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1. Introduction 

During the 1930's, a great deal of research concerned the question of "what func- 
tions are computable." Subsequent understanding of the concept of computability 
gave rise to a new question, namely, "how difficult to compute is a given function." 
Our purpose is not to analyze the complexity of any specific functions but rather to 
continue the development of a theory of complexity. 

In this paper, we shall study further the properties of complexity classification 
schemes, in order to develop a framework within which concepts of computational 
complexity (such as "difficulty" of a function) can be formulated. Our classification 
scheme evolves directly from the one introduced by Hartmanis and Stearns [11]. 
In [11, 22], "time" and "memory" are viewed as resources, which any efficient 
algorithm will try to conserve. Thereafter, a complexity class is formed by placing 
a bound (a function of the input value) on the amount of a particular resource that 
an algorithm may use. A function is in a given class if there is an algorithm for com- 
puting the function, in which the amount of resource does not exceed the bound. 

In [11], every computable monotone-increasing recursive 1 function t induces a 
class of recursive sequences by limiting the number of steps for computing each 
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A number theoretic function is one whose domain and range is contained in the natural 
numbers N. We will henceforth use the standard terminology of recursive function to mean 
computable total number theoretic function and partial recursive to mean computable p a r t i a l  

number theoretic function. 
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digit of the sequence. Specifically, a sequence a -- a~la2 • "" is in St if and only if 
there is a multitape T.M. which outputs the nth digit a .  within t (n) computation 
steps. We may say that the number of computation steps (= time) is a resource 
and we measure the complexity of a computation by the amount of resource ex- 
pended. 

Following Hartmanis and Stearns, similar schemes for classifying recursive sets 
were studied in [22, 8]. Here the classes are derived by placing a bound on the 
number of tape squares (tape reversals, respectively) in a computation, the bound 
being a recursive function of the input length. Again, membership in a class is 
determined by the existence of some "efficient" (relative to the measure) algorithm. 

Are any of the results and concepts formulated in the previously mentioned 
papers valid with respect to other (abstract) models of computation? The concepts 
are valid. It is the work of Blum [1] which shows how to develop a theory of com- 
plexity in a formulation which is machine (model) independent. 

5Iotivated by the work of Rabin [18], Blum chooses two axioms which provide a 
broad characterization for the intuitive notion of a resource or a measure of com- 
plexity. A partial function ¢~, the step counting function, 2 is associated with each 
(algorithm) ~i.  Axiom 1 merely says that a measure is well defined in the sense 
that we get a value for the measure if and only if the computation converges (i.e. 
produces a value for the function being computed). Axiom 2 captures the notion of 
being able to determine if a particular computation exceeds a bound on the measure. 

All previously studied measures of complexity (time, tape, reversals) can be 
viewed as examples of step counting functions. Our goal will be to introduce and 
investigate classification of recursive functions based on bounding (by a reeursive 
function) the step counting function ¢~ associated with a computation (algorithm) 
¢~. Although we will be talking about classes of functions, we note that we could 
have chosen to study recursive sequences or recursive sets. 

In the next section, we define our notion of resource bounded complexity classes 
with respect to axiomatically defined resources (complexity measures). Some im- 
mediate observations are then made by generalizing results in Hartmanis and 
Stearns. 

Section 3 concerns itself with hierarchy theorems. In particular, the gap theorem 
shows how essential are the restrictions in known hierarchy theorems (i.e. the use of 
tape constructable functions and real time countable functions). More precisely, 
the gap theorem shows that there is no uniform way to increase a resource bound 
to guarantee an increase in computing power. 

We then begin to view classes of function (the set of permissible bounding func- 
tions) as names for complexity classes. In this context, it is established that no 
naming class can have all the properties one might desire. Specifically, it is shown 
that there is no class of functions (bounds) 8 for which (1) there is a uniform way 
[composition with some fixed function h(x) << x] to decrease the computing power 
and (2) $ names all the classes. 

5linimal growth rates are studied in Section 4, as an example of a "gaplike 
phenomena in the low end of the complexity structure." Section 5, the conclusion, 
reviews the distinction between "class or structural properties" as opposed to 
"naming properties." This distinction is made as a possible starting point for attack- 
ing the problem of "how to classify measures." 

Many other names for ¢~ appear in the literature, including complexity function, ¢ con- 
structible function, run-time function, difficulty function. 
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160 A. B O R O D I N  

2. Axiomatically Defined Complexity Classes 

2.1. BASIC DEFINITIONS. We restate the Blum formulation precisely. An effective 
list (~b0, ~1, ~b~, • • • ) of all partial  recursive functions is postulated, such tha t  this 
list satisfies the ST theorem and the universal Turing machine theorem. 3 

The list {$~} should be thought  of as a list of algorithms or devices for computing 
the partial  recursive functions. A partial  function ~ is associated with each algo- 
r i thm ~b~. The  set of functions {~} satisfies the following axioms. 

Axiom 1: (~(x )  is defined *=~ ~bi(x) is defined. 
Axiom 2: The function 

M ( i , x , m )  = {~ i f ~ ( x )  = m 
otherwise 

is total recursive. 
Henceforth,  we will use the s tandard notat ion 0k (x) J, to mean ~b~(x) defined at  

x (x in domain of ~ )  and ~ ( x )  T to mean ~i undefined a t  x.. 
As an immediate  consequence of Axiom 2, we note tha t  the following predicates 

are recursive for all k, i, and x:~ 

¢,(x) = k, ¢ , (x)  < k, ¢~(x) > k. 

Example 2.1: Let  {Z~) be the class of Turing machines with a read only input 
tape, a write only output  tape, and one "work"  tape. Let  ~ be the function com- 
puted by  Z~. We fix our input  and output  convention to be the binary representa- 
tion of integers and allow an arbi t rary but  finite number  of work symbols. Define 
• ~ (x) = m iff Z~ with input x stops and uses precisely m squares of the work tape 
for the computat ion.  {~i} has been defined to satisfy Axiom 1. To see tha t  {O~} 
satisfies Axiom 2, we note tha t  either the number  of tape squares used in the com- 
putat ion increases as the computat ion proceeds or the machine is in a loop. Since 
we can effectively determine how many  machine operations may  occur without  
entering a loop or using a new square on the work tape, Axiom 2 holds for {¢~}. 

Definition 2.2: Let  (~0, ~bl, ~b2, • . . )  and (~0, ~ i ,  ~2, • • ") be as stated for the 
Blum axioms. We will call (I) = ({ ~b~), {~i} ) a dynamic complexity measure or resource 
(and for brevity,  we will often refer to • as a measure).  Informally,  this notat ion 
allows us to denote both the measure and the "devices" upon which the measure is 
imposed. For notational convenience, the set of step counting functions {¢~} would 
be associated with the measure ~. • is dynamic in the sense tha t  it describes the 
behavior of the computat ions of an algorithm; a computat ion being the execution 
of an algorithm when applied to an input. This is in contrast  to a static or definitional 
measure such as the size [2] or "s t ruc ture"  of the i th algorithm. 

Rogers [20] shows tha t  acceptable indexings are recursively isomorphic. T h a t  is, 
if {~i*} and {~i) are acceptable then there exists a recursive 1-to-1 onto function f 

The S, ~ theorem asserts the existence of a total recursive function a such that 4~,~i.~)(n) = 
V~(n~, n). The universal Turing machine theorem states that for any recursive 1-to-1 onto map 
J : _~t X N --* N, there exists a universal machine Z, with the property that 4~i(J(x, y)) = 4~(y) 
for all x and y. Indexings, satisfying the above theorems, are called acceptable by Rogers [21]. 
It should be clear that any effective enumeration of Turing machines would yield an acceptable 
indexing. 

¢~(x) > k iff it does not hold that (¢~(x) < k or ¢~(x) = k). Specifically, (~k) ¢~(x) > k 
when ¢~(x) ]" [equivalently, ~(x) ~ ]. 
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such that  4)~ "~ 4)7,) (and 4)~* ~ 4)i-1(~)).5 A complexity measure ~ = ({4)i}, {~}) 
may be viewed as a complexity measure (I)* = ({4)~*}, {~*}) with ~ *  ~-~ ¢I-~(~) • 

and 4 "  determine the same set of step counting functions, and in particular, for 
any function g, {(I)~ I 4)~ --~ g} = {OJ*l 4)i* "~ g}. Informally, we may say that  the 
existence of a complexity measure with certain properties will not be unique to a 
particular list {4)i}. 

The framework for our investigation will be classes of recursive functions. We 
generalize the Hartmanis-Stearns concept of classes of recursive sequences S~ as 
follows: 

Definition 2.8: Let ~ be a complexity measure, t a recursive function. 

R~ ~ = {recursive functions f l  (3i)[4)i ~'~ f h O~(x) <_ t (x)  for almost all x]}. 8 

Informally, f is in Rt a if f is recursive and there exists an algorithm for computing 
f such that  the difficulty (relative to the measure or recource ~ )  is bounded almost 
everywhere by the function t. 

We call Rt ~ a • resource bounded class or more briefly a complexity class. 
Regarding Definition 2.3, one may wonder why we did not require 4)~(x) _< t (x)  

for all x. The "almost everywhere" criterion is consistent with the concept of a 
"bounding function" (e.g. Ackerman's function bounds the primitive recursive 
functions in this "for almost all sense"). I t  is also consistent with the Blum speedup 
and compression results, which are discussed later in this paper. Moreover, the 
distinction between "for almost all x"  and (Vx) disappears for a complexity meas- 
ure if both 

(1) the computation "device" has some sort of "finite control," capable of mini- 
mizing a function's complexity at a finite number of argument values; 

(2) input-output conventions do not "contribute" to the complexity measure. 
The measure of Example 2.1 satisfies these properties. "Time" on a Turing ma- 

chine would not satisfy the second condition since, the number of steps needed 
merely to read the input or write the output contributes to the total number of steps 
(=  time). Thus if we used the (Vx) criteria for " t ime,"  no class Rt * could contain 
all constant functions, which we intuitively feel are easy to compute. 

Henceforth, we will abbreviate statements such as ~ ( x )  < t (x)  for almost all x 
by ~,. _< t almost everywhere (a.e.) or ~ ( x )  ~ t (x)  a.e.x.  Similarly, ~ ( x )  _< t (x)  
for infinitely many x will appear as ~ ~ t infinitely often (i.o.). 

We will sometimes have need to denote the class of algorithms (more precisely 
the indices) which "behave" within some bound. 

Definition 2.4: Let ¢ be a complexity measure, t a recursive function. 

It ~ = {il qh < t a.e. and ( V x ) ~ ( x )  $ }. 

I t  should be apparent that  I ,  ~ I ~ = ,, implies that  Rt ~ = R~t, but not necessarily 
conversely. When it is clear from the context, we will sometimes omit the superscript 
q~, and write It  and Rt .  

2.2. ANALOGS TO tIARTMANIS-STEARNS. I t  is easy to show that  many of the 
properties of the St classes proved in [11], generalize to our R, ¢ classification. The 
proofs have been omitted in the following straightforward development of results 
pertaining to the enumerability of R, a classes. 

6 _~ represents Strong equality of partial functions. That is, ~ ~_ ~t, iff (Vx)[4~(x) I ¢=~ ~(x) ~ h 
¢(~) ~ ~ ~(~) = ~(~)]. 
t"For almost all x" P(x) =- (3xo)(Vx ~ xo)P(x). 
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162 A. BORODIN 

Definition 2.5: A class C of [partial] recursive functions is recursively enumer- 
able (r.e.) ¢~ :3 [partial] recursive h(i, m): C = {kxh(i, x)  I i >_ 0}. 7 

In the context of a listing {~b~l of partial reeursive functions, it  is equivalent to 
say that  C is r.e. ¢=~ 3 recursive h': C = {~bh,¢o (x) I i ~ 0]. We will say that  h' enu- 
merates C. We may think of h' as enumerating a list of machines and the set of 
functions computed by these machines is exactly C. Note that  if C is a class of re- 
cursive functions, then each ~bh,(~) is a reeursive function. 

Example 2.6: The class C of functions of finite support is r.e. Tha t  is, C = {fl f 
recursive and f ( x )  = 0 a .e .x . I .  

PROPOSITION 2.7. Let C be an r.e. class of recursive functions. Let • be a com- 
plexity measure. Then 3 recursive functions bl and b2 : 

f in C ~ f < _ b x  a.e., 

f in C yinR 2. 
THEOREM 2.8. Let ¢ be a complexity measure. Using Proposition 2.7, let b be such 

that Rb ¢ contains all functions of .finite support. Then for any recursive function t, 

t >__ b a . e . ~ R ,  # i sr .e .  

In [13, 14], it is shown that  there are measures ~ for which some of the "small" 

classes (i.e. Rh $, h(x)  - 0) are not r.e. Following suggestions in [11] and [25], we 
introduce a property of some measures which allows Theorem 2.8 to follow for any 
nonempty class R, ®. 

Definition 2.9: • is finitely invariant iff 

If in Rt ~ h f '  total h f = f '  a.e.] ~ f in Rt ~. 

T h a t  is, total functions that  have the same value almost everywhere are in the 
same complexity class. Many familiar measures are finitely invariant (e.g. time, 
modified so that  reading the input is not counted, or tape on a T.M.) .  However, 
Definition 2.9 is independent of the Blum axioms. 8 

THEOREM 2.10. Let • be finitely invariant. Then for all recursive t, Rt ¢ is r.e. 
2.3. COMBINING ALGORITH.~IS. In order to achieve the generality desired, we 

have chosen to study complexity classification with respect to axiomatically defined 
resources. On the other hand, there is an obvious advantage in studying specific 
measures such as time and tape; namely, our familiarity with how these measures 
"behave ."  The purpose of this section is to show tha t  in many ways, the "behavior"  
of an arbitrary Blum measure is not "radically" different from the well-studied time 

or tape. 
In particular, Blum shows that  "measures (resources) are recursively related." 
PROPOSITION 2.11 (Blum). Let • and ~ be measures with respect to the same 

indexing. Then 3 recursive h: (Vt)It  ¢ _ I ~ t , ,  and It  $ C_ I, ,  and thus 

Rt ~ c_ R~, and Rt $ C_ R~,, 

where t ~ (x) = h (x, t (x)).  

7 x notation denoting h as a function of x. 
8 In fact, there exists a measure ~' such that there are arbitrarily large classes Rt ¢' (i.e. t can 
be made arbitrarily large) such that R~' is not closed under finite changes to functions which 
are members of R~'. 
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PROOF. L e t  

p(i ,  x, m)  = {O '(x)  "{- ~,(x)  ifotherwise.~b,(x) _< m or ~, (x )  <_ m 

Set. 

Then, for all x >_ i, 

h (x, m)  = max p (i, x, m)  
t~_z 

¢ , (x )  < h(x, ~ , (x ) ) ,  

4~,(x) < h(x, ¢ , ( z ) ) .  

The proposition follows by noting that  h (x, m) is nondecreasing in both vari- 
ables. QED 

As a direct application of the previous proof technique, we can show that  for 
any measure, if one combines algorithmic devices in well-determined ways to form 
new devices, then the complexity of the new device will be recursively related to the 
complexity of the original devices. For example, when the measure is time or tape, 
we can often "combine computations by running them in parallel" and the resulting 
complexity does not exceed the maximum of the individual complexities. 

PROPOSITION 2.12. Let (~ be any complexity measure. Let Ch(~,...~,) (x) be a partial 
function such that 

[¢,(x) ~ ,  i = i l , / 2 ,  . . . ,  in] ~ ~(,,....,,.) (~) $. 

Then there exists a recursive g (x, yl ,  y2, "'" , yn) such that 

[¢^(~,....~.)(x) _< g(x, ¢~,(x),  ¢i2(x),  " "  , ¢,~(x))] a.e. 

PROOF. L e t  

p( i l ,  "'" , in ,  x, y, ,  

Then 

g(x, yl ,  " ' ' , Y n )  = 

satisfies the proposition. 
Example 2.13: Let 

. . . , yn) = {~h(~,'".~n ) (x) if ~ j ( x )  = y~', 1 _< j _< n, 
otherwise. 

max p( i l ,  . . .  , in, x, y, ,  . . .  , yn) 
i j~z 

~<T_<n 

{ ~  (x) if ¢~ (x) _< ¢i  (z) 
Ch(~,,,(x) = ~¢),(x) if ~ , ( x ) >  ~;'(x) 

(T if ¢, (x )  T h ¢~.(x)T. 

If ¢^(~.~.)(x) = min ( ~ ( x ) ,  (I)j(x)) holds, then we say that ~) has the "parallel 
computation" property. 

8. Hierarchy Theorems and the Existence of Complexity Gaps 

3.1. A REVIEW OF SOME KNOWN HIERARCHY THEOREMS. Let us examine some 
existing complexity hierarchy results. 
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164 A. BORODIN 

Example 3.1: 
C~ is the class of all recursive sets acceptable in tape L (n) on an off-line T.M. 

(n = input length) 
L is tape construetable iff L is total and there exists an off-line T.M. Z~ such 

tha t  

L ( n )  = max {tape used by Z~ on input x}, 
z: I z l - "  

where I xl = input length of x. 
Then 

/4(n) - - ,  
inf L - - ~  0 and l-a tape constructable ~ CL, -- Cz.t ~ /2~. 

See [22]. 
Example 3.2: 

St -- class of all t computable binary sequences where t is increasing. 
Then 

inf t l(n) log t l(n) --+ 0 and t~ real time countable =~ S,, - Sit r ~ ~ .  
~(n) 

See [11] and [12]. 
The Blum compression theorem is a hierarchy result which pertains to all com- 

plexity measures. An essential concept in this theorem is that  of a "measured set 
of functions." 

Definition 3.3: A measured set of functions 9 = {7~} is an r.e. se~ of partial 
recursive functions such that  there exists a total reeursive function 

M (i, x, m ) = {~ if T , (x)  f 

That  is, a measured set of functions satisfies Axiom 2 for a set of step counting func- 
tions. Thus the set {¢~} is always a measured set. Whether or not a set g is a meas- 
ured set does not depend on the choice of formalism {¢~}. 

Suppose $ is any set of recursive functions which contains arbitrarily large func- 
tions (i.e. for every total recursive function f, their existsan h in $ such that  h > f 
a.e. ). Then from elementary recursion theory we know that  $ cannot be r.e. The next 
observation is then immediate. 

PROPOSITION 3.4. There is a measured set 9 which contains the set of tape con- 
structable (real time countable)functions. However, the set of tape constructable (real 
time countable)functions cannot be r.e. and therefore cannot be a measured set. 

THEOREM 3.5. (Blum Compression Theorem Restricted to Total Functions). 
Let dp be a complexity measure and {7;} a measured set. Then there exist recursive func- 
tions g and h such that for every total 7~ , 3 a total recursive function f satisfying: 

(1) ~ y ~ - - f ~ "  > "fl a.e., 
(2) dpg(~) ~--f and ~o(o(x) <_ h(x, 71(x)) a .e .x .  
We can easily restate this theorem in terms of our complexity classes. 
THEOREM 3.6. (Weak Compression Theorem). Let • be a complexity measure 

and {'),~} a measured set. Then "4 a total h' such that for every "su.fftciently large" 
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total ~ ,  
o R~, c Ra,oT,. 

PROOF. Let b (x) be any increasing reeursive function. ~ sufficiently large will 
mean ~ ~_ b a.e. Let h be as in Theorem 3.5. Then 

h' (u) ffi max h(z, y)  
,<b-1 (y) 

satisfies the theorem where b -l (y) = ~[b(z) _~ y]. QED 
Theorem 3.6 is a weak version of Theorem 3.5 in the sense that f in R~,. ~ - 

R ~  only guarantees that ~j ~ f  ~ &~ ) ~ i.o. rather than ~s ) ~ a.e. We also 
note that Theorem 3.6 does not express the fact that an f in ® ® Rh,.~ -- R ~  can be 
found effectively from the index i. 

We are now in a position to make a very basic observation. Namely, a salient fea- 
ture of all known complexity hierarchy results is that some restriction has been 
placed on a function which bounds the resource. In Example 3.1, it was necessary to 
have L2 he tape constructable. Example 3.2 had the requirement that ta be real time 
countable. And finally, in Theorem 3.6, the bounding functions were restricted to 
a measured set. In this chapter, we shall make precise just how essential these con- 
ditions are. 

I t  is appropriate to comment briefly on the distinction between hierarchy theo- 
rems as in Example 3.1 or 3.2, and the general hierarchy result expressed in Theo- 
rem 3.6. 

Using the terminology of Constable [7], the hierarchies in the former case are 
examples of "downward diagonalization." We may think of Examples 3.1 and 3.2 
to be of the form: 

infh°t- '-~O~ R~, -- R, ~ 

and thus 

lira h o t  - -  --* O ~ R t  c R ~  , 

where ~,~ indicates a total function in some measured set. Intuitively, we see how 
much below ~,~ we need to be in order to induce a class smaller than R ~ .  Theorem 
3.6 represents an "upward diagonalization" in that we show that increasing ~ by 
some h insures that R~, c Rho~. 

This distinction is" studied further in [7]. For our purposes we need only be aware 
that the distinction exists. I t  is more important for us to note than any measured 
set induces a uniform (in some h) upward hierarchy. That is, given any ~,~ there is a 
uniform way (composition by h) to extend T~ so as to induce a larger class of func- 
• tions. 

3.2. THE GAP THEOREM. Informally, Theorem 3.6 guarantees that "in certain 
complexity ranges, we need only increase the computing power by some fixed func- 
tion in order to achieve a genuine increase in computing capability." In contrast, 
Theorem 3.7 will show that "there exists arbitrarily large gaps in some complexity. 
ranges where no new computation is performed." The following theorem was first 
proven by Trachtenbrot [23] and independently by this author. 

0 h '  o ~ d e n o t e s  c o m p o s i t i o n  of f u n c t i o n  h '  w i t h  f u n c t i o n  ~ ; t h a t  is ,  (h~ o ~ ) ( x )  ffi h'(7~(x)). 
C d e n o t e s  p r o p e r  i nc lu s ion .  
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THEOREM 3.7. (Gap Theorem). Let • be a complexity measure, g a nondecreas- 
ing recursive function such that (Vx) g( x ) >_ x. Then "4 an increasing recursive func- 
tion t such that 

PROOF. Define t as follows: 
t (O)  = 1, 
t (n)  = #Ic > t(n -- 1){(Vi ~ n)([(~,(n) < k] or [~,(n) > g(k)] )}]  ° 

(1) (Vn) k exists, since (Vi _< n)  if ¢~(n)T then (Vk) ~ ( n )  > g(]c) 
and if ~ ( n )  ~ then (3k)  ¢~(n) < k. 

(2) k can be found recursively, since • is a complexity measure and thus 
[el(n) < k] and [ ~ ( n )  > g(k)] are recursive predicates. 

(3) t satisfies the theorem, since n >_ i implies that  either ~ ( n )  < t (n)  or 
~, (n )  > got (n) .  QED 

We observe tha t  an arbitrarily large t can be found to satisfy Theorem 3.7. Sup- 
pose we want t (n)  > r(n) ,  then define 

t(0)  = r(0)  + z, 

t (n)  = #k > max(t(n -- 1), r ( n ) ) { . . . } .  

COROLLARY 3.8. (Weak Gap Theorem). Let ~ be a complexity measure and 
let g be any recursive function such that (Vx) g (x) > x. Then there exists an arbi- 
trarily large, increasing, recursive function t: 

I t  v = I~.~ and consequently R, ~ = R~.t .  

PROOF. Immediate from Definitions 2.3, 2.4, Theorem 3.7 and the preceding 
observation. 

COROLLARY 3.9. zl Let ~P and ~ be any two measures using the same indexing. Then 
there exists an arbitrarily large increasing recursive t: 

^ A 

It  a = I t  * and thus Rt a = Rt ~ • 

PROOF. Let h(x, m) be as in Proposition 2.10. Choose a monotone g such that  
(Vx) got(x) >_ h(x, t ( x ) )  for all sufficiently large t [i.e. t (x)  >__ x]. Now use Corol- 
lary 3.8 to choose arbitrarily large t': I~, = I~.,, = Io°o.t, (that is, construct a 
! I 

t ,  gogo t  gap). 
Then 

Io°o°e Io.r I o . , ,  c _  = , 
^ 

Thus, t = got' satisfies the corollary. QED 
Suppose • = ({¢~}, {~}) and ~ = ({$i}, {~,}) refer to the " t ime" measure 

of two radically different computers. Recall the isomorphism between acceptable 
indexing. Then, using the technique of Proposition 2.10 and Corollary 3.9, it is easy 
to show that  no matter how much "bet ter"  one computer may seem compared to 

z0 ~k > t ( n  - -  1){P(k)} denotes the least k such that k > t(n -- 1) and P(k) holds. 
n Also proven independently by E. McCreight in his thesis. 
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the other, there will be arbitrarily large t such that  the sets of functions computable 
in time t is the same for both computers. 

Corollary 3.8 is not a "speedup" theorem. Rather, it states that  there is no com- 
putation which "behaves" in the range (t, got). Corollary 3.8 is a weak version of 
Theorem 3.7 in the sense that  the condition [~i > t i.o. ~ 4,~ > g o t  i.o.] would 
suffice to have I ,  ~ = I~.t. Using an intricate priority argument, Constable [6] has 
shown that  a "weak operator gap" holds for all measures. An observation due to 
Blum [1] shows tha t  this "weak" gap is the best possible for many operators. 

I t  is interesting to note how "small" (relative to g) an increasing recursive t can 
be found satisfying Theorem 3.7. 

COROLLARY 3.10. Let ~,  g, and t be as in Theorem 3.7. Let f ( y )  = g (y  "-k 1 ). Then 
( V x )  t (x)  < b (x)  where b (0) = 1 and b (x)  = f(~+l) o b (x - 1 ) for  x ~ 1. 

PROOF. Review the construction of t in Theorem 3.7. Look at the n q- 1 intervals. 

{ t (n  - 1) q- 1, g o [t(n - 1) -F 1]}, 

{g o [t(n - 1) + 1] -b 1, g o [g o [t(n - 1) ~- 1] -t- 1]} . . . ,  

{f(') o t (n  - 1) + 1, g o [ f (~)o t ( n  - 1) ~- 1]}. 

f U ) o t ( n  - 1) + 1 ~ ~ ( n )  < f u + ~ ) o t ( n  - 1) 

o r  

( V i  <_ n )  ~ ( n )  <_ f('+l) o t (n  -- 1). 

The corollary then follows by the construction of t. 
Example  3.11: Let • be any measure and le tg(x)  = x -/- 1. Then, by the pre- 

ceding corollary, letting f ( x )  = x -I- 2, there exists t ( x )  < b (x )  such that  R~ ~ = 
R~+l where 

b(0) = 1, 

b ( x )  = b(x  - 1) q- 2(x  Jr 1) _< x ~ -F 3x q- 1. 

Corollary 3.10 provides an estimate of the growth rate of t relative to g. In par- 
ticular, if g is primitive recursive in Grzegorczyk [9] class ~ ,  then t can be bounded by 
a function in ~n+,. With a judicious choice of encoding instantaneous descriptions 
we know that M is primitive recursive (elementary) if ~ refers to the usual meaning 
of computation steps, tape or tape reversals. In general M need not be primitive 
recursive. I t  should be apparent that  if M and g are in ~', then the t of Theorem 
3,7 is in ~n+l. 

3.3. T H E  H O N E S T Y  T H E O R E M  A N D  N A M E  I N V A R I A N T  D O W N W A R D  G A P S .  After 
the gap theorem was announced, McCreight and 5{eyer proved a powerful theorem 
about "ways to name complexity classes." Their theorem, interesting in its own 
right, takes on added significance when viewed in contrast ~-ith the Blum compres- 
sion theorem and the gap theorem. 

THEORE.~I 3.12. (SIcCreight-SIeyer Honesty Theorem). Let ~ be any com- 
plexity measure. Then there exists a measured set ~ such that for every total reeursive 
funct ion t, there is a total t' in g: It  ~ -- 1~, and .'. Rt  ¢ = R~, . 

Let ~ be as in Theorem 3.12. Using the compression theorem, let h be such that  
for all sufficiently large total t' in 9, R~, ~ R~°t , .  Then, even though we may find 
a large "gap t" such that  R,  ~ = R~ot, :3 a total t' in ~. Rt a = Raaot = R~, C ROb.t,. 
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This leads McCreight and Meyer to suggest that "theorems like the gap theo- 
rem which appears to be making statements about the structure of t-computability 
classes may only be indicating the properties of badly chosen names for the classes." 

This remark has a good deal of merit. Indeed, we shall return to this distinction 
between "structural" and "naming" properties. However, we should not infer that 
one type of property is more important than the other. We begin to view a set of 
functions as a "coordinate system" for the complexity classes or as a set of names 
for the classes. A modified gap argument will show that for some purposes, bad 
names are unavoidable (or equivalently, that certain naming properties hold in any 
"coordinate system"). 

We first formalize the ability of some classes to induce hierarchies. 
Definition 3.18: A class of partial functions 9 is upward extendible (by ha w.r.t. 

~)  if for every sufficiently large total g in g, Ro ~ C Rh¢.°o • 
The relationship between measured sets, sets of "g-honest functions [17, 15]" 

and "upward extension" has been well studied [1, 3, 15]. These studies (and in par- 
ticular, the compression theorem) allow us to characterize a measured set (or a set 
of g-honest functions) as a good naming class for the purpose of extending upward 
in the hierarchy. Furthermore, the honesty theorem says that for each ¢ we can 
choose such a class and still name all the • resource bounded complexity classes. 

Definition 8.14: A class of partial reeursive functions 9 is downward extendible 
(by h~ w.r.t. ~ )  iff 3 recursive increasing hd: for every sufficiently large total g in g, 

R~I° a c Ro ~ where again h-~(y) ffi ~[h(z )  >__ y]. 

Example 8.15: By the compression theorem, for any measure ~, "4 reeursive h' 
@ P 

and g, such that for all sufficiently large ~ ,  R ~  c R¢0<~I where ~g,) _< h o ~  a.e. 
Thus {~g<~)} is a downward extendible class (by h' w.r.t ¢) .  

Example 8.16: In [15], a measure is called proper if for all total @~, ~ in R ~ .  
Let • be a proper and let ¢ have the "parallel computation property" in the sense of 
Example 2.13. (The tape measure of Example 2.1 is such a measure.) Constable 
[7] notes that for all such measures, the set {~} is downward extendible. 

We need one "technical" lemma, which is a slight modification of the compression 
theorem. This lemma is used twice: first for the observation that downward ex- 
tendible classes are upward extendible and then in the proof of Theorem 3.20 (the 
existence of name invariant downward gaps). 

LEMMA 3.17. (Modification of Compression Theorem). Let • be any measure, 
a measured set, and hi any recursive function. Then "4 a recursive function h2 (x, y) 

such that for all total g in 9, "4 f:  

~ f = ~ >  hlog a.e. 

" 4 d ~ ' ~ f  and chi(x) <_ h2(x ,g (x ) )  a.e.x. 

As in Theorem 3.6, we can replace h2 by a function of one variable h2 p if we re- 
strict the Lemma to all sufficiently large g in 9. Obviously, h2 t > h~ a.e. 

PROOF. An essential lemma to the compression theorem is Theorem 7 of [1]. 
We make a simple modification of that theorem and show: 

(1) To every partial recursive function g, there corresponds a 0-1 valued par- 
tial recursive function f with the same domain as g such that i f  d~ ~-- f, then 

• ~ h l o g  a.e. 
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(2) There exists a total reeursive function r which takes indices for g and hi 
into an index for the corresponding f. 

Let ~bz ~ h~. Holding l fixed, we can go (via r) effectively from an index for g to an 
index for f. The Lemma then follows exactly as in the proof of the compression 
theorem. 

We used the Lemma for the next easy observation. 
PROPOSITION 3.18. Let 9 be downward extendible (by ha w.r.t. ~ ), then 9 is up- 

ward extendible (by some h= w.r.t. ~ ). 
PaOOF. Let g in 9 be sufficiently large (assume at least that g (x) >__ x a.c.x.) 

R ¢ h T . o c R o  ® ~ 3 4 k :  h~ -log < ¢ k  i.o. 

~ k < g  a.e. 

Setting h~ = ha in Lemma 3.17, we get that 3f:  

~ f = ~ 4 ~  > h~o4k a.e. 

= , , ~  > haoh~og >_ g i.o. 

and 3~b~ ~ f with 

¢~.(x) _~ h2(x, ¢~(x)) a.e.x. 

~_ h2(x, g(x)) a.e.x. 

~_ h~(g(x), g(x)) a.e.x. 

The proposition is proved when we set 

h=(y) = h~(y, y). 

QED 
Definition 3.19: A class of partial functions 9 is class determining w.r.t. 4 iff for 

. ¢ 
every total recursive function t, there exists a total function g m 9 such that Rt = Ra ®. 

We may think of any class determining 9 as a coordinate system for 4. That is, 
the total functions in 9 name all the 4 complexity classes. As an immediate con- 
sequence of the following theorem, due to R. Constable and the author, we see that 
a class 9 cannot be both class determining and downward extendible w.r.t, any 4. 

THEOREM 3.20. (The Existence of NameInvariant Downward Gaps). Let 4 be 
any measure. Let ha be any recursive increasing function. Then there exist arbitrarily 
large, increasing, recursive t such that: 

Ro = R~ ~ R ~ l . o  = Rg.  

That is, it is not possible to go down from Rt by ha no matter what name (g ) we use. 
PROOF. Letting 9 = {4~}, apply Lemma 3.17 with hi = ha to yield an appro- 

priate h2. That is, for every 4k, :3 recursive f: 

"4~b~__~f and ¢i(x) ~ h2(x,¢k(x)) a.e.x. 

Construct arbitrarily large increasing recursive "gaplike" t: 

4~(x) <_ t(x) ~ h~(x, 4~(x)) ~ t(x) for almost all x. 

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972 



170 ~ .  BORODIN 

It  is easy to verify that such a t can be constructed. Suppose 3 total g such that 
Ro = Rt and R ~ ° g  c Rg. Then, 3 total ¢k such that 

(i) hd~og < Ck i.o. which implies g < hdo@k i.o. 
(ii) Ok _< t a.e. which implies h2(x, ~k(x)) ~_ t(x) a.e.x. 

But then there exists f: 

~ b ~ _ _ ~ f ~ >  h ~ o ~  a.e. 

¢~ > g i.o. 

and 3 ~i ~ f with ¢j(x)  _< h2(x, &k(x)) _< t(x) a .e .x . . ' ,  f i n  R, - Ro which is a 
contradiction. QED 

Intuitively, the proof of Theorem 3.20 consists of forming a (ha -~ o t, t) gap. We 
suggest that Rt may be thought of as a "limit" of a way of extending classes. That 
is, {f~.} an r.e. class of reeursive functions and for all j ,  Rfj c Rh~.f; C Rhs~.I; "'" 
reflects that h2 is a means by which we can extend classes. It  is obvious that this way 
is limited since there are functions which are much greater than h ~ ofj for any i and 
j (h2 recursive implies that {h2~ofi} is also an r.e. class of recursive functions and 
is therefore bounded.). 

Viewing Rt = Ro as a limiting class for h~ extension makes the theorem quite 
intuitive. If we could go downward by hi applied to the name g for R t, then a total 

• &~ function would lie "within hi" of g and hence we could "exceed R~" by h2 exten- 
sion (that is, Ro was not a limiting class for hs extension). Consequently, we might 
say that this naming exclusion holds because "downward extendible implies upward 
extendible." No such exclusion holds for class determining and upward extension 
because "upward extension does not necessarily imply downward extension." 

COROLLARY 3.21. I f  • is proper and has a parallel computation capability, then 
{~} is not class determining. 

PROOF. Immediate from Example 3.16 and Theorem 3.20. In fact, :il arbitrarily 
large t: (~i) R, ¢ ~ R~, .  

A stronger version of this corollary was first proven by McCreight and Meyer. 
Namely, they showed that ¢ proper ~ {~b~} not class determir, ing. 

4. Minimal Growth Rates 

4.1. MONOTONE I~IINIMAL GROWTH RATES. In [22], the concept of "minimal tape 
function growths" was introduced. It  was shown that for on- and off-line Turing 
machines, the amount of work tape used in a computation must "grow" as a func- 
tion of input length in order to recognize a nonregular set. The essence of that proof 
was that if the amount of tape used in a computation is not bounded by some con- 
stant for all inputs, then for infinitely many inputs the computation requires an 
amount of tape at least proportional to log n (n = input length) for the on-line 
model and log log n for the off-line model. 

We now abstract this concept as follows. 
Definition 4.1: We say a complexity measure • has a monotone minimal growth 

rate if there exists a nondecreasing unbounded recursive function t: 

(1) ~ total, unbounded, and nondecreasing almost everywhere ~ ~ ( x )  >__ t(x) 
a . e . x .  

(2) ~ total, and unbounded ~ ~ ( x )  >_ t(x) i.o.x. 
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A minimal growth rate corresponds to a "gap"  in the "low end" of the complexity 
hierarchy. We shall show in Example 4.4 that  not all complexity measures have a 
monotone minimal growth rate. This contrasts with an observation by McCreight 
and Meyer that  all measures have a "minimal growth rate" if we do not insist on 
monotonicity. 

One reason to desire monotonieity is that  in the context of sequence generation it 
is natural to insist that  all bounding functions be nondecreasing. In Theorem 4.3, 
we will give a sufficient condition for when a measure has a monotone minimal 
growth rate. 

Example ~.2: Let • be as in Example 2.1. Let P( i ,  k) be the predicate 
(Vx)~i(x) <_ k. I t  is easy to show that  P(i, k) is decidable for all i and k. Given i 
and k, we may view the Turing machine as a finite automaton and construct its set 
of "permissible" states. We can then effectively test if there is a sequence of moves 
(i.e. there is an input) which causes the machine to leave the set of permissible states 
(i.e. the bound is exceeded). 

THEORE.~I 4.3. Let • be any complexity measure. Let P~ (i, k) be the predicate as in 
Example ~.2 [i.e. (Vx)~i(x) _< k]. Then P~ (i, k) decidable for all i and I¢ ~ ~ lw, s a 
monotone minimal growth rate. 

PROOF. Define t as follows: t(0) = 0; 

if (Vi < t(x)){(Vz)[¢,(z) < x] or (:3y 

then 

else 

t(x -{- 1) = t(x) -{- 1 

_< x)[~,(y)  > t(x)]} 

t (x + 1) = t (x). 
(1) t(x) is obviously nondecreasing. 
(2) t(x) is unbounded; for, given any k, 

( 3 x ) N i  < k){ N z ) [ V , ( z )  < x] or (3y  < x) [~ , (y)  > k]}. 

(3) Suppose ¢i  total and Unbounded. Given any n: i <_ t(n), let 

b = max (~)~(x)) and x0 = ~ [ t ( x )  = k]. 

In order for t to be unbounded, ~x > ~ : 

(~y <_ x)[¢,(y) > t(x) = t(Xo)]. 
Let  

Yo = Izy[O,(y) > t(y) = t(xo)]. 

By definition of k, yo >_ n and by definition of t, Oi(y0) > t(yo). 
(4) Suppose ¢~ total, unbounded and nondecreasing almost everywhere. Choose 

n: i <_ t(n), (Vy >_ n ) ~ ( y )  <_ ¢~(y -k 1), and q~(n) _< t(n). Then 

(Vy >_ n)t(y -k 1) = t(y) + 1 ~ O,(y) > t(y) ~ O,(y + 1 ) _ > t ( y  + 1 ) .  

QED 

I t  is easy to exhibit a measure which does not have a monotone minimal growth 
rate. 

Example ~.~: I t  is known that  R 1 = class of primitive recursive functions con- 
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talns "arbitrarily slow growing" nondeereasing functions. Let q~ be any complexity 
measure, S an infinite recursive set: i E S ~ q'~ total. 

Let 

if 
~,~ (x) = ( f .  (x) if i is the j th largest number in S, 

where {f~} is an enumeration of R ~. Then ~ cannot have a nondecreasing minimal 

growth rate, and consequently P$ (i, k) is not decidable for all i and k. 
Definition 4.5: • has a weak minimal growth rate if there exists a recursive func- 

tion t with lim inf t --* ¢0 satisfying: ¢~ unbounded on dom cI,~ ~ ~ >_ t i.o. 
THEOREM 4.6. (McCreight and Meyer [15]). Every measure q~ has a weak mini- 

mal growth rate. 
Example 4.4 and the preceding theorem provide an interesting result about the 

recursive functions. 
COROLLARY 4.7. There exists a recursive function t such that lira inf  t ~ oo but 

there does not exist any unbounded, nondecreasing recursive function b: b <_ t a.e. 
PROOf. Let ¢ be the measure of Example 4.4. Let t be a weak minimal growth 

rate function for ¢. That is, lim inf t --+ oo and ~ unbounded ~ ¢~ > t i.o. Now sup- 
pose =1 an unbounded recursive b < t a.e. Then =l a nondecreasing unbounded ele- 
mentary function f~. such that fj < b a.e.. '. ¢~ = f~ which implies ~ unbounded and 
6~ < b < t a.e. contradicting the definition of t as a weak minimal growth rate func- 
tion. QED 

! 

5. Conclusion 

We want to attempt to clarify the distinction between "properties about the struc- 
ture of t computability classes" and "properties about names for the classes." 

Important structural properties concern the partially ordered set ({Rt*}, c ) .  
For example, consider the following interesting fact about the ({R~¢}, c )  structure 
[11, 15]: 

(V sufficiently large classes R~ ®) (3 a class Rt ¢, ) (V classes R/v)[ Rt ¢ U Rot, r~ Rf¢]. 

On the other hand, there are properties which can not be expressed using only 
classes for variables; these properties require that we allow functions (names for the 
classes) as variables. We have seen many examples of such properties (the com- 
pression, gap, and honesty theorems). 

We shall call such properties naming properties. It  is obvious that these properties 
play an important role in the study of complexity classifications. In general, we can 
investigate naming properties w.r.t, the total functions of any class determining set 9. 
That is, the function variables are restricted to the total functions of 9. In particular, 

might be (the set of all partial recursive functions) and then a function variable 
could be any total recursive function. 

A further distinction should be made concerning naming properties. Some prop- 
erties not only must be expressed using function (name) variables but, moreover, 
hold precisely because of the existence of certain names. The gap theorem reflects 
such a property. This contrasts with Theorem 3.25, which shows that the existence 
of downward gaps is in some sense name invariant. 

We can call a naming property P name-dependent if there exist class determining 
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sets 9~ and 9~ such that  P holds w.r.t, the total functions of ~ but  does not hold w.r.t. 
the total functions of g2. A naming property P is name-invariant if P holds w.r.t, the 
total functions of any class determining set. 

The Blum axiomization allowed us to characterize computing resources or com- 
plexity measures and consequently significant advances have been made in the 
study of resource bounded classification. By intent, the Blum axioms are very weak. 
Tha t  is, every conceivable measure should satisfy these axioms but  many measures 
satisfy the axioms which we would agree are "pathological." A significant problem 
remaining in "axiomatic complexity theory"  relates to the question of how to classify 
measures, and, in particular, how to refine the Blum axioms so as to characterize 
precisely the "natural" measures (i.e. exclude pathological measures). 

Given a measure ~), let us view any class-determining set of names for • as a 
possible set of names to use. What  other  properties should the class have? We are 
suggesting that  searching for a good naming class is analogous to the development of 
good coordinate systems in geometry. We seek those properties which are invariant 
for any good naming class. I t  is our hope tha t  these "coordinate invariant properties" 
and "structural properties" will provide the basis needed for classifying measures. 
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