
DENSE AND NON-DENSE FAMILIES OF COMPLEXITY CLASSES

*Borodin, A. , Constable, R.L., Hopcroft, J.E.

Cornell University
Ithaca, New York

* University of Toronto

Abstract

Let t be any abstract measure of
computational complexity, and let L de­
note the specific measure of memory
resource (tape) on one tape Turing machines.

De~ote by R:() the class of all total
functions whose t-complexity is bounded by
the function t() almost everywhere. Call
such classes t-complexity classes. We
are interested in relationships among
these classes, under proper set inclusion
(C). In other words, we are interested
in the partially ordered structure

<I·,.~ where I· = {R:() It() is re­
cursive} is called the family of t-com­
plexity classes. Of special interest is

the subfamily O· {R:. () Iti () is
1

total} , called the family of e'xact
.~complexity classes.

We show that EL and OL are dense
under C for sufficiently large bounds t(),

. L
but nL is not dense in L • We also con-

struct measures ~ for which L~ and ot

are non-dense, for which L~ is dense but

Qt is not, for which O~ is dense but Lt

· ~. d · ~tis not and for wh1ch.0 1S ense 1n ~

Thus density is not a measure invariant
~~.... t ~property of L or 0 • These are the
first examples of important structural
properties of these families which are not
measure invariant.

I. Preliminaries

We assume at least cursory famil­
iarity with the axiomatic approach to
computational complexity theory as in­
itiated in Blum [1] and developed recently
in [2], [6], and [9]. To establish our
notation, we list the following defini­
"·tions.

Given an acceptable indexing {~i()}

~f the partial recursive functions (of one
argument), see Rogers [8], an abs~ract

complexity measure over {~i()} 1S a set
(t. ()} of partial recursive functions for

1
~hich there exists a 0,1 valued recursive

7

function M() satisfying

Axiom 1: ~i(n) is defined iff ti(n) is
defined.

Axiom 2: M(i,n,m) 1 iff ti(n) = m.

We say that ~ {ti ()} satisfying

the axioms is a complexity measure, and the
individual t. () are called exact com-

1
plexity functions. [The t i () have also

been called "step-counting" functions or
"run-time'" mnctions or "difficulty"
functions.]

Given a complexity measure t , define

a t-complexity class R: ()= {~'i () 1

~. () total and t. (n) < ten) for almost all
1 1 -

n (a.e.n.)}. (We use lower case English
letters, t,f,g,h, in denoting total as
opposed to partial functions.) When t is
clear from the context we use Rt () •

Define r t = {R:()I t() is recur­

sive} and ot = {R:.
o
() I t i total}

1

Call L~ the family of (recursive) complex-

ity classes and ot the famil¥ of exact
complexity classes (or run-t1me c~s).
Our concern is with the families L~ and

ot under the partial ordering of set
inclusion, c. A set S partially ordered
by < is dense iff for all a,b in S,
a <-b i~plies there is a c in S such
that a < c < b •

We say that any family C~ of complex­
ity classes is dense for sufficiently large
!i-L iff there is a function a() such

that the family {R:() I t(» a() &

t() recursive} n c t is dense (under c).

II. Density

Our Turing machine model is that used
in Hartmanis & Stearns [3]. It uses separ­
ate input, output and work tapes and uses
the standard finite control over a finite
alphabet E • We consider the class of all
such machines over all finite alphabets L
Let {M.} be an acceptable listing of such

1

machines and <Pi () the one argument

function computed by Mi. Define the

tape measure L as follows: L = {L. ()}
J.

where

L. (n) =
+

the maximum number of
tape squares used in
the computation of Mi
on input n (in
binary)

undefined

if the
computation

halts

otherwise

sequence {n~} such that Li (is non­

decreasing 9n {n1 } , i.e.,

Li (n1) ~ L(n1+1) and

Li (n 1) < Lj (n1) for all 1

We construct a suitable Mk by guar­

anteeing that we alternate between Li ()

and L.() on an infinite sequence as
]

above. The amount of tape used by Mk on

input x is determined as follows:

It is easy to see that L is indeed
a complexity measure.

Def. 2.1

Layoff Li(X) tape (run Mi , put

down markers to indicate boundaries of the
tape used and then erase all other marks
on the tape).

Q.E.D.

xDiagram

L. (x) < L. (x) , then construct
J. J

unique finite sequence'{ml , m2 ,

••• mr } where

~rn {Li(m) < Li(X) & Li(m) <

L
j

(rn) }

~m {m > mp & Li(m) ~ Li(X) &

Li(m) < Lj(m) & Li(mp) ~

Li(m)}

~+l

the

(1) If L. (x) < L. (x) , then make
] - J.

Lk(X) = Li(X). (There are possibly

finitely many x s~ch that Lj(X) <
L

i
(x) .)

(2) -If

* denotes Lj(Y) where Lj(y) > Li(y)

If r is odd, then set Lk(X) = Li(X).

If r is even, then set Lk(X) = Lj(X),

The Mk and Lk () produced by the con-

struction will satisfy the theorem since
Lk () will alternate between Li () and

L. () on the infinite sequence of points
J

{ml , m
2 , ••• }

Given machines M. and M. with tape
J. J

comp~exities Li () <. Lj (we

show how to construct a machine Mk
such that Lk () satisfies the

theorem, i. e., Li () <. Lk () <:. Lj ().

If L. () were non-decreasing, then
J.

the proof would be trivial, namely to
define Mk on input x; run 'i(y) , mark

the amount of tape used, then run ~. (y)
J

until it stops or attempts to exceed
L. (y) tape. Record which was greater, i

J.
or j. Do this for all y ~ x and deter-
mine for how many y, Li(y) < Lj(y).

(It is essential to note that this can be
done for each y without exceeding Li(y)

(the lower bound) amount of tape.) If
the number of such y is even, then
stop Mk having used Li(X) tape; if odd,

then let Mk run and use Lj(X) tape.

Thus infinitely often Lk () will be above

L. () and infinitely often L. () will be
J. J

above Lk (). Thus Li () <. Lk () <.

L. () •
J

f () <., g () iff f (x) < g (x) a. e. x
and -

f(x) < g(x) i.o. (infinitely often)

However, Lit) need not be non­

decreasing. But L. () <- L. () does
J. J

imply that there exists an infinite

The tape complexity functions are
dense under <••

Proof

Theorem 2.1 (Borodin, Hopcroft)

8

Lemma 2.1 inf Li(n) = 0 and
n-+oo

Lk(n)L L-
:j <P iffRL. (Rt (

1. inf Lk(n) 0
inf ten) 0 . n-+oo L:l'iifn+oo L:lIir

1. J

Proof

Q.E.D.

Proof-

Moreover, by Lemma 1. 1, RL . () c ~ . ()
1. J

The value of this constant is de­
termined by knowing the history of Li (

and Lk () on Sx ' that is, by knowing

the largest constant for which 2(b) has
already been satisfied. Step (2) guaran­
tees that for each c an appropriate

(3) We describe the operation of Mk
on input x. The definition of Lk(X)

requires the reconstruction of Lk () on

a finite sequence Sx = {nl , n 2 , ••• , nr }

where
n l = ~n[Li(n) ~ Li(x)]

np+l ~n > np[Li(n) ~ Li(X)]

and nr = x

First Mk lays off Li(X) tape.

Using a multi-tract tape, ~ finds out

which points z ~ yare not in Sx' and

marks them on one track (put a - on the
appropriate track in the cell correspond­
ing to z). This merely requires trying
to compute <Pi(O), <Pi(l), •.• , <Pi (x) •

Now for each yeSx ' reconstruct the com­

putation Mk on y to determine the value

of Lk(y). Also attempt to satisfy 2(b)

for the largest possible c.

inf Li(X) 0, there is at least one
n+oo L:lXr

J

infinite sequence S = {ml , m2 , m
3

, ••• }

such that
(a) for all ~, Li(m~) < Li(m~+l)

(b) for all c there is an mes and
yeS such that ceLl (m) < L. (m) <
L. (y) • 1. J

1.

To this end, we construct Mk so that

Vc :iI x :iI x such that c·L. (x) <c l c 2 1. Cl

L. (x) and Lk(Xc) Li(X), c·L. (x)<
J c 2 1 c l 1. c 2

Lj(Xc) and Lk(Xc) L . (x).
2 2 J c 2

(2) Since Li(X) ~ 2x and

.)

Li(n) = O.
L. (n)

J

inf
n+oo

Without loss of generality we assume
L. (x) < L. (x) for all x • (RL . (). C

1. J 1.

implies :ic L. (x) < c·L. (x)
1. - J

Replace Lj () by

implies

~j(
for all x •
(c + 1) eL. (

J

that

(1) "only if case" If inf t () :j 0,
n-+oo Li(n)

then :iI c such that t (n) ~ c eLi (n)

a.e.n. Since L has a linear global
speed-up, ~. () ,= Rt () •

1.

(2) "if .case" We need to "reprove"
the well-known results of [4] since
our tape measure has been defined as
a function of the actual input
rather than of input length. We
leave this proof for the interested
reader.

In order to simplify the proof some­

what we will assume that L. (x) > 2x for
1.

all x (a.e. x). We note, however, that
it would be sufficient to require only
l~m inf Li(n) + 00.

n-+-oo

Theorem 2.2 (Borodin, Hopcroft)

nL is dense for sufficiently large
t(), i.e., for all sufficiently large
Li () such that RL . (). c ~. () ,

1. J
there is an Lk () such that RL . () ,c

1.

R-. C R
-~k (). L j (

(1) We will construct a machine Mk.0 that Lk () oscillates between Li ()

~d Lj <) and Lk () satisfies

9

-{

- i - i j -

Proof

L. (x) < L.. (x)
1. - -k

so that

inf
S

at least one

Clearly

is dense for sufficiently large

< L. (x) • Thus,
- J

RL ~ rL
i

(). C --r;k (). C -L.
j

() •

Q.E.D.

Moreover, for all x,

The computation of Mk on input x

uses Li(X) tape up to the time when

we decide whether Lk(X) = Li(X)

or Lk(X) = Lj(X).

Lk () oscillates on

infinite sequence S

inf Li () = 0 and

S r:;r>

desired function.

A somewhat more intricate version of
the previous (run-time density) proof is
needed. The difficulty is that we are no
longer assuming that t l () and t 2 ()

are tape complexity functions, only that
they are recursive functions. That is, we
assume for sufficiently large t l (), t 2 ()

that R
t1

().c R
t2

() , and we seek a

t 3 (such that

* Rt1 (). C Rt3 (). C Rt2 ()

(1) We first notice that we can re­
place t l () by another recursive func-

tion ~() such that Rt () = Rt () and
- 1

~() ~ t 2 () a.e. To see this, suppose

t l () > t 2 () i.o. Then put S ='{xl

tl(x) > t 2 (x)}. We claim that

tl(x) if xts
lex) = t (x) if XES is the

2

(B)

Theorem 2.3 (Borodin, Hopcroft)

(e)

The reader is asked to verify the
following:

(A) For all x the Lk () history track

represents exactly the value of
Lk(y) for all YESx •

L. work track
J

L. work track
l.

Lk history track

constant counter track
Li(X) squares long

where .
i,in square y of Lk () history

im~lies YES
X

and Lk(y) = Li(y)

j in square Y of L k () history

implies YESx and Lk(y) = Lj(y)

- in square Y of L k () history

implies ytsx

I in square Z of Lk () history

while reconstructing Lk(y)

implies that Mk will attempt

to determine if ceLl (z) < L. (z)
J. J

using ~ Li(y) tape.

(4) We give a brief informal
description of ~. Our proof depends on

our ability to make Lk () oscillate on

the sequence S = {ml , m2 , ••• } so that

inf Li(n) = 0 and inf Lk(n) = 0 •
n-+-oo~ n-+oo~

Lk\n) Lj(n/

Suppose that using our alternating value
scheme we have set Lk(mp) = Li(rop) and

the maximum constant is c. The idea is
to then define Lk(IDp+I) = Li(IDp+l)'

Lk (IDp+2) = Li (mp +2) , ••• until we can

detech (at some y = ms) that for some z

in S, C.Li{Z) < Lj(Z) and Lk(Z) was set

to Li(Z).

We then begin to define Lk(ms) =
Lj{ms)' Lk(ms +l) = tj(ms +l)' ••• until

we detect (at some later y' = rot) that

for some z', c'L. (z') < L.(z') and
1. J

Lk(Z') was set to Lj(Z') • At this

point the value of the constant increases
to c+1.

x and x will come up. Now use anc l c 2
alternating values scheme to determine
Lk () just as done in Theorem 1.

During the computation, the work
tape of Mk could appear as follows:

10

(3) We construct Lk () at a point

x by reconstructing (as before) as
much of the past history of Lk () as we·

can in L. (x) tape. The only modifica-
~ .'

Suppose only R c R Then theret () - t l ().

is an Li (such that inf t 2 () = 0 by
S L:T>

~

Lemma 2.1 and Li () ~ t 1 () a.e. Thus

~i (),~ Rt1 () and ~i (). c Rt2 () .

The proof requires a more elaborate
version of the construction of Mk , but

the general ideas are the same.

Q.E.D.

Corollary 2.1 (Borodin)

Between any two sufficiently large
complexity classes there are an infinite
number of incomparable complexity classes.

We leave to the reader veriffcation
that a machine ~ can be defined such that

(A) for all x Lk(X) Li(X) or

L k (x) = L j (x) •

(B) for all c there exists xc'
1

x such that c-t(x) <c 2 - c 1
L. (x) and Lk(X) = Li(X),] ,c

l
c

l
c

l
c-t(x) < L.(x) and- c 2] c 2
L

k
(x) = L. (x) •c 2] c 2

By making some assumptions on the
growth of Li we can guarantee that for

all z there is an x such that
Li(X) > tnax{Lt(z), c-!:.(z)} where~t ~ t.

Thus the construction of Mk is very

similar to the construction for run-time
density. The reader can easily verify
that condition ** of (2) is satisfied.

tion is that we do this reconstruction
relative to t() (more precisely, rela­
tive to a fixed algorithm ~t for t()

with tape complexity Lt ()).

That is, while computing thie history
of L. (), Lk (), and L. () we also com-

~]
pute the history of !() on those values

for which the computation is possible
within Li(X) tape. We then determine

whether L k () has been set equal to

L. () for an even or odd number of times
]

on a set of points for which L. (y) >
]

c-t(y) for larger and larger c. The more
difficult t() is to compute, the more
ancient is the history which determines
how we set the value of Lk(X) . By

picking a sequence of points P on which
L i () grows monotonically we can use the

history to guarantee oscillation on a set
of points S for which lim t() o.

S ~. ()
1.

We

ando

Diagram

L j ~

** Rt ().c !\nax{!(),L
k

()} C

R C R
-1nax{! (), L j ()} . t 2 (

We accomplish this by making Lk (

oscillate between Li () and Lj (), but

we must ensure that this oscillation
takes place on an infinite set of points
S such that lim t() o. The desired

S ~. ()
]

effect will be that

Let Lj(X) = max {Li(X) + 1, Le(X)}

shall attempt to construct Lk <') such

that

But this contradicts Rtl () ~ c Rt2 () •

(2) We now proceed to find a recur­
sive t 3 () satisfying * Let i be

such that Li (~!() a.e. Since

R!():c R
t2

() , there is an e such

that Le () < t 2 () a.e. and

inf !(n) = 0 •
n+oo :r-r=)Le\n

11

III. Measures for which

E~ and n~ are non-dense.

In order to construct our example of

a measure ~ for which E~ and n~ are non­
dense we need three basic facts. These
are given below.

We need one more basic fact before
constructing our non-dense measure. The
fact is simply that for every measure
there is a uniform bound on the value of
the function given its complexity. For
example, if Li(x) = y, then for a binary

machine ~. () < 2Y
l. -

(Compression)
Theorem 3.1 (Blum)

(Bounding)
Lemma 3.1 (McCreight & Meyer)

The proof is elementary. Blum [1]
has proved that any two measures ~ and
A

~ are related by an A increasing d'()

such that ~i(n) < d(~i(n),n) and
A

~i(n) < d(~i(n),n) a.e.n.

Proof

For all ~ there is an increasing g()
such that for all i and for all suffi­
ciently large ~i(), ~i(n) < g(~i(n» a.e.
n.

(Gip)
Theorem 3.2 (Borodin)

For all ~ there is a partial re­
cursive p() such that for all recursive
~e() and for all ~i()

To use this fact here we observe that
(a) ~p(i,e) (n) is defined iff ~i(n) for the tape measure L = {Li ()} the

is defined lemma surely holds, say for gL() • Thus
(b) if ~i(n) is defined, then picking a d() relating ~ and Lm , it

$i(n) < $p(i,e) (n) follows that $i(n) < gL(L~(n)) <
(c) for all i there is no ~. (

J gL(d(~i(n),n) a.e.n. Now take g(n) =
such that for infinitely many " 0 0

n ~. (n) is defined and gL (d (n) ,n) , and suffl.cl.ently large"
p(l.,e)

~ 0 (n) < ~ 0 (n) < cJ> (~o (n)) •means for all ~i () such that ~ 0 (n) > n
p(l.,e) - J - ·.e p(l.,e) l. -

a.e.n.

For all ~ there exists an h(),
called. a jump function for ~ (sometimes
denoted h~()) such that for all

sufficiently large ~. ()1.
R~. (). C Rh (~. (» •

l. l.
This is proved as Theorem 8 of Blum [1] •

That is, ~p(i,e) () is a "~e() gap above

~ i ().n

Q.E.D.

Theorem 3.3 (Constable)

Proof

There exists a measure ~ such that
A A

there are arbitrarily large ~o (), ~o (
satisfying 1.1 l.2

(i) R~ 0 (). c R~ 0 () and
l.l l.2

(ii) there is no recursive t()
such that\ R;o ()~c Rt ().c

1.1

Our method of proof is quite trans­
parent. We select an appropriate gap size
h() = ~e() and use the technique of

Borodin's Gap Theorem to find for each
~o () a gap function ~ (0) () above1. p l.,e

R~ 0 () •

l.2

That is,' neither E~ nor n~ is dense.(2) Define ~ (0 len) = lJY[Y>~o(n)p l.,e l.
and P(y,n,e)]. There are arbitrarily
large y such that P(y,n,e). Thus from
Kleene's lJ-recursion formalism [5] it
follows that ~ (0) () is partial recur-p 1.,e
sive. Moreover, ~ (0) (n) is definedp l.,e
iff ~i(n) is defined.

Q.E.D.

(1) Let P(y,n,e) be the predicate
"for all j<n either ~o (n) < y or

- J
~ (y) < ~o (n)". This predicate is re-

e J
cursive for recursive'~e() because the

predicate M(i,n,m) iff "~i(n) = m" is

recursive, and consequently so are the
predicates lI~i(n) < mil, lI~i(n) > mil

Proof

12

For technical reasons (in step 6)
we actually define a "double gap", that
is a t () such that Rt () = ~ (t (»

~(h(t(») • For brevity we denote
h (h (t (») by h (2) (t (» • We now
actually plant h(t(» in the gap
interva1 [t (), h (2) (t (»].

t i (). (For reasons which will be clear

later, we modify p to produce the function
above ~i() instead of above ~i().) This
part of the construction guarantees
arbitrarily large functions of the type
needed. For brevity we denote ~ (") (p ~,e

for fixed ~e() by Li() and when
TI () is total we use tl () , and when

1. ~

i is unimportant we use only t().

Thus R~() = ~(t(». Now define
A

a new measure ~ which puts essen~ially

only one function into the gap, ~.e., we
"plant a function in the gap". The
function h(t(» itself goes into the

A '"

Then i = {ti ()} is the measure corres­

ponding to ~. ~ll we have done is keep
a double list.' The even list will stay
fixed and is actually our given ~. On
the odd list we alter the run-time func­
tions.

(3) To make the technicalities run
smoother it is best to have the original
measure ~ embedded in each stage, ~i , of

A

constructing ~. To accomplish this, take
a new acceptable indexing of the partial
recursive functions, say {~I ()} where

~

i evenepi/2(n)

ep(i-l)/2(n) i odd
<Pi (n) =

A· '" "+1
~1.. Then form the new measure ~ ~ •
The gap construction thus depends on the
index k of the measure over which the
gap is constructed as well as on the
function ~I () of the original measure

~ '" .

~. The final measure ~ is the limit of
this process. We make this process pre­
cise in the next step.

~ ~
h (t (» e: Rb (t (» - Rt () •gap so that

i odd & ik<i,
a(k,2k)=i -

cl>i (n)

~i (n)
~i(n) otherwise.

We prove that ~ is indeed a measure by
'"indicating how to decide ~i(n) = m. If

i is even, then just use M(i,n,m) to

At eac~ stage in constructing ~ a
function Mk () is produced satisfying
'" "'k A

Mk(i,n,m) = 1 iff ~i(n) = m. From Mk (

the gap function of gap size h(2) () can
be computed. Denote it by Lk I (). Let

,~

a(k,i) be the index of h(Lk I (»; a can
, ,~

be made increasing and always odd.

(4) Define ~k as follows. ~o = i ,
;k+l is determined from ~k by

'{<P (n) i odd and;k+l(n) = i a(k,2k)=i

Ak
~I (n) otherwise.
~

'" Ai A
Define ~ = {~I ()} ,that is ~ is the

~

limit of the ~k as k ~ 00 The complex-

ity functions of ~ satisfy

The first step in our proof is to
select h()~ then we-construct our
new measure ~ , and finally we prove
that it possesses the desired properties.

(1) Given any measure ~ = {~I (}}
~

select an increasing h () so that .
hen) > g(n) for all n, for the g() of
the Bounding Lemma. Then if ep I () =

J
h (tl." (» i t follows that ~ I (n) > t I (n)

J ~

a.e.n., and hence because of the gap
tl(n) > h(2)(tl(n)) a.e.n. ~I(n) > tl(n)

J ~ . J ~

follows because if ~j(n) < ti(n) i.o.,
then h (~ I (n» < h (t I (n» = ep I (n) i. 0 •

J ~ J
which contradicts the relation epj(n) <

g(t I (n» < h (~I (n» a.e.n. from the
J J

Bounding Lemma.

(2) From ~ = {~I ()} define a new
~

measure as follows. Going through {~i()}
in order, construct an h (2r () = epe ()

gap function L i () above each ~I ().
~ ~

Make h(L i (» the complexity measure of

itself, thereby forming a new measure,
say ~i. Construct successive gap
functions so that they are gaps in the
cumulative measure, i.e., for ~i+l con-
struct the gap Li () over the measure

13

decide. If i is odd, check all k<i
and ask a(k,2k)=i. If not, then again

use M(i,n,m). But if a(k,2k)=i, then

first use Mk (2k,n,x) for all x<m to
""k

decide whether ~2k(n) < m If the

inequality fails, then clearly M(i,n,m)
"k

is f~~se because h(Tk ,2k(n» >t2k (n).

If ~2k(n) < m , then start the gap

defining procedure and see if it can be
completed with h(Lk,2k(n» = m. This

can be decided because the possible
values for Lk,2k(n) keep increasing,

""ki.e., they can be only ~2k(n)+1,

""k
~2k(n)+2, ••• and h() is increasing.

The ~bove procedure shows how to

decide M(i,n,m) and""proves that ~ is

a measure. Moreover, ~ contains all
the "gap functions", 'r. () , of any

"k b (~).. ·measure ~ ecause a ~s ~ncreas~~g.

(5) It is now easy to see that E~
is non-dense. In this step we show that

cp cp
Rt {).c Rh(t(» for arbitrarily large

t(). Let an arbitrarily large a()
be given, and let ~a() > a(n) a.e.n.

for cP () recursive. Then put t()a
La () • Clearl~ Rt (). =Rh (t (» • But

~ ~
a~so Rt ().: Rh(t(» because h(t(» £

t ~
Rb(t(» - Rt () · This holds be~ause

there is a $. () = h(t(» and~. (
J J

h(t(» by definition of 'r a (}, and for

any i:F a (k, 2k) , <P i () = h (t (»

implies ~i() > h(t(» by step (2).

So every index for h(t(» either pro­
duces a run-time equal to h(t(» or
greater than h(t(» •

(6) Finally, we show that there is

no t l () such that R~ c R~ c
" t(). tl()"

R~(t(» • Suppose suc~ a t
l
() existed,

then there would be a ~i() satisfying

""*** t().< ~i(~ h(t(» •
~.o. a.e.

Clearly i ~ a(k,2k) for some k can
not occur because t(), h(t(» is a
gap for the measure i.

Suppose then that i = a(k,2k) • If
k < a (recall t() = L ()), then ata .
stage k , L () was constructed· to be a

Aka
gap over ~ so *** is impossible.

Suppose k > a ~hen for sUfficiently

large n if 'ra <) < ~i(n) holds, that is,

't"a (n) < h'<'t"k (n»,

either T (n) < ~k(n), in which case
a ""

h('t"a(n» < h(Th(n» = C1>i(n) which

contradicts ***;
or else Tk(n) ~ Ta(n), in which case

the fact that Tk(n) is,,a two­

sided gap function over C1>a is
contradicted, i.e., h(Tk(n» <

h(Ta(n» = ~~)~h2(Tk(n».

(7) We now have a measure which is
not dense. We can improve it to be a
measure which is not run-time dense by
making ~k() a run-time for ~k() in

the same manner that h(lk(» was made a

run-time for itself. If this were done
from the very beginning we could then use

a "single gap", h() instead of h(2) ()
because in step (6) lk() would itself

be a run-time. However, for expository
purposes it seemed best to keep the

A

definition of ~ as simple as, possible.

Q.E.D.

The construction of a non-dense

family, L~ , raises the question whether

EL is dense because nL is dense. In the
next section we will show that this can
not be the case in general because there

is a measure ~ for which n~ is dense but rC1>

is not. We then also show that in general

the density of r~ need not transfer to

n~ because there is a measure C1> for which

EC1> is dense but n~ is not.

IV. Relative Density

Def. 4.1

C1>
The run-time classes, R~. ()' ~

1.

dense in E~ for sufficiently large t()

iff for all sufficiently large t(), ~(

such·that R~()_c Rt () , there is a

~i such that Rt()C R ().c Rt () .
- ~i

14

Then notice that

Proof

(3) Define

Lemma 4.1 (Constable)

t () ~

since

n € Sif

satisfies

~
a (n)

~(n) =
d(t(n)") otherwise.

(i) R~(). c Rt () and

(ii) there is no ~ . () such that

~(
J_

) < ~j () ~ t () and

i.o. a.e.

~~(). c R~. (). C Rt'() .
J

Notice that R~().~ Rt () since

t() a.e. But also R!(). C Rt ()
~ i

o
() E Rt () - Ri () ·

(4) Suppose t. (
J

t () < ~. () < t() .
- i.o. J · a~e.
actually t. () < t () a. e. since the.

J -

interval [t () I d (2) (t (»] is a complex­
ity gap. Thus it is not possible that
Rt ().c R~. () because on S, the comple-

- J
ment of S I it is possible to define a
function ~() which is more complex than
~. () but less complex than t() • This

J -
follows since on S, ~. () « t() •

J -

Q.E.D.

ten) d(2) (t(n»

We now conclude a more interesting
fact. First a definition (due to McCreight
and Meyer [6]).

For all t ·there are arbitrarily large
~(), t() such that

(1) Let an arbitrarily large a()
be given. Choose an infinite set S
whose complement is infinite and for which
there is a characteristic function ~s()

such that ~ s () < a () a. e. •

(2) Determine the function d()
such that g(n) = h(n,n) for the h()
of the remark preceding the theorem. Let
~io () be a function which is a.e. more

complex than a() and pick a gap func­

tion t() of gap size d(2) () above
t . ().
~o

(0) Determine whether n € S,
if not, go to (1)
if yes, then put ~ () = 0 •

be done in h(~j(».
The above procedure can be modified

so that it takes place only on a set s.
If membership in S is easy to decide,
then ~() is made more difficult than
~. () only on S. To modify the above

J
procedure, add the instruction

For this procedure there is a
function h(n,m) increasing in both
variables such that ~()E Rh(t

j
(),t

s
(»

where t () is the complexity of deciding
n € S bySa procedure with index s.

We use these facts below, first in
the simple but useful observation

(1) Compute tj(n).

(2) Form the set L n of those

indices k such that
k < n & ~k (n) < ~. (n) •

- J

(3) Le t ~ (n) = L ~ i (n) •
i€Ln

Clearly ~() t R~. () • Also
J

since the complexity of ~j() can be

bounded uniformly by a function of its
value, we can produce an h() such that
the t-complexity of steps (1)-(3) is
bounded by h(t j (». Thus ~() is

a.e. more difficult than t. () but can
J

As a prelude to the first theorem
we recall the diagonalization procedure
of Blum's Compression Theorem, Theorem
8 of [1]. For any measure ~ a function
h(), a jump function for ~, is de­
termined such that a diagonalization
construction places a function ~()
in Rh(~. (» - R~. () for all i.

J J
The construction is roughly this (We do
not require ~() to be 0,1 valued as
Blum does, and tbus the procedure is
simpler.): at input n,

The notion of denseness in L~ is a
notion of relative density. It is
analogous to the notion that the ration­
als are dense in the reals. Such con­
cepts lend further insight into the

structure of L~. We shall show that
this relative density notion is not
measure invariant.

15

Def. 4.2 similar to every measure.

A measure ~ is proper iff for all i,
~

~ i (e: R~. () •
~

We now conclude

Theorem 4.2 (Borodin)

Theorem 4.1 (Constable)

If ~ is proper, then the run-time

classes are not dense in L~.

There is a measure ~ for which the
run-time classes are dense in ~ •

Proof

Def. 4.3

Proof

Two measures 4> and 4> are similar
A

iff ~. () = ~. () for all i such
J. 1-

that range $. () ~ {OJ •
J.

We also need

to be a c.d. measure similar

L is both dense and run-

Take L

L. Then

Q.E.D.

Now we form, by theAmethods of

Theorem 3.3 , a measure ~ which makes
t() and t() into run-times of some
L. () below them. For instance, make the

1-

Li() of Theorem 3.3 a run-time of L i ()

rather than of itself.

We leave the details of this con­
struction to the reader.

Q.E.D.

satisfies

Proof

Start with the dense measure L.
Since the run-time classes are not dense
in L, there are arbitrarily large ~()

L Lt() such that Rt ().C R_ but no Li ()
- t ()

to

Finally, we answer ~he questions left
open from section III.

Theorem 4.3 (Constable)

There is a measure ~ for which E~

is dense but n4> is not.

time dense; and since L is c.~., the

run-time classes are dense in L

~n > t ,implies

The tape measure L is proper,
thus the run-time classes are not dense in
L although L is both dense and run-time
dense. Is there then a measure ~ in

which the run-time classes are dense in L~?
To answer this question, we refer to
the concept of similar measures intro­
duced by McCreight & Meyer in [6].

4>i() ~ t().
d () and t (

4>m{) = <P i {)

~
a.e. R~(

and ~ is proper. Then ~ () e: R~
m '!1m

so there is a ~i() = ~m() with

Then by the definition of

) ,
< g (~i (» ~ g (t (» < t (
~

C R~ (
n

i.o. Hence ~m() contradicts Lemma 4.1

Q.E.D.

Let the d() of Lemma 4.1 be
chosen larger than max {h(n,n),g(n)}
for the g() of the Boun~ing Lemma.
Construct t, t() and t() as in the
preceding lemma. Now suppose

~ ~ ~
Rt (C R~ (). C Rt (

- m

Det. 4.4

A set S of functions is class
determining (C.D.) for 4> iff for all
SUfficiently large t() there is an
s() e: S such that Rt () = Rs () •

A measure ~ is class determing iff
S = {~. ()} is c.d. Remark: McCreight

1-

& Meyer observe that no proper measure
can be c.d. But they prove the deep
result that there is a c.d. measure

Theorem~~.4 (Constable)

There is a measure ~ for which n~

is dense but L~ is not.

Proof

The plan of the proof is to proceed
essentially as in Theorem 3.3 to construct

a measure ~ for which I~ is non-dense.
By taking as the base measure for this
construction (the • of Theorem 3.3) the

16

(1) ~ ~ "tape in tape"RL . () .
c RL . ()

,
J. J

case.

(2) ~ ~ "new in tape·'R~. () .
c RL . () ,

1 J
case.

We will abbreviate these cases by
using the terms "new" and "tape" and by
using L i () for ~i() when ~i()

is a tape function, likewise for ~. ().
J

Thus in summary form:

L L
R~ (). c RL .().

i J
implies

~
) . c R~. () , "tape in new"

J

R~.(CR~)' "new in new"
'i') • ~ • (.

1 J

~

Ri. (
1

(4)

(3)

case

L We show how to construct anRL , () .
J

L (such thatq

* 4> i () < L () < L. () and. q - J1.0. a.e.

~. (n) < ~ (n)
1 p

infinite subset of the integers), and if
<P () = <P (), then 4>, () < 4> s (). If
_s P ,. 1. i.o.
~ () is a tape complexity, then B

p
follows using <p () for properness.

p
However, if ~ () is a new complexity

p
function, then <p () may not be in

p

Given A we know that there is a ~p(

such that ~ 1.' () < ~ () < L, ((i • e • ,
i.o. P a7e. J

S
for n € Sand S an

R~ c R.!
~ i () ~ --L j ()

We shall consider in detail only
case (2) which is the difficult case. The
general principles will be clear from a
careful examination of this case.

We show that A implies B, i.e.,

case •

Similar conventions will apply to
other ~-complexity functions which arise,
i.e., if ~ () is introduced, then

p
Lpp () and L~ () are understood to be

defined. p

The strategy of the proof is to show
that (I) A implies B, and (II) (A implies
B) implies (A implies C).

We show each of these parts by exam­
ining the four possible cases. Further
special notation is used in the proofs,
specifically:

let L ii () denote the tape complex­

ity function used as the base for construct­
ing ~1' (), likewise for L" () and ~,();

JJ J

let L~. () and L~. () denote
1. J

respectively the tape complexities of the
gap functions ~,() and ~. () as defined

1 J
by the uniform procedure of Theorem 3.3
(as modified slightly below) •

are(4) Both ~i () and ~j (

new complexity functions.

~
R~ . () •

J

The difficult part of the proof is
demonstrating that n~ is dense. That L~
is non-dense is proved exactly as in
Theorem 3.3. We must show that A
implies C. We distinguish four possible
ways in which A can hold.

To simplify presentation of this
proof we use the following abbreviations:

~ ~
A: R~. (). c R~. (

1 J
L L

B. R~. (). c R~. ()
1 J ~ ~

C. ak such that R~. ().c R~ ().c
1 k

(1) ~i() is a tape complexity

function (L. (» and ~. () is a
~ J

tape complexity function (L j (».

(2) ~i() is a newly defined com­

plexity function in ~ (gap function
in L), but ~. () is a tape com-

J
plexity function (L j (».

(3) ~. () is a tape complexity
1

function (L i (» and ~j() is a

new complexity function.

measure L and by introducing several
special conditions on the· construction of
the new complexity func·tions (gap functions

in L), it is possible to keep O~ dense.

Intuitively n~ remains dense because
we scatter the new complexity functions
into L sparsely enough that there are
tape complexity functions of difficult
functions between them. The special
conditions mentioned above are designed
to insure the sparseness.

17

<I> s () = <I> q () implies ~ i () < ~ s ()

i.o. and ~J.' () < L () a.e. •- q

We distinguish two cases, p > i
and p < i ,i.e., ~ () constructedp
after ~. () or ~ () constructed before

J. p
~. () • We also specify our first re­

J.
striction on the construction of the new
complexity functions.

Rl: If ~r(n) is constructed after

~s(n) and ~s(n) < ~r(n), then

we require that L~ (n) < ~r(n).
s

It is easily seen that Rl does
not alter the results of Theorem 3.3

Now ~or p > i we know ~i(n) <

L~. (n) < ~ (n) for n E s. Moreover we
J. p

recall from Theorem 3.3 that if ~s(n) =
<P i () , then L s () > ~ i () a. e. · We now

tkae ~q() to be the function obtained

by running in the minimum of L~. () and
J.

L. () • It is easy to see that L ()
J q

satisfies *

If P < i then we use a different
trick. For this we need another restric­
tion.

.R2 : ,Given the tape complexity Lk (),

define the associated gap
function, Lk(), so that it lies

lies above the tape complexity,

Lk , (), of the function 'k' (

obtained by applying the com­
pression (or jump) procedure
(of our Theorem 3.1) to Lk ().

Now we observe that if p < i and
~J.' (n) < ~ (n), then L (n) must satisfyp pp
~i(n) < Lpp(n) < ~p(n) , for otherwise

~i(n) would be forced above ~p(n) by

the gap defining procedure. If ~. () <
J.

~p() a.e., then Lpp () suffices for

L () and R2 is us~d to prove that
q

L () satisfies * If on the otherpp
hand ~ () < ~. (i.o., then we mustp J.
use a more careful observation to dis­
cover the right <P q (). We first need

another restriction.

R3: The gap size h() must be

18

taken to be a tape complexity­
function.

Again the restriction does not negate
any of the conclusions of Theorem 3.3
since there is an increasing tape function
above every recursive function.

Using this restriction we notice
that it is possible to decide whether

~. (n) < ~ (n) in less than h (2) (L (n))
J. P pp

tape. This fact is tedious to verify ~n

detail, but it follows informally because
i f ~. (n) < ~ (n), then ~. (n) < L (n) ,

J. P J. pp
and the interval between Lii(n) and

Lpp(n) can be examined using only

h(2) (L (n» tape to determine whether
pp

~i(n) lies in it.

We then observe that h(2) (L (n» <
pp

L. (n) for a.e.n. using RI and the fact
J

that each new complexity function is a
two sided gap of size h() . We define
~ () as the function obtained by applyingq
compression to L () if ~. (n) < ~ (n)

pp J. P
and as <p. () otherwise. It is easy to

J
show that <p () satisfies *. Thisq
concludes the proof that A implies B.

We now turn to showing (II) for
case (2), that (A implies B) implies
(A implies C) • From A implies Band

L L
A we conclude that R~. ().c RL . () and

J. J
moreover from * that

L L c r
R~. (). C RL () ~. () •

J. q J

But because each new complexity
function, ~ (), is a two sided gap,

p
i • e ., if L k () < ~p () a •e ., then

h(Lk (» < ~p() a.e., we can construct

a function Lr () such that

L (). < Lr () ~ L
J
. (and

q J..O.

a.e. and

We do this by applying compression
to the part of L () which is below

q
L. () . We have shown that this part car

J
be recognized within L. (so that the

J
resulting function ~r() satisfies the

above conditions. Thus

L L C RL
R~ i (). C RL

q
() L

j
() •

[3] HartInanis, J. & Stearns, R.E. "On
the Computational Complexity of
Algorithms" Trans. AMS, 117, 5,
1965, p.285-306.

Now it is easy to observe that this re­
lationship carries over to ~. So

R~ R~ C R~ d A impliest. (). C L (). --L. () , an
1 q J

c.
Q.E.D.

[4]

[5]

Hennie, F.C. & Stearns, R.E. "Two
Tape Simulation of Multitape
Machines" JACM, 13, 4, 1966,
p. 533-546. --

Kleene, S.C. Introduction to
Mathematics, Princeton, 1952.

[9] Young, Paul R. "Speed-Up by
Changing the Order in which Sets
are Enumerated" ACM Symposium on
Theory of Computing, May 1967,
p.89-92.

McCreight, E.M. & Meyer, A.R.
"Classes of Computable Functions
Defined by Bounds on Computation"
Proc. ACM S~osium on Theory
of Computing, Marina del Rey,
1969, p.79-88.

Rogers, H. Theor¥ of Recursive
Functions and E£ ective Com~uta­
b!lity, New York, 1967.

[8] Rogers, H. "Godel Nwnberings of
Partial Recursive Functions"
J. Symbolic Logic, 22, 3, 1958,
p.33l-34l.

[7]

[6]

[1] Blum, M. "Machine-Independent Theory
of the Complexity of Recursive
Functions" JACM, 14, 1967, p.322-36.

[2] Borodin, A. "Complexity Classes of
Recursive Functions and the Existence
of Complexity Gaps" Proc. ACM
Symposium on the Theory of Computing,
1969,p,.,~7-78•

References

A2knowledgement

We would like to thank Paul R.
Yo~ng, who has independently constructed

a measure ~ for which neither L~ nor n~
is dense, for the stimulation he provided
in the writing of this paper.

19

