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Abstract

Unconstrained submodular maximization captures many NP-hard combinatorial
optimization problems, including Max-Cut, Max-Di-Cut, and variants of facility lo-
cation problems. Recently, Buchbinder et al. [8] presented a surprisingly simple
linear time randomized greedy-like online algorithm that achieves a constant ap-
proximation ratio of 1

2 , matching optimally the hardness result of Feige et al. [19].
Motivated by the algorithm of Buchbinder et al., we introduce a precise algorithmic
model called double-sided myopic algorithms. We show that while the algorithm of
Buchbinder et al. can be realized as a randomized online double-sided myopic al-
gorithm, no such deterministic algorithm, even with adaptive ordering, can achieve
the same approximation ratio. With respect to the Max-Di-Cut problem, we relate
the Buchbinder et al. algorithm and our myopic framework to the online algorithm
and inapproximation of Bar-Noy and Lampis [6].

1 Introduction

Submodularity emerges in natural settings such as economics, algorithmic game theory,
and operations research; many combinatorial optimization problems can be abstracted
as the maximization/minimization of submodular functions. A canonical example of
such is f(S) =

∑
i∈S,j /∈S wij , the cut of a graph with edge weights wij , of the vertex set

S. As with the special case of Min-Cut, the general problem of submodular minimization
is solvable in polynomial time [24, 13, 28, 41].

Maximizing a submodular function, on the other hand, generalizes NP-hard problems
such as Max-Cut [23], Max-Di-Cut [25, 3, 23], Maximum-Coverage [27, 16], expected
influence in a social network [30] and facility location problems [12, 11]. Appropriately,
this problem tends to be approached under the context of approximation heuristics in
the literature. For monotone submodular functions, maximization under a cardinality
constraint can be achieved by the greedy algorithm with an approximation ratio of (1− 1

e )
[35], which is in fact optimal in the value oracle model [34]. The same approximation
ratio is obtainable for the more general matroid constraints [9, 21], as well as knapsack
constraints [42, 32].
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We limit our discussion to unconstrained non-monotone submodular maximization
— typical examples of which include Max-Cut and Max-Di-Cut in graphs and hyper-
graphs. Note that solving these problems as general submodular maximization may not
yield the best approximation ratio. In fact, Goemans and Williamson [23] used semidefi-
nite programming to approximate Max-Cut within 0.878, and Max-Di-Cut within 0.796.
The approximation for Max-Di-Cut was later improved to 0.859 by Feige and Goemans
[17] and to the currently best known ratio of 0.874 by Lewin, Livnat, and Zwick [33].
Trevisan [43] showed that 1

2 approximation for Max-Di-Cut can also be achieved with
linear programming. On the other hand, an approximation ratio of 1

2 for the general
unconstrained non-monotone submodular maximization problem is optimal unless expo-
nentially many value oracle queries are made [19, 45]. In the former case, f is known to
have a succinct representation (i.e. f is completely revealed once the algorithm queries
every edge weight); while in general, an explicit representation of f might be exponential
in the size of the ground set. On the other hand, instances of Max-Cut and Max-Di-Cut
are convenient in establishing lower bounds for the general submodular maximization
problem.

Recently, linear time (linear in counting one step per oracle call) double-sided greedy
algorithms were developed by Buchbinder et al. [8] for unconstrained non-monotone
submodular maximization. The deterministic version of their algorithm, stated formally
in Algorithm 1, achieves an approximation ratio of 1

3 , while the randomized version
achieves 1

2 in expectation - improving upon the 2
5 randomized local-search approach in

[19], and the 0.42 simulated-annealing technique in [22, 20], in terms of approximation
ratio, time complexity and arguably, algorithmic simplicity. While the hardness result
of Feige et al. [19] implies optimality of the randomized algorithm, the gap between the
deterministic and randomized variants remains an open problem. More specifically, is
there any de-randomization that would preserve both the greedy aspect of the algorithm
as well as the approximation?

To address this question, we adapt the framework of priority algorithms of Borodin
et al. [7], a model for greedy-like algorithms that has since been used in studying the
limits of certain optimization algorithms [40], graph algorithms [15], randomized greedy
algorithms [4], and dynamic programming [1]. The idea is to derive information-theoretic
lower bounds for entire classes of greedy-like algorithms using adversarial arguments
similar to those employed in online competitive analysis. In our case, we define a double-
sided myopic algorithms framework, and show that no such algorithm in the deterministic
setting can de-randomize the Buchbinder et al. 1

2 -ratio double-sided greedy algorithm.

1.1 Related Work

Our motivation is the double-sided greedy algorithms of Buchbinder et al. that we
wish to formalize. Independently, Bar-Noy and Lampis [6] gave a 1

3 deterministic online
greedy algorithm for the Max-Di-Cut problem matching the deterministic approximation
obtained by Buchbinder et al. for all unconstrained non-monotone submodular maxi-
mization problems. Interestingly, their algorithm is shown to be the de-randomization of
the simple 1

4 random-cut algorithm! Bar-Noy and Lampis give an improved 2
3
√
3
approx-
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imation for Max-Di-Cut when restricted to DAGs. Furthermore, they provide a precise
online model with respect to which this approximation bound is essentially optimal.

In addition to the naive random-cut algorithm (and its de-randomization), there are
a number of combinatorial algorithms for the Max-Di-Cut problem. Alimonti [2] gives
a 2

5 non-oblivious local search algorithm. Halperin and Zwick [25] also give a linear
time randomized 9

20 -approximation algorithm, as well as a bipartite-matching based
algorithm with 1

2 -approximation. Based on a novel LP formulation, a deterministic
algorithm due to Datar et al. [14] achieves a 4

9 -approximation for Max-Di-Cut. On the
other hand, little is known about the limits of combinatorial approaches to Max-Di-Cut.
In addition to the online inapproximation by Bar-Noy and Lampis, Feige and Jozeph
[18] give a randomized oblivious algorithm 1 (where only the total in/out weights of a
vertex is given) that achieves a 0.483 ratio, but show that no oblivious algorithm can
do better than 0.4899. In Section 6, we discuss the relation of oblivious algorithms to
our work. Finally, we note that beyond combinatorial algorithms, H̊astad [26] gives a 11

12
inapproximability bound for Max-Di-Cut under the assumption that NP ̸= P ; whereas
for Max-Cut, Khot et al. [31] show that the ratio of 0.878 is optimal under the Unique
Games Conjecture.

Another relevant class of problems is submodular Max-Sat (in which the objective
function is monotone submodular). Azar et al. [5] provide a randomized online algo-
rithm that achieves 2

3 -approximation, which is tight under their data model. They also
demonstrate via a simple reduction the equivalence between submodular Max-Sat and
monotone submodular maximization subject to binary partition matroids constraint. In
fact, by incorporating the bipartition constraint, Buchbinder et al. show that their 1

2
randomized double-sided greedy algorithm can be readily extended to a 3

4 -approximation
algorithm for submodular Max-Sat. While the 3

4 ratio was already achievable by random-
ized algorithms [38, 44], the double-sided algorithm generalizes to submodular Max-Sat,
all the while entailing a much simpler analysis (see Poloczek et al. [39] for details).
On the other hand, Poloczek [37] shows that for Max-Sat, no deterministic adaptive
priority algorithm (in a more general input model than in Azar et al.) can achieve an
approximation ratio of 0.729. This rules out the possibility of de-randomizing the above
3
4 algorithms using any greedy algorithm.2 This stands in contrast to the fact that
the naive randomized algorithm can be de-randomized (by the method of conditional
expectations), and as shown by Yannakakis [46] becomes Johnson’s [29] deterministic
algorithm. Chen et al. [10] show that Johnson’s algorithm is a 2

3 approximation for
Max-Sat.

Independent of our work, Paul, Poloczek and Williamson [36] have very recently
derived a number of deterministic algorithms, and deterministic and randomized inap-
proximations for Max-Di-Cut with respect to the priority algorithm framework.

1Feige [18] uses the term oblivious in a different sense than Alimonti [2] who uses the term to indicate
that in each iteration of the local-search, the algorithm uses an auxiliary function rather than the given
objective function.

2The inapproximation result of Poloczek also applies to submodular Max-Sat, as submodularity
encompasses all modular (linear) functions.
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1.2 Basic Definitions

A set function f : 2N → R is submodular if for any S, T ⊆ N ,

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ).

We say that f is monotone if f(S) ≤ f(T ) for all S ⊆ T ⊆ N , and non-monotone
otherwise. An equivalent, and perhaps more intuitive definition of submodular functions
captures the principle of diminishing returns: f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ),
whenever S ⊆ T and x ∈ N \ T .

In the unconstrained non-monotone submodular maximization problem, we are given
a finite subset N and the goal is to find a subset S ⊆ N (where N is finite) so as to
maximize f(S) for a specified submodular function f . In general, since the specification
of f requires knowing its value on all possible subsets, f is accessed via a value oracle
which given X ⊆ N , returns f(X). We state the deterministic version of the Buchbinder
et al. double greedy algorithm, which approximates this problem with 1

3 guarantee, in
Algorithm 1.

Algorithm 1 DeterministicUSM(f,N )

1: S0 ← ∅, T0 ← N
2: for i = 1 to n do
3: ai ← f(Si−1 ∪ {ui})− f(Si−1)
4: bi ← f(Ti−1 \ {ui})− f(Ti−1)
5: if ai ≥ bi then
6: Si ← Si−1 ∪ {ui}, Ti ← Ti−1

7: else
8: Ti ← Ti−1 \ {ui}, Si ← Si−1

9: end if
10: end for
11: return Sn

For some explicitly defined submodular functions, such as Max-Cut and Max-Di-Cut,
we are given as input an edge weighted graph (or directed graph) G = (V,E,w). Here
we interpret the ground set N to be vertex set V , and f(X) =

∑
u∈X,v∈V \X w(u, v) to be

the cut function, which can be assumed to be computed at unit cost. But, of course, in
such an explicitly defined problem, if an algorithm is given the edge weights then it may
deduce the complete mapping of f without value oracle calls. For online computations,
we usually assume that the graph is revealed one vertex at a time, in the sense that the
revealed vertex specifies the edges and their weights to all previously revealed vertices
(while the number of vertices may be given a priori). As argued, by Bar-Noy and Lampis,
for cut problems, the revealed vertex must also give global information about each node,
namely the total weight of in-edges and the total weight of out-edges.
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1.3 Our Contribution

We introduce a formalization of double-sided myopic algorithms - an adaptation of the
priority framework under a restricted value oracle model. To make this precise, we will
introduce three types of relevant oracle queries. We show that the double-sided greedy
algorithms of Buchbinder et al. can be realized as online double-sided myopic algorithms.
Moreover, our framework also captures the online algorithm of Bar-Noy and Lampis for
Max-Di-Cut. Even our most restrictive model (see query Q-Type 1 in Section 2.2) allows
for plausible ways to extend these algorithms. As our main contribution, we establish the
following lower bounds for deterministic algorithms under this framework with respect
to the stronger Q-Types as defined in Section 2.2.

Theorem 1.1. No deterministic online double-sided myopic algorithm (with respect to
our strongest oracle model Q-Type 3) can achieve a competitive ratio of 2

3
√
3
+ϵ ≈ 0.385+ϵ

for any ϵ > 0 for the unconstrained non-monotone submodular maximization problem.

Theorem 1.1 is obtained by directly applying the hardness result of Bar-Noy and
Lampis in Max-Di-Cut [6], which, to the best of our knowledge, has not been studied
in the context of the Buchbinder et al. double greedy algorithm. We also show that
the deterministic algorithm with 1

3 approximation ratio guarantee for Max-Di-Cut by
Bar-Noy and Lampis is in fact an instantiation of the double-sided greedy algorithm
when the submodular function f is the directed cut function.

Extending to the class of (deterministic) fixed and adaptive priority algorithms in
Theorem 1.2 and 1.4, we construct submodular functions and corresponding adversarial
strategies that would force an inapproximability ratio strictly less than 1

2 . In terms of
oracle restrictiveness, our inapproximation holds for the already attained partial solution
query model (Q-Type 2), which is more powerful than what is sufficient to achieve
the 1

2 ratio by the online randomized greedy algorithm (Q-Type 1). A comprehensive
description of the different oracle models will be covered in Section 2.2. Our proof
is computer assisted, in that the objective function value for each possible subset is
explicitly computed through linear programming.

Theorem 1.2. There exists a problem instance such that no fixed priority double-sided
myopic algorithm with respect to oracle model Q-Type 2 can achieve an approximation
ratio better than 0.428.

Theorem 1.3. There exists a problem instance such that no fixed priority double-sided
myopic algorithm with respect to oracle model Q-Type 3 can achieve an approximation
ratio better than 0.450.

Theorem 1.4. There exists a problem instance such that no adaptive priority double-
sided myopic algorithm with respect to oracle model Q-Type 2 can achieve an approxi-
mation ratio better than 0.432.
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2 The Double-Sided Myopic Algorithms Framework

By integrating a restricted value oracle model in a priority framework, we propose a gen-
eral class of double-sided myopic algorithms that captures the Buchbinder et al. double-
sided greedy algorithm. We rephrase the double-sided procedure as a single-sided sweep,
but with access to a pair of complementary objective functions - as opposed to simul-
taneously evolving a bottom-up and a top-down solution. This interpretation admits a
myopic behavior common to most greedy algorithms; and we show how this facilitates
an adaptation of a priority-like framework. To make this formalization precise, we must
specify how information about input items is represented and accessed. The generality
of the unconstrained submodular maximization problem raises some representational is-
sues leading to a number of different input presentations. To address these issues, we
employ a marginal value representation that is compatible with both the value oracle
model and the priority framework.

On the one hand, a precise description of a data item is necessary in determining an
ordering of the input set, as well as in quantifying the availability of information in the
decision step. On the other hand, the value oracle model measures complexity in terms
of information access. An apparent incompatibility arises when an exact description
of a data item can trivialize query complexity - as in the case of the marginal value
representation, where exponentially many queries are needed to fully describe an item
when f is an arbitrary submodular function. For this reason, we propose a hierarchy
of oracle restrictions that categorizes the concept of myopic short-sightedness, while
preserving the fundamental characteristics of the priority framework. This consequently
gives rise to a hierarchy of algorithmic models, which will be actualized once we define
the algorithm’s internal memory. We conclude this section by expressing the Buchbinder
et al. double-sided greedy algorithm under the double-sided myopic framework.

2.1 Value Oracle and the Marginal Value Representation

For succinctly encoded problems, the objective is a function of an explicitly given col-
lection of input item attributes; that is, weighted adjacencies in Max-Cut and Max-
Di-Cut, and distances and opening costs in facility location problems. In contrast, in
general submodular maximization problems, other than labels, the elements of N by
themselves do not convey pertinent information. Therefore we interpret N as a fixed
ground set, and the input instance as the objective function itself, drawn from the family
F = {f |f : 2N → R} of all submodular set functions over N . To avoid having an expo-
nentially sized input, we employ a value oracle as an intermediary between the algorithm
and the input function. That is, given a query S ⊆ N , the value oracle will answer the
question: “What is the value of f(S)?” By an abuse of notation, we will interchangeably
refer to f as the objective function (i.e. when referring to f(S) as a real number) and
as the value oracle (i.e. when an algorithm submits a query to f).

We also introduce for notational convenience a complementary oracle f̄ , such that
f̄(X) = f(N \X), for input set N . This allows us to express the double-sided myopic
algorithm similar to the priority setting in [7], where the solution set X is constructed

6



item by item, using only locally available information. In other words, the introduction
of f̄ allows access to f(N \X) using X (which is composed of items that have already
been considered) as query argument, instead of N \X. The double-sidedness of the
framework follows in the sense that f and f̄ can be simultaneously accessed.

We wish to model greedy-like algorithms that process the problem instance item by
item. But what is an item when considering an arbitrary submodular function? While
the natural choice is that an item is an element of N (to include or not include in the
solution S), for arbitrary submodular maximization the input is a function f (or more
precisely, an oracle interface of f) and thus the notion of a data item becomes somewhat
problematic. To address this issue, we propose the marginal value representation, in
which f is instilled into the elements of N . Specifically, we could describe a data item
as an element u ∈ N , plus a list of marginal differences ρ(u|S) = f(S ∪ {u}) − f(S),
and ρ̄(u|S) = f̄(S ∪ {u}) − f̄(S) for every subset S ⊆ N . The impracticality in using
a complete representation in this form is evident as the space required is exponential
in |N |. Furthermore, such a complete marginal representation would lead to a trivial
optimal greedy algorithm by adaptively choosing the next item to be one that is included
in an optimal solution (given what has already been accepted). Therefore we assume
that an oracle query must be made by the algorithm in order to access each marginal
value. In terms of inapproximability arguments, if we impose certain constraints on what
oracle queries are allowed during the computation, then the model allows us to justify
when input items are indistinguishable. In fact, our inapproximation results will not be
based on bounding of the number of oracle queries but rather will be imposed by the
restricted myopic nature of the algorithm.

2.2 Classes of Relevant Oracle Queries

The myopic condition of our framework is imposed both by the nature of the ordering
in the priority model, which we describe later on, as well as by restricting the algorithm
to make only certain types of oracle queries that are relevant. To avoid ambiguity, we
emphasize that the value oracles are given in terms of f and f̄ , with ρ and ρ̄ being used
purely for notational simplicity. That is, when we say that the algorithm learns the
value ρ(u|S), we assume that it queries both f(S ∪ {u}) and f(S). At iteration i, define
(respectively) Xi−1 and Yi−1 to be the currently accepted and rejected sets, and ui to be
the next item considered by the algorithm. We now introduce three models of relevant
oracle queries in hierarchical ordering, starting with the most restrictive:

Next attainable partial solution query (Q-Type 1)

The algorithm is permitted to only query f(Xi−1 ∪ {ui}) and f̄(Yi−1 ∪ {ui}),
corresponding to the values of the next possible partial solution. In terms of the
data item model, this is equivalent to learning ρ(ui|Xi−1) and ρ̄(ui|Yi−1) for the
item ui.
We note that in this and in all our models, we can then use this information in
any way. For example, the deterministic algorithm of Buchbinder et al. greedily
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chooses to add ui to Xi−1 if ρ(ui|Xi−1) = a ≥ b = ρ̄(ui|Yi−1). In our model, the
decision about ui can be any (even non-computable) function of a and b and the
“history”of the algorithm thus far.

Already attained partial solutions query (Q-Type 2)

In this model we allow queries of the form ρ(ui|Xj) and ρ̄(ui|Yj) for all j < i.

All subsets query (Q-Type 3)

By making an all subsets query on ui, the algorithm learns the marginal gains
ρ(ui|S) and ρ̄(ui|S) for every S ⊆ Xi−1 ∪ Yi−1. Essentially, the algorithm is given
full disclosure of the submodular function f and f̄ over the set of currently revealed
items. Note that in this very general model, the algorithm can potentially query
exponentially many sets so that in principle such algorithms are not subject to the
1
2 inapproximation result of Feige et al [18].

Finally, observe that the above classes are ordered by inclusion. That is, if Qi(N ) is
the set of all queries on input N permitted under query type i, then Qi(N ) ⊆ Qi+1(N ).

2.3 Internal Memory or History

We define an algorithm’s internal memory or history as a record of the following:

• All previously considered items and the decisions made for these items.

• The outcomes of all previous relevant query results.

• Anything that can be deduced from all previously considered items, decisions and
relevant queries. That is, in the priority framework (section 2.4), the order in
which the items are considered will determine that certain items in N cannot take
on certain marginal values. In other words, the algorithm may rule out from F all
submodular functions that would contradict the observed ordering.

Recalling the definition of Xi−1 and Yi−1, let Ni−1 = Xi−1 ∪ Yi−1 be the set of
all previously seen (and decided upon) items at the start of iteration i. Let ui be the
next element, and allow the algorithm to perform any possible relevant queries. We
summarize the algorithm’s internal memory under each query restriction type:

Q-Type 1 myopic model

An algorithm with Q-Type 1 oracle access has the record of:

– The decision made for every u ∈ Ni−1.

– ρ(uj |Xj−1) and ρ̄(uj |Yj−1) for 0 < j ≤ i.

Q-Type 2 myopic model

An algorithm with Q-Type 2 oracle access has the record of:
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– The decision made for every u ∈ Ni−1.

– ρ(uj |Xk) and ρ̄(uj |Yk) for 0 ≤ k < j ≤ i.

Q-Type 3 myopic model

An algorithm with Q-Type 3 oracle access has the record of:

– The decision made for every u ∈ Ni−1.

– ρ(u|S) and ρ̄(u|S) for all u ∈ Ni and all S ⊆ Ni.

2.4 Priority Models

The other aspect of the priority framework that we need to specify is the order in
which input items are considered. We present a high-level description of the generic
templates of double-sided myopic algorithms. As in the priority framework, we categorize
double-sided myopic algorithms into the following subclasses: online, fixed priority,
and adaptive priority. For all templates, the decision step remains the same. Namely,
based on the history (which depends on the particular value oracle model) of previous
relevant queries, and relevant queries corresponding to current item being considered,
the algorithm makes an irrevocable decision for the current item. Let N be the input set,
whose length n is the only information that is initially accessible (i.e. before any queries
are made) to the algorithm. We note that the transparency of the input length n allows
us to capture a broader and potentially more powerful class of algorithms compared to
that of the original priority framework. Or more precisely, it prevents an adversary from
abruptly ending a computation freeing an algorithm from this concern.

An online double-sided myopic algorithm conforms to the standard template of an
online algorithm:

Online 2-Sided Myopic Algorithm

while not empty(N )

next := lowest index (determined by adversary) of items remaining in N
Relevant Query: Perform any set of relevant queries and update the internal
memory

Decision: As a function of the internal memory, irrevocably accept or reject
unext, and remove unext from N

A fixed priority algorithm has some limited ability to determine the ordering of the
input items. Namely, such an algorithm specifies an injective priority function π : R ×
R→ R, such that the item that minimizes π corresponds to the item of highest priority.
In the generality of submodular function maximization, lacking any other information,
the priority of an input u is determined as a function of u’s marginal gains in f and f̄
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with respect to the empty set. The item unext ∈ N which minimizes π is then given
to the algorithm. Our inapproximations also hold if the algorithm is also (say) given
the maximum value of any f({u}). In such a case, the priority can be a more complex
function of the precise values of these marginals. We emphasize that π is determined
before the algorithm makes any oracle queries, and cannot be changed. The structure
of a fixed priority algorithm is as follows:

Fixed Priority 2-Sided Myopic Algorithm

Ordering: Specify a priority function π : R× R→ R

while not empty(N )

next := index i of the item in N that minimizes π(ρ(ui|∅), ρ̄(ui|∅))
Relevant Query: Using unext as the next item, perform any set of relevant
queries and update the internal memory

Decision: As a function of the internal memory, irrevocably accept or reject
unext, remove unext from N and update internal memory.

In the most general class of adaptive priority algorithms, a new ordering function
may be specified after each item is processed. Here we calculate the priority of an
item u by extending π to take as input all marginal differences for u permissible in the
chosen query model. More precisely, the algorithm does not inquire the marginals for
all items currently in N , but is simply given the item of highest priority u, namely
u = argminv[π(Q(v))]. We define Q(u) to be the vector of u’s marginal gains accessible
under the appropriate relevant query model. Observe that in Q-type 2 and 3, the length
of Q increases with the iterations.

Adaptive Priority 2-Sided Myopic Algorithm

while not empty(N )

Ordering: Based on the internal memory, specify a priority function π

next := index i of the item in N that minimizes π(Q(ui))

Relevant Query: Using unext as the next item, perform any set of relevant
queries and update the internal memory

Decision: As a function of the internal memory, irrevocably accept or reject
unext, remove unext from N and update internal memory.

We remind the reader that for the fixed and adaptive priority models, updating the
internal memory also means deducing that certain marginal descriptions cannot exist
and applying relevant queries (for the given Q-type) to obtain additional information.
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In particular, if unext ∈ N is the item with the minimum π value, then any item uj
with π(Q(uj)) < π(Q(unext)) cannot appear later. Knowledge of what items (in terms
of marginal representation) cannot be in N can be assumed to be part of the internal
memory.

Finally, we note that all conditions mentioned here are devoid of complexity as-
sumptions, and thus our inapproximability arguments result from information theoretic
arguments. That is, the complexity or even computability of the ordering and decision
steps is arbitrary, and there is no limitation on the size of the memory.

2.5 Remodeling the Buchbinder et al. Double-Sided Greedy Algo-
rithm

Claim 2.1. The deterministic double-sided greedy algorithm in [8] can be modeled by
Algorithm 2, a Q-Type 1 online double-sided myopic algorithm.

Proof. To prove this claim, we relabel the variables and function calls on the syntactic
level without modifying the algorithmic behavior, until we obtain a description that
complies with the online myopic model. First we recall the formal description of the
deterministic double-sided greedy algorithm (called DeterministicUSM ) in Algorithm 1.

Define the variables Xi = Si, Yi = N \ Ti, and rewrite Algorithm 1 in terms of Xi

and Yi. To establish an online setting, we assume a predetermined ordering over N .
Furthermore, as argued in section 2.1, we will replace N by f̄ as input parameter in
order to demonstrate the algorithm’s item-by-item behavior. This is possible in Line 1,
since X0 = Y0 = ∅ by definition. In the later steps, recovering Si from Xi is trivial, but
Ti = N \ Yi would require access to N . To resolve this problem, we make use of the
complementary value oracle f̄ , with the following equalities

Ti−1 \ {ui} = (N \ Yi) \ {ui} = N \ (Yi ∪ {ui}) (1)

f(Ti−1 \ {ui})− f(Ti−1) = f(N \ (Yi ∪ {ui}))− f(N \ Yi)
= f̄(Yi ∪ {ui})− f̄(Yi) (2)

In this sense, we can replace N by f̄ in the input parameter, since the necessary
information about N is implicitly encoded in the function f̄ . Due to the absence of a
predefined item ordering, we assume the items are labeled by an adversary. We emphasize
that the ability to conceal n is consequential only in the online model, and that our lower
bounds for fixed and adaptive order algorithms hold even if n is revealed to the algorithm.

Combining these ideas, we describe the double-sided greedy algorithm as an online
double-sided myopic algorithm in Algorithm 2 (OnlineMyopic). Finally, observe that
the value oracle access in Line 3 and 4 conform to the specifications imposed by Q-Type
1.

Claim 2.2. The randomized double-sided greedy algorithm in [8] can be modeled by a
random-choice Q-Type 1 online double-sided myopic algorithm.
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Algorithm 2 OnlineMyopic(f, f̄)

1: X0 ← ∅, Y0 ← ∅
2: for i = 1 to n do
3: ai ← f(Xi−1 ∪ {ui})− f(Xi−1)
4: bi ← f̄(Yi−1 ∪ {ui})− f̄(Yi−1)
5: if ai ≥ bi then
6: Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1

7: else
8: Yi ← Yi−1 ∪ {ui}, Xi ← Xi−1

9: end if
10: end for
11: return Xn

Proof. Using the same reduction from Claim 2.1, the proof follows identically.

3 A 2
3
√
3
Inapproximation for the Online Case

Given a digraph G(V,E) with non-negatively weighted edges w(e), the cut value of a
subset V ′ ⊆ V is defined to be the weight of the edge set C = {(u, v)|u ∈ V ′, v ∈
V \V ′}. In Max-Di-Cut, the objective is to find the vertex set that maximizes

∑
e∈C w(e).

Let f : V → R+ be the cut value function, it can be easily verified that f is non-
monotone submodular. Therefore, to prove an inapproximability result (within some
algorithmic model) for the general non-monotone submodular maximization problem, it
suffices to demonstrate the existence of a hard instance of Max-Di-Cut that forces a bad
approximation ratio for the algorithmic model under consideration. In particular, we
utilize the online model and results of Bar-Noy and Lampis 3 [6].

In the online model of [6], when an input item v is revealed, the algorithm is given
access to the following information:

• win(v), the total weight of incoming edges to v

• wout(v), the total weight of outgoing edges from v

• The weights of both in and out edges connecting v to previously revealed vertices

Bar-Noy and Lampis prove the following theorem for their online model:

Theorem 3.1. [6] No deterministic algorithm (within their data model) can achieve a
competitive ratio of 2

3
√
3
+ ϵ ≈ 0.385+ ϵ for any ϵ > 0 for the online Max-Di-Cut problem

on DAGs. 4

3To the best of our knowledge, the Buchbinder et al. [8] and Bar-Noy and Lampis [6] papers were
independent of each other.

4When restricted to DAGs, Bar-Noy and Lampis also provide an algorithm for Max-Di-Cut with
matching approximation ratio.
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In order to generalize Theorem 3.1 to non-monotone submodular maximization, we
need to show that the data model in [6] is powerful enough to simulate relevant value
oracle queries.
Let Xi−1 and Yi−1 be the set of vertices accepted and rejected, respectively, by the
algorithm when vi is revealed. Notice that from the third item in the above list, the
algorithm can calculate the cut between vi and S, for any S ⊆ Xi−1 ∪ Yi−1.

Claim 3.2. For Max-Di-Cut, any information obtainable through Q-Type 3 oracle queries
can be inferred in the data model of [6]. The converse, however, does not hold.

Proof. Recall that the allowable queries under Q-Type 3 are ρ(u|S), and ρ̄(u|S) for any
S ⊆ Ni. It suffices to show that these values can be calculated using the Max-Di-Cut
data model. Given that f is the directed cut function, f(S) (resp. f̄(S)) can be expressed
as the sum of outgoing (resp. incoming) edge weights of vertex set S,

f(S) =
∑

s∈S
wout(s)−

∑

s,t∈S
w(s, t)

f̄(S) =
∑

s∈S
win(s)−

∑

s,t∈S
w(s, t)

Then the marginal difference for a vertex v /∈ S with respect to S is

f(S ∪ {v})− f(S) = wout(v)− c(S, v)− c(v, S) (3)

f̄(S ∪ {v})− f̄(S) = win(v)− c(v, S)− c(S, v) (4)

Since all elements of S have been revealed to the algorithm previously, the data descrip-
tion of v includes the complete edge weight information between v and every vertex of
S. Thus the cut (in either direction) between v and S can be directly computed.

For the converse, consider the directed 3-cycle G = (V,E) depicted in Figure 1 as
counterexample. We show that even with complete disclosure of the cut function f :
2V → R, we cannot reconstruct the edge weights w : E → R. Since f(∅) = f(V ) = 0 is
trivial, there are 2|V |−2 = 6 available linear equations. In comparison, there are |E| = 6
unknown edge weights. Thus, with equal number of variables and linear equations, a
non-trivial solution exist if and only if the determinant is non-zero. We enumerate all
subsets and their corresponding cut values in terms of the edge weights:
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a

b

c

x

y

z

v1 v2

v3

Figure 1: Directed 3 cycle with 6 edge weights.

c1 = f({v1}) = a+ z

c2 = f({v2}) = b+ x

c3 = f({v3}) = c+ y

c4 = f({v1, v2}) = b+ z

c5 = f({v2, v3}) = c+ x

c6 = f({v3, v1}) = a+ y

It’s easy to see that c1+c2+c3 = c4+c5+c6, implying linear dependency in the above
system. Therefore, a unique solution can not be determined from the cut values alone.
The argument can be extended to any input instance of size n > 3, by constructing a
graph that contains a disjoint 3-cycle.

Claim 3.3. The inapproximation of Theorem 3.1 holds even if the number of vertices
is initially revealed to the algorithm.

Proof. We prove this claim using a simple padding strategy. DefineA to be the adversary
used in Theorem 3.1, we will construct a modified adversary A′ against algorithms that
knows the length of the input. Let n be the size of the largest graph that A might
present, then A′ announces n as the input size to the algorithm. A′ will simply copy
the actions of A. If A terminates at iteration k ≤ n, then A′ sets vk+1, ..., vn as isolated
vertices. Since an isolated vertex viso has no adjacent edges, f(S ∪ {viso}) = f(S) for
any set S. In the last n− k iterations, the value of the algorithm’s solution is therefore
unchanged, regardless of its decision. On the other hand, using the same optimal solution
as A will result in the desired approximation ratio.
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We now prove Theorem 1.1:

Proof of Theorem 1.1. Assume the contrary, then by Claim 3.2 and 3.3 we can simulate
such an algorithm with one under the online Max-Di-Cut model when f is a cut function
on a DAG. This would contradict Theorem 3.1.

3.1 Reinterpreting the Online Algorithm of Bar-Noy and Lampis

In this section we re-examine the doubling online algorithm in [6] for the Max-Di-Cut
problem on general graphs and compare it to the deterministic version of the double-
sided greedy algorithm by Buchbinder et al..

Claim 3.4. The doubling online algorithm of [6] is an instantiation of the deterministic
double-sided greedy algorithm of [8].

Proof. The doubling online algorithm for Max-Di-Cut can be described simply by the
following comparison:

C0(vi+1) +
P0(vi+1)

2

?
< C1(vi+1) +

P1(vi+1)

2
(5)

where C0(v) (resp. C1(v)) is the certain payoff of accepting (resp. rejecting) v, while
P0(v) (resp. P1(v)) is the potential payoff of accepting (resp. rejecting) v. Then vertex
vi+1 is accepted if Inequality 5 holds, and rejected otherwise. On the other hand, the
double-sided greedy algorithm of Buchbinder et al. compares the incremental gain as
follows

f(Xi ∪ {vi+1})− f(Xi)
?
< f̄(Yi ∪ {vi+1})− f̄(Yi) (6)

To show that the two algorithms are in fact the same, we prove that (5) and (6) are
equivalent. Express the terms in (5) explicitly as follows

C0(vi+1) = c(vi+1, Yi)

C1(vi+1) = c(Xi, vi+1)

P0(vi+1) = wout(v)−
[
c(vi+1, Yi) + c(vi+1, Xi)

]

P1(vi+1) = win(v)−
[
c(Yi, vi+1) + c(Xi, vi+1)

]

Then (5) becomes

c(vi+1, Yi)+
1

2
wout(v)−

1

2

[
c(vi+1, Yi) + c(vi+1, Xi)

]

?
< c(Xi, vi+1) +

1

2
win(v)−

1

2

[
c(Yi, vi+1) + c(Xi, vi+1)

]

⇔ wout(v)− c(vi+1, Xi)− c(Xi, vi+1)

?
< win(v)− c(Yi, vi+1)− c(vi+1, Yi) (7)
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Replacing the two sides of the inequality by that of Equation 3 and 4 (by substituting
Xi and Yi as S, and vi+1 as v) yields Inequality 6.

As a corollary, the doubling online algorithm of Bar-Noy and Lampis can be simulated
by an online double-sided myopic algorithm. Furthermore, it follows from Claim 2.1 that
Q-Type 1 relevant oracle access is sufficient for this simulation. In contrast, Claim 3.2
indicates that the .385 online inapproximation extends to double-sided myopic algorithms
under Q-Type 3 oracle constraints.

4 0.428 and 0.450 Inapproximations for Fixed Priority Al-
gorithms

Our lower bound argument for fixed priority algorithms is achieved by constructing a
hard input instance using linear programming. The solution of the LP gives the complete
mapping of the objective submodular function f : 2N → R, where N is a small finite
ground set. In the construction of f , we require certain items to be indistinguishable to
the algorithm, granting the adversary control over the input ordering. The drawback in
this computer assisted argument is that f may not have a succinct representation like a
cut function or a coverage function. Therefore, we first establish the intuition behind the
adversarial strategy on a small Max-Di-Cut example, albeit with a worse lower bound.

4.1 Adversarial Strategy on Max-Di-Cut

Consider G = (V,E), a directed 6-cycle with unit edge weights, and f the directed cut
function on G. Since a fixed order priority algorithm must determine a total ordering
before the input is revealed, the priority of an input item i can only depend on f(i)
and f̄(i) - corresponding to the total weights of out-edges and in-edges of vertex i,
respectively. Clearly, f(∅) = f̄(∅) = 0. Since G is regular, ρ(i|∅) = f(i) = f(j) = ρ(j|∅),
ρ̄(i|∅) = f̄(i) = f̄(j) = ρ̄(j|∅) for all i, j ∈ V . Consequently, every input item in this
instance has identical ordering priority; and due to the algorithm being deterministic,
the adversary can choose any permutation as a feasible input ordering.

Denote by k the number of initial steps taken by the algorithm that the adversary
will anticipate. In other words, for 2k possible partial solutions, the adversary prepares
an input ordering (consistent with the algorithm’s queries in these k steps) such that
any extendible solution has a bad approximation ratio.

Theorem 4.1. For the unweighted Max-Di-Cut problem, no fixed order Q-Type 3 double-
sided myopic algorithm can achieve an approximation ratio greater than 2

3 .

Proof. Let v1, ..., v6 be the vertices along a directed 6-cycle G with unit edge weights.
Clearly, OPT = 3 is achieved by {v1, v3, v5} or {v2, v4, v6}. The regularity of G ensures
that π(v1) = ... = π(v6) for any π, allowing the adversary to specify any input ordering.
Suppose the algorithm accepts (resp. rejects) v1 in the first step, the adversary fixes
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ui2 = {v3, v4} as the next set of possible inputs in the sequence. At this point, v3 and
v4 are indistinguishable to the algorithm, since ρ(v3|S) = ρ(v4|S) = 1 and ρ̄(v3|S) =
ρ̄(v4|S) = 1 for any S ⊆ N1 = {v1}. If the algorithm accepts ui2 , then the adversary
sets ui2 = v4 (resp. ui2 = v3); otherwise it sets ui2 = v3 (resp. ui2 = v4). Both cases
contradict the optimal solutions, and the maximum cut value is now at most 2.

Although this inapproximation bound does not match the currently best determinis-
tic greedy 1

3 approximation algorithm due to Buchbinder et al. and Bar-Noy and Lampis
for Max-Di-Cut, the inapproximation shows that the SDP based 0.828 approximation
cannot be realized by fixed-order deterministic double sided myopic algorithms in our
model.

4.2 LP Construction for Q-Type 2

We now generalize the adversarial strategy described in the previous section to obtain a
sharper inapproximability ratio for the general unconstrained submodular maximization
problem. First, we consider the fixed priority setting under query type 2.

Lemma 4.2. No fixed Q-Type 2 double-sided myopic algorithm can achieve an approx-
imation ratio greater than 1

c if there exists a (non-negative) submodular function f with
the following conditions

Cond. 1 f({u}) = f({v}), f̄({u}) = f̄({v}), ∀u, v ∈ N . This imposes initial indistin-
guishably in the input set.

Cond. 2 There exist subsets A = {a1, ..., ak} ⊆ N , R = {r1, ..., rk} ⊆ N , A ∩ R = ∅,
such that for every 1 ≤ i < j ≤ k and every Ci ∈ {a1, r1}× {a2, r2}× ...× {ai, ri},

f((Ci ∩A) ∪ {aj}) = f((Ci ∩A) ∪ {rj})
f̄((Ci ∩R) ∪ {aj}) = f̄((Ci ∩R) ∪ {rj})

Although Ci is defined as an i-vector, we abuse notation and treat Ci as a set of
size i. Semantically, A ( resp. R) is the set of items that the algorithm is tricked
into accepting ( resp. rejecting). This is achievable if aj , rj are indistinguishable
to the algorithm at round j, in the Q-Type 2 restricted oracle model.

Cond. 3 For every Ck ∈ {a1, r1} × {a2, r2} × ... × {ak, rk}, any solution S ⊆ N such
that Ck ∩ A ⊆ S and S ∩ Ck ∩ R = ∅ ( i.e. S is an extension of Ck) must have
f(S) ≤ 1. This ensures the algorithm does not recover after making k decisions.

Cond. 4 There exists a set S∗ ∈ 2N such that f(S∗) ≥ c.

Proof. By Cond. 1, any permutation of the input items can be chosen by the adversary,
since the algorithm assigns identical priority values to all items. The adversary starts
by forcing the algorithm to only accept items in A, or reject items in R in the first k
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rounds. That is, if the algorithm accepts (resp. rejects) in the jth round (for j ≤ k),
then the adversary chooses an ordering of N such that aj (resp. rj) is the jth item and
rj (resp. aj) is the lth item, for some arbitrary k < l ≤ n. To clarify, the adversary
will choose either aj or rj as the jth item and then postpone the item not chosen until
after the first k items have been decided upon. By induction, assume this is achievable
in the first j < k steps. Then there is a set of choices Cj ∈ {a1, r1}× ... × {aj , rj} such
that Cj ∩ A = Xj and Cj ∩ R = Yj , where Xj (resp. Yj) is the set of accepted (resp.
rejected) items so far. Consider what the algorithm knows about uj+1 ∈ {aj+1, rj+1} at
this point. Using Q-Type 2 queries, the algorithm may learn the marginal difference in
f (resp. f̄) for uj+1 w.r.t. all Xi (resp. Yi) for i ≤ j. However, due to Cond. 2, the
following must hold

ρ(aj+1|X0) = ρ(rj+1|X0), ρ̄(aj+1|Y0) = ρ̄(rj+1|Y0)
...

ρ(aj+1|Xj) = ρ(rj+1|Xj), ρ̄(aj+1|Yj) = ρ̄(rj+1|Yj)

Since this is the only information available to the algorithm, the item aj+1 and rj+1

cannot be distinguished by the algorithm. Therefore if the algorithm accepts, then the
adversary chooses aj+1 as the j + 1st input item, and rj+1 otherwise. The base case
follows from the same argument, as C0 = X0 = Y0 = ∅.

After k steps, the algorithm constructs a partial solution (along with partial rejection)
corresponding to some Ck ∈ {a1, r1}× ...×{ak, rk}. By Cond. 3, any complete solution
that can be extended now has a value bounded by 1. Thus, with the optimum solution
having a value of at least c by Cond. 4, we have forced the algorithm to return a
solution with at most 1

cOPT .

The conditions in Lemma 4.2 can be expressed as a system of linear inequalities,
which we formulate below as a linear program that maximizes the value of c. For fixed n
and k, we work with a ground set of size n in the form N = {s1, ..., s⌊n

2 ⌋, o1, ..., o⌈
n
2 ⌉}, and

designate the optimum set as O = {o1, ..., o⌈n
2 ⌉}. Set A = {s1, ..., sk} and R = {o1, ..., ok}

so as to deter the algorithm from the optimum set as much as possible. For every possi-
ble subset S ⊆ N , we associate with it an LP variable xS . As this construction entails
exponentially many variables, this is indeed only feasible in practice when restricted to
a small ground set. Semantically, the solution to each xS corresponds to the value of f
on S - and as such we abuse notation and refer to f(S) directly as the LP variable for S.
For interpretability, we may refer to the variable f̄(Si) as alias for the variable f(N \Si)
(following the definition of f̄). Define the linear program as follows:

Inequality (C1) is a necessary and sufficient condition for submodularity [35], and
(C5) and (C6) constrain f to be non-negative and normalized. The remaining constraints
correspond to conditions 1-3 of Lemma 4.2. If the LP is feasible, then the objective value
in (obj) is a lower bound for c in condition 4.
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LP for Q-Type 2 Fixed Priority

Objective

max f({o1, ..., o⌈n
2 ⌉}) (obj)

Constraints

f(S ∪ {v}) + f(S ∪ {u})− f(S ∪ {v, u}) ≥ f(S) ∀S ⊆ N , (v, u) ∈ N \ S (C1)

f({v})− f({u}) = 0,

f̄({v})− f̄({u}) = 0 ∀v, u ∈ N (C2)

f((Ci ∩A) ∪ {aj})− f((Ci ∩A) ∪ {rj}) = 0,

f̄((Ci ∩R) ∪ {aj})− f̄((Ci ∩R) ∪ {rj}) = 0 ∀Ci∈{a1, r1}×...×{ai, ri},
0 < i < j ≤ k (C3)

f(S) ≤ 1 ∀S s.t. ∃Ck, Ck ∩A ⊆ S

∧ S ∩ Ck ∩R = ∅ (C4)

f(S) ≥ 0 ∀S (C5)

f(∅) = 0 (C6)

Proof of Theorem 1.2. Running the LP with n = 8 and k = 4, a feasible solution is
found with objective value of 2.3333. By Lemma 4.2, this demonstrates a lower bound
of 1

2.3333 ≈ 0.428.

4.3 Extending to Q-Type 3

Notice that in the fixed case, the difference between oracle query types is only reflected
in the decision step, since the algorithm does not gain additional power in the ordering
step. In other words, we can apply the same adversarial strategy to a stronger Q-
Type as long as ai and ri are still indistinguishable. The following lemma extends the
inapproximation result to fixed priority algorithms in the Q-Type 3 model by tightening
the indistinguishability constraints.

Lemma 4.3. No Q-Type 3 fixed double-sided myopic algorithm can achieve an approx-
imation ratio greater than 1

c if there exists a (non-negative) submodular function f that
satisfies Cond. 1-4 of Lemma 4.2, as well as the following:

Cond. 2† There exist subsets A = {a1, ..., ak} ⊆ N , R = {r1, ..., rk} ⊆ N , A ∩ R = ∅,
such that for every 0 < i < k and every Ci ∈ {a1, r1}× {a2, r2}× ...× {ai, ri} and
every subset S ⊆ Ci,

f(S ∪ {ai+1}) = f(S ∪ {ri+1})
f̄(S ∪ {ai+1}) = f̄(S ∪ {ri+1})
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To decipher this statement, recall that each Ci corresponds to one of the valid input
configurations in the first i rounds. Then Ni = Ci and the equality constraints
simply forces ai+1 and ri+1 to have the same marginal differences that the algorithm
is allowed to query under Q-Type 3. Notice also that this condition subsumes
Cond. 2 of the previous section, when we take S = Ci ∩A and S = Ci ∩R.

Proof. Regardless of the relevant query type, a fixed algorithm must decide on a priority
function based only on the singleton values. Therefore, as in the previous case, Cond. 1
allows the adversary to introduce any input ordering. To adapt the proof for Lemma 4.2
to Q-Type 3, it suffices to show that the new conditions are strong enough to push the
induction step. Specifically, we would like ai+1 and ri+1 to have the same marginal
descriptions at iteration i+1 assuming the adversary has been successful so far. This is
easy to show, since any valid input corresponds to some Ci ∈ {a1, r1} × {a2, r2} × ... ×
{ai, ri}, and this is precisely the set of items that the algorithm has seen so far. Under
Q-Type 3, the algorithm may query the marginal value of the i+ 1st item with respect
to any subset of Ci — and so from Cond. 2†, ai+1 and ri+1 are indistinguishable. The
rest of the proof then follows identically.

LP for Q-Type 3 Fixed Priority

Objective

max f({o1, ..., o⌈n
2 ⌉})

Constraints

f(S ∪ {v}) + f(S ∪ {u})− f(S ∪ {v, u})− f(S) ≥ 0 ∀S ⊆ N , (v, u) ∈ N \ S
f(S ∪ {ai+1})− f(S ∪ {ri+1}) = 0,

f̄(S ∪ {ai+1})− f̄(S ∪ {ri+1}) = 0 ∀S ⊆ Ci,
∀Ci ∈ {a1, r1}× ...× {ai, ri},
0 ≤ i < k

f(S) ≤ 1 ∀S s.t. ∃Ck, Ck ∩A ⊆ S

∧ S ∩ Ck ∩R = ∅
f(S) ≥ 0 ∀S
f(∅) = 0

Proof of Theorem 1.3. Running the LP with n = 8 and k = 4, a feasible solution is
found with objective value of 2.2222. By Lemma 4.2, this demonstrates a lower bound
of 1

2.2222 ≈ 0.450.
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5 A 0.432 Inapproximation for Adaptive Priority Algo-
rithms

In this section we extend the inapproximation to adaptive priority algorithms by applying
a more restricted adversarial construction of that from the previous section. Surprisingly,
this resulted in only a slight loss of tightness in the lower bound.

Lemma 5.1. No Q-Type 2 adaptive double-sided myopic algorithm can achieve an ap-
proximation ratio greater than 1

c if there exists a (non-negative) submodular function f
that satisfies Cond. 1-4 of Lemma 4.2, as well as the following:

Cond. 2* There exist subsets A = {a1, ..., ak} ⊆ N , R = {r1, ..., rk} ⊆ N , A ∩ R = ∅,
such that for every i < k and every Ci ∈ {a1, r1} × {a2, r2} × ... × {ai, ri} and all
pairs v, u ∈ N \ Ci,

f((Ci ∩A) ∪ {u}) = f((Ci ∩A) ∪ {v})
f̄((Ci ∩R) ∪ {u}) = f̄((Ci ∩R) ∪ {v})

This condition subsumes both Cond. 1 and Cond. 2 of Lemma 4.2, by requiring
all unfixed items to have identical marginal descriptions - thus nullifying the benefit
of adaptive ordering since the entire input will always be indistinguishable in the
first k rounds.

Proof. Here, the algorithm is permitted to reorder the input at each iteration. The
adversary responds by imposing indistinguishably on all unfixed items in the first k
rounds. Consider the ordering step at the start of iteration i < k. By Cond. 2*, then
ρ(u|Xj) = ρ(v|Xj), ρ̄(u|Yj) = ρ̄(v|Yj), j = 0, ..., i − 1 for all u, v ∈ N \ (Xi−1 ∪ Yi−1).
This captures the full description of all unfixed items obtainable through Q-Type 2 value
oracle access. Furthermore, any other information in the internal memory is independent
of the remaining items, and thus provides no additional power. Hence, all items are
indistinguishable and must be assigned the same priority. The adversary can now choose
to place either ai or ri as the ith item, depending on the algorithm’s decision. The rest
of the proof is now identical to that of Lemma 4.2.

Proof of Theorem 1.4. Running the modified LP again using n = 8 and k = 4 produces
a feasible solution with objective value of c = 2.3158, giving us an inapproximability of
1
c ≈ 0.432.
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LP for Q-Type 2 Adaptive Priority

Objective

max f({o1, ..., o⌈n
2 ⌉})

Constraints

f(S ∪ {v}) + f(S ∪ {u})− f(S ∪ {v, u})− f(S) ≥ 0 ∀S ⊆ N , (v, u) ∈ N \ S
f((Ci ∩A) ∪ {u})− f((Ci ∩A) ∪ {v}) = 0,

f̄((Ci ∩R) ∪ {u})− f̄((Ci ∩R) ∪ {v}) = 0 ∀Ci ∈ {a1, r1}× ...× {ai, ri},
0 ≤ i < k, (u, v) ∈ N \ Ci

f(S) ≤ 1 ∀S s.t. ∃Ck, Ck ∩A ⊆ S

∧ S ∩ Ck ∩R = ∅
f(S) ≥ 0 ∀S
f(∅) = 0

6 Discussion of the Double-Sided Myopic Model and Open
Problems

Adapting the priority framework [7], we define the class of double-sided myopic algo-
rithms and show how the double greedy algorithm of Buchbinder et al. can be realized
as an online double-sided myopic algorithm. We show that the double-sided interpre-
tation of the double greedy algorithm of [8] satisfies the deterministic online model of
Bar-Noy and Lampis [6], for which they prove an online inapproximability of 2

3
√
3
for the

Max-Di-Cut problem. As in Poloczek’s [37] priority inapproximation for Max-Sat, this
provides evidence that the randomized 1

2 -approximation double greedy for USM cannot
be de-randomized.

Our inapproximation follows from an LP formulation of possible algorithmic deci-
sions, and at present does not yield a succinctly defined problem. However, we provide
a 2

3 -inapproximation for Max-Di-Cut for fixed priority double-sided myopic algorithms.
We wish to emphasize the generality of the myopic framework as it allows very general
orderings to be defined by the algorithm, and does not impose any greedy aspect to the
decisions (as to reject or accept an input) in each iteration of the algorithm. We also ob-
serve that non-greediness appears to be essential in both the randomized double-greedy
algorithm of Buchbinder et al. as well as the deterministic approximation of Bar-Noy
and Lampis for Max-Di-Cut on DAGs; while the deterministic double-greedy does make
greedy decisions.

The gap between the 1
3 deterministic double greedy and the .432 inapproximation

of our myopic framework remains open as does the gap between the 1
3 approximation

and known myopic inapproximations for explicit functions such as Max-Di-Cut. It is
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not clear how much further we can extend the LP formalization to improve our bounds,
or if we can derive such bounds for succinct functions. We do not know if there is
any provable difference between the online, fixed priority, and adaptive priority myopic
models. In particular, can we improve upon the 1

3 approximation for Max-Di-Cut by
using a fixed or adaptive myopic algorithm?

In addition to the above questions for deterministic algorithms, the next obvious di-
rection is to establish limitations for randomized double-sided myopic algorithms. Ran-
domization can be utlilized in the ordering step and/or the decision step of the algorithm.
Of particular interest is randomization in the decision step as in the Buchbinder et al
algorithm. While we know that the 1

2 approximation is tight under the value oracle
model and under standard complexity assumptions, it is still of interest to show such an
inapproximation for myopic algorithms without any complexity constraints.

Acknowledgments

The authors would like to thank Yuval Filmus for the idea of employing linear program-
ming, and Matthias Poloczek and Charles Rackoff for their comments and suggestions.

23



References

[1] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo,
A. Magen, and T. Pitassi, Toward a model for backtracking and dynamic pro-
gramming, in Computational Complexity, 2005. Proceedings. Twentieth Annual
IEEE Conference on, IEEE, 2005, pp. 308–322.

[2] P. Alimonti, Non-oblivious local search for MAX 2-CCSP with application to max
dicut, in Graph-Theoretic Concepts in Computer Science, Springer, 1997, pp. 2–14.
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Appendices

A LP Solution for Q-Type 3 Fixed Priority Inapproxima-
tion

We include for completeness the numerical solution of our LP formulation from Section 4
in Table 2. Define the ground set N = {1, 2, 3, 4, 5, 6, 7, 8}, with the optimal solution
OPT = {5, 6, 7, 8} and f(OPT ) = 2.2222. We set k = 4, with A = {1, 2, 3, 4} and
R = {5, 6, 7, 8}. Specifically, the adversary chooses i1 ∈ {1, 5}, i2 ∈ {2, 6}, i3 ∈ {3, 7},
and i4 ∈ {4, 8} depending on the algorithm’s decisions; that is, the adversary sets i1 = 1
(resp. i1 = 5) if the algorithm accepts (resp. rejects) the first item, and so on. To
verify that our LP generated function f supports the adversarial construction described
in Section 5, it suffices to verify Cond. 1, 2†, 3 and 4. Figure 2 demonstrates that
Cond. 2† is satisfied: for each 0 ≤ i < 4 we show equality in the Q-Type 3 marginals5

between ai+1 and ri+1 for all allowable partial solutions. Cond. 3 can be verified by
examining Table 2 and observing that if f(S) > 1, then the subset S is disallowed by
the adversary. Specifically, for such a subset S, there is some i ∈ [1, 4] such that ai ̸∈ S
and ri ∈ S; this is a contradiction since the adversary always forces the algorithm to
either accept ai or reject ri. Cond. 4 follows by setting c = 2.2222, corresponding to
the optimal solution. Finally, we checked for submodularity separately by brute force,
by verifying that f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) for all S, T ⊆ N .

Table 1: Complete description of f : 2N → R+ used in Theorem 1.3

S f(S) S f(S) S f(S) S f(S)

1 0.5555556 2,5,6 1.3333333 2,3,5,7 1.4444444 2,3,4,5,7 1.3333333
2 0.5555556 2,5,7 1.4444444 2,3,5,8 1.3888889 2,3,4,5,8 1.3333333
3 0.5555556 2,5,8 1.3333333 2,3,6,7 1.0000000 2,3,4,6,7 1.0000000
4 0.5555556 2,6,7 1.1111111 2,3,6,8 1.0000000 2,3,4,6,8 1.0000000
5 0.5555556 2,6,8 1.0000000 2,3,7,8 1.0000000 2,3,4,7,8 1.0000000
6 0.5555556 2,7,8 1.1111111 2,4,5,6 1.5555556 2,3,5,6,7 1.2777778
7 0.5555556 3,4,5 1.4444444 2,4,5,7 1.5555556 2,3,5,6,8 1.2777778
8 0.5555556 3,4,6 1.2222222 2,4,5,8 1.3333333 2,3,5,7,8 1.3333333

1,2 0.8888889 3,4,7 1.0000000 2,4,6,7 1.3333333 2,3,6,7,8 1.0000000
1,3 0.8888889 3,4,8 0.8888889 2,4,6,8 1.0000000 2,4,5,6,7 1.6666667
1,4 0.7777778 3,5,6 1.6666667 2,4,7,8 1.1111111 2,4,5,6,8 1.5555556
1,5 0.8888889 3,5,7 1.4444444 2,5,6,7 1.6666667 2,4,5,7,8 1.3333333
1,6 0.8888889 3,5,8 1.4444444 2,5,6,8 1.5555556 2,4,6,7,8 1.3333333
1,7 0.8888889 3,6,7 1.3333333 2,5,7,8 1.5555556 2,5,6,7,8 1.6666667
1,8 0.7777778 3,6,8 1.2222222 2,6,7,8 1.3333333 3,4,5,6,7 1.6666667
2,3 0.8888889 3,7,8 1.0000000 3,4,5,6 1.7777778 3,4,5,6,8 1.6666667
2,4 0.7777778 4,5,6 1.6666667 3,4,5,7 1.4444444 3,4,5,7,8 1.3333333
2,5 1.1111111 4,5,7 1.6666667 3,4,5,8 1.3888889 3,4,6,7,8 1.3333333

Continued on next page

5We show the value f({u} ∪ S) = ρ(u|S) + f(S) instead of ρ(u|S) as it allows for direct comparison
with Table 2. Clearly, ρ(v|S) = ρ(u|S) ⇔ f({u} ∪ S) = f({v} ∪ S).
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Table 1 Continued from previous page

S f(S) S f(S) S f(S) S f(S)

2,6 0.7777778 4,5,8 1.1111111 3,4,6,7 1.3333333 3,5,6,7,8 1.6666667
2,7 0.8888889 4,6,7 1.6666667 3,4,6,8 1.2222222 4,5,6,7,8 1.6666667
2,8 0.7777778 4,6,8 1.1111111 3,4,7,8 1.0000000 1,2,3,4,5,6 0.7222222
3,4 0.8888889 4,7,8 1.1111111 3,5,6,7 1.6666667 1,2,3,4,5,7 0.7777778
3,5 1.1111111 5,6,7 1.6666667 3,5,6,8 1.7777778 1,2,3,4,5,8 0.8888889
3,6 1.1111111 5,6,8 1.6666667 3,5,7,8 1.5555556 1,2,3,4,6,7 0.7777778
3,7 0.8888889 5,7,8 1.6666667 3,6,7,8 1.3333333 1,2,3,4,6,8 0.8888889
3,8 0.8888889 6,7,8 1.6666667 4,5,6,7 2.2222222 1,2,3,4,7,8 0.8888889
4,5 1.1111111 1,2,3,4 1.0000000 4,5,6,8 1.6666667 1,2,3,5,6,7 0.7222222
4,6 1.1111111 1,2,3,5 1.0000000 4,5,7,8 1.5555556 1,2,3,5,6,8 0.7222222
4,7 1.1111111 1,2,3,6 0.8888889 4,6,7,8 1.6666667 1,2,3,5,7,8 0.7777778
4,8 0.5555556 1,2,3,7 1.0000000 5,6,7,8 2.2222222 1,2,3,6,7,8 0.7777778
5,6 1.1111111 1,2,3,8 1.0000000 1,2,3,4,5 0.9444444 1,2,4,5,6,7 1.1111111
5,7 1.1111111 1,2,4,5 1.0000000 1,2,3,4,6 0.8888889 1,2,4,5,6,8 1.0000000
5,8 1.1111111 1,2,4,6 1.0000000 1,2,3,4,7 1.0000000 1,2,4,5,7,8 0.8888889
6,7 1.1111111 1,2,4,7 1.1111111 1,2,3,4,8 1.0000000 1,2,4,6,7,8 0.8888889
6,8 1.1111111 1,2,4,8 1.0000000 1,2,3,5,6 0.8888889 1,2,5,6,7,8 1.1111111
7,8 1.1111111 1,2,5,6 1.0000000 1,2,3,5,7 0.8888889 1,3,4,5,6,7 1.1111111

1,2,3 1.0000000 1,2,5,7 1.1111111 1,2,3,5,8 0.9444444 1,3,4,5,6,8 1.1111111
1,2,4 1.0000000 1,2,5,8 1.0555556 1,2,3,6,7 0.8333333 1,3,4,5,7,8 0.7777778
1,2,5 1.0000000 1,2,6,7 1.0555556 1,2,3,6,8 0.8888889 1,3,4,6,7,8 0.8888889
1,2,6 0.9444444 1,2,6,8 1.0000000 1,2,3,7,8 1.0000000 1,3,5,6,7,8 1.1111111
1,2,7 1.0000000 1,2,7,8 1.1111111 1,2,4,5,6 1.0000000 1,4,5,6,7,8 1.1111111
1,2,8 1.0000000 1,3,4,5 1.0000000 1,2,4,5,7 1.1111111 2,3,4,5,6,7 1.1111111
1,3,4 1.0000000 1,3,4,6 1.2222222 1,2,4,5,8 1.0000000 2,3,4,5,6,8 1.1111111
1,3,5 0.8888889 1,3,4,7 1.0000000 1,2,4,6,7 1.1111111 2,3,4,5,7,8 1.1111111
1,3,6 1.2222222 1,3,4,8 1.0000000 1,2,4,6,8 1.0000000 2,3,4,6,7,8 1.0000000
1,3,7 1.0000000 1,3,5,6 1.2222222 1,2,4,7,8 1.0000000 2,3,5,6,7,8 1.1111111
1,3,8 1.0000000 1,3,5,7 1.0000000 1,2,5,6,7 1.1111111 2,4,5,6,7,8 1.1111111
1,4,5 1.0000000 1,3,5,8 1.0000000 1,2,5,6,8 1.0555556 3,4,5,6,7,8 1.1111111
1,4,6 1.1111111 1,3,6,7 1.1666667 1,2,5,7,8 1.1111111 1,2,3,4,5,6,7 0.5555556
1,4,7 1.1111111 1,3,6,8 1.2222222 1,2,6,7,8 1.1111111 1,2,3,4,5,6,8 0.5555556
1,4,8 0.7777778 1,3,7,8 1.0000000 1,3,4,5,6 1.2222222 1,2,3,4,5,7,8 0.5555556
1,5,6 1.2222222 1,4,5,6 1.3333333 1,3,4,5,7 1.0000000 1,2,3,4,6,7,8 0.5555556
1,5,7 1.2222222 1,4,5,7 1.3333333 1,3,4,5,8 0.9444444 1,2,3,5,6,7,8 0.5555556
1,5,8 1.0555556 1,4,5,8 1.0000000 1,3,4,6,7 1.1111111 1,2,4,5,6,7,8 0.5555556
1,6,7 1.2222222 1,4,6,7 1.4444444 1,3,4,6,8 1.2222222 1,3,4,5,6,7,8 0.5555556
1,6,8 1.1111111 1,4,6,8 1.1111111 1,3,4,7,8 0.8888889 2,3,4,5,6,7,8 0.5555556
1,7,8 1.1111111 1,4,7,8 1.0000000 1,3,5,6,7 1.1666667 1,2,3,4,5,6,7,8 0.0000000
2,3,4 0.8888889 1,5,6,7 1.5555556 1,3,5,6,8 1.2222222
2,3,5 1.4444444 1,5,6,8 1.3888889 1,3,5,7,8 1.0000000
2,3,6 1.0000000 1,5,7,8 1.3333333 1,3,6,7,8 1.1111111
2,3,7 1.0000000 1,6,7,8 1.4444444 1,4,5,6,7 1.6666667
2,3,8 0.8888889 2,3,4,5 1.3888889 1,4,5,6,8 1.3333333
2,4,5 1.3333333 2,3,4,6 1.0000000 1,4,5,7,8 1.1111111
2,4,6 1.0000000 2,3,4,7 1.0000000 1,4,6,7,8 1.2222222
2,4,7 1.1111111 2,3,4,8 0.8888889 1,5,6,7,8 1.6666667
2,4,8 0.7777778 2,3,5,6 1.4444444 2,3,4,5,6 1.2777778

Concluded
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Figure 2: Certificate of Cond. 2† for Q-Type 3 fixed priority inapproximation

X1 : {}, Y1 : {5}
f(52) = 1.111111
f(56) = 1.111111
f̄(52) = 0.8888889
f̄(56) = 0.8888889

X1 : {1}, Y1 : {}
f(12) = 0.8888889
f(16) = 0.8888889
f̄(12) = 1.111111
f̄(16) = 1.111111

(a) All allowable marginal descriptions for a2 and r2

X2 : {}, Y2 : {56}
f(63) = 1.111111
f(67) = 1.111111
f̄(63) = 0.8888889
f̄(67) = 0.8888889
f(53) = 1.111111
f(57) = 1.111111
f̄(53) = 0.8888889
f̄(57) = 0.8888889
f(563) = 1.666667
f(567) = 1.666667
f̄(563) = 1
f̄(567) = 1

X2 : {2}, Y2 : {5}
f(53) = 1.111111
f(57) = 1.111111
f̄(53) = 0.8888889
f̄(57) = 0.8888889
f(23) = 0.8888889
f(27) = 0.8888889
f̄(23) = 1.111111
f̄(27) = 1.111111
f(253) = 1.444444
f(257) = 1.444444
f̄(253) = 1.222222
f̄(257) = 1.222222

X2 : {1}, Y2 : {6}
f(63) = 1.111111
f(67) = 1.111111
f̄(63) = 0.8888889
f̄(67) = 0.8888889
f(13) = 0.8888889
f(17) = 0.8888889
f̄(13) = 1.111111
f̄(17) = 1.111111
f(163) = 1.222222
f(167) = 1.222222
f̄(163) = 1.333333
f̄(167) = 1.333333

X2 : {12}, Y2 : {}
f(23) = 0.8888889
f(27) = 0.8888889
f̄(23) = 1.111111
f̄(27) = 1.111111
f(13) = 0.8888889
f(17) = 0.8888889
f̄(13) = 1.111111
f̄(17) = 1.111111
f(123) = 1
f(127) = 1
f̄(123) = 1.666667
f̄(127) = 1.666667

(b) All allowable marginal descriptions for a3 and r3

X3 : {}, Y3 : {567}
f(74) = 1.111111
f(78) = 1.111111
f̄(74) = 0.7222222
f̄(78) = 0.7222222
f(64) = 1.111111
f(68) = 1.111111
f̄(64) = 0.7777778
f̄(68) = 0.7777778
f(674) = 1.666667
f(678) = 1.666667
f̄(674) = 0.9444444
f̄(678) = 0.9444444
f(54) = 1.111111
f(58) = 1.111111
f̄(54) = 0.7777778
f̄(58) = 0.7777778
f(574) = 1.666667
f(578) = 1.666667
f̄(574) = 0.8888889
f̄(578) = 0.8888889
f(564) = 1.666667
f(568) = 1.666667
f̄(564) = 1
f̄(568) = 1
f(5674) = 2.222222
f(5678) = 2.222222
f̄(5674) = 1
f̄(5678) = 1

X3 : {3}, Y3 : {56}
f(64) = 1.111111
f(68) = 1.111111
f̄(64) = 0.7777778
f̄(68) = 0.7777778
f(54) = 1.111111
f(58) = 1.111111
f̄(54) = 0.7777778
f̄(58) = 0.7777778
f(564) = 1.666667
f(568) = 1.666667
f̄(564) = 1
f̄(568) = 1
f(34) = 0.8888889
f(38) = 0.8888889
f̄(34) = 1.111111
f̄(38) = 1.111111
f(364) = 1.222222
f(368) = 1.222222
f̄(364) = 1.111111
f̄(368) = 1.111111
f(354) = 1.444444
f(358) = 1.444444
f̄(354) = 1.111111
f̄(358) = 1.111111
f(3564) = 1.777778
f(3568) = 1.777778
f̄(3564) = 1.111111
f̄(3568) = 1.111111

X3 : {2}, Y3 : {57}
f(74) = 1.111111
f(78) = 1.111111
f̄(74) = 0.7222222
f̄(78) = 0.7222222
f(54) = 1.111111
f(58) = 1.111111
f̄(54) = 0.7777778
f̄(58) = 0.7777778
f(574) = 1.666667
f(578) = 1.666667
f̄(574) = 0.8888889
f̄(578) = 0.8888889
f(24) = 0.7777778
f(28) = 0.7777778
f̄(24) = 1.111111
f̄(28) = 1.111111
f(274) = 1.111111
f(278) = 1.111111
f̄(274) = 1.222222
f̄(278) = 1.222222
f(254) = 1.333333
f(258) = 1.333333
f̄(254) = 1.111111
f̄(258) = 1.111111
f(2574) = 1.555556
f(2578) = 1.555556
f̄(2574) = 1.222222
f̄(2578) = 1.222222

X3 : {23}, Y3 : {5}
f(54) = 1.111111
f(58) = 1.111111
f̄(54) = 0.7777778
f̄(58) = 0.7777778
f(34) = 0.8888889
f(38) = 0.8888889
f̄(34) = 1.111111
f̄(38) = 1.111111
f(354) = 1.444444
f(358) = 1.444444
f̄(354) = 1.111111
f̄(358) = 1.111111
f(24) = 0.7777778
f(28) = 0.7777778
f̄(24) = 1.111111
f̄(28) = 1.111111
f(254) = 1.333333
f(258) = 1.333333
f̄(254) = 1.111111
f̄(258) = 1.111111
f(234) = 0.8888889
f(238) = 0.8888889
f̄(234) = 1.666667
f̄(238) = 1.666667
f(2354) = 1.388889
f(2358) = 1.388889
f̄(2354) = 1.444444
f̄(2358) = 1.444444

X3 : {1}, Y3 : {67}
f(74) = 1.111111
f(78) = 1.111111
f̄(74) = 0.7222222
f̄(78) = 0.7222222
f(64) = 1.111111
f(68) = 1.111111
f̄(64) = 0.7777778
f̄(68) = 0.7777778
f(674) = 1.666667
f(678) = 1.666667
f̄(674) = 0.9444444
f̄(678) = 0.9444444
f(14) = 0.7777778
f(18) = 0.7777778
f̄(14) = 1.111111
f̄(18) = 1.111111
f(174) = 1.111111
f(178) = 1.111111
f̄(174) = 1.277778
f̄(178) = 1.277778
f(164) = 1.111111
f(168) = 1.111111
f̄(164) = 1.333333
f̄(168) = 1.333333
f(1674) = 1.444444
f(1678) = 1.444444
f̄(1674) = 1.388889
f̄(1678) = 1.388889

X3 : {13}, Y3 : {6}
f(64) = 1.111111
f(68) = 1.111111
f̄(64) = 0.7777778
f̄(68) = 0.7777778
f(34) = 0.8888889
f(38) = 0.8888889
f̄(34) = 1.111111
f̄(38) = 1.111111
f(364) = 1.222222
f(368) = 1.222222
f̄(364) = 1.111111
f̄(368) = 1.111111
f(14) = 0.7777778
f(18) = 0.7777778
f̄(14) = 1.111111
f̄(18) = 1.111111
f(164) = 1.111111
f(168) = 1.111111
f̄(164) = 1.333333
f̄(168) = 1.333333
f(134) = 1
f(138) = 1
f̄(134) = 1.666667
f̄(138) = 1.666667
f(1364) = 1.222222
f(1368) = 1.222222
f̄(1364) = 1.555556
f̄(1368) = 1.555556

X3 : {12}, Y3 : {7}
f(74) = 1.111111
f(78) = 1.111111
f̄(74) = 0.7222222
f̄(78) = 0.7222222
f(24) = 0.7777778
f(28) = 0.7777778
f̄(24) = 1.111111
f̄(28) = 1.111111
f(274) = 1.111111
f(278) = 1.111111
f̄(274) = 1.222222
f̄(278) = 1.222222
f(14) = 0.7777778
f(18) = 0.7777778
f̄(14) = 1.111111
f̄(18) = 1.111111
f(174) = 1.111111
f(178) = 1.111111
f̄(174) = 1.277778
f̄(178) = 1.277778
f(124) = 1
f(128) = 1
f̄(124) = 1.666667
f̄(128) = 1.666667
f(1274) = 1.111111
f(1278) = 1.111111
f̄(1274) = 1.777778
f̄(1278) = 1.777778

X3 : {123}, Y3 : {}
f(34) = 0.8888889
f(38) = 0.8888889
f̄(34) = 1.111111
f̄(38) = 1.111111
f(24) = 0.7777778
f(28) = 0.7777778
f̄(24) = 1.111111
f̄(28) = 1.111111
f(234) = 0.8888889
f(238) = 0.8888889
f̄(234) = 1.666667
f̄(238) = 1.666667
f(14) = 0.7777778
f(18) = 0.7777778
f̄(14) = 1.111111
f̄(18) = 1.111111
f(134) = 1
f(138) = 1
f̄(134) = 1.666667
f̄(138) = 1.666667
f(124) = 1
f(128) = 1
f̄(124) = 1.666667
f̄(128) = 1.666667
f(1234) = 1
f(1238) = 1
f̄(1234) = 2.222222
f̄(1238) = 2.222222

(c) All allowable marginal descriptions for a4 and r4
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B LP Solution for Q-Type 2 Adaptive Priority Inapproxi-
mation

Similarly, we include the numerical solution of our LP formulation for the adaptive
priority case. We employ identical notations as that of Appendix A. In this case,
indistinguishability is required between all unfixed items with respect to Q-Type 2 (as
in Cond. 2*). We show this in Table 3, in which we enumerate all configurations in
the first 4 steps, and for each configuration show equality in the marginal differences of
all remaining items. The verification of the remaining conditions follows the description
in Appendix A. In particular, observe that f(OPT ) = f({5, 6, 7, 8}) = 2.3158 gives us
the claimed bound in Theorme 1.4.

Table 2: Complete description of f : 2N → R+ used in Theorem 1.4

S f(S) S f(S) S f(S) S f(S)

1 0.5789474 2,5,6 1.2631579 2,3,5,7 1.3157895 2,3,4,5,7 1.3157895
2 0.5789474 2,5,7 1.4210526 2,3,5,8 1.3684211 2,3,4,5,8 1.2631579
3 0.5789474 2,5,8 1.3684211 2,3,6,7 1.0000000 2,3,4,6,7 1.0000000
4 0.5789474 2,6,7 1.2105263 2,3,6,8 1.1052632 2,3,4,6,8 1.0000000
5 0.5789474 2,6,8 1.1052632 2,3,7,8 1.1052632 2,3,4,7,8 1.0000000
6 0.5789474 2,7,8 1.2105263 2,4,5,6 1.3684211 2,3,5,6,7 1.2105263
7 0.5789474 3,4,5 1.2631579 2,4,5,7 1.4210526 2,3,5,6,8 1.3157895
8 0.5789474 3,4,6 1.1578947 2,4,5,8 1.2631579 2,3,5,7,8 1.3157895

1,2 0.8947368 3,4,7 1.0000000 2,4,6,7 1.2105263 2,3,6,7,8 1.1052632
1,3 0.8947368 3,4,8 0.9473684 2,4,6,8 1.0000000 2,4,5,6,7 1.4736842
1,4 0.8947368 3,5,6 1.4210526 2,4,7,8 1.1052632 2,4,5,6,8 1.3684211
1,5 0.8947368 3,5,7 1.2105263 2,5,6,7 1.5263158 2,4,5,7,8 1.3157895
1,6 0.8947368 3,5,8 1.2631579 2,5,6,8 1.4736842 2,4,6,7,8 1.2105263
1,7 0.8947368 3,6,7 1.2631579 2,5,7,8 1.6315789 2,5,6,7,8 1.7368421
1,8 0.8947368 3,6,8 1.2105263 2,6,7,8 1.4210526 3,4,5,6,7 1.5263158
2,3 0.8947368 3,7,8 1.1052632 3,4,5,6 1.4736842 3,4,5,6,8 1.4736842
2,4 0.8947368 4,5,6 1.5263158 3,4,5,7 1.3157895 3,4,5,7,8 1.2105263
2,5 1.1578947 4,5,7 1.3157895 3,4,5,8 1.3157895 3,4,6,7,8 1.2105263
2,6 0.8947368 4,5,8 1.2105263 3,4,6,7 1.2631579 3,5,6,7,8 1.7368421
2,7 0.8947368 4,6,7 1.4210526 3,4,6,8 1.2105263 4,5,6,7,8 1.7368421
2,8 0.8947368 4,6,8 1.2105263 3,4,7,8 1.0000000 1,2,3,4,5,6 0.8947368
3,4 0.8947368 4,7,8 1.1052632 3,5,6,7 1.5789474 1,2,3,4,5,7 0.8947368
3,5 1.0526316 5,6,7 1.7368421 3,5,6,8 1.5789474 1,2,3,4,5,8 0.8947368
3,6 1.0526316 5,6,8 1.7368421 3,5,7,8 1.4210526 1,2,3,4,6,7 0.8947368
3,7 0.8947368 5,7,8 1.7368421 3,6,7,8 1.4210526 1,2,3,4,6,8 0.8947368
3,8 0.8947368 6,7,8 1.7368421 4,5,6,7 1.6842105 1,2,3,4,7,8 0.8947368
4,5 1.0000000 1,2,3,4 1.0000000 4,5,6,8 1.6315789 1,2,3,5,6,7 0.6315789
4,6 1.1052632 1,2,3,5 1.0000000 4,5,7,8 1.5263158 1,2,3,5,6,8 0.8947368
4,7 0.8947368 1,2,3,6 1.0000000 4,6,7,8 1.5263158 1,2,3,5,7,8 0.8947368
4,8 0.7894737 1,2,3,7 1.0000000 5,6,7,8 2.3157895 1,2,3,6,7,8 0.8947368
5,6 1.1578947 1,2,3,8 1.0000000 1,2,3,4,5 1.0000000 1,2,4,5,6,7 1.0526316
5,7 1.1578947 1,2,4,5 1.0000000 1,2,3,4,6 1.0000000 1,2,4,5,6,8 0.8947368
5,8 1.1578947 1,2,4,6 1.0000000 1,2,3,4,7 1.0000000 1,2,4,5,7,8 0.8947368
6,7 1.1578947 1,2,4,7 1.1052632 1,2,3,4,8 1.0000000 1,2,4,6,7,8 0.8947368

Continued on next page
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Table 2 Continued from previous page

S f(S) S f(S) S f(S) S f(S)

6,8 1.1578947 1,2,4,8 1.0000000 1,2,3,5,6 0.9473684 1,2,5,6,7,8 1.1578947
7,8 1.1578947 1,2,5,6 1.0000000 1,2,3,5,7 0.8947368 1,3,4,5,6,7 1.1578947

1,2,3 1.0000000 1,2,5,7 1.1052632 1,2,3,5,8 1.0000000 1,3,4,5,6,8 1.1052632
1,2,4 1.0000000 1,2,5,8 1.1052632 1,2,3,6,7 0.8947368 1,3,4,5,7,8 0.8947368
1,2,5 1.0000000 1,2,6,7 1.1052632 1,2,3,6,8 1.0000000 1,3,4,6,7,8 0.8947368
1,2,6 1.0000000 1,2,6,8 1.1052632 1,2,3,7,8 1.0000000 1,3,5,6,7,8 1.1578947
1,2,7 1.0000000 1,2,7,8 1.1052632 1,2,4,5,6 1.0000000 1,4,5,6,7,8 1.1578947
1,2,8 1.0000000 1,3,4,5 1.0000000 1,2,4,5,7 1.1052632 2,3,4,5,6,7 1.1578947
1,3,4 1.0000000 1,3,4,6 1.2631579 1,2,4,5,8 1.0000000 2,3,4,5,6,8 1.1578947
1,3,5 1.0000000 1,3,4,7 1.0000000 1,2,4,6,7 1.1052632 2,3,4,5,7,8 1.0000000
1,3,6 1.1578947 1,3,4,8 1.0000000 1,2,4,6,8 1.0000000 2,3,4,6,7,8 0.8947368
1,3,7 1.0000000 1,3,5,6 1.2631579 1,2,4,7,8 1.0000000 2,3,5,6,7,8 1.1578947
1,3,8 1.0000000 1,3,5,7 1.0000000 1,2,5,6,7 1.1052632 2,4,5,6,7,8 1.1578947
1,4,5 1.0000000 1,3,5,8 1.1052632 1,2,5,6,8 1.0526316 3,4,5,6,7,8 1.1578947
1,4,6 1.2105263 1,3,6,7 1.2105263 1,2,5,7,8 1.2105263 1,2,3,4,5,6,7 0.5789474
1,4,7 1.1052632 1,3,6,8 1.1578947 1,2,6,7,8 1.2105263 1,2,3,4,5,6,8 0.5789474
1,4,8 0.8947368 1,3,7,8 1.1052632 1,3,4,5,6 1.2105263 1,2,3,4,5,7,8 0.5789474
1,5,6 1.2105263 1,4,5,6 1.3157895 1,3,4,5,7 1.0000000 1,2,3,4,6,7,8 0.5789474
1,5,7 1.2105263 1,4,5,7 1.2105263 1,3,4,5,8 1.0000000 1,2,3,5,6,7,8 0.5789474
1,5,8 1.1052632 1,4,5,8 1.0000000 1,3,4,6,7 1.2105263 1,2,4,5,6,7,8 0.5789474
1,6,7 1.2105263 1,4,6,7 1.4210526 1,3,4,6,8 1.1578947 1,3,4,5,6,7,8 0.5789474
1,6,8 1.2105263 1,4,6,8 1.2105263 1,3,4,7,8 1.0000000 2,3,4,5,6,7,8 0.5789474
1,7,8 1.2105263 1,4,7,8 1.1052632 1,3,5,6,7 1.2105263 1,2,3,4,5,6,7,8 0.0000000
2,3,4 1.0000000 1,5,6,7 1.5263158 1,3,5,6,8 1.2631579
2,3,5 1.3684211 1,5,6,8 1.4210526 1,3,5,7,8 1.1052632
2,3,6 1.0000000 1,5,7,8 1.4210526 1,3,6,7,8 1.2105263
2,3,7 1.0000000 1,6,7,8 1.5263158 1,4,5,6,7 1.4736842
2,3,8 1.0000000 2,3,4,5 1.3684211 1,4,5,6,8 1.3157895
2,4,5 1.2631579 2,3,4,6 1.0000000 1,4,5,7,8 1.2105263
2,4,6 1.0000000 2,3,4,7 1.0000000 1,4,6,7,8 1.2105263
2,4,7 1.1052632 2,3,4,8 1.0000000 1,5,6,7,8 1.7368421
2,4,8 0.8947368 2,3,5,6 1.3157895 2,3,4,5,6 1.3157895

Concluded

32



Table 3: Indistinguishability between all unfixed items in the first 3 iterations with respect to
Q-Type 2.

X0 = {}, Y0 = {}
f(1) = 0.5789474
f̄(1) = 0.5789474
f(2) = 0.5789474
f̄(2) = 0.5789474
f(3) = 0.5789474
f̄(3) = 0.5789474
f(4) = 0.5789474
f̄(4) = 0.5789474
f(5) = 0.5789474
f̄(5) = 0.5789474
f(6) = 0.5789474
f̄(6) = 0.5789474
f(7) = 0.5789474
f̄(7) = 0.5789474
f(8) = 0.5789474
f̄(8) = 0.5789474

X1 = {1}, Y1 = {}
f(12) = 0.8947368
f̄(2) = 0.5789474
f(13) = 0.8947368
f̄(3) = 0.5789474
f(14) = 0.8947368
f̄(4) = 0.5789474
f(15) = 0.8947368
f̄(5) = 0.5789474
f(16) = 0.8947368
f̄(6) = 0.5789474
f(17) = 0.8947368
f̄(7) = 0.5789474
f(18) = 0.8947368
f̄(8) = 0.5789474

X1 = {1, 2}, Y1 = {}
f(123) = 1
f̄(3) = 0.5789474
f(124) = 1
f̄(4) = 0.5789474
f(125) = 1
f̄(5) = 0.5789474
f(126) = 1
f̄(6) = 0.5789474
f(127) = 1
f̄(7) = 0.5789474
f(128) = 1
f̄(8) = 0.5789474

X2 = {1, 2, 3}, Y2 = {}
f(1234) = 1
f̄(4) = 0.5789474
f(1235) = 1
f̄(5) = 0.5789474
f(1236) = 1
f̄(6) = 0.5789474
f(1237) = 1
f̄(7) = 0.5789474
f(1238) = 1
f̄(8) = 0.5789474

X2 = {1, 2}, Y2 = {7}
f(123) = 1
f̄(73) = 0.8947368
f(124) = 1
f̄(74) = 0.8947368
f(125) = 1
f̄(75) = 0.8947368
f(126) = 1
f̄(76) = 0.8947368
f(128) = 1
f̄(78) = 0.8947368

X2 = {1}, Y2 = {6}
f(12) = 0.8947368
f̄(62) = 0.8947368
f(13) = 0.8947368
f̄(63) = 0.8947368
f(14) = 0.8947368
f̄(64) = 0.8947368
f(15) = 0.8947368
f̄(65) = 0.8947368
f(17) = 0.8947368
f̄(67) = 0.8947368
f(18) = 0.8947368
f̄(68) = 0.8947368

X3 = {1, 3}, Y3 = {6}
f(132) = 1
f̄(62) = 0.8947368
f(134) = 1
f̄(64) = 0.8947368
f(135) = 1
f̄(65) = 0.8947368
f(137) = 1
f̄(67) = 0.8947368
f(138) = 1
f̄(68) = 0.8947368

X3 = {1}, Y3 = {6, 7}
f(12) = 0.8947368
f̄(672) = 1
f(13) = 0.8947368
f̄(673) = 1
f(14) = 0.8947368
f̄(674) = 1
f(15) = 0.8947368
f̄(675) = 1
f(18) = 0.8947368
f̄(678) = 1

X3 = {}, Y3 = {5}
f(1) = 0.5789474
f̄(51) = 0.8947368
f(2) = 0.5789474
f̄(52) = 0.8947368
f(3) = 0.5789474
f̄(53) = 0.8947368
f(4) = 0.5789474
f̄(54) = 0.8947368
f(6) = 0.5789474
f̄(56) = 0.8947368
f(7) = 0.5789474
f̄(57) = 0.8947368
f(8) = 0.5789474
f̄(58) = 0.8947368

X3 = {2}, Y3 = {5}
f(21) = 0.8947368
f̄(51) = 0.8947368
f(23) = 0.8947368
f̄(53) = 0.8947368
f(24) = 0.8947368
f̄(54) = 0.8947368
f(26) = 0.8947368
f̄(56) = 0.8947368
f(27) = 0.8947368
f̄(57) = 0.8947368
f(28) = 0.8947368
f̄(58) = 0.8947368

X3 = {2, 3}, Y3 = {5}
f(231) = 1
f̄(51) = 0.8947368
f(234) = 1
f̄(54) = 0.8947368
f(236) = 1
f̄(56) = 0.8947368
f(237) = 1
f̄(57) = 0.8947368
f(238) = 1
f̄(58) = 0.8947368

X3 = {2}, Y3 = {5, 7}
f(21) = 0.8947368
f̄(571) = 1
f(23) = 0.8947368
f̄(573) = 1
f(24) = 0.8947368
f̄(574) = 1
f(26) = 0.8947368
f̄(576) = 1
f(28) = 0.8947368
f̄(578) = 1

X3 = {}, Y3 = {5, 6}
f(1) = 0.5789474
f̄(561) = 1
f(2) = 0.5789474
f̄(562) = 1
f(3) = 0.5789474
f̄(563) = 1
f(4) = 0.5789474
f̄(564) = 1
f(7) = 0.5789474
f̄(567) = 1
f(8) = 0.5789474
f̄(568) = 1

X3 = {3}, Y3 = {6, 7}
f(31) = 0.8947368
f̄(561) = 1
f(32) = 0.8947368
f̄(562) = 1
f(34) = 0.8947368
f̄(564) = 1
f(37) = 0.8947368
f̄(567) = 1
f(38) = 0.8947368
f̄(568) = 1

X3 = {}, Y3 = {5, 6, 7}
f(1) = 0.5789474
f̄(5671) = 1
f(2) = 0.5789474
f̄(5672) = 1
f(3) = 0.5789474
f̄(5673) = 1
f(4) = 0.5789474
f̄(5674) = 1
f(8) = 0.5789474
f̄(5678) = 1
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