
Volume 12, number 2 INFORMATION PROCESSING LETTERS 13 April 1981

EFFICIENT SEARCHING USING PARTIAL ORDERING

A. BORODIN ‘, L.J. GUIBAS 2, N.A. LYNCH 3 and A.C. YAO 2*4
’ University of Toron to, Toron to, Canadu
’ Xerox Palo Alto Research Center, Paio Alto, CA 94304, U.S.A.
3 Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.
4 On leave from Stanford University, Stanford, CA 94305, U.S.A.

Received 30 October 1979; revised version received 5 December 1980

Algorithm, Dilworth’s theorem, membership query, partial order, preprocessing, sorting

0. Introduction

Given a set U of n distinct numbers, we are inter-
ested in preprocessing them, so that subsequent rrem-
bership queries of the form ‘Is y E U?’ can be
answered quickly. For example, if one sorts the ele-
ments of U, then each query can be answerred in
pg(n + I)1 comparisons by a binary search. This may
be contrasted with the situation where no prepro-
cessing is done, when n comparisons are needed to
answer the query. In general, the esta.blishment of a
partial order over U will facilitate answering the que-
ries. In this paper we examine the trade-off between
the preprocessing cost and the subsequent search cost
for each query, in a model using pairwise comparisons
among the numbers as the basic operations. Suppose
we wish to be able to answer any membership query
in at most S(n) comparisons. Can we put a lower
bound on P(n), the worst-case cost of a preprocessing
algorithm which builds some suitable partial orders
on U? We shall show that P(n) + n lg S(n) 2
(1 + o(1))n lg n for any comparison-based algorithm ’
This result can be extended in a straightforward man-
ner to the case where some numbers in U may be
identical. A simple constructive argument will also
show that it is best possible.

For some related work, see the papers of Detig et
al. [l], and Munro and Suwanda [6].

” The notation lg denotes log to the base 2.

1. The model

Let Xl, x2, x, denote the numbers 6 in tb-
U. Initially we know nothing about the relative
ing of the xi. We will use a preprocessing algori
discover some of these ordering relations. This .
mation will then be made available to a search a
rithm. Precisely speaking, it preprocessing algo: it,
is a ‘comparison tree’ (see [4]), with each !sterr.,_
node containing a comparison of the form x : x’

(x, X’ E U). Algorithm P works by tracing a path from
the root down, making at each internal node the spe(
fied comparison and choosing an exit link according,
to the result (<, or >). At each step, the results of all
previous comparisons define a partial order c/ on U,
which is, of course, consistent with the underlying
linear order of the Xi. A leaf in the comparison tree
indicates termination of the preprocessing algorithm.
Accordingly, associated with each leaf v we have a
partial order UV on U. These partial orders will neces-
sarily be distinct, but may often fall into a few +so-
morphism classes.

Given a partial order Il, we will be interestc 2 111
search algorithms that answer correctly the query ‘!s
y E U?’ for any number y and any set of n distiaci
numbers U satisfying U. Such algorithms can a!so ‘Je
represented by comparison trees, with each internal
node containing a comparison of the form x : X’

6 Although we speak of ‘numbers’, clearly the same considcra-
tions apply to elcme;lts irom any totally ordered set.

71

Volume 12, number 2 INFORMATION PROCESSING LETTERS 13 April 1981

(x, X’ E U u (y]). These comparisons now have
ternary outcomes (<, =, or >). When a leaf is reached,
the ordering information the algorithm has discovered,
along with that implicit in U, must determine if y is
in U. Note that we allow the search algorithm to per-
form comparisons among elements in U. As we will
see, our upper-bound results will remain true even
under the condition that all comparisons of the
search algorithm involve y.

We must generalize this concept of a search algo-
rithm slightly, to deal with the fact that a prepro-
cessing algorithm can generate several different partial
orders. For us, a search algorithm S will denote a
table of algorithms like the above, indexed by some
collection of partial orders. Thus the inputs to S are
both y and the (index of the) partial order from the
collection to be searched. We will call a pair (P, S) of
preprocessing and search algorithms compatible, if the
coKection of partial orders S can search includes all
those B can generate.

We now associate worst-case lost i_easures with
the algorithms. The cost of P, Pienoted ,.c c(P), is the
maximum number of comparrsons made *!uring pre-
processing, i. e. the height of the COA ’ esponding com-
parison tree. Similarly, the cost of a search algorithm
S, denoted by c(S), is the maximum number of com-
parisons made during a search, taken over all partial
orders in the algorithm’s collection, and for each par-
tiai order over the set of all possible paths in the com-
parison tree.

Note that comparisons are counted as contributing
to preprocessing or search according to our choice in
drawing t”ne boundary between the algorithms. For
instant, instead of sorting during preprocessing and
then using binary search, we could run the sort only
up to an intermediate point, and then complete it as
part of the search phase, before the final binary
search. We only insist that (1) all comparisons
involving the new element y belong to the search
phase, and (2) that all preprocessing comparisons pre-
cede any search comparison.

Our main result is the following trade-off theorem
between the two costs.

Theorem 1. Let (P, Sj denote a pair of compatible
preprocessing and search algorithms on a set of n
numbers U. If c(P) dent b tes the preprocessing cost of
P and c(S) denotes the search cost of S, both mea-

72

sured in comparisons, then

c(P) + n lg c(S) 2 (1 + o(1 jjn lg n .

Furthermore, this bound is best possible.

This of course implies that the worst-case prepro-
cessing cost P(n) of any algorithm with a compatible
seach algorithm of worst-case cost not exceeding S(n)
satisfies the inequality

P(n)tnlgS(n)>(l +o(l))nlgn.

This covers both the cases P(n) = 0, S(n) = n, and
P(n) = n lg n, S(n) = figtn + l)] mentioned in the In-
troduction.

2. Upper bounds

In this section we show that the result of Theorem
1 is best possible by exhibiting a simple partial order
I/ and a pair of compatible algorithms (P, S) where P
always generates (partial orders isomorphic to) U, S
has a prescribed search cost s = c(S) 2 [lg(n + 1 j1 and
for which

c(P)+nlgc(S)G(l +o(l))nlgn. (I)

We make use of disjoint sorted lists of lengths as
equal as possible. Suppose we use k lists, a of length
m = [n/kl, and b of length m - 1, a, b defined by
<am t b(m - 1) = n and a + b = k. In the worst-case,
we must search each of the k lists using binary search,
for a total cost of

s=a[lg(m+ l)l+b[lgml.

(An appropriate value of k can be computed from this
relation, as long as s > [lg(n t 1)l.j

For preprocessing we need to form the sorted lists,
at a total cost of

c(P)=arn[lgm~+b(m- l)[lg(m- lj1

comparisons in the worst case.
Note that

c(S)=sEk[lg(m+ l)l,

and so

lgc(S)~lgktlg[lg(m+ l)].

Volume 12, number 2 INFORMATION PROCESSING LETTERS 13 April 1981

Similarly

c(P) < km [lg ml ,,

Using the fact that lg [lg(m + 1)1= o(lg n), we finally
conclude

c(P) + n lg c(S) < km [lg ml + n lg k f n o(lg n)

= (1 + o(l))n lg n

which gives (1).

graph G with vertex set V = U U Iy} and edge set E =
{{x, x’) 1 x : x’ is in a). It is easy to see that G must
be connected, otherwise y can be equal to any ele-
ment in a component different from the one
searched, contradicting that y 4 U. Thus, there must
be at least n edges in E, meaning that S makes at
least n comparisons. This proves S(S) 2 n.

Lemma 2. Wz have S(U) 2 w(U).

Note that this construction attains the bound
under fairly restricted conditions. Firstly, all partial
orders produced by the preprocessing algorithm are
isomorphic, and secondly, all comparisons of the
search algorithm involve the new element y.

Proof. Let U’ c U be any incomparable subset with
IU’I = w(U), and U1, U2 be the sets {x I x <u x’ for
some x’ E U’}, {x I x’ +J x for some x’ E U’}, rfispec-
tively . Since U’ is incomparable, U1, U2, U’ are pair-
wise disjoint.

3. Lower bounds

We now prove that P(n) t n lg S(n) 2
(1 + o(1))n lg n. First we define some terminology.
Let U be a partial order on a set U. We shall write
x <u x’ to denote that ‘x is less than x’ in U’. Two
distinct elements x, x’, are U-incomparable if neither
x <u x’ nor x’ <u x. A subset U’ c U is incolmpar-
able if every two distinct elements in U’ are. A U-
chain is a sequence z1 <v z2 <v l _ <v zt. A family
of U-chains pa&ions U if every element of IJ appears
in exactly one of the chains. The width of U is defined
as

Let S be any search algorithm on U using U. Let

U’ be a partial order on U consistent with U, and such
that x <u x’ <un ~“foranyxEU~,x’EU’,x”EU2.
If U is known to satisfy U’ and if y is known to satisfy
U1 < y < U2, then all comparisons except those
between elements in U’ U iy} are not needed to
decide if y E U. In fact, if we delete from S every

internal node v with its comparisons not between ele-
ments in U’ U {y}, and connect any son of v directly
to the father node of v, the resulting tree S’ still
decides if y E U. Since y E U if and only if y E U’
under the present conditions, S’ is a search algorithm
to decide if y E U’ with empty partial order. By Lem-
ma 1, c(S’) 2 I U’ I = w(U). Hence S(U) 2 S(U’) 2
WJI.

w(U) = (max i U’ 11 U’ c U is U-incomparable) .

We need the following result due to Dilworth [3].

Theorem (Dilworth). Let U denote a partial order on
U. Then

Lemma 3. Let w 2 w(U), m = [n/WI, and integers a,
bbedefinedbyamtb(m- l)=nanda+b=w.
Then v(U), the number of linear orderings on U con-
sistent with U is at most

w(U) = min(k 1 3 a family of k U-chains that

partitions U} .

n!

(m!ja((m - l)!)b ’

Let S(u) denote the minimum of S(S), taken over
all algorithms S capable of searching U.

Proof. By Dilworth’s theorem, U can be partitioned
into w disjoint U-chains of lengths, say, Q1, Q2, II,
(with Z& = n). Clearly

Lemma 1. If U is empty, then S(U) 2 n.

’ Proof. Let S be any search algorithm for U, and The lemma follows as the multinominal coefficient

y $ U be any number. Consider any sequence o of achieves maximum when a of the .Pi are m and the

comparisons made by S. Construct an undirected rest are m - 1.

73

Volume 12, number 2 INFOrRMATION PROCESSING LETTERS 13 April 1981

Lemma 4. Let P be any preprocessing algorithm on U
which produces partial orders that can be starched in
at most s comparisons. Then c(p) 2 a lg(m?) +
b lg((m - l)!), where m = [n/s], and a, b are defined
byam+b(m-l)=nanda+b=s.

Proof. At each leaf v, algorithm P must produce a par-
tial order Qv such that S(Q,) < s, and hence w(QV) G
s by Lemma 2. According to Lemma 3, this implies

n!
c;;l!r ((m - l)!)b ’

where m, a, b are as defmed. Since all n! linear order-
ings on U must end in some leaf, we have

nl(2ClP) *i
(m!)“((m - l)!)b ’

This leads to 2c(fl 2 (m!r((m - l)!)be Hence the
lemma.

Note that the same conclusion a fortiori holds if
we restrict the comparisons of the search algorithm
to those involving y only.

Proof of Theorem 1. From Lemma 4 we have

c(P).slg((m - l)!)

2 <i(;n - 1) lg(m/e])

2 (n - s) lg(n/sej,

where we have used the easily proved inequality q! 2
((q + 1)/e>% The above inequality can be rewritten.
as

c(p) + n lg s 2 n lg n - n lg e - s lg(n/se).

Since pg(n + I)] G s G n the last term on the right-
hand side is O(n), and so we have shown from which
Theorem 1 follows.

c(P)+nlgs>(l +o(I)jnlgn,

!t may be of interest to observe that a somewhat
weaker version of the same theorem can be obtained
by an adversary argument. The adversary keeps mar-
kers 1,2 , n in bins to help it organize its response
strategy while the preprocessing algorithm runs. Bins
are organized into an infinite binary tree, with all
markers initially at e root. When the algorithm asks
about xi : Xi, the adyprsary examines the current posi-
tior;s of i and j in the bin tree.

74

Case 1. If i is in a bin to the left (right) of j’s bin
and these bins are not on a common path, then the
adversary answers < @).

Case 2. if i is in a bin which is a proper ancestor of
j’s bin (or vice versa), then the adversary moves i to
whichever son is not an ancestor of j and answers <
(?), if i is to the left (right) of j (symmetrically for i
and j interchanged).

Case 3. If i and j are in the same bin, then the
adversary moves i to the left son, j to the right son,
and answers <.

In the analysis of the adversary, we give a lower
bound for the number of markers which must lie on
some common path in the final bin tree. Since the
corresponding elements are all incomparable in the
final partial order, Lemma 2 can be applied to yield a
lower bound on the search time. The resulting inequal-
ity is 2P(n) + n lg S(n) 2 (1 + o(1))n lg n.

4. Remarks and open problems

The results of this paper extend readily to the case
where equal keys may be present. One need only
check that the upper-bound construction is still valid.

There is a discrepancy between our lower and
upper bounds in the second-order term. The upper
bound gives a second-order term of order O(n lg lg nj,
while the lower bound has a negative such term of
order O(n). It may be of interest to further close this

2ap.
We conjecture that a similar trade-off between pre-

processing and search costs holds under the average-
cost metric as well. However, we have not been able
to relate the average search cost of a partial order to
the number of permutations consistent with it.

Finally, we can try to generalize these results to
‘on-line’ algorithms. In [1] an on-line data-structure,
called binomicrl lists, is given with preprocessing cost
O(n lg n) and.search cost 0(lg2 n) in the worst-case.
It is also shown there that this is essentially best-pos-
sible, if one considers only partial orders consisting of
disjoint sorted lists. But without this restriction, no
‘on-line lower bounds are known.

Volume 12, number 2 INFORMATION PROCESSING LETTERS 13 April 1981

References

[1J J. Bentley, D. Detig, L. Guibas and J. Saxe, An optimal
data structure for minimal-storage dynamic member
searching, CMU (1978), unpublished manuscript.

[2] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan,
Time bounds for selection, J. Comput. System Sci.
7 (1973) 448-461.

[31 R.P. Diiworth, A decomposition theorem for partially
ordered sets, Ann. of Math. 51 (1950) 161-166.

[4] DE. Knuth, The Art of Computer Programming, Vol. 3
(Addison-Wesley, Reading, MA, 1973).

[5] A. Schiinhage, M.S. Paterson and N. Pippenger, Finding
the Median, J. Comput. System Sci. 13 (1976) 184-199.

[6] J.I. Munro and H. Suwanda, Implicit data structures,
Proc. 1 lfh Annual STOC Symposium, Atlanta, GA, 1979,
109-.117.

75

