vi. That is,
for all S ✓ M , v⇤i (S) = max{vi(S), v0i(S)}. By definition of critical prices, we have
that Ai(v⇤i ,v�i) = Ai(v) for all i, and furthermore v⇤i (Ai(v)) = vi(Ai(v)). Since A
is strongly loser-independent, we must therefore have A(v) = A(v⇤). Since A is a
c-approximation, we conclude that SW (x(v),v) = SW (x(v⇤),v⇤) � 1

cSW (y,v⇤) �
1
c

P
i2[n] ✓i(yi,v�i)� n✏. The result follows by taking the limit as ✏! 0.

For brevity, for the remainder of this paper we will say “monotone strongly loser-
independent” to mean both strongly loser-independent and componentwise
monotone.8

3.1. Applying strong loser-independence. Strong loser-independence is a
strictly algorithmic concept devoid of game-theoretic considerations. Our general
approach will be to derive POA results for any mechanism that uses a strongly loser-
independent c-approximation A as its allocation algorithm. To do so, we will be
using Lemma 3.3 in conjuction with the assumption that a given bid profile is an
equilibrium.

At a high level, our argument will be as follows. For each pricing rule and equi-
librium concept, equilibrium will imply an inequality of the form

vi(yi)  � · ✓i(yi,d�i) + µ · vi(xi(d)),

where y is an optimal allocation. (For Bayesian equilibria, these terms will be taken
in expectation over the valuation profile v and the corresponding equilibrium dec-
larations d = b(v).) This allows us to charge the optimal gain for each agent to
its critical value and its welfare from the algorithm. We then exploit Lemma 3.3 to
convert this bound into a relationship between the optimal welfare and the welfare
at equilibrium. To make this more specific, in our pure Nash equilibrium result for
a first-price mechanism (Theorem 4.3), we show the following (somewhat stronger)
inequality:

vi(yi)  ✓i(yi,d�i) + vi(xi(d))� di(xi(d)).

It will then follow that

X

i

vi(yi) 
X

i

✓i(yi,d�i) +
X

i

vi(xi(d))�
X

i

di(xi(d))

 (c� 1)
X

i

di(xi(d)) +
X

i

vi(xi(d)).

In other words, the high-level approach is to charge an agent’s welfare in the
optimal outcome against his welfare at equilibrium plus the welfare of other “price-
setting” agents. This approach is similar to the smoothness argument as formulated
by Syrgkanis and Tardos [44]. However, there is a di↵erence in our approach. The
smoothness condition in [44] is tailored to allocation mechanisms and asserts the

8For pure Nash equilibrium POA results, if we assume no over bidding, we do not need mono-
tonicity, but it is necessary for all our other results.
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632 BRENDAN LUCIER AND ALLAN BORODIN

existence of some di (for each player i) satisfying such an inequality, whereas we
are assuming that d is an equilibrium. The benefit of their immediate reduction to
smoothness is that their POA results for pure equilibria carry over immediately to
BPOA. However, this prohibits establishing certain tight bounds; for example, in the
first-price mechanism we show that the pure POA is c, which cannot be achieved via
smoothness since this bound does not hold for the BPOA.

4. First-price mechanisms. In this section we analyze greedy algorithms
paired with a first-price payment scheme. More precisely (with the exception of
results relating to correlated Bayesian equilibria, where we will consider more spe-
cific greedy allocations), given a strongly loser-independent algorithm A, we will be
studying the performance of the first-price mechanism M1(A) at equilibrium.

Our first step will be to show that a utility-maximizing declaration of an agent
never involves overbidding on a set that he may possibly be allocated. This will imply
that agents do not employ overbidding strategies at equilibrium.9 It may appear
at first glance that any strategy that recommends overbidding on sets is obviously
dominated for any allocation algorithm, since winning any bid larger than one’s true
value leads to negative utility. However, we must also show that an agent cannot
find it advantageous to overbid on some set S in order to a↵ect his probability of
winning some other set T . We will demonstrate that such situations cannot occur
when allocations are chosen by a strongly loser-independent algorithm.

For a type vi and a declaration di, we will write di for the declaration defined as
di(S) = min{vi(S), di(S)}. That is, di agrees with di, except that the declared value
of each set can be at most the true value for that set. Note that di = di precisely if
di does not overbid on any set.

We now show that any declaration di that overbids on a set that could potentially
be won is weakly dominated by strategy di.

Lemma 4.1. For any monotone strongly loser-independent allocation rule A, val-
uation vi, and declaration profile d, we have ui(d)  ui(di,d�i). Moreover, the in-
equality is strict when di(A(d)) > vi(A(d)).

Proof. Let S = Ai(d). Suppose first that di(S) > vi(S). Then ui(d) = vi(S) �
di(S) < 0. Since vi(T ) � di(T ) � 0 for every set T , this implies that ui(di,d�i) >
ui(d), as required.

Next suppose that di(S)  vi(S), so that di(S) = di(S). We claim thatAi(di,d�i)
= S. Suppose not, for contradiction. Then we can construct a sequence of declara-
tions (d1, d2, . . . , dk) with d1 = di and dk = di such that adjacent declarations di↵er
only on a single set and declared values only decrease. Suppose j is minimal such that
Ai(dj ,d�i) 6= S; such a j > 1 must exist since, by assumption, Ai(di,d�i) 6= S. Then
(a) dj�1 and dj di↵er only on the value assigned to some set T , (b) dj�1(T ) > dj(T ),
(c) Ai(dj�1,d�i) = S, and (d) Ai(dj ,d�i) 6= S. Strong loser-independence then im-
plies that Ai(dj ,d�i) = T . However, the fact that dj�1(T ) > dj(T ) then contradicts
the componentwise monotonicity of A.

We conclude by contradiction that Ai(di,d�i) = S. Since S is also A(d), we have
ui(d) = vi(S)� di(S) = ui(di,d�i) as required.

9Our POA bounds only require the weaker property that the expected bid of an agent on the
set he is allocated is at most the expectation of his true value for the set he is allocated. That is,
Ev,d=b(v)[di(A(d))]  Ev,d=b(v)[vi(A(d))], where b is the equilibrium and A is the allocation rule.
This weaker property follows directly from the first-price payment rule, since the expected utility of
each agent must be nonnegative at equilibrium. We will nevertheless establish the stronger property
of no-overbidding at equilibrium, as it may be of independent interest.
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An immediate corollary is that if bi is a bidding strategy, and there exists a
type vi and set S such that (bi(vi))(S) > vi(S), then bi is weakly dominated by the
strategy bi. Moreover, bi is strictly better, in terms of utility, under any distribution
of declarations in which agent i wins set S with positive probability. We conclude
that at any BNE of mechanism M1(A), no player will overbid on a set that he wins
with positive probability.

Corollary 4.2. For any monotone strongly loser-independent allocation rule A,
BNE b, type vi, and set S, if Pr

v�i⇠F�i [Ai(b(v)) = S] > 0, then (bi(vi))(S)  vi(S).

4.1. Pure Nash equilibria. We are now ready to bound the POA of M1(A).
We begin with a result for pure Nash equilibria, rather than the fully general BNE
case.

Theorem 4.3. Suppose A is a c-approximate monotone strongly loser-indepen-
dent allocation rule for a combinatorial allocation problem. Then the POA of M1(A)
is at most c.

Proof. Fix type profile v and suppose that b forms a pure Nash equilibrium.
Since the Nash equilibrium is pure, we will write d = b(v) for notational convenience.
Let y be an optimal allocation for v, and let x(·) denote the allocation rule for A.
Lemma 3.3 implies

(4.1)
X

i

di(xi(d)) �
1

c

X

i

✓i(yi,d�i).

Choose arbitrarily small ✏ > 0 and let d0i be the single-minded declaration for set yi
at value ✓i(yi,d�i) + ✏. Then xi(d0i,d�i) = yi (from the definition of critical values)
and hence ui(d0i,d�i) = vi(yi)�✓i(yi,d�i)� ✏. Since d is a Nash equilibrium, it must
be that

vi(yi)� ✓i(yi,d�i)� ✏ = ui(d
0
i,d�i)

 ui(di,d�i)

= vi(xi(d))� di(xi(d)).

Summing over all i and applying (4.1) and Corollary 4.2, we have

X

i

vi(yi) 
X

i

✓i(yi,d�i)�
X

i

di(xi(d)) +
X

i

vi(xi(d)) + n✏

 (c� 1)
X

i

di(xi(d)) +
X

i

vi(xi(d)) + n✏

 c
X

i

vi(xi(d)) + n✏,

which, taking ✏! 0, implies

SW (x(d),v) =
X

i

vi(xi(d))

� 1

c

X

i

vi(yi)

=
1

c
SWOPT (v)

as required.
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634 BRENDAN LUCIER AND ALLAN BORODIN

The power of Theorem 4.3 is marred by the fact that, for some problem instances,
the mechanism M1(A) is not guaranteed to have a pure Nash equilibrium. An exam-
ple is given in Appendix A.

4.2. Bayes–Nash equilibria. We are now ready to bound the mixed Bayesian
POA for mechanism M1(A).

Theorem 4.4. Suppose A is a monotone strongly loser-independent allocation
rule for a combinatorial allocation problem. Then the Bayesian POA of M1(A) is at
most10 c

1�e�c for every independent type distribution F.

We note that c
1�e�c  c

�
1 + 2

ec

�
= c+O(c/ec). The remainder of this subsection

is dedicated to the proof of Theorem 4.4.
Fix a product distribution F over type profiles and let b(·) be a (possibly mixed)

Bayes–Nash equilibrium with respect to F. Choose some type declaration v and let
yv denote an optimal allocation for v. Following the proof of Theorem 4.3, we would
like to bound the expected value of ✓i(yvi ,d�i) with respect to vi(yvi ) and ui(b(v))
for each i. We encapsulate this bound in Lemma 4.6 and Corollary 4.7, below. This
will allow us to use Lemma 3.3 to obtain a relation between the expected welfare of
A and the expected optimal welfare; this relationship is given in Lemma 4.5.

Lemma 4.5. Suppose that A is a c-approximate monotone strongly loser-indepen-
dent allocation rule and that there exist constants � � 0 and �i 2 [0, c] for i 2 [n]
such that, whenever b is a Bayes–Nash equilibrium for M1(A), it is the case that for
all i, all vi, and all S ✓M ,

E
v�i [✓i(S,b�i(v�i))] � �vi(S)� �iEv�i [ui(b(v))].

Then E
v

[SW (A(b(v)),v)] � �
cEv

[SWOPT (v)].

Lemma 4.6. Suppose that b is a Bayes–Nash equilibrium for mechanism M1(A)
and distribution F. Then for all i, all vi, and all S ✓M ,

E
v�i [✓i(S,b�i(v�i))] � vi(S)�

✓
1 + ln

vi(S)

E
v�i [ui(b(v))]

◆
E

v�i [ui(b(v))].

Before proving Lemmas 4.5 and 4.6, let us show how they imply Theorem 4.4.
We first note the following simple corollary of Lemma 4.6.

Corollary 4.7. Suppose that b is a Bayes–Nash equilibrium for mechanism
M1(A) and distribution F. Then for all i, all vi, and all S ✓M ,

E
v�i [✓i(S,b�i(v�i))] � (1� e�c) · vi(S)� c ·E

v�i [ui(b(v))].

Proof. Fix agent i. By Lemma 4.6, we know

E
v�i [✓i(S,b�i(v�i))] � vi(S)�

✓
1 + ln

vi(S)

E
v�i [ui(b(v))]

◆
E

v�i [ui(b(v))].(4.2)

Note that if (1+ln vi(S)

Ev�i [ui(b(v))]
)  c, then (4.2) immediately implies the desired result.

We can therefore assume otherwise, and choose ↵ > 0 such that
✓
1 + ln

vi(S)

E
v�i [ui(b(v))]

◆
= c+ ↵.

10In the initial conference version of this work, we presented a bound of c+O(log c) on the BPOA.
Subsequently, this bound was independently improved by Lucier [31] to c+O(c2/ec) and by Syrgkanis
and Tardos [44] to c + O(c/ec). We present here a slightly modified version of the argument from
Lucier, which yields the improved Syrgkanis and Tardos bound of c+O(c/ec).
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Rearranging, we get that vi(S) = e↵ · ec�1 · E
v�i [ui(b(v))]. Applying these two

equalities to (4.2), we have

E
v�i [✓i(S,b�i(v�i))] � vi(S)� (c+ ↵) ·E

v�i [ui(b(v))]

= vi(S)�
↵

e↵
· vi(S)
ec�1

� c ·E
v�i [ui(b(v))].

Since ↵
e↵ achieves its maximum value of 1/e at ↵ = 1, we can conclude that

E
v�i [✓i(S,b�i(v�i))] � vi(S)�

1

ec
· vi(S)� c ·E

v�i [ui(b(v))]

as required.

Theorem 4.4 follows directly from Corollary 4.7 and Lemma 4.5. We next com-
plete the proof of Theorem 4.4 by proving Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. Fix distribution F over type profiles and let b(·) be a (possi-
bly mixed) Bayes–Nash equilibrium with respect to F. Choose some type declaration
v and let yv denote an optimal allocation for v. We know that for all i 2 [n] and v,

E
v

0
�i
[✓i(y

v

i ,b�i(v
0
�i))] � �vi(y

v

i )� �iE
v

0
�i
[ui(bi(vi),b�i(v

0
�i)))].

Note the distinction between v0
�i, over which we are taking expectations, and v�i,

which is the type profile fixed to define yvi . Now, summing over i and taking expec-
tation over all choices of v, we have

E
v

"
X

i

E
v

0
�i
[✓i(y

v

i ,b�i(v
0
�i))]

#
� �E

v

"
X

i

vi(y
v

i )

#

�E
v

"
X

i

�iE
v

0
�i
[ui(bi(vi),b�i(v

0
�i))]

#
.

(4.3)

We now consider each of the three terms in (4.3). First, note that

(4.4) E
v

"
X

i

vi(y
v

i )

#
= E

v

[SWOPT (v)].

Additionally,

E
v

"
X

i

�iE
v

0
�i
[ui(bi(vi),b�i(v

0
�i))]

#
=
X

i

�iE
v,v0

�i
[ui(bi(vi),b�i(v

0
�i))]

= E
v

"
X

i

�iui(b(v))

#

= E
v

"
X

i

�ivi(xi(b(v)))

#

�E
v,d=b(v)

"
X

i

�idi(xi(d))

#
,

(4.5)
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636 BRENDAN LUCIER AND ALLAN BORODIN

where the final equality follows from the fact that our mechanism employs a first-price
payment scheme. Finally,

E
v

"
X

i

E
v

0
�i
[✓i(y

v

i ,b�i(v
0
�i))]

#

= E
v,v0

"
X

i

✓i(y
v

i ,b�i(v
0
�i))

#
(type independence)

 cE
v,v0,d0=b(v0)

"
X

i

d0i(xi(d
0))

#
(Lemma 3.3)

= cE
v,d=b(v)

"
X

i

di(xi(d))

#
,

(4.6)

where the final equality follows from a change of variables, since v does not appear
inside the expectation on the previous line. Substituting (4.4), (4.5), and (4.6) into
(4.3), we conclude that

cE
v

"
X

i

di(xi(d))

#
� �E

v

[SWOPT (v)]�E
v

"
X

i

�ivi(xi(b(v)))

#

+E
v,d=b(v)

"
X

i

�idi(xi(d))

#

and hence

�E
v

[SWOPT (v)]  E
v

"
X

i

�ivi(xi(b(v)))

#
+E

v,d=b(v)

"
X

i

(c� �i)di(xi(d))

#

 E
v

"
X

i

�ivi(xi(b(v)))

#
+E

v

"
X

i

(c� �i)vi(xi(b(v)))

#

= E
v

"
X

i

cvi(xi(b(v)))

#

= cE
v

[SW (A(b(v)),v)],

where in the second inequality we used Corollary 4.2 plus the fact that (c � �i) � 0
for all i. Rearranging yields

E
v

[SW (A(b(v)),v)] � �

c
E

v

[SWOPT (v)]

as required.

Proof of Lemma 4.6. Fix any i, vi, and S. Since ✓i(S,d�i) � 0 for all d�i, we
have that

E
v�i [✓i(S,b�i(v�i))] �

Z vi(S)

0
Pr[✓i(S,b�i(v�i)) > z]dz

= vi(S)�
Z vi(S)

0
Pr[✓i(S,b�i(v�i))  z]dz.
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Recall that bi(vi) must maximize the expected utility of agent i. Choose any z � 0
and consider the alternative strategy di, which places a single-minded bid of z on set
S. Then, since bi(vi) is an optimal strategy, we have that

E
v�i [ui(b(v))] � E

v�i [ui(di,b�i(v�i))]

= (vi(S)� z) Pr[✓i(S,b�i(v�i))  z],

where the equality follows, since any single-minded bid above the critical value for S
ensures that S will be won, as a consequence of monotonicity. We conclude that

Pr[✓i(S,b�i(v�i))  z] 
E

v�i [ui(b(v))]

(vi(S)� z)

for all 0  z < vi(S). We also know that Pr[✓i(S,b�i(v�i))  z]  1 for all z. Write
r = vi(S)�E

v�i [ui(b(v))]. We then conclude that

E
v�i [✓i(S,b�i(v�i))] � vi(S)�

Z r

0

E
v�i [ui(b(v))]

(vi(S)� z)
dz �

Z vi(S)

r

1dz

= vi(S)�E
v�i [ui(b(v))]

Z vi(S)

Ev�i [ui(b(v))]

1

y
dy �E

v�i [ui(b(v))]

= vi(S)�
✓
1 + ln

vi(S)

E
v�i [ui(b(v))]

◆
E

v�i [ui(b(v))]

as required.

Corollary 4.8 (of proof). The same bound on the POA applies to coarse cor-
related equilibria.

Proof. That such POA bounds can be applied to coarse correlated equlibria in the
full information setting was initially observed by Roughgarden [40]. Specifically, in
the proof of Theorem 4.4, all occurences of E

v,d=b(v) can be replaced by E
d⇠(d0

i,!�i),
resulting in a bound on the coarse correlated POA.

It may be tempting to conjecture that the (exponentially small) loss in approxi-
mation factor in Theorem 4.4 is simply an artifact of the analysis, and that the BPOA
of M1(A) is actually c. However, we now show by way of an example that this loss
is necessary; that is, there exist instances in which the mixed POA (and hence the
BPOA) is strictly greater than c.

Proposition 4.9. For any integer c � 2, there is a combinatorial allocation prob-
lem P and a non-adaptive greedy algorithm A such that A is a c-approximation for
P, and the mixed POA for M1(A) is at least c+ c2/e4c.

Proof. We begin by describing our combinatorial allocation problem. Let k > c
be an integer that will be fixed later. Our auction has ck + k objects, which we label
aij for i 2 [k], j 2 [c] and bi for i 2 [k]. There are 4k agents, labeled Ai, Bi, Ci, and Di

for i 2 [k]. Our feasibility constraints are as follows. Each agent Bi or Ci can receive
only set {ai1} or ;. Each agent Di can receive set {ai1, ak1} or ;. Each agent Ai can
receive set {ai1, ai2, . . . , aic}, set {bi}, or ;. Under these restrictions, an allocation is
feasible if each object is assigned to at most one agent.

Let A be the non-adaptive greedy algorithm that orders bids by density, i.e., with
priority function r(i, S, v) = v/|S| when S is a feasible set for agent i. We claim that
when c � 2, this algorithm obtains a c-approximation for the above combinatorial
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638 BRENDAN LUCIER AND ALLAN BORODIN

auction. To see this, note that the (unique) set that can be allocated to any agent
Bi, Ci, or Di intersects sets of size at most c times larger, so if the greedy algorithm
allocates to one of these agents for a value of v, the total value of intersecting sets
in the optimal solution is at most cv. On the other hand, if the greedy algorithm
allocates {bi} to agent Ai, this conflicts only with the allocation of set {ai1, . . . , aic}
to agent Ai, which again has value at most c times greater. Finally, suppose that
the greedy algorithm allocates set {ai1, . . . , aic} to agent Ai, say with value vc (i.e.,
value density v). This allocation can conflict only with a single allocation to an agent
Bi, Ci, or Di plus an allocation of {bi} to agent Ai, which comprises a total of at
most 3 objects. Since the greedy algorithm allocates by density, the total value of
the conflicted bids is at most 3v. Since c � 2, we conclude that the allocation of
{ai1, . . . , aic} to agent Ai is within a factor of c of the value of any intersecting sets
in the optimal allocation.

Consider now the following instance of this problem, specified by the following
agent types.

• For 1  i  k � 1, agent Ai desires {ai1, ai2, . . . , aic} for value k � i and {bi}
for value 0.

• Agent Ak desires {ak1, ak2, . . . , akc} for value k and {bk} for value 1.
• For 1  i  k, agents Bi and Ci both desire set {ai1} for value (k � i)/c.
• For 1  i  k, agent Di desires set {ai1, ak1} for value 2(k � i)/c.

Note that agent Ak has a value density of k/c for the desired set {ak1, . . . , akc}, and
each agent Ai with i < k has value density (k � i)/c for desired set {ai1, . . . , aic}.
Also, agents Bi, Ci, and Di have a value density of (k � i)/c for their desired sets.

We will suppose that A applies the following fixed tie-breaking rules. For any
i, A will break a tie between agents Ai, Bi, Ci, and/or Di first in favor of Di, then
in favor of Bi, then Ai, then finally Ci. We can also assume that A breaks ties
between multiple desired sets for agent Ai in favor of {bi}. Finally, A will favor
allocating nonempty sets over allocating the empty set (e.g., if an agent declares the
zero valuations).

We now describe a mixed Nash equilibrium for this problem instance. Each agent
Ai declares the zero valuation. Each agent Bi and Ci declares his valuation truthfully.
Each agent Di will declare his valuation truthfully with some probability pi, and will
otherwise declare the zero valuation. We choose pi =

1
i+1 .

What is the outcome when agents bid in this way? First, each agent Ai is allocated
set {bi} (due to our assumed tie-breaking). For the items aij , only items with j = 1
will be allocated. For i < k, if agents D1, . . . , Di�1 declare the zero allocation and
Di does not, then object a1i will be allocated to Di. If not, then item a1i will be
allocated to agent Bi. Item ak1 will be allocated to Di, where i is the smallest such
that Di does not declare the zero valuation, or Bk if D1, . . . , Dk all declare the zero
valuation.

We now argue that this distribution of declarations is indeed a mixed Nash equi-
librium. With probability 1, no agent Bi, Ci, or Di can obtain positive utility from
any declaration (since their desired sets conflict with other bids of the same value
density), so their distributions over declarations that obtain utility 0 are necessarily
optimal. Furthermore, for each i < k, agent Ai cannot obtain positive utility so his
bidding strategy is also optimal. Agent Ak obtains utility 1; his only hope for obtain-
ing more utility is to declare a value less than k�1 for set {ak1, . . . , akc}. However, if
he declares some value k�z with z > 1, say with x = dze, then he can win his desired
set only if bidders D1, . . . , Dx�1 all bid the zero valuation, since otherwise an agent Dj

with j < x would win his desired set, blocking the bid by agent Ak. The probability
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that bidders D1, . . . , Dx�1 all declare the zero valuation is 1
2
2
3 · · ·

x�1
x = 1

x 
1
z . Thus,

for any z, agent Ak can obtain utility z with probability at most 1/z for an expected
utility of at most 1. The given declaration by agent Ak is therefore optimal.

We will now bound the social e�ciency of this equilibrium. The optimal obtain-
able welfare is k +

Pk�1
i=1 (k � i) = 1

2k(k + 1), by allocating set {ai1, . . . , aic} to agent
Ai for all i. In the equilibrium we have described, object bk is allocated to agent Ak

for a value of 1 and each object ai1 for i < k is allocated to either Bi or Di at a
per-item value of (k � i)/c. For each i < k, object a1k will be allocated to bidder Di

precisely if bidders D1, . . . , Dj�1 declare the zero valuation but Di does not, which
occurs with probability 1

i(i+1) . Object a1k will be allocated to either Bk or Dk with

the remaining probability, which is 1
k . Noting that each of Bi and Di has a per-item

value of (k � i)/c for their desired sets, we conclude that the expected total value
obtained is

1 +
X

i<k

k � i

c
+
X

i<k

1

i(i+ 1)
· k � i

c
+

1

k
· k � k

c

= 1 +
1

c

"
1

2
(k2 � k) + k �

X

i<k

1

i+ 1
� 1

#

= 1 +
1

c


1

2
(k2 + k)�Hk

�
,

where Hk is the kth harmonic number.
We conclude that the mixed POA for this mechanism is at least

1
2 (k

2 + k)

1 + 1
c

⇥
1
2 (k

2 + k)�Hk

⇤ > c

✓
k2 + k

k2 + k + 2c� 2 ln k

◆
,

where we used the fact that Hk > ln k. Choose k =
⌃
e2c
⌥
. Then our mechanism has

mixed POA at least

c

 ⌃
e2c
⌥2

+
⌃
e2c
⌥

de2ce2 + de2ce+ 2c� 4c

!
> c

 
1 +

2c

(e2c + 1)2 + (e2c + 1)� 2c

!
> c

⇣
1 +

c

e4c

⌘

as required, where the final inequality uses the fact that c � 2.

4.3. Correlated types. Recall that our bound for BPOA required that agent
types be distributed independently. We now provide an alternative (weaker) bound
that holds even if agent types are arbitrarily correlated. The key to the new analysis is
in considering a deviating behavior for each agent that does not depend on the other
agents’ types. The particular deviation we will consider is that of bidding half of one’s
true value for every set. Our analysis will additionally require that the underlying
allocation algorithm is a fixed-order greedy algorithm.

Theorem 4.10. Suppose A is a c-approximate non-adaptive greedy algorithm for
a combinatorial allocation problem. Then M1(A) has correlated BPOA at most 4c
for any type distribution F.

The key to this result lies in the following lemma.

Lemma 4.11. Suppose A is a c-approximate non-adaptive greedy algorithm for a
combinatorial allocation problem. Then for all type profiles v and all strategy profiles
b(·),

X

i

ui(vi/2,b�i(v�i)) �
1

2c
SWOPT (v)� SW (A(b(v)),v).

D
ow

nl
oa

de
d 

07
/2

0/
17

 to
 1

28
.1

00
.3

.7
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

640 BRENDAN LUCIER AND ALLAN BORODIN

Proof. Let y denote the optimal allocation for type profile v. Choose agent i,
and consider the outcome of A on input profile (vi/2,b�i(v�i)). Let xi = Ai(vi/2,
b�i(v�i)). Note that it must either be that ✓i(yi,b�i(v�i)) � 1

2vi(yi) or not.
In the latter case, agent i must obtain some allocation xi with r(i, xi, vi(xi)/2) �
r(i, yi, vi(xi)/2). Since A is a non-adaptive greedy algorithm, this then implies that
vi(xi) � 1

cvi(yi), since otherwise A would obtain less than a 1
c fraction of the optimal

social welfare on the input, in which agent i places bids only on sets xi and yi, and
all other agents bid 0.

We conclude that for all i, either ✓i(yi,b�i(v�i)) >
1
2vi(yi) or vi(xi) � 1

cvi(yi).
Let N = {i | ✓i(yi,b�i(v�i)) > 1

2vi(yi)} be the set of agents for which the former
condition holds. We then note that

X

i2N

1

2
vi(yi) <

X

i2N

✓i(yi,b�i(v�i))  cSW (A(b(v)),b(v))  cSW (A(b(v)),v),

where the second inequality is due to Lemma 3.3 and the third is due to Lemma 4.1.
Furthermore, since vi(xi) � 1

cvi(yi) for all i 62 N , we have

X

i 62N

1

2
vi(yi) 

X

i 62N

c

2
vi(xi(vi/2,b�i(v�i)))  c

X

i

ui(vi/2,b�i(v�i)),

where the second inequality follows because we are using the first-price payment
scheme. Combining these inequalities yields

X

i

ui(vi/2,b�i(v�i)) + SW (A(b(v)),v) � 1

2c
SWOPT (v)

as required.

Theorem 4.10 now follows easily from Lemma 4.11. Recall that Lemma 4.11
holds for all strategy profiles, not just strategies in equilibrium. If we take b to be an
equilibrium profile under type distribution F, then

E
v

[SW (A(b(v)),v)] � E
v

"
X

i

ui(b(v))

#

=
X

i

EviEv�i|vi [ui(bi(vi),b�i(v�i))]

�
X

i

EviEv�i|vi

h
ui

⇣vi
2
,b�i(v�i)

⌘i

= E
v

"
X

i

ui

⇣vi
2
,b�i(v�i)

⌘#

� E
v


1

2c
SWOPT (v)� SW (A(b(v)),v)

�
(Lemma 4.11),

from which we conclude that

E
v

[SW (A(b(v)),v)] � 1

4c
E

v

"
X

i

OPT (v)

#
,

completing the proof of Theorem 4.10.

D
ow

nl
oa

de
d 

07
/2

0/
17

 to
 1

28
.1

00
.3

.7
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EQUILIBRIA OF GREEDY COMBINATORIAL AUCTIONS 641

5. Critical-price mechanisms. We begin by studying the performance of
critical-price (i.e., second-price) mechanisms at equilibrium. The mechanism we study
is M2(A), which is defined with respect to an arbitrary monotone strongly
loser-independent algorithm A. Recall that M2(A) proceeds by first collecting a
declaration profile from the agents, then passing the observed declarations to A as
input. The mechanism returns the allocation provided by A as output, and charges
each agent his critical value for the set received (computed via additional calls to A;
see section 5.4).

We will show that every Bayes–Nash equilibrium of M2(A) has a social welfare
guarantee nearly matching that of the original algorithm A. This result requires that
we make an assumption on the bidding strategies applied by the agents; namely, that
they do not overbid, meaning that they do not bid more than their true value on any
given set S. This overbidding assumption is necessary to exclude certain degenerate
equilibria, such as one agent making an infinitely large bid on the set of all objects and
other bidders bidding 0. We note that such assumptions are reasonable in general;
even the truthful Vickrey auction of a single item requires a no-overbidding assumption
to bound the e�ciency of the outcome at equilibrium. In section 5.3 we discuss ways
to relax this assumption by modifying the mechanism slightly.

5.1. Bayes–Nash equilibria. We begin by analyzing the BPOA for the critical-
price mechanism M2(A). Given that agents will not overbid, a simple modification
of Theorem 4.4 yields a result for BNE under critical prices.

Theorem 5.1. Suppose A is a c-approximate monotone strongly loser-indepen-
dent allocation rule, and that b is a Bayes–Nash equilibrium of M2(A) in which
agents do not overbid. Then the expected welfare when agents declare according to b
is a (c+ 1)-approximation to the expected optimal welfare.

Lemma 5.2. Suppose that b is a Bayes–Nash equilibrium for mechanism M2(A)
and distribution F. Then for all i, all vi, and all S ✓M ,

E
v�i [✓i(S,b�i(v�i))] � vi(S)�E

v�i [vi(xi(bi(vi),b�i(v�i)))].

Proof. Choose any i, vi, and S. Let di be a single-minded declaration for set S
at value vi(S), and consider a strategy under which agent i declares di when his type
is vi. Under this strategy, the expected utility of agent i with type vi is

E
v�i [ui(di,b�i(v�i))] � E

v�i [max{vi(S)� ✓i(S,b�i(v�i)), 0}]
� vi(S)�E

v�i [✓i(S,b�i(v�i))].
(5.1)

Since bi is an equilibrium strategy for agent i, it must be that

E
v�i [ui(di,b�i(v�i))]  E

v�i [ui(bi(vi),b�i(v�i))]

 E
v�i [vi(xi(bi(vi),b�i(v�i)))].

(5.2)

Combining (5.1) and (5.2) leads to the desired result.

Following the proof of Theorem 4.4, we conclude that for all equilibria b, if we
write yv for an optimal allocation for any given type profile v, then

E
v

"
X

i

E
v

0
�i
[✓i(y

v

i ,b�i(v
0
�i))]

#
� E

v

"
X

i

vi(y
v

i )

#

�E
v

"
X

i

E
v

0
�i
[vi(xi(bi(vi),b�i(v

0
�i)))]

#
.

(5.3)D
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Just as in the proof of Theorem 4.4, we obtain the bounds

E
v

"
X

i

vi(y
v

i )

#
= E

v

[SWOPT (v)],

E
v

"
X

i

E
v

0
�i
[vi(xi(bi(vi),b�i(v

0
�i)))]

#
= E

v

[SW (A(b(v)),v)],

E
v

"
X

i

E
v

0
�i
[✓i(y

v

i ,b�i(v
0
�i))]

#
 cE

v

[SW (A(b(v)),v)],

which, taken together with (5.3), complete the proof of Theorem 5.1. Note that when
deriving the last inequality above, we do not invoke Lemma 4.1 (as in the proof of
Theorem 4.4); instead, we use the assumption that agents do not overbid. 2

In precisely the same way as for the first-price mechanism, the bound on the POA
also extends to coarse correlated equilibria.

Corollary 5.3 (of proof). The bound of (c + 1) on the POA applies also to
coarse correlated equilibria.

We next show that this gap between the approximation factor of the original
algorithm and the POA of the critical price-mechanism is required for large c. For
any c � 1 we exhibit a combinatorial allocation problem and a non-adaptive greedy
algorithm A such that the approximation factor of A is c+ 1

c but the (pure) POA of
M2(A) is c+1. This leads us to conclude that, in general, the bound in Theorem 5.1
cannot be improved beyond c+ 1� ✓( 1c ).

Proposition 5.4. For any c � 1, there is a combinatorial allocation problem P
and a non-adaptive greedy algorithm A such that A is a (c+ 1

c )-approximation for P,
and the pure POA for M2(A)is c+ 1.

Proof. Consider a combinatorial auction problem with two objects a, b and two
players, under the restriction that each player can be allocated at most one object and
player 2 cannot be allocated object b. Algorithm A will be the following non-adaptive
greedy algorithm: if v1(a) � 1

cv2(a) and v1(a) � cv1(b), then allocate a to player 1
and ; to player 2; otherwise allocate b to player 1 and a to player 2. Note that this is
a (c+ 1

c )-approximation algorithm, since whenever the algorithm allocates a to player
1 we have v2(a) + v1(b)  (c + 1

c )v1(a), and whenever the algorithm allocates a to
player 2 we have v1(a)  c(v1(b) + v2(b)).

Consider the mechanism M2(A), and suppose that the agents have a type profile
in which v1(a) = v1(b) = 1 and v2(a) = c. Then the declaration profile d1(a) = 1,
d1(b) = 0, and d2(a) = 0 is in equilibrium, since agent 1 cannot improve upon his
utility of 1 and agent 2 cannot a↵ect the outcome without paying at least ✓2(a, d1) = c
for a utility of 0. The social welfare at this equilibrium is 1, but a total of c + 1 is
possible by allocating a to player 2 and allocating b to player 1. Thus the POA for
M2(A) is at least c+ 1.

5.2. Correlated types. Theorem 5.1 requires that agent types be distributed
independently. As with the first-price mechanism, we can provide a somewhat weaker
bound that holds even when agent types are arbitrarily correlated. And, as in
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Theorem 5.1, this result additionally requires that the underlying allocation algo-
rithm is a non-adaptive greedy algorithm.

Theorem 5.5. Suppose A is a c-approximate non-adaptive greedy algorithm for
a combinatorial allocation problem, and that agents do not overbid. Then M2(A) has
correlated BPOA at most 4c for any type distribution F.

The proof of Theorem 5.5 follows that of Theorem 4.10 almost exactly. The sole
di↵erence is that the invocation of Lemma 4.1 in the proof of Theorem 4.10 is replaced
by an appeal to the no-overbidding assumption. We omit the details for brevity.

5.3. Overbidding and restricted expressiveness. Our analysis to this point
made use of a no-overbidding assumption, which states that no agent will place a bid
larger than his true value on any given set. However, our use of the no-overbidding
assumption is marred by the fact that a restriction to no-overbidding strategies is not
always rational when agents have complete confidence about their opponents’ type
distributions. As the following example shows, an agent may be strictly better o↵
by overbidding, even in a full information setting. In other words, a strategy with
overbidding is not necessarily dominated.

Example 5.6. Consider a combinatorial auction with 3 objects, {a, b, c}, and 3
bidders, under the feasibility restriction that each agent can be allocated at most one
object. Let A be the greedy algorithm that orders bids by value. Suppose the types
of the players are as follows: t1(b) = 2, t1(c) = 4, t2(c) = 3, t3(a) = 1, t3(b) = 6,
and all other values are 0. Consider the following bidding strategies for agents 2 and
3: bidder 2 declares truthfully with probability 1, and bidder 3 either declares single-
mindedly for a with value 1, or single-mindedly for b with value 6, each with equal
probability.

How should agent 1 declare to maximize utility? We can limit our analysis to
pure strategies (as any optimal randomized strategy has only optimal strategies in
its support). Suppose agent 1 does not overbid and declares at most 2 for object b.
If he also declares at least 3 for object c, then he wins c with probability 1 for an
expected utility of 1. If he doesn’t declare at least 3 for object c, then he wins b with
probability 1/2 and nothing otherwise, again for an expected utility of 1. So agent 1
can gain a utility of at most 1 if he does not overbid. If, however, he declares 5 for b
and 4 for c, then he wins b with probability 1/2 and wins c otherwise, for an expected
utility of 3/2. If agent 1 bids in this way, the resulting combination of strategies forms
a mixed Nash equilibrium. Thus, in mixed equilibria, an agent may strictly improve
his utility by overbidding.

We now show that if we modify mechanism M2(A) by e↵ectively limiting the ex-
pressiveness of the bids made by the agents, then we obtain the same e�ciency bounds
at equilibria but furthermore guarantee that any bidding strategy that involves over-
bidding is dominated. Thus, as long as agents avoid dominated strategies (a very mild
assumption), all equilibria of rational play lead to approximately e�cient outcomes.

For a monotone strongly loser-independent allocation rule A, the modified mech-
anism M⇤

2(A) is as described in Figure 2. Mechanism M⇤
2(A) proceeds by first simpli-

fying the declaration given by each agent, then passing the simplified declarations to
algorithm A. The resulting allocation is paired with a payment scheme that charges
critical prices.

The simplification process SIMPLIFY essentially converts any declaration into a
single-minded declaration (and does not a↵ect declarations that are already single-
minded). We can therefore assume without loss of generality that agents always
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644 BRENDAN LUCIER AND ALLAN BORODIN

Mechanism M⇤
2

(A)

Input: Declaration profile d = d1, . . . , dn.
1. d0  SIMPLIFY(d).
2. Allocate A(d0), charge critical prices.

Procedure SIMPLIFY

Input: Declaration profile d = d1, . . . , dn.
1. For each i 2 [n]:
2. Choose Si 2 argmaxS{di(S)}, breaking ties in favor of smaller sets.
3. d0i  (Si, di(Si)).
4. Return (d01, . . . , d

0
n).

Fig. 2. Simplifying declarations in a critical-price mechanism.

make single-minded declarations to this mechanism, as additional information is
not used.11

Fix a particular combinatorial auction problem and type profile v, and let A be
an arbitrary strongly loser-independent approximation algorithm. Since v is fixed, we
can think of a strategy for each agent i as a declaration di 2 Vi. Let d be a declaration
profile; we suppose each di is a single-minded bid for set Si (and, in general, we will
write Si for the desired set in declaration di). We draw the following conclusion about
the bidding choices of rational agents.

Lemma 5.7. Let A be a monotone strongly loser-independent allocation rule, and
fix type profile v. Then for each agent i, a single-minded declaration di for set Si is
an undominated strategy for mechanism M⇤

2(A) if and only if di(Si) = vi(Si).

Proof. Fix some d�i and suppose di is a single-minded declaration for set Si. On
input (di,d�i), mechanism M⇤

2(A) either allocates Si or ; to agent i. Thus agent i’s
utility for declaring di, ui(di,d�i) is vi(Si)�✓i(Si,d�i) when di(Si) > ✓i(Si,d�i) and
0 otherwise (where ✓i denotes critical prices with respect to M⇤

2(A)). A declaration
of di(Si) = vi(S) therefore maximizes ui(di,d�i) for all d�i.

Next suppose that di(Si) 6= vi(Si); we will show that di is dominated. Let
d0i be the single-minded declaration for Si at value vi(Si). Suppose there is some
d�i such that ✓i

A(Si,d�i) lies strictly between di(Si) and vi(Si). For simplicity we
will assume such a d�i exists; handling the general case requires only a technical
extension of notation.12 Then if di(Si) < vi(Si), then ui(d0i,d�i) > 0 = ui(di,d�i).
Otherwise, if di(Si) > vi(Si)), then ui(d0i,d�i) � 0 > ui(di,d�i). Thus, in either
case, we have ui(d0i,d�i) > ui(di,d�i), and therefore declaration d0i strictly dominates
declaration di.

Given Lemma 5.7, we can analyze the e�ciency of equilibria of M⇤
2(A) in a

manner identical to M2(A). Rather than explicitly assuming that agents do not
overbid, Lemma 5.7 implies that they will not.

11We note, however, that this is not the same as assuming that agents are single-minded; our
results hold for bidders with general private valuations.

12If ✓i
A(Si,d�i) never lies between di(Si) and vi(Si)) for any d�i, then MA(di,d�i) =

MA(d0i,d�i) for all d�i, so di and d0i are equivalent strategies. We can therefore think of di as
being “the same” as a single-minded declaration for Si at value vi(Si). We will ignore this technical
issue for the remainder of the proof, in the interest of clarity.
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Theorem 5.8. Suppose A is a c-approximate monotone strongly loser-indepen-
dent allocation rule, and that b(·) is a Bayes–Nash equilibrium of M⇤

2(A). Then the
expected welfare when agents declare according to b is a (c+ 1)-approximation to the
expected optimal welfare.

Proof. Since SIMPLIFY(vi) is a single-minded valuation for every valuation vi,
and since SIMPLIFY(vi) = vi when vi is single-minded, we can assume without loss
of generality that b(·) is supported entirely on single-minded valuations. Moreover,
by Lemma 5.7 it must be that b(·) consists only of nonoverbidding strategies. The
proof then follows precisely as in Theorem 5.1, noting that declaration di in the proof
of Lemma 5.2 is single-minded and hence M⇤

2(A) behaves identically to M2(A) on
input (di,b�i(v�i)).

5.4. Calculating critical prices. For many allocation algorithms (such as all
of the algorithms discussed in section 2.5), the calculation of critical prices is a simple
task which can be performed in parallel with the computation of an allocation profile.
We leave the development of such pricing methods to the creators of the allocation al-
gorithms to which our reduction may be applied. However, even if a specially tailored
algorithm for computing exact critical prices is not available, we note that critical
prices for a given black-box greedy algorithm can be determined to within an additive
✏-error in polynomial time via a simple binary search. Thus, assuming that valuation
space is discretized by multiples of ✏, critical prices can be determined e�ciently. If
valuation space is continuous, then our interpretation is that any equilibrium for the
(exact) critical-price mechanism will be an (additive) ✏-approximate equilibrium for
a mechanism that uses ✏-approximate critical prices.

We now describe the procedure for determining critical prices in more detail. Fix
greedy allocation rule A, agent i, and declarations d. Suppose that Ai(di,d�i) = S.
We wish to resolve the value of ✓i(S,d�i) in the range [0, di(S)] using a binary search
in the following way. For all z � 0, write dzi for the single-minded declaration for
set S at value z. Given query value z 2 [0, di(S)], we check if Ai(dzi , di) = S. If
so, decrease the value of z; otherwise, increase the value of z. Since A is monotone,
we have that Ai(dzi ,d�i) = S if and only if z > ✓i(S,d�i). This procedure resolves
the value of v to within ✏ in O(log di(S)/✏) iterations. Thus, for any given input to
mechanism M2(A), the critical prices for all agents’ allocated sets can be found in
O(n log(vmax/✏)) invocations of algorithm A, where vmax = maxi,S di(S).

6. Repeated auctions and regret minimization. Up to this point, we have
considered the perfomance of mechanisms for one-shot allocation problems. We now
turn to repeated auctions. In this section, we focus on agents that apply regret-
minimizing strategies. We consider an instance of a combinatorial allocation problem
that proceeds in rounds. The problem will be resolved by a direct revelation mech-
anism M, say with allocation algorithm A, which independently executes on each
round of the auction. As before, we will tend to write x for the allocation rule asso-
ciated with algorithm A.

We assume that neither the agents’ types nor the mechanism changes between
rounds of the auction. When the agents have types v and D = (d1,d2, . . . ,dT , . . .) is
a sequence of declared valuation profiles, we let DT denote the length-T prefix of D
and we write SWA(DT ) =

1
T

P
t SW (x(dt),v) for the average welfare obtained over

the T declarations in DT . We will sometimes replace subscript A by M, in which
case the social welfare is for the allocation rule of M.

Declaration sequence D = (d0,d1, . . . ) minimizes external regret for agent i if,

for any fixed declaration di, the sequence of finite prefixes satisfies
PT

t=1 ui(dti,d
t
�i) �
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P
t ui(di,dt

�i) + o(T ). That is, as T increases, the per-round utility of agent i ap-
proaches the utility of the optimal fixed strategy in hindsight. The price of total
anarchy [6] is the worst-case ratio between the optimal welfare and the welfare of a
declaration that minimizes external regret; that is,

sup
v,D

SWopt(v)

SW (M(D),v)
.

Theorem 6.1. For any c-approximate monotone strongly loser-independent allo-
cation rule A, mechanism M1(A) (resp., M⇤

2(A)) has price of total anarchy at most
c

1�e�c (resp., c+ 1).

Proof. As observed by Blum and Mansour [7] and Roughgarden [40], in the
full information setting, the price of total anarchy is equal to POA with respect to
coarse correlated equilibria. The result then follows immediately from Corollaries 4.8
and 5.3.

One can suppose that each bidder employs an algorithm to determine which
declaration to make at time t, given the bidding history up to time t. We say that
such an algorithm minimizes regret if employing the algorithm results in a sequence
that minimizes external regret for the employing agent, for any bidding behavior of
the other agents. Our interest in external regret minimization is motivated by the
existence of simple and e�cient bidding algorithms for minimizing regret. Indeed, the
price of total anarchy captures mechanism performance when agents apply reasonable
learning techniques over the course of repeated participation. In this sense we feel
that this analysis is predictive of outcomes that would be observed in practice in a
repeated auction. The remainder of this section will be dedicated to elaborating on
this point of computational tractability.

The standard algorithmic approach to minimizing external regret is the “follow
the perturbed leader” (FPL) algorithm [25, 27], which requires time and space poly-
nomial in the number of actions that can be taken by an agent. Note that, in general,
an action in a combinatorial auction mechanism corresponds to a declared valuation,
of which there are superpolynomially many. So FPL is not immediately applicable as
an approach for arbitrary mechanisms.

We note, however, that the mechanism M⇤
2(A) (for a monotone strongly loser-

independent allocation rule A) has some desirable properties that make it well suited
to the application of FPL techniques. Recall that, for this mechanism, it su�ces to
consider only single-minded declarations from agents. Furthermore, from Lemma 5.7,
all undominated strategies for agent i involve selecting a single set Si and making
a single-minded declaration for set Si at its true value vi(Si). An action in a given
round therefore corresponds to a single set of items upon which to bid.

Of course, this still leaves an exponentially large (inm) space of actions in general.
One should therefore consider the format in which agent valuations are represented.
For instance, a natural way to express an agent valuation is in XOR format [43,
36], which is a collection of single-minded valuations (i.e., set-value pairs) with the
semantics that the value of a set S will be the maximum specified value for any set
contained in S. The sets in the XOR representation are called the desired sets of
agent i. This is an especially natural representation for many greedy algorithms,
which typically iterate over the desired sets.

For a valuation represented in XOR format, it su�ces to consider only bids for
desired sets. This is because any other bid, say for a set S, would be dominated
by a bid for the desired set that determines the value of S. Thus, if valuations are
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represented in XOR format, it su�ces to consider a space of actions that is polynomial
in the input size. One can therefore apply FPL in an e�cient manner, leading to the
following conclusion.

Theorem 6.2. Computing a regret-minimizing strategy for agent i in mechanism
M⇤

2(A) can be done in time, per round, that is polynomial in n and in the size of the
XOR representation of agent i’s valuation.

7. Repeated combinatorial auctions and best-response agents. In this
section we consider the problem of designing mechanisms for agents that apply myopic
best-response strategies asynchronously. Declaration sequence D = (d0,d1, . . . ) is an
instance of response dynamics if for all prefixes, and for all 1  t  T , profiles dt�1 and
dt di↵er on the declaration of at most one player. Response dynamics D is an instance
of best-response dynamics if, whenever dt�1 and dt di↵er on the declaration of agent
i, dti maximizes agent i’s utility given the declarations of the other bidders. That is,
dti 2 argmaxd{ui(d,dt

�i)}. In our model, agents are chosen for update uniformly at
random to make a best response, one agent per round. We will also assume that if a
bidder is chosen for update but cannot improve his utility, he will choose to maintain
his previous strategy.

We begin our analysis of myopic bidders by considering mechanism M⇤
2(A) from

section 5 for a given monotone greedy algorithm A. One might ask whether or not this
mechanism converges to equilibrium under best-response dynamics. A simple example
shows that this is not the case: there are circumstances in which mechanism M⇤

2(A)
has probability 0 of ever converging to a pure Nash equilibrium via best-response
dynamics, despite the existence of a pure equilibrium.

Example 7.1. Consider a combinatorial auction with 6 agents and 4 objects, say
{a, b, c, d}, under the feasibility constraint that each agent can receive at most 2 items.
Let A be the greedy allocation rule that allocates sets greedily by value. We consider
an input instance given by the following set of true values (where the value for a set
not listed is taken to be the maximum over its subsets):

player set value
1 {a, b} 4
1 {d} 6
2 {a} 2
2 {b, c} 5
3 {c} 4
4 {d} 5

Suppose the auction is resolved by mechanism M⇤
2(A), and agents apply

best-response dynamics. Agents 3 and 4 are single-minded and always maximize
their utility by declaring truthfully. Agents 1 and 2 each have a strategic choice to
make when bidding: Which of their two desired sets should they bid upon? Note
that once this decision is made, the way to bid is determined by Lemma 5.7 (i.e., bid
truthfully for the desired set). It can be verified that from each of the resulting 4
possible declaration profiles, at least one of the agents is incentivized to change his
declaration. Thus best-response dynamics need not converge to an equilibrium.

The nonconvergence of best-response dynamics is not a technical artifact of the
model. Since the cyclic behavior described above employs undominated strategies by
the players, we view it as a reasonable outcome to expect in such an auction (espe-
cially if players are not willing or able to randomize). The example above motivates
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648 BRENDAN LUCIER AND ALLAN BORODIN

a study of the total13 (or equivalently the average) social welfare of M⇤
2(A), over

many rounds of best-response dynamics. We conjecture that, on average, the best-
response dynamics on mechanism M⇤

2(A) obtains an approximation to the optimal
social welfare that is within a constant factor of the approximation ratio of the original
algorithm A.

Conjecture 7.2. If A is a c-approximate monotone strongly loser-independent
allocation rule, then M⇤

2(A) has O(c) price of (myopic) sinking.

We leave the resolution of Conjecture 7.2 as an open problem. More generally,
although we believe mechanism M⇤

2(A) to be an appropriate mechanism, the un-
derlying goal is to have some black-box transformation that converts a c-approximate
monotone strongly loser-independent allocation rule into a mechanism withO(c) price
of myopic sinking. As partial progress, we will focus on two specific combinatorial auc-
tion settings: the general combinatorial auction problem and combinatorial auctions
under a cardinality restriction. For these two settings, we will construct alternative
mechanisms and analyze the welfare they generate under best-response dynamics.

7.1. The approach. Our bound on the price of total anarchy of M⇤
2(A) in

Theorem 6.1 and our POA bound in Theorem 5.1 rely on a particular insight: if the
social welfare of an auction outcome is low relative to the optimal welfare, then there
must exist some agent i for whom the optimal assignment has a low critical price.
We use this to argue that an outcome with low welfare cannot occur at equilibrium,
since this agent i could improve his utility by pursuing his allocation in the optimal
assignment.

The di�culty when extending this intuition to asynchronous best-response dy-
namics is that, even if an agent can improve his utility by attempting to win some set
for which the critical price is low, it may be that he has no chance to do so because
he is not chosen to update his bid. Since each agent can expect to update his bid only
once in every n rounds, our concern is that an agent spends most rounds wishing to
make a utility-improving bid, but that this improvement happens to be unavailable
whenever it is that agent’s turn to update.

We address this di�culty in two steps. First, we modify our mechanism so that
the social welfare is never much less than the sum of the bids of all players—even
those that are not allocated their desired sets. We accomplish this by designing the
mechanism so that a winning bid must be significantly larger than the sum of all
conflicting bids. This implies that if agent i places a large bid on round t, then we can
think of agent i as making a large contribution to the social welfare even if he does
not win his bid. Second, we demonstrate that with high probability, in almost half of
the rounds (or more), either agent i places a large bid or else the critical price for his
optimal allocation is high. Thus, even though agent i can modify his declaration only
very infrequently, his (possibly indirect) contribution to the social welfare will still be
large for approximately half of the rounds.

7.2. A mechanism for cardinality-restricted combinatorial auctions. We
will first consider the cardinality-restricted combinatorial auction problem, defined in
section 2.5. We will refer to this as the s-CA problem. Consider the s-CA problem,
which is a combinatorial auction in which the feasibility constraint requires that no
agent can be allocated more than s objects. An algorithm that greedily assigns sets in

13While other measures are possible, such as the minimum welfare over the cycle, the total or aver-
age welfare seems to be more relevant to a mechanism and is consistent with the regret-minimization
measure in section 6.
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Mechanism MsCA

Input: Declaration profile d = d1, . . . , dn.
1. d0  SIMPLIFY(d), % say di

0 = (Si, vi)
2. (T1, . . . , Tn) AsCA(d0).
3. For each i such that Ti 6= ;:
4. I  {j : Sj \ Ti 6= ;}; % I is the set of bids that intersect Si.
5. ⌧i  2

P
j2I dj(Sj).

6. If di
0(Ti)  ⌧i, set Ti  ;, ⌧i  0.

7. Allocate T1, . . . , Tn and charge ⌧1, . . . , ⌧n. % Critical prices.

Fig. 3. Mechanism MsCA, an implementation of greedy algorithm AsCA for the s-CA problem.
This mechanism uses procedure SIMPLIFY from Figure 2 in section 5.3.

descending order by value obtains an s-approximation. Call this algorithm AsCA. We
will construct a mechanism MsCA based on AsCA; it is described in Figure 3. This
algorithm simplifies incoming bids (in the same way as M⇤

2(A)) and runs algorithm
AsCA to find a potential allocation. However, an additional condition for inclusion
in the solution is imposed: the value declared for a set must be at least twice the
sum of all bids for intersecting sets. Potential allocations that satisfy this condition
are allocated, and the mechanism charges critical prices (that is, the smallest value
at which an agent would be allocated their set by MsCA, which is not necessarily the
same as the critical price for AsCA).

We note that since our mechanism implements a monotone algorithm and charges
critical prices, Lemma 5.7 implies that undominated strategies for agent i involve
choosing a set Si and making a truthful single-minded bid for Si at value vi(Si). We
will therefore assume that agents bid in this manner. However, the agent still has a
strategic decision regarding which set Si to choose.

We begin our analysis with some notation. Suppose that d is a declaration profile,
where each di is single-minded for some set Si. For any set T , define the set of bids
intersecting agent i’s bid for T in d to be Ii(d, T ) = {j : j 6= i, Sj \ T 6= ;}. We also
define Li(d, T ) = {j : j 2 Ii(d, T ), dj(Sj) < vi(T )} to be the set of lower intersecting
bids. We recursively define the set of ancestors, Ai(d, T ), for agent i with respect to
T and d; it is the set of all lower intersecting bids, plus all ancestors of those lower
intersecting bids. That is,

Ai(d, T ) = Li(d, T ) [
[

j2Li(d,T )

Aj(d, Sj).

We say that d is separated for agent i if di(Si) � 2
P

j2Li(d,Si)
dj(Sj). Profile d

is separated if it is separated for every bidder. Since an agent gains positive utility in
mechanism McSA only if the declaration is separated for him, we draw the following
conclusion.

Lemma 7.3. If a declaration profile d is separated, then it remains separated after
a step of the best-response dynamics for mechanism MsCA.

Proof. Suppose agent i is chosen to update his bid, say from di to d̃i. Let d̃ =
(d̃i,d�i). If agent i cannot improve his utility, then d̃ = d, so d̃ is separated as
required. Suppose otherwise, so agent i changes the set upon which he bids from, say,
Si to S̃i. Since ui(d̃i,d�i) > 0, it must be that d̃i(S̃i) > 2

P
j2Ii(d̃,S̃i)

dj(Sj). This
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650 BRENDAN LUCIER AND ALLAN BORODIN

implies that d̃ is separated for agent i. It remains to be verified that d̃ is separated
for each j 6= i. Since d̃ is separated for agent i, it must be that d̃i(S̃i) > dj(Sj) for all
j such that S̃i\Sj 6= ;. This then implies that i 62 Lj(d̃, Sj) for each j 6= i. Moreover,
only the declaration of agent i changes between d and d̃, and hence Lj(d̃, Sj) and
Lj(d, Sj) can di↵er only on whether they include i. We conclude that, for all j 6= i,
either Lj(d̃, Sj) = Lj(d, Sj) or Lj(d̃, Sj) = Lj(d, Sj)\{i}. In either case, Lj(d̃, Sj) ✓
Lj(d, Sj), and hence

P
k2Lj(d̃,Sj)

d̃k(Sk) 
P

k2Lj(d,Sj)
dk(Sk). Therefore, since d is

separated for all j 6= i, d̃ must be separated for each j 6= i as well.

Motivated by Lemma 7.3, we will focus on separated declaration profiles14 for the
remainder of this section. We will show that, for any separated declaration profile,
MsCA extracts a constant fraction of the sum of all declared bids as welfare.

Lemma 7.4. For all separated declarations d, SWMsCA(d) � 1
2

P
i di(Si).

Proof. We first claim that, for each agent i,

(7.1) di(Si) �
X

j2Ai(d,Si)

dj(Sj).

This follows by structural induction on the recursive definition of Ai(d, T ), since for
each i we have

di(Si) � 2
X

j2Li(d,Si)

dj(Sj)

�
X

j2Li(d,Si)

dj(Sj) +
X

j2Li(d,Si)

X

k2Aj(d,Sj)

dk(Sk)

�
X

j2Ai(d,Si)

dj(Sj),

where the first inequality follows by separatedness.
Let N ✓ [n] be the set of agents that receive nonempty sets in MsCA(d). We

next claim that for all j 62 N , either Sj = ; or there exists some i 2 N such that
j 2 Ai(d, Si). To see this, let i be such that di(Si) is maximal, subject to j 2 Ai(d, Si).
Note that such an i must exist whenever Sj 6= ;, though it could be that i = j. By
maximality, the bid of i cannot intersect with any larger bid in d, so i is allocated a
nonempty set by AsCA(d). Moreover, by separatedness, the allocation to i is not set
to ; on line 6 of MsCA(d). Thus i 2 N , as claimed.

Now, taking a sum over all j 62 N and applying (7.1), we can conclude

(7.2)
X

j 62N

dj(Sj) 
X

i2N

X

j2Ai(d,Si)

dj(Sj) 
X

i2N

di(Si).

We then have

14More formally, we could assume an initial empty declaration (which is trivially separated) so
that by induction all declarations will be separated. Alternatively, we can modify mechanism MsCA

so that, with vanishingly small probability, an alternative allocation rule is used. This alternative rule
chooses an agent at random, and assigns him all objects at no cost as long as the input declaration
is separated for that agent. Thus, any separated declaration by agent i results in positive expected
utility. Since any nonseparated declaration by an agent results in a utility of 0 for that agent, it
must be that the utility-maximizing declaration by any agent must be separated.
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X

i

di(Si) =
X

i2N

di(Si) +
X

j 62N

dj(Sj)


X

i2N

di(Si) +
X

i2N

di(Si)

= 2SWMsCA(d)

as required.

We are now ready to bound the price of sinking for MsCA. We will achieve the
following bound.

Theorem 7.5. Choose ✏ > 0 and suppose D = d1, . . . , dT is an instance of best-
response dynamics with random player order, where agents play undominated strate-
gies, and T > ✏�1n. Then

SWMsCA(D) �
✓

1� 2✏

16s+ 8

◆
SWOPT (v)

with probability at least 1� ne�T ✏2/32n.

Before proving Theorem 7.5, let us make some remarks. If we take ✏ to be a small
constant and assume T = ⌦(n1+�) for some � > 0, we conclude that SWMsCA(D) >

1
O(s)SWopt(v) with high probability. Thus MsCA implements an O(s) approximation
to the s-CA problem for best-response bidders over su�ciently many rounds. In other
words, MsCA has O(s) price of (myopic) sinking.

We now begin with the proof of the theorem. Let y be an optimal allocation with
respect to the agents’ true types v. For a given time step t  T , we will define a notion
of “good” agents on step t. Let Gt

1 denote the set of agents for which di
t(Si) � 1

2vi(yi),
and let G2 denote the set of agents for which

P
j2Ii(dt,yi)

dtj(Sj) >
1
4vi(yi). That is,

Gt
1 is the set of agents making relatively large bids at time t, and Gt

2 is the set of
agents i for whom a relatively large bid (that is, up to 1

4vi(yi)) on set yi would not
be a winning bid at time t. Let Gt = Gt

1 [Gt
2; we will refer to Gt as the set of good

agents at time t.
We will first argue that, at any given time t, the welfare achieved by our mecha-

nism achieves a good approximation to the welfare of the optimal outcome, restricted
to agents in Gt.

Lemma 7.6. For all t, SWMsCA(d
t) � 1

8s+4

P
i2Gt vi(yi).

Proof. By Lemma 7.4 and the definition of Gt
1, we have

(7.3) SWMsCA(d
t) � 1

2

X

i

dti(Si) �
1

2

X

i2Gt
1

dti(Si) �
1

4

X

i2Gt
1

vi(yi).

Next, by Lemma 7.4 and the definition of Gt
2, we have

SWMsCA(d
t) � 1

2

X

i

dti(Si)(7.4)

� 1

2
· 1
s

0

@
X

i

X

j2Ii(dt,yi)

dtj(Sj)

1

A
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� 1

2s

X

i2Gt
2

X

j2Ii(dt,yi)

dtj(Sj)

� 1

8s

X

i2Gt
2

vi(yi),

where the second inequality follows because each set Sj can intersect at most |Sj |  s
sets yi, and the final inequality is by the definition of Gt

2. Combining (7.3) and (7.4)
yields the desired result.

In light of Lemma 7.6, our goal is to show that each agent is good su�ciently
often over the course of an instance D of best-response dynamics. To this end, we
will establish bounds on the probability that an agent lies in G1 or G2.

Lemma 7.7. For any i and t, Pr[i 2 Gt+1
1 |i 2 Gt

1] � 1� 1
n .

Proof. If i 2 Gt
1, and i is not selected by the best-response dynamics following

round t, then it must be that i 2 Gt+1
1 . Since i is selected with probability 1/n, the

result follows.

Lemma 7.8. For any i and t, Pr[i 2 Gt+1
1 |i 62 Gt] � 1

n .

Proof. Suppose i 62 Gt, and that i is selected by the best-response dynamics pro-
cess following round t. Since i 62 Gt

2, it must be that ✓i(yi,d�i) = 2
P

j2Ii(d,yi)
dj(Sj)

in mechanism MsCA, so agent i would obtain utility at least 1
2vi(yi) by making a

single-minded declaration for set yi at value vi(yi). His utility-maximizing declara-
tion must therefore make at least this much utility, and is therefore a bid for some set
Si with vi(Si) � 1

2vi(yi). Thus, with probability 1
n , agent i is selected and necessarily

chooses dt+1
i such that i 2 Gt+1

1 .

We now show that the above observations imply that any given agent will be in
Gt reasonably often, with high probability. This will follow immediately from the
following technical lemma, whose proof we defer to Appendix B.

Lemma 7.9. Suppose that {At}tT and {Bt}tT are sequences of binary random
variables satisfying the following properties:

1. At +Bt  1 for all t,
2. Pr[At+1 = 1|Bt = 1] � 1

n for all t, and
3. Pr[At+1 = 1|At = 1] � 1� 1

n for all t.

Then Pr[
P

t B
t � ( 12 + ✏)T ]  e�T ✏2/32n.

Corollary 7.10. For any agent i with probability at least 1� e�T ✏2/32n, agent i
will be in Gt for at least ( 12 � ✏)T values of t.

Proof. Let At be the indicator for the event i 2 Gt
1, and let Bt be the indicator

for the event i 62 Gt. Note that At is not the complement of Bt. By Lemmas 7.7 and
7.8, we can apply Lemma 7.9 to conclude that i 62 Gt for at most ( 12 + ✏)T values of
t with the required probability.

We are now ready to prove the main result of this section.

Proof of Theorem 7.5. Corollary 7.10 implies that each agent i will be in Gt for
at least ( 12 � ✏)T values of t, with probability at least 1� e�T ✏2/32n. The union bound

then implies that this occurs for every agent with probability at least 1�ne�T ✏2/32n.
Conditioning on the occurrence of this event, Lemma 7.6 implies
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SWMsCA(D) =
1

T

X

t

SWMsCA(d
t)

� 1

(8s+ 4)T

X

t

X

i2Gt

vi(yi)

� 1

(8s+ 4)T

X

i

T

✓
1

2
� ✏

◆
vi(yi)

�
✓

1� 2✏

16s+ 8

◆
SWOPT (v),

which implies the required bound.

7.3. A mechanism for general combinatorial auctions. Consider the fol-
lowing algorithm for the general combinatorial auction problem: first try greedily (by
value) assigning sets of size at most

p
m, then try allocating all items to the single

agent with the highest declared value; return whichever of those two solutions gener-
ates more welfare. This algorithm is known to be an O(

p
m)-approximation for the

general combinatorial auction problem [24]. We will construct a mechanism MrCA

based on this algorithm. The mechanism MCA essentially implements two copies of
MsCA (as described in the previous section): one for sets of size at most

p
m (which

we will call Mp
mCA), and one for allocating all objects to a single bidder. We call

the latter the “grand bundle mechanism” MGB , given in Figure 4. It is tempting to
simply deterministically return whichever of the two solutions yields the largest social
welfare. However, we will see in Appendix C that this deterministic algorithm will
not always have a good POA in the one-shot game. Instead, MrCA will randomly
choose between Mp

mCA and MGB ; see Figure 5.
The analysis of the average social welfare obtained by MCA closely follows the

analysis for MsCA. Our high-level approach is to apply this analysis twice: once for
allocations of sets of size at most

p
m, and once for allocations of all objects to a

single bidder. The final result is the following.

Mechanism MGB

Input: Declaration profile d = d1, . . . , dn.
% A Vickrey auction, thinking of M as a single item.
1. Let (T1, . . . , Tn) (;, . . . , ;).
2. Let j  argmaxj{dj(M)}.
3. Set Tj  M .
4. Return (T1, . . . , Tn) and charge critical prices.

Fig. 4. Mechanism MGB , an implementation of the grand bundle algorithm.

Mechanism MrCA

Input: Declaration profile d = d1, . . . , dn.
0 For each i, define di

0 to be di
0(T ) = maxS✓T,|S|

p
m{di(S)}.

1. With probability 1/2, return MsCA(d0) for s =
p
m.

2. Else return MGB(d).

Fig. 5. Mechanism MrCA, a randomized mechanism for the CA problem.
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Theorem 7.11. Choose ✏ > 0 and suppose D = d1, . . . , dT is an instance of
best-response dynamics with random player order, where agents play undominated
strategies, and T > ✏�1n. Then

SWMrCA(D) �
✓
1� 2✏

18
p
m

◆
SWopt(v)

with probability at least 1� 2ne�T ✏2/32n.

Proof. The initializations in mechanisms MGB , MsCA, and MrCA ensure that
declared valuations are used in the following way: with probability 1/2, only the bids
on M are used; otherwise, the mechanism considers only the single highest bid on any
set of size at most

p
m. Given this, it is without loss of generality to assume that

each declaration di is the XOR of two single-minded bids: one for the set M of all
items, and one for a set Si of size at most

p
m.

Since MGB is a Vickrey auction on the grand bundle, undominated strategies
for MGB involve bidding truthfully on M . Also, our prior analysis of MsCA implies
that undominated strategies for MsCA involve bidding truthfully on the chosen set
Si. Thus, for mechanism MrCA the undominated strategies are precisely those that
bid truthfully both on M and on Si.

Let y be the optimal allocation in which each nonempty set has size greater thanp
m. Then SW (y,v) 

p
mmaxi vi(M), since there can be at most

p
m nonempty

sets in y. Since we can assume the agent will be bidding truthfully for set M in
MGB (and has no strategic decision as to which set to bid for as in MsCA), we
can immediately apply the above

p
m approximation analysis. Recalling that we are

calling mechanism MGB with probability 1
2 in MrCA, we conclude that

SWMrCA(D) � 1

2
· 1p

m
SW (y,v).

Now let z be the optimal allocation of sets of size at most
p
m. From Theorem 7.5,

and again recalling that we are calling Mp
mCA with probability 1

2 , we conclude that

with probability at least 1� ne�T ✏2/32n,

SWMrCA(D) � 1

2
· 1� 2✏

8
p
m

SW (z,v).

Taking the union bound over the events described above, and noting that SWOPT

(v)  SW (z,v)+SW (y,v), we conclude that, with probability at least 1�ne�T ✏2/32n,

SWMrCA(D) � 1� 2✏

18
p
m
SWOPT (v)

as required.

We conclude that mechanism MrCA implements an O(
p
m)-approximation to

the combinatorial auction problem for best-response bidders, with high probability,
whenever T = ⌦(n1+�) for � > 0.

8. Conclusion and open problems. A central theme in algorithmic mecha-
nism design concerns the transformation of algorithms into mechanisms that satisfy
some game-theoretic solution concept (e.g., incentive compatability, approximations
at equilibrium). In contrast to incentive compatibility (where generally we do not
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expect to be able to preserve approximation bounds), we show that for a wide class of
greedy algorithms, approximation bounds for combinatorial allocation algorithms can
be transformed into mechanisms that enjoy closely matching POA bounds. Notably,
these results apply to Bayesian equilibria and some forms of repeated auctions.

We leave open a number of interesting challenges. Our results are motivated by,
and pertain to, monotone greedy algorithms as formally defined in section 2.4. In
fact, the key property of such algorithms is that they are monotone strongly loser-
independent as defined in section 3 and, with the exception of the results for correlated
Bayesian equilibria and best-response dynamics, our results hold for arbitrary mono-
tone strongly loser-independent algorithms. In particular, our result for correlated
Bayesian equilibria of the first-price mechanism requires that the allocation algorithm
A is a fixed-order greedy algorithm and achieves a POA bound of 4c, in contrast
to our c + o(1) result for independent agent distributions. Can the POA bound for
correlated Bayesian equilibria be improved? Can it be extended to adaptive greedy
algorithms or, more generally, strongly loser-independent algorithms? Our results for
best-response dynamics are restricted to particular greedy algorithms for the combi-
natorial auction problem and we lack a general approach that will work for all greedy
allocation algorithms.

Greedy algorithms for allocation problems often provide the best-known approx-
imations for combinatorial auction problems, but are nevertheless a restricted class
of algorithms. The basic open question in this regard is: For what class of allocation
algorithms can a given approximation algorithm A be transformed into a determinis-
tic or randomized mechanism M(A) that provides a POA bound (closely) matching
A’s approximation ratio? We also note that our framework does not capture all al-
gorithms that are typically thought of as greedy, since our definition assumes that it
is the player-allocation pairs that are considered greedy. This excludes, for example,
the greedy algorithm for combinatorial auctions where the valuation function of every
agent is a monotone submodular function. That algorithm considers each item (in
any arbitrary order) and awards it to the agent having the maximum marginal gain
for that item. This suggests the question as to whether or not POA results could
be extended to more general forms of greedy allocation rules. Similarly, the ran-
domized online algorithm by Buchbinder et al. [11] for unconstrained nonmonotone
submodular maximization also considers items (rather than bids) in a greedy algo-
rithm. Can our methodology be extended to include non monotone combinatorial
auctions (i.e., no free disposal)? It is also interesting to consider more general set-
tings of incomplete information, such as interdependent valuations; see Roughgarden
and Talgam-Cohen [41].

Appendix A. Existence of pure Nash equilibria. As stated in section 4, the
power of our pure POA bounds, such as in Theorem 4.3, is marred by the fact that,
for some problem instances, the mechanism M1(A) is not guaranteed to have a pure
Nash equilibrium. This is true even under the assumption that private valuations
and payments are discretized, so that all values and payments are multiples of some
arbitrarily small ✏ > 0. A simple example for M1(A) is given below.

Example A.1. Consider an instance of the combinatorial auction problem with
two objects, M = {a, b}, and three agents. Our feasibility constraint is that each
agent can be assigned at most one object, and moreover agent 2 cannot be allocated
object b and agent 3 cannot be allocated object a. Let A be the greedy algorithm that
ranks bids by value. Suppose the true types of the agents are as follows: v1(a) = 4,
v1(b) = 2, v2(a) = 3, v2(b) = 0, v3(a) = 0, and v3(b) = 3.
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We now prove that no pure Nash equilibrium exists for this example, even if we
assume that agents declare multiples15 of some ✏ > 0. Assume for contradiction that
there is a Nash equilibrium d for type profile v and mechanism M1(A).

We know that agent 1 does not win item b with a payment greater than 2, as this
would cause him negative utility (so he would certainly not be in equilibrium). Thus
it must be that A3(d) = {b}, since otherwise agent 3 could change his declaration
to win {b} and increase his utility. Thus, since agent 1 does not win item {b}, we
conclude that A1(d) = {a}, since otherwise agent 1 could change his declaration to
win {a} and increase his utility.

Now note that if d1({a}) < 3, agent 2 could increase his utility by making a
winning declaration for {a}. Thus d1({a}) � 3, and hence u1(d)  4�3 = 1. This also
implies that d1({a}) > d1({b}), so agent 3 would win {b} regardless of his bid. Thus,
since agent 3 maximizes his utility up to an additive ✏, it must be that d3({b})  ✏.
But then agent 1 could improve his utility by changing his declaration and bidding 0
for {a} and 2✏ for {b}, obtaining utility 2�2✏ > 1. Therefore d is not an equilibrium,
which is a contradiction.

Appendix B. Proof of Lemma 7.9. Our proof will make use of the method
of average bounded di↵erences. We will begin by giving a brief statement of this tech-
nique; see, for example, [19] for a more thorough treatment. Suppose that z1, . . . , zn
are (not necessarily independent) random variables, and let f be a real-valued func-
tion of z1, . . . , zn satisfying the property that for each i 2 [n] and any two values a, a0

that zi can assume, there is a nonnegative value ci such that

|E[f |z1, . . . , zi�1; zi = a]� E[f |z1, . . . , zi�1; zi = a0]|  ci,

where the expectations are with respect to the values of zi+1, . . . , zn. Then the method
of average bounded di↵erences states that Pr[f > E[f ] + `]  e�`2/2c for all ` > 0,
where c =

P
i2[n] c

2
i .

We now proceed with the proof of Lemma 7.9. First recall the statement of the
lemma. Suppose that {At}tT and {Bt}tT are sequences of binary random variables
satisfying the following properties:

1. At +Bt  1 for all t,
2. Pr[At+1 = 1|Bt = 1] � 1

n for all t, and
3. Pr[At+1 = 1|At = 1] � 1� 1

n for all t.

We wish to prove that Pr[
P

t B
t � ( 12 + ✏)T ]  e�T ✏2/32n.

Consider the steps in which At and Bt are not both 0; let R = {t : At +Bt � 1}
be this set of steps. For all r  |R|, let t(r) denote the rth largest element of R.
That is, t(r) is the step at which either At or Bt is 1 for the rth time. Let Cr denote
the (indicator variable for the) event that on the rth step in which either At or Bt

is 1, it is Bt that is 1. Then
P

rT Cr =
P

tT Bt, so it is enough to show that

Pr[
P

rT Cr > ( 12 + ✏)T ] < e�T ✏2/32n.

Since Pr[At+1 = 1|Bt = 1] � 1/n, we have that Pr[Cr+1|Cr]  1�1/n. Moreover,
if Cr does not occur, then At(r) occurs, and hence (since Pr[At+1 = 1|At = 1] � 1� 1

n ),
Cr+1 occurs with probability at most 1/n. That is, Pr[Cr+1|¬Cr]  1/n.

Let D1, D2, . . . , DT be a random walk on {0, 1} defined by Pr[Dr|Dr�1] = (1 �
1/n), Pr[Dr|¬Dr�1] = 1/n, and initial condition D0. Then our bounds above imply

15That is, our lack of pure equilibrium is not due to the possibility of infinitesimal improvements.
One can also interpret our example as demonstrating that there is no (1+ ✏)-approximate pure Nash
equilibrium for small ✏ > 0.
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that
P

r Cr is stochastically dominated by
P

r Dr, and hence Pr[
P

r Cr > ( 12+✏)T ] 
Pr[
P

r Dr > ( 12+✏)T ]. It will therefore su�ce to show that Pr[
P

rT Dr > ( 12+✏)T ] <

e�T ✏2/32n.
The definition of Dr yields

Pr[Dr] =
1

n
(1� Pr[Dr�1]) +

✓
1� 1

n

◆
Pr[Dr�1]

=
1

n
+

✓
1� 2

n

◆
Pr[Dr].

Solving this linear recurrence (with initial condition D0 2 {0, 1}) yields

Pr[Dr] =
1

2
(1� (1� 2/n)r) +D0(1� 2/n)r

=
1

2
+ (D0 �

1

2
)(1� 2/n)r.

Linearity of expectation then implies

E

"
X

r

Dr

#
=

1

2
T +

✓
D0 �

1

2

◆
n

2
(1� (1� 2/n)T+1).

From this we conclude that

(B.1) E

"
X

r

Dr

#
<

1

2
T +

n

4
,

and moreover,
�����E
"
X

r

Dr

�����D0 = 1

#
� E

"
X

r

Dr

�����D0 = 0

#����� <
n

2
.(B.2)

Let k = T/n and define random variables F1, . . . , Fk by Fi =
P

r2[in,(i+1)n�1] Dr.
Note that Fi 2 [0, n] for all i. Note also that

(B.3)
X

r

Dr =
X

i

Fi.

We would now like to apply the method of average bounded di↵erences to random
variables F1, . . . , Fk and function f =

P
i Fi. To do so, we must consider the expec-

tation E[
P

i Fi|F1, . . . , Fi�1, Fi = ↵] for ↵ 2 [0, n]. But note that the influence of
F` on the values of F`+1, . . . , Fk is captured entirely by the value of D(`+1)n�1, and

from (B.2) the influence of D(`+1)n�1 on
PT

r=(`+1)n Dr =
Pk

r=`+1 Fr is bounded by
n
2 . Since the value of F` also influences the sum

P
i Fi directly by at most n (due to

its being included in the summation), we conclude that for all ↵,↵0 2 [0, n],
������
E

2

4
X

j

Fj

������
F1, . . . , Fi�1, Fi = ↵

3

5�E

2

4
X

j

Fj

������
F1, . . . , Fi�1, Fi = ↵0

3

5

������
 3n/2.

Thus, by the method of average bounded di↵erences (and recalling that k = T/n),
we conclude that
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Pr

2

4
X

j

Fj > E

2

4
X

j

Fj

3

5+ (✏/2)T

3

5  e�(T ✏/2)2/2(3n/2)2k < e�T ✏2/18n.(B.4)

Our final step is to bound E[
P

j Fj]+(✏/2)T from the left-hand side of (B.4). Since
T > ✏�1n, we have from (B.3) and (B.1) that

E

2

4
X

j

Fj

3

5+ (✏/2)T = E

2

4
X

j

Dj

3

5+ (✏/2)T  1

2
T +

n

4
+ (✏/2)T <

✓
1

2
+ ✏

◆
T.

Thus (B.4) implies

Pr

2

4
X

j

Fj >

✓
1

2
+ ✏

◆
T

3

5 < e�T ✏2/32n

and the result follows.

Appendix C. Combining mechanisms. A standard technique in the design
of allocation rules is to consider both a greedy rule that favors allocation of small sets
and a simple rule that allocates all objects to a single bidder, and to apply whichever
solution obtains the better result [4, 10, 24, 35]. When bidders are single-minded,
such a combination rule will be incentive compatible [35]. We would like to extend
our results to cover rules of this form, but the POA for such a rule (with either the
first-price or critical-price payment scheme) may be much worse than its combinatorial
approximation ratio. Consider the following example.

Example C.1. Consider the combinatorial auction problem. Suppose A is the
non-adaptive greedy algorithm with priority rule r(i, S, v) = v if |S| 

p
m, and

r(i, S, v) = 0 otherwise. Let A0 be the non-adaptive greedy algorithm with priority
rule r(i, S, v) = v if S = M , and r(i, S, v) = 0 otherwise. Then A0 simply allocates
the set of all objects to the player that declares the highest value for it. Let Amax be
the allocation rule that applies whichever of A or A0 obtains the better result; that is,
on input d, Amax returns A(d) if SW (A(d),d) > SW (A0(d),d), otherwise it returns
A0(d). It is known that Amax is an O(

p
m)-approximate algorithm [35].

Our instance of the CA problem is the following. We have n = m � 2, say with
M = {a1, . . . , am}. Choose ✏ > 0 arbitrarily small. For each i, the private type of
agent i, vi, is the pointwise maximum of two single-minded valuation functions: one
for set {ai} at value 1, and the other for set M at value 1 + ✏. An optimal allocation
profile for v would assign {ai} to each agent i for a total welfare of m.

We construct a declaration profile as follows. For each i, di is the single-minded
valuation function for set M at value 1+ ✏. On input d, Amax will assign M to some
agent for a total welfare of 1+✏. Also, d is a pure Nash equilibrium for M1(Amax) and
Mcrit(Amax): all agents receive a utility of 0, and there is no way for any single agent
to obtain positive utility by deviating from d. Taking ✏ ! 0, we conclude that the
POA for any of these mechanisms is ⌦(m), which does not match the combinatorial
O(
p
m)-approximation ratio of Amax.

In light of the example above, one must consider di↵erent ways to combine two
allocation rules. For instance, one could implement each rule as a separate mechanism,
then randomly choose between the two with equal probability. This is the approach
taken in section 7.3. Such an approach can work well when the two allocation rules
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work with disjoint parts of the declaration space, so that agents can optimize their
bids separately for each mechanism.
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[20] S. Dughmi and J. Vondrák, Limitations of randomized mechanisms for combinatorial auc-
tions, Games Econom. Behav., 92 (2015), pp. 370–400.

[21] B. Edelman, M. Ostrovsky, and M. Schwarz, Internet advertising and the generalized
second price auction: Selling billions of dollars worth of keywords, Stanford Graduate
School of Business Research Paper No. 1917, Stanford University, Stanford, CA, 2005.

[22] M. Feldman, H. Fu, N. Gravin, and B. Lucier, Simultaneous auctions are (almost) e�cient,
in Proceedings of the 45th Annual ACM-SIAM Symposium on Theory of Computing, 2013,
pp. 201–210.

D
ow

nl
oa

de
d 

07
/2

0/
17

 to
 1

28
.1

00
.3

.7
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

660 BRENDAN LUCIER AND ALLAN BORODIN

[23] M. Goemans, V. Mirrokni, and A. Vetta, Sink equilibria and convergence, in Proceedings
of the 46th IEEE Symposium on Foundations of Computer Science, 2005.
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