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ABSTRACT
We study the community extraction problem within the context of
networks of blogs and forums. When starting from a small set of
known seed nodes, we argue that the use of content information
(beyond explicit link information) plays an essential rolein the
identification of the relevant community. Our approach lends it-
self to a new and insightful ranking scheme for members of theex-
tracted community and an efficient algorithm for inflating/deflating
the extracted community. Using a considerably large commercial
data set of blog and forum sites, we provide experimental evidence
to demonstrate the utility, efficiency, and stability of ourmethods.

Categories and Subject Descriptors
H.2.8 [Database Management]: database applications—Data min-
ing; I.5.3 [Pattern Recognition]: clustering—Algorithms,Similarity
measures

General Terms
Algorithms, Experimentation, Performance

Keywords
Community, Extraction, Ranking, Similarity

1. INTRODUCTION
Recently, there has been substantial interest in the problem of

discovering community structures from a web graph based primar-
ily on the hyperlink structure of the graph [1, 9, 16, 18, 22, 27].
Most of the previous work defines the intuitive notion of a web
community as a subgraph of a given web graph whose members
are, in some sense,more similarto each other than to other, non-
community members. The basic measure employed to represent
such similarity (or dissimilarity) is the linkage relations among
members of the given web graph. Although various research papers
(e.g. [15, 3]) suggest ways to incorporate node and edge weights
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in the process, the utility of doing is still not fully understood. In
this paper, we begin a more comprehensive approach to commu-
nity extraction, as we are especially interested in a methodology
for studying community structure and growth in the viral word-of-
mouth segment of the web as exemplified by blogs and forums.
In this context, hyperlinks are somewhat marginalized: Experience
analyzing web content at Brandimensions1 has shown that the in-
terlinking structure of forums, blogs, and other communitycontent
sites is somewhat different from that typical on the more authorita-
tive part of the web and, in particular, that graphs generated from
such pages are relatively sparse.2 Furthermore, where links do ex-
ist, community sites often link not to each other, but ratherdirectly
to the source of the underlying information. At the level of individ-
ual postings, we can never have bidirectional links as postings have
inherent time stamps. We argue that successful community extrac-
tion schemes in the viral community context must adequatelyac-
count for and properly weight both linkageandnode information.

We propose three different problem settings. In the first (base-
line) setting, we assume that the user provides a set of seed pages,
some potentially classified as good (i.e. relevant) and someas bad
(irrelevant) from which we want to extract the community. The
community extraction problem then becomes one of discovering
the pages that are most similar to the given good seed pages while
being most dissimilar to the given bad ones. In the second setting,
we additionally construct edge weights for the given web graph by
taking into account both the page content and the linkage-based
relations of pages. Content information is used as a factor in de-
termining edge weights as well as “conservatively” creating some
new edges based upon lexical similarity3. This approach has previ-
ously been shown to be effective for other web mining applications
like the classification of hyper-linked document objects [2] and the
ranking of forum pages [25]. Our goal here is to obtain a better un-
derstanding of the inherent community structure(s) being defined
by going beyond the simple linkage-based relations of pages. Our
view is that belonging to a community is a more refined concept
than just some topic similarity. The approach we develop lends it-
self to reshaping through the inflating and deflating of communities
(as advocated in [10]).

We are fortunate to have an extensive database for many com-
munities including some carefully determined (by human experts)
seed nodes. Hence, our first (base) and second settings reflect sit-

1http://www.brandimensions.com
2In our experimental data set of blogs and forums, we observedthat
the average number of hyperlinks per blog/forum was 2.1. This is
considerably less than what is reported for standard web pages.
3We think of lexical similarity as a simple approximation fortrue
semantic similarity. A better approximation can be obtained, for
example, by using distributional clustering of words as advocated
in Pereiraet al [20].



uations where there exists high confidence in the selection of seed
sets. In practice, developing a reasonable number of well-classified
seed pages for an arbitrary topic can be considerably expensive.
Moreover, the growth process from the original seed pages isnot
necessarily guaranteed to be productive, potentially requiring the
iterative application of the web community discovery algorithm
[9]. Therefore, in the third setting, in addition to having some seed
pages, we assume that the user provides a set of representative key-
words or terms that typify the desired community. We assign to
each page a score that represents the value of its being part of the
community. This is accomplished by using the given keywords
to compute the relevancy score of each page based upon a lexical
analysis of the page’s content. These relevancy scores, possibly
coupled with additional node scores derived from node importance
and influence (say as in [12]), and weighted linkage-based relations
among pages, can be then used to discover the community structure
from the web graph.

The framework we choose for capturing web community dis-
covery is the Random Field Ising Model (RFIM), widely used in
statistical physics for the study of ferromagnetic materials. While
it is convenient that the RFIM naturally encompasses both ofour
settings, it has other advantages as well. In particular, since one
can find the solution for the given RFIM within the max-flow/min-
cut framework (as demonstrated in [22]), we have a polynomial
time algorithm that we can apply. Moreover, by subsequentlyap-
plying a parametric flow approach to the model we can easily ex-
pand and contract the original extracted community. This notion
is useful, for there is no “right” definition of a community and one
sometimes has a practical target size to seek. We define a simple
intuitive ranking scheme from the flow values that are produced
during the application of the max-flow/min-cut algorithm. We con-
duct several experiments (both subjective and non-subjective) to
validate the feasibility of our approach. Our experiments support
the contention that appropriate link and node weighting andinte-
gration of various algorithmic approaches can greatly improve the
quality in community extraction. This significantly improved qual-
ity is obtained without substantial increase in algorithmic execution
cost and can be applied in a large and dynamically changing envi-
ronment. In fact, various ideas presented in this paper havebeen
integrated successfully into Brandimensions’ web community sys-
tem.

The need for efficiency in dealing with large scale graphs ne-
cessitates care in utilizing page content information. In particular,
we do not want to consider the web graph as a complete graph
with edge weights determined by some content similarity measure
between all pairs of pages. Instead, we use co-similarity toseed
pages as a form of implicit link, and then (following the rationale
for co-citation) create additional links between two sitesp andq

when bothp andq have sufficient similarity with the given seed
pages. We also use site-seed similarity to adjust edge weights of
existing links.

Our main contributions in this paper are listed as follows.

• We propose a RFIM-based framework for the extraction of
viral communities by exploiting both the page content and
the linkage-based relations of pages. This framework utilizes
network flow algorithms and has been efficiently employed
in a commercial application. The framework has additional
practical aspects; in particular, it allows us to easily expand
or contract the extracted community in a meaningful way.

• We propose a natural ranking scheme,FlowRank, for sites
in the extracted community by using the flow values derived
from the extraction process. Hence the ranking scheme is

obtained with negligible additional computation cost.

• Using a concept of seed invariance, we show that our method
is reasonably insensitive to the particular choice of seed nodes.

The rest of the paper is organized as follows. In Section 2, we
give an overview of previous work related to the mining of commu-
nities from network graphs. In Section 3, we describe the RFIM-
based models that we use for our blog community discovery algo-
rithms. In Section 4, we present our inflation/deflation algorithms.
In Section 5, we develop a novel way of ranking community mem-
bers as a pleasant side-effect of the community extraction process.
In Section 6, we present various experiments that we conducted to
validate our approach. In Section 7, we present our conclusions
including some possible extensions of our work.

2. RELATED WORK
Considerable effort has been expended upon deducing nascent

and established communities of users from the web. Most work
on the extraction of communities from a web graph is based on a
graph partitioning approach. In this context, the goal is toexamine
each node and to perform a binary classification such that theco-
hesiveness among nodes in the included set is high with respect to
the community being sought and low in the excluded set.

Flakeet al. [9] use link analysis to construct a graph and then ex-
tract the community from the graph by solving the maximum flow
problem. Clauset [7] identifies an approach using a greedy algo-
rithm that infers local community structure from a known portion
of a (possibly-larger) graph, as is appropriate for a crawler discov-
ering links. Andersen and Lang [1] explore the problem of incu-
bating seed sets into communities through random walks. Their
approach uses a method of finding graph cuts by examining the
sets determined by the random walk distribution at each stepof
the expansion process. The cuts are then improved by applying a
maximum flow calculation to reduce the community cut size with-
out materially impacting conductance. In our work, we treatthe
community discovery problem as one involving both connectivity
analysis and content analysis, and build upon the success ofusing
maximum flow to extract the final community.

Lin et al. [18] introduce the concept of blog communities as
distinct geometries with the characteristic that bloggersare both
producers and consumers of content. In this capacity, thereis an
important mutual awareness property that emerges in blog commu-
nities but is not present in typical web communities. This arises
both from the bi-directional nature of the knowledge withinblog
communities and from differences in the semantic nature of blog
hyperlinks. This is significant, because it emphasizes the sparse-
ness of explicit hyperlinks in blogs, and hence implicitly boosts the
importance of using other traits to define a complete community.

Hierarchical clustering has also been used as a mechanism for
discovering community structure. Such methods rank and remove
edges according to some measure of importance. Newman and
Girvan [19] demonstrated a community extraction approach based
upon centrality measures to define community boundaries.

Alongside this body of work in the web mining community, the
theoretical computer science community has considered themetric
labeling problem which seeks to find a classification that optimizes
a combinatorial function consisting of assignment costs based on
the individual choice of label for each object and separation costs
between pairs [15]. It is known that the Random Field Ising Model
presented in our paper is equivalent to the binary metric labeling
problem. While the binary case can be solved in polynomial time,
the problem becomes NP-hard when there are three or more labels.



There is a long history within the computer vision communityof
using the RFIM/metric labeling approach for the image segmenta-
tion problem (see [4] for a survey of various methods).

Part of our work relates to the ranking of pages within the ex-
tracted community. We focus on an approach whose results arema-
terially different from classical link-based ranking algorithms such
as PageRank [5] and HITS [13]. Whereas these Markov Chain-
based algorithms rank web pages according to their link popular-
ity (yielding hubs and authorities with HITS and a link-related
conferred influence with PageRank), our approach uses the net-
work flow model to define rank as a function of net residual flow
through a node. A highly-ranked node (with high net residualflow)
within our framework is not necessarily highly ranked by classical
link-based ranking algorithms andvice versa. Motivated by [24],
our flow-based model allows us to move beyond simple link-based
ranking. We believe that our proposed approach is an inexpensive
and natural way of merging lexical characteristics of web pages
(heavily focused on blog and forum pages) with hyperlink informa-
tion to produce a community-dependent ranking. As pointed out in
[17], in the blogosphere, communities emerge because of thesus-
tained action of contributors to blogs, not because of the informed
or random navigation of readers.

3. THE BASIC MODEL AND SCE ALGO-
RITHMS

We start this section with the description of the general Random
Field Ising Model (RFIM) in the context of web community dis-
covery. Using seed nodes, we will then proceed to use the RFIMto
develop our SCE (seeded community extraction) algorithms.

3.1 Random Field Ising Model (RFIM)
Let G = (V, E) be the graph representation of a subset of pages

from which we want to extract our community structure. The weight
function wij for undirected edgeeij represents the similarity be-
tween pagesi and j. Let hi be the function that determines the
likelihood ofi’s being a community member, andh̃i be the function
that determines the opposite. Theweb community discovery prob-
lem is equivalent to finding a setδ = {δi | i ∈ V, δi ∈ {1,−1}}
such that

H = −
1

2

X

(i,j)∈E

wijδiδj −
X

δi=1

hi −
X

δi=−1

h̃i (1)

is minimized. Note thatδ induces a binary node partition of graph
G, yielding the desired community and non-community split. Let
X = {i ∈ V | δi = 1} represent the derived community and let
X̃ = {i ∈ V | δi = −1} represent the derived non-community.
Using (say) the Preflow-Push algorithm [11], the above minimiza-
tion can be efficiently solved within the max-flow/min-cut frame-
work.

3.2 Using Seed Nodes
In a generic “small” application of RFIM, one might expect that

every nodei has an associated likelihoodhi and that all edge weights
wij are known or easily computable. However, we are considering
applications involving very large graphs where reliable likelihood
information about all nodes is not easily obtainable. Moreover, the
size of such graphs makes it infeasible to consider completegraphs
where all edge weights have been determined. However, our ap-
plications do permit a relatively small set of reliable seednodes
that we confidently know are in or not in the desired community.
In this environment, we now proceed to show how we will utilize

such seed information and how we will exploit semantic informa-
tion about the sites that constitute the nodes of the graph.

Let µ be the set ofgood seed pages(members that should be
included in the community) and let̃µ be the set ofbad seed pages
(members that should be excluded from the community). In the
absence of keywords, the node weights (hi and h̃i) are only used
to distinguish seed pages — both good and bad — from non-seed
pages. We then choose to represent all possible features (both
link-and content-based) that we consider for our web community
discovery by the use of edge weights (wij ). Our approach rein-
forces the similarity of pages based on semantic relations by ex-
ploiting edges from explicit hyperlinks and by selectivelycreating
new edges. We believe that this is a natural extension of previous
work that focuses on the information gleaned from links to rep-
resent similarity between pages. We letSCE(weighted)or more
simply SCE(W) denote this algorithm which constructs weighted
edges based on page semantics relative to our good seed pages. For
the purpose of evaluating the benefit of this semantic information,
we consider a base algorithmSCE that applies RFIM to the un-
weighted edge case (i.e.wi,j = 1, ∀(i, j) ∈ E). In what follows,
we first describe how to construct the node weights for SCE and
SCE(W). We then describe how additional implicit edges and edge
weights are constructed for SCE(W).

3.2.1 Node Weights for SCE and SCE(W)
We construct node weight values as follows:

hi =



K if i ∈ µ
0 Otherwise

h̃i =



K if i ∈ µ̃
0 Otherwise

whereK = maxi∈V

P

{j|wij 6=0} wij . It is proven in [4] that such
choice forK guarantees that all good seed pages are included in
the extracted web community while all bad seed pages are excluded
from it.

3.2.2 New Edges and Edge Weights for SCE(W)
Edge weights are used to reflect the similarity between two pages

in the web graph, taking into account both linkage and content rela-
tions between the pair. Semantic information is combined with link
information. In so doing, page content is used to reinforce the re-
lation of two pages if there is an explicit link between them,while
an implicit link (created from semantic relations) is generated if
there is no pre-existing edge. Note that this requires a complete
graph construction. In the next subsubsection, we propose an ap-
proach to avoid such a complete graph construction. To compute
the content-based similarity between two pages, we first parse each
page with respect to the extracted features to produce a canonical
vector representation of the page. The features that we consider are
page content, title, metadata (description and keywords),and an-
chor text, all of which have been used in other web mining applica-
tions (e.g. [8]). To construct the term frequency-inverse document
frequency (TF-IDF) vector representation of each page’s features,
we perform the following pre-processing: (1) For page content and
title, we first eliminate stop words and then further conflateremain-
ing words using the standard Porter Stemmer [21]. We reduce the
term space dimension even further by using document frequency
thresholding (DF) [26] to de-emphasize the impact of rare terms
unlikely to influence global performance. (2) For metadata and
anchor text, we perform similar pre-processing operationsexcept
that these features bypass stemming. We also massage the link list
by removing all nepotistic links. We employ the extended Jaccard
coefficient (Tanimoto similarity measure) for computing the simi-
larity between various string data objects, as this metric has been
shown to produce superior results for various clustering approaches



Algorithm 1 Similarity Approximation Algorithm

Computeσg(µ
g, p) for every pagep ∈ V using centroids.

for all p ∈ V do
if S(µg , pg) ≥ δ then

for all q ∈ V , q 6= p do
if S(µg, qg) ≥ δ then

σg(p, q) = S(µg , pg) · S(µg, qg)
end if

end for
end if

end for

[23]. The extended Jaccard coefficient for pagesp1 andp2 with re-
spect to a featureg (e.g. meta description) is defined as

σg(p1, p2) =
p

g
1 · pg

2

|pg
1|

2 + |pg
2 |

2 − p
g
1 · pg

2

wherep
g
i is the TF-IDF vector representation of featureg on page

i. Using this measure, we can compute the similarity between each
pair of pages i with respect to different features. Finally,we com-
bine all similarity values associated with each page as a weighted
linear sum to produce a single similarity value,wij , between each
pair of pagespi andpj :

wij =
X

gk∈Ω

σgk
(pi, pj) · φk + ωl

whereΩ refers to the features we consider,φk is a suitable weight
for eachgk ∈ Ω, andwl is a weight used to reinforce the final
similarity value if there is a hyperlink betweenpi andpj or 0 oth-
erwise. While it is possible to use more sophisticated techniques
for combining similarity measures, we leave this as a topic for fu-
ture research.

3.2.3 Constructing a Reasonably Sparse Graph
The edge construction approach just described requires thecon-

tent similarity computation of every pair of nodes in the dataset, and
consequently the possible construction of a complete graph(as it is
possible to have an implicit link for every pair). This is notfeasible
nor necessarily desirable if we have considerable confidence in the
quality of our seed nodes. Therefore, in order to exploit theuse of
seed nodes and to dramatically improve algorithmic efficiency, our
approach will be to only compute direct similarity between seeds
and other pages. We will then construct new edges between pages
p andq if and only if bothp andq are “similar enough” to good
seeds.

Our intuition is similar to that of the use of co-citation relations.
Namely, we can view the lexical similarity of a pagep to the good
seed nodes as a probability thatp is in the desired community. If
we think of pages as being constructed independently (which, in
general, is not the case) then the probability that bothp andq are in
the desired community becomes the product of these probabilities.
On the other hand, some amount of common usage of terminology
will provide a small measure of similarity even when none may
exist. Hence our approach is to infer a semantic relation (and hence
an implicit link) betweenp andq if and only if both pages exceed
a minimal amount of lexical similarity to good seed pages.

More precisely, letpg be the TF-IDF vector representation of
pagep with respect to content featureg. Let µg = {µg

1 , . . . , µ
g

|µ|
}

denote the set of TF-IDF vector representations of seeds inµ with
respect to content featureg. Then, letS(µg , pg) be the similarity
measure between the seeds and pagep. There are various options
for S(·, ·). For instance,S(µg, pg) can be defined as the average

distance between each element inµg andp, or as the minimum of
all distances between each element inµg andpg. We begin by first
constructing implicit links, weighted byS(µg , pg), betweenµg and
pagep. The similarityσs(p, q) for pairp andq is then constructed
assumingσg(p, q) ∝ S(µg , pg) · S(µg, qg) if both S(µg , pg) and
S(µg , qg) are sufficiently close to seed pages (i.e. bothS(µg , pg)
andS(µg , qg) are lower bounded by a constantδ). The algorithm
is summarized in Algorithm 1.

3.2.4 Speeding Up the Similarity Computations
Using our approach, we compute the similarity between every

pair of elements that is semantically related (with respectto the
seeds), and then apply these similarity values to constructthe edge
weights. This will still requireO(|V ||µ|) similarity computations.
However, to further reduce the complexity of the algorithm,we
can computeS(µg , pg) with respect to thecentroid of the given
good seeds. By constructing the centroid of seed pages,µg

c , as the
average of all good seeds inµg, we can simply takeσg(µ

g
c , p) as

S(µg , pg) for every pagep ∈ V .

3.3 Extending the Method to Exploit Keywords
The second problem setting that we consider is where the user

knows (or can divine) a set of representative keywords or terms for
the desired web community to augment the seed pages. Note that
this problem formulation might arise in a number of ways. For
example, the user might not be fully confident about the quality
of the provided seeds, or it might simply be too expensive to pro-
vide many. Our hypothesis is that we can improve the community
extraction process if the user can provide some keywords that are
representative of community members. For instance, the user inter-
ested in the Mustang car community might provide keywords such
asGT500andMustangto help disambiguate commonly-occurring
words in the intended community. In practice, it would be almost
impossible for the user to develop a complete set of representative
terms for the community.

For this particular setting, we construct node weights (hi) and
edge weights (wij ) as follows. For each potential candidate (ex-
cluding seeds) of the community, we assign a “relevancy” score
with respect to the set of keywords provided by the user. We then
associate the content-based features (page content, title, and meta-
data) of each page with its node weight, and we associate the link-
based features (including anchor text) between two pages with their
edge weight. As before, the semantic co-citation between pages is
used to reinforce or possibly create edge weights. The resulting al-
gorithm is calledSCE(weighted + keywords)or simplySCE(W+K).
In the following, we describe how to construct appropriate node and
edge weights.

3.3.1 Node Weights
Node weight construction for seed pages the same as for SCE

and SCE(W). For the rest of nodes, we assign the likelihood of
being part of the targeted community as follows. The page parsing
and pre-processing steps are similar to those described forSCE(W).
We represent the given keywords associated with the putative com-
munity to be mined as a vector normalized with the inverse doc-
ument frequency of the terms (with respect to the page feature)
obtained from the given corpora. Letq be such a vector representa-
tion. Givenq, we compute the relevancy score for featureg of page
j as

R(q, pg
j ) =

t
X

i=1

(qi · uij) (2)



whereuij =
1+ln(1+freqij)

ndl
× IDFi, freqij=the frequency of

the termi within the pagepj ’s featureg, IDFi=an estimate of
the inverse document frequency of the termi in the corpora (with
respect to featureg), andndl = (1 − σ) + σ ·

dl(pg)

avgdl
with dl(pg)

referring to the document length of pagepg, avgdl referring to
the average document length in the dataset, and0<σ<1 being a
constant. Finally, we combine relevancy scores for all features as a
weighted linear sum to produce a single relevancy score,R(pi) for
each pagepi. We translate the relevancy scores of pages intohj

values using the following relations:

hj = R(pj) h̃j =



α if R(pj) = 0
0 Otherwise

whereα is a weight, normally chosen to be small, to assign a con-
stant value likelihood of not being in the community to thosepages
that do not contain the given seed keywords. The proposed node
weight construction is almost identical to that of the content-based
relevancy scores used by the standard algorithmic web search en-
gines to retrieve web pages relevant to a given query.

3.3.2 Edge Weights
SCE(W+K) and SCE(W) have the same edge set. However, we

boost the edge weights of explicit links between pages depending
on the presence of the given keywords in the corresponding anchor
text. Letsl

ij be

s
l
ij =

(

1 + ǫ · R(ai→j , q) if i → j,¬(j → i)
1 + ǫ · (R(ai→j , q) + R(aj→i, q)) if i → j, j → i
0 Otherwise

wherei → j denotes a link fromi to j, andR(aj→i, q)) is the
relevancy score, computed using Eq. 2, for the anchor text associ-
ated with the linkj → i. Note that a similar approach was taken
by Chakrabartiet al. in [6]. Finally, we combine all similarity val-
ues (both link- and content-based) associated with each page as a
weighted linear sum to produce a single similarity value,wij , be-
tween each pair of pagespi andpj :

wij =
X

gk∈Ω

σgk
(pi, pj) · φk + ωl · s

l
ij

Once again, we can accelerate the construction of edge weights
using the centroid heuristic proposed in Section 3.3.

4. CHANGING THE SIZE OF EXTRACTED
COMMUNITY

While the previously-defined SCE algorithms produce a commu-
nity structure of the given web graph, it is possible that theresul-
tant community does not match what the user originally expected
since, in practice, the notion of optimal community is somewhat
subjective. For instance, for the discovery of the web community
associated with the Mustang car, one may or may not accept a page
discussing stores that sell accessories for Ford cars. Therefore, in
this section, rather than trying to fully automate the process of web
community discovery, we present the tools forinflating or deflat-
ing the already-discovered community structure. By applying our
tools, the user can choose a web community that is optimal ac-
cording to his personal view of what the community actually rep-
resents. In fact, multiple versions of the community are sometimes
appropriate, depending upon the desired size and level of cohesion
sought.

Given the binary partition(X, X̃) of G, let (Y, Ỹ ) be the infla-
tion of (X, X̃) if X ⊂ Y andỸ ⊂ X̃ such thatY ⊔ Ỹ = G. Sim-
ilarly, let (Z, Z̃) be the deflation of(X, X̃) if Z ⊂ X andX̃ ⊂ Z̃

Algorithm 2 Inflation Algorithm

INPUT: m, (X, X̃)
OUTPUT: Ω
λ = 0, Ω = ∅, ∀ v ∈ V , d(v) = 0
while (m > λ) do

for all (v,t) ∈ E do
f(v, λ + 1) = min{c(v,t) − λ, f(v, λ)}

end for
for all (s,v)∈ E with d(v) < n do

f(v, λ + 1) = max{c(v,t) + λ, f(s, λ)}
end for
Run Preflow(f,d)
for all v ∈ V do

d(v) = min{df (v, s) + n, df (v, t)}
end for
if (Xλ, X̃) is inflatedthen

Ω = Ω ∪ (Xλ, X̃)
end if
λ++

end while
ReturnΩ

such thatZ ⊔ Z̃ = G. In Galloet al. [10], a way of performing the
inflation or the deflation of the given(X, X̃) is provided using the
parametric networkframework. In a parametric network of thest-
graph, the arc capacities are functions of a real-valued parameterλ.
We denote the edge weight function bywλ and make the following
assumptions about edgeeij :

• wλ(esv) is a non-decreasing functionλ ∀v 6= t.

• wλ(evt) is a non-increasing functionλ ∀v 6= s.

• wλ(evw) is constant for allv 6= s, w 6= t

In [10], it is proven that there exists a parametric flow algorithm
that can efficiently produce partitions,(Xi, X̃i), i > 0, where
Xi ⊂ Xi+1 and X̃i+1 ⊂ X̃i holds as the value ofλ increases.
Therefore, we havelimα→∞ Xα = G andlimα→∞ X̃α = ∅. This
algorithm is particularly attractive as it allows computing a chain of
min-cuts at the cost of only a constant factor (relative to that of the
Preflow-Push algorithm) in its worst-case time bound. By adapt-
ing this parametric flow idea for our particular applicationdomain,
we develop a parametric flow algorithm that recursively computes
a chain of min cuts,(X1, X̃1), (X2, X̃2), · · · , (Xl, X̃l), such that
the constraintX1 ⊂ X2 ⊂ · · · ⊂ Xl is held when the value of
λ is incremented by 1 each time. We present the outline for our
Inflation algorithm in Algorithm 2. In our algorithm description,
f(v, λ) refers to the flow value at iterationλ, df (v, w) refers to
the distance from nodev to nodew in the current residual graph
with respect to flowf , andPreflow(f, d) refers to the Preflow
function used for the classical Preflow-Push algorithm [11]. The
corresponding deflation process easily follows. The parametric net-
work framework is particularly attractive due to its computational
efficiency, as it is able to incrementally produce a chain of either
inflated or deflated communities.

5. RANKING OF COMMUNITY MEMBERS
Even after we have extracted a community structure from the

given web graph, it is quite expensive to evaluate the true quality
of the community members so identified. We wish to understand,
for example, how visible or influential a page is in the context of
our extracted community. Furthermore, when we want to perform
a retrieval task over the community (e.g. retrieve all community
members that are relevant to a query), it is necessary to comeup



110

Flow−Out to non−communityFlow−Out to non−community

Flow−In from community Flow−Out to community Flow−In from community

Amount of flow kept = 10

70 100

Page p

80

100

110

Page p

Flow−In from non−community

Figure 1: An illustration of our FlowRank approach

with a ranking scheme to assess the importance of each retrieved
page and so order the query results. In this section, we present a
simple yet intuitive ranking algorithm which arises as an intrinsic
component of our community extraction process. We call our rank-
ing schemeFlowRank.

Since our SCE algorithms are based on the maximum flow-minimum
cut framework, the flowfij produced between two pagesi and
j can be viewed as the exchange of authority between the pages.
Moreover, if fij > fpq, then this implies thati and j are more
actively exchanging authority than arep andq. Tomlin follows a
similar line of thinking, and defines the sum of flow values into (or
out of) a page as the ranking value corresponding to a page’s traffic
[24]. We extend this concept and apply it to rank members in our
extracted community4. Therefore, the rank of a page that is part
of the community can be interpreted as thereputationof the page
within the community. The reputation is expressed as a combina-
tion of flows from/to other community members and flows from/to
non-community members.

Note that in anyst-graph, the condition,
X

i∈G

fip =
X

j∈G

fpj

holds for every nodep 6= s, t. Since the flow values come from
two different sources, the given condition can be rewrittenin terms
of flows from the community and flows from the non-community.

X

i∈X

fip +
X

i∈X̃

fip =
X

j∈X

fpj +
X

j∈X̃

fpj

Intuitively, the flow into pagep from other community members
can be seen as an endorsement of authority from these other com-
munity members. Therefore, if pagep has higher flow values into
it from other community members compared with pageq, then the
rank of pagep (with respect to the given community) should be
boosted more thanq. However, pagep also emits flows toward
other non-community members. Accordingly, if pagep has higher
flow values from it into other non-community members compared
with pageq, then the rank of pagep (with respect to the given com-
munity) should be penalized more thanq. In summary, the amount
of flows from other community members that are kept by nodes
should be taken as the ranking value for pagep (See Figure 1).
More formally, letFR(p) denote the rank of page with respect to
the given communityG = (X, X̃), which will be defined as

FR(p) =
X

i∈X

fip −
X

j∈X̃

fpj =
X

j∈X

fpj −
X

i∈X̃

fip

Since FlowRank emerges as a consequence of our extraction pro-
cess, it affords us with a natural way to incorporate additional fea-
4Our approach can easily be extended to rank non-community
members as well. Even with the ability to inflate or deflate a com-
munity, it is sometimes useful to be able to view the top candidates
that did not make the cut.

Intended Number of Number of Keywords Used
Community Good Seeds Bad Seeds

Camry 111 22 toyota, camry, car
automobile, auto, hybrid

Mustang 409 19 mustang, ford, GT500
car, automobile, auto

Ipod 124 23 ipod, shuffle, nano,
apple, itunes

Playstation 291 14 playstation, psp, game
playstation2, psx,ps2

Xbox 139 15 xbox, xbox360
microsoft, game

Table 1: Summary of intended communities and their respec-
tive terms and seeds

Average Degree
Original Graph 2.1147

Camry 3.6679
Playstation 5.8345
Mustang 12.5575

Xbox 14.9933
Ipod 11.3174

Table 2: Average degrees before and after similarity induced
links

tures such as content into the ranking scheme. Moreover, FlowRank
can be used for both query-dependent (computed online) and query-
independent (computed off-line) rankings with respect to acommu-
nity in the following sense: Since our SCE(W+K) benefits froma
having a set of representative keywords for the community (which
can be interpreted as a query string provided by the user), FlowRank
can easily be adapted to be the query-dependent ranking component
of a community-targeted search engine. When FlowRank is used
in the context of our first scenario with seed pages, on the other
hand, it can be used as the query-independent ranking component.
This is especially attractive as the additional cost associated with
the computation of FlowRank is negligible once the web commu-
nity extraction has been performed.

6. EXPERIMENTS
In this section, we describe the experiments that we conducted to

test our approach. The first set of experiments evaluates thequality
of the community extraction. The next experiment analyzes the per-
formance of FlowRank for ranking members in the community. We
then consider a particular stability issue, that of “seed invariance”.
The last experiment looks at the behavior of our inflation/deflation
algorithm.

6.1 Description of Dataset
To run our experiments, we took a random subset5 of approx-

imately 2.84 million blog and forum entries from a Brandimen-
sions database. Every day, around 1 million new entries fromdif-
ferent blog and forum sites covering a vast range of different in-
dustry sectors including automotive, entertainment, gaming, con-
sumer electronics, and pharmaceuticals, were collected and stored
in the database. We extracted 5 different communities, namely
camry , ipod , mustang , playstation andxbox , from the

5Our dataset was constructed during January,
2007. Experimental data can be found at
http://www.affsys.com/experiments/HT2008 .



SCE SCE(W) SCE(W+K)
Dataset comm. size precision time comm. size precision time comm. size precision time
Camry 64936 15% 9.26 sec 1371 57% 15.51 sec 712 60% 15.00 sec
Ipod 73681 17% 9.15 sec 3612 51% 51.68 sec 2052 77% 49.44 sec

Mustang 65388 13% 9.07 sec 3695 51% 57.21 sec 1379 83% 55.65 sec
PStation 75081 26% 8.54 sec 2255 64% 24.29 sec 1315 80% 22.23 sec

Xbox 93965 32% 9.52 sec 5056 50% 71.84 sec 1265 84% 69.26 sec
Average 74610.2 20.6% 9.108 sec 3197.8 54.6% 44.106 sec 1344.6 76.8% 42.316 sec

Table 3: Summary of Community Extraction

Mustang
http://www.mustangforums.com/m_1112404/tm.htm -Shelby GT500 Allocation
http://www.motorsportsblog.com/.../mustang_muscle.p hp -Motorsports Blog: MUSTANG MUSCLE FOR RENT
http://www.autoblog.nl/.../ford-mustang-concept-doo r-giugiaro -Mustang Concept Door Giugiaro
http://lovethemustang.blogspot.com/......./
picture-of-07-mustang-shelby-cobra.html

-I love the Mustang GT: Picture of the 07
Mustang Shelby Cobra GT500

http://forums.stangnet.com/showthread.php?t=450785 -DOHC conversion on a fox body..-
Mustang Forums at StangNet

http://forums.stangnet.com/showthread.php?t=625052 -2007 CorvetteZ06 Vs 2007 GT500-
Mustang Forums at StangNet

http://www.fordforums.com/showthread.php?t=103002 -US:Wild Mustangs: Tuner XMP builds Crazy
Horse II; Shelby’s ’other’ GT500

Ipod
http://forums.ipodlounge.com/showthread.php?p=10334 68#post1033468 -How to coil my cord? -iPod Forums at iLounge
http://forums.ipodlounge.com/showthread.php?t=24841 -top 15 most played songs on your ipod-

iPod Forums at iLounge
http://forums.techguy.org/.../425050-ipod-mini-not- charging-right.html -Ipod Mini not charging Right -Tech

Support Guy Forums
http://forums.ipodlounge.com/showthread.php?t=16170 7 -Hooking Up A 30G Video→ 2005 Nissan

Sentra-iPod Forums at iLounge
http://ipodnewsblog.blogspot..../ -New Dodge Caliber features aux jax
new-dodge-caliber-features-aux-jack.html and iPod holder
http://new4uu.blogspot.com/2006/08/best-freeware-ip od-utilities.html -Best freeware ipod utilities
http://freewaremac.blogspot.com/2006/03/ipod-hi-fi- review.html -FreewareMac: iPod Hi-Fi review

Table 4: Sample community members forMustang and Ipod (using SCE(W))

given dataset. The task of extracting these 5 communities was
challenging due to the random composition of the data and the
mixture of similar and diverse communities in the Brandimensions
database.

6.2 A Subjective Evaluation
In our first experiment, we ran the community discovery algo-

rithms described in Section 3. Table 1 summarizes the inputsthat
we used for each community discovery task. Seeds were used
for all SCE algorithms, while keywords were used only for the
SCE(W+K) algorithm. In Table 2, we report on the average de-
gree (ignoring direction) of the graphs constructed in SCE(W) and
SCE(W+K). Table 2 shows that the edge density was considerably
increased by incorporating egdes induced by lexical similarity.

We implemented and ran our SCE algorithms in C++ on a Linux-
Based machine with a 2.4 GHZ processor and 8 GB RAM. We used
HIPR6 to find max-flow/min-cut solutions. Some important param-
eter values that we employed for our experiments wereα = 0.8,
ǫ = 0.15 andδ = (2.5)· A_sim whereA_sim refers to the av-
erageS(µg, pg) value for each dataset7. The evaluation of ex-

6http://www.avglab.com/andrew/soft/hipr.tar
7Our choice of parameters is rather arbitrary and subjective. For
example, in settingα, we note0 ≤ R(pj) ≤ 1 and it seems that a
page not containing any of the keywords is very likely not to be in
the community.

tracted communities was done by three individuals from Brandi-
mensions, two of whom were professional categorizers who had
extensive experience evaluating this type of data. The third per-
son had no particular categorization skills, but was given the same
instructions regarding how to evaluate the result sets. We took
the average of the values reported by the categorizers to compute
the numbers reported herein. One hundred randomly-chosen pages
of each extracted community were shuffled and then evaluatedby
each categorizer. Without any prior knowledge about what algo-
rithm was used to produce the corresponding result, each catego-
rizer was asked to carefully classify each page as “relevant” if, in
their judgment, the page should be treated as a member of the cor-
responding viral community, or “non-relevant” otherwise.In Ta-
ble 3, we summarize results of each extraction task. In Table3,
comm. sizerefers to the size of the extracted community,quality
(i.e. precision) refers to the portion of members out of 100 samples
that were classified as relevant, andtime refers to the execution
time for the extraction. The first observation that we can make is
that our SCE(W) and SCE(W+K) algorithms employing semantic
analysis of content outperform the more purely link-based commu-
nity extraction method SCE. This supports our hypothesis that the
semantics between members of a community are important to con-
sider when capturing the essence of the community. We argue that
the link from a blog/forum entry to another blog/forum entrycan-
not always be translated into an endorsement of authority from the
source to the destination, as is the case with classical web pages.



Community: Camry
FlowRank PageRank
RC car, but its a Toyota Camry... Focaljet... 2007 Toyota Camry Official Configurations, Specs, and Photos
http://forums.focaljet.com/showthread.php?t=428466 http://autoblog.com/.../2007-toyota-camry-...-photo s
Toyota Camry-Our Latest Road Test Articles SUV & Truck Forum at Truck Trend Magazine
http://eamon.blogfa.com/post-32.aspx http://forums.trucktrend.com
Toyota Camry Blog Archive US: GM interiors get stylish KickingTires: Suburband Dad: 2007 Toyota Camry
http://toyotacamry.blogsautos.../us-gm-interiors-ge t-stylish http://blogs.cars.com/.../suburban_dad_20.html
Official: New Camry and Hybrid Camry-Ford Australia Forum Toyota Kentucky Plant about to build five-millionth Camry
http://www.fordaustraliaforums/.../showthread.php?t =15490 http://feeds.autoblog.com/.../ 3̃/22751781
86 Toyota Camry-broken timing belt Auto Lah-Auto Industry News: New Toyota Camry and Avanza
http://car-forums.com/talk/showthread.php?t=5733 http://autolah.../new-toyota-camry-and-avanza.htm

Community: Playstation
FlowRank PageRank
Free Sony Playstation 3 . . . Playstation 3 Console Pre-OrderUpdate GamersVue
http://free-playstation-....blogspot.com/...-pre-or der-update.html http://gamersvue.blogspot.com
Why the Nintendo Wii’s price is not excessive CamersVue Re/PreVue
http://www.ryansgoblog.com.../why-the-nintendo-wiis -price-is-not-excessive http://gamervuevues.blogspot.com
Free Sony Playstation 3 . . . List of Sony Playstation 3 Games GamersVue-Playstation
http://free-playstation.../list-of-sony-playstation -3-games.html http://gamersvueplaystation.blogspot.com
GamerC: Only bullies play the Playstation 2 GamersVue Q & A
http://gamerc.blogspot.com/2006/08/only-bullies-pla y-playstation-2.html http://gamersvueqanda.blogspot.com
The Console Wars: Square Enix Xbox 360 Update Generation Star Wars
http://theconsolewars.blogspot.com/2005/07/square-e nix-xbox-360-update.html http://johnhood.blogspot.com

Table 5: Top 5 ranked members by FlowRank and PageRank forCamry and PlayStation (using SCE(W+K))

For instance, we anecdotally observed that many bloggers link to
their parental blog site. Furthermore, the fact that a blogger has
left a comment in another blog frequently does not imply thatthey
are in the same viral community. To provide a more concrete view
of our extracted communities, we present some samples (chosen at
random) of community members (excluding seed pages) that are
produced for the SCE(W) algorithm in Table 4. These samples
again validate the quality of our extracted communities.

Note that the SCE(W) algorithm judges the inclusion or exclu-
sion of a page in the community based on its lexical similarity to
other members of the community. We found that many times this
was not sufficient as it could lead to the inclusion of some pages
(although not usually ones highly ranked by FlowRank) that are
not strongly related to the community topic. This is especially
true as our intended experimental communities are very targeted
ones. For instance, we have found that for both theMustang and
Camry communities, the SCE(W) algorithm returned a consider-
able number of pages related to the general automotive industry
but not specifically related toMustang or Camry. We observe a
similar phenomenon withIpod , Xbox andPlayStation . For
Ipod , various pages related to Ipod but not strongly related to the
Ipod community were retrieved as community members, while for
bothXbox andPlayStation , numerous game-related sites not
strongly onXbox or PlayStation were retrieved as community
members. Our algorithm sometimes failed to detect blog spam-
ming. On the other hand, the SCE(W+K) algorithm tends to min-
imize such effects as it performs a more refined content analysis
for each page to determine its eligibility. When SCE(W+K) does
misclassify a site, we attribute this failure to the particular choice
of keywords. For instance, several pages related to Ford butnot di-
rectly to Ford Mustang were retrieved as part ofMustang , due to
the inclusion of the keyword Ford as input. Another interesting ob-
servation was that several communities overlapped. For instance,
we observed that various discussions onXbox , Playstation
and Revolution 8 were found to be mixed together across the
Xbox andPlaystation communities. In particular, we found
numerous blog entries from these communities comparing some of

8A game console developed by Nintendo

the three game consoles. Consequently, this can be considered a
failure of any extraction algorithm since the strongest discussion
topic within the corresponding blog/forum entry does not necessar-
ily match the intended community9.

6.3 Ranking Results
In this section, we study the results of our ranking produced

by FlowRank. We compute the ranking with respect to each web
community extraction approach. We also devise a simple ranking
scheme based on PageRank and compute the ranking for each web
community approach for the sake of comparison. Specifically, we
computed the PageRank values for all nodes in our dataset. Using
their respective PageRank values, we further order all members of
each extracted community. For brevity, we report only on there-
sults of the top 5 members from theCamry andPlayStation
communities produced using SCE(W+K) in Table 5. PageRank-
based rankings and FlowRank-based rankings are considerably dif-
ferent in nature. These top-ranked members again indicate the
quality of the extracted web communities produced by SCE(W+K)
since all pages returned by FlowRank are authoritative pages in
their corresponding community. Furthermore, these examples sug-
gest the superiority of our FlowRank algorithm for the particu-
lar application of ranking community members. For instance, for
PlayStation , most of the top-ranked pages by PageRank are
not strong authoritative community members (in fact, most of them
are non-community members) while forCamry, one of the top-
ranked pages by PageRank (http://forums.trucktrend.com )
is not strongly related toCamry. This is due to the fact that PageR-
ank tends to prefer pages at or close to the root of a site, likely be-
cause of the influence conferred upon such pages by the link struc-
ture of the web. On the other hand, FlowRank tends to consider
semantic tightness of each page to the extracted community to pro-
duce its ranking, thereby resulting in a better ranking quality.

9Certainly one can subjectively argue that these types of pages
should be classified as community members as well, but this was
not the choice made by our categorizers who were relatively strict
in evaluating our extracted communities.
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Figure 3: Change in Community Size (Xbox)

6.4 Inflation/Deflation Aspects
To understand the dynamics of our extracted communities, we

ran the parametric flow algorithm over these communities. Due
to space limitations, we present only the results forCamry (Fig-
ure 2),Xbox (Figure 3) andPlayStation (Figure 4). For each
community, we varied the value ofλ defined in Section 4, and
we grew each community starting from a considerably small size
(say only 10 community members) recording the community size
change (with respect to the original community size) for each it-
eration. In all figures, the X-axis corresponds to the range of λ
values, while the Y-axis corresponds to the change of community
size with respect to the original community size. Observe that
the rate of increase in community size slows down after a certain
number of iterations, resulting in a stable structure. The near step-
function response arises from a bottleneck in a community cluster
boundary that the parametric flow algorithm abruptly overcomes.
This boundary indicates a clear transition point across which few
connections reach further out into the graph compared with those
reaching in. These sharp transitions seem to reflect naturallevels of
community cohesion and we are currently investigating how better
to understand (both experimentally and analytically) the nature of
such transitions.

6.5 Seed Invariance
Intuitively, we would like to understand how sensitive our results

are to the choice of the seed set and more particularly the setof
good seeds. There are various ways to study this concept and in
this section we briefly describe one experiment in this regard.

Let ALG be any of the SCE algorithms. We letCALG denote the
community extracted by ALG when applied to some given target
community with sayg good seed nodes. For0 < f ≤ 1, we let
C

ρ(f)
ALG denote the community extracted when we replace a random

subset ofs = f · g initial good seeds by a random subset ofCALG

of sizes. Similarly we letCτ(f)
ALG denote the extracted community

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000  2500  3000

C
om

m
un

ity
 C

ha
ng

e 
(p

er
ce

nt
)

Iteration

PlayStation

Figure 4: Change in Community Size (PlayStation)

when the initial good seed nodes are replaced by thes top-ranked
(by FlowRank) members ofCALG. In Table 6 we report on the case
f = 1 where all initial good seeds are removed and for notational
simplicity we useCρ

ALG and omit thef and useCρ
ALG andCτ

ALG.
Using 10 random trials, we computed the Jaccard similarity mea-

sure betweenCALG andC
ρ
ALG, and betweenCALG andCτ

ALG.
One can think of this either as a test of seed invariance or as a
non-subjective test of the performance of the algorithm. Weob-
serve that all of the algorithms appear to be quite seed invariant.
Moreover, in all cases, the similarity measure improves when using
the top-ranked extracted sites rather than random extracted sites.
We view this as evidence that FlowRank is providing an informa-
tive ranking. However, the results forSCE seem at first counter-
intuitive. Given the subjective evaluation for the qualityof the ex-
tracted communities, one might expectSCE(W + K) to be more
seed invariant thanSCE(W ) which in turn would be more invari-
ant thanSCE. To explain this seemingly counter-intuitive behav-
ior, we note that an algorithm whose quality (i.e. precision) is only
(as for CAMRY) 15% is still able to insert (an expected).15g good
community members as replacements for the initial good seeds. If
the other 85% of the misclassified nodes are not having a coher-
ent impact on the results, then an algorithm like SCE can still be
very seed invariant by consistently returning essentiallythe same
(perhaps relatively low precision) community. Looking at the in-
duced degree structure10 for the SCE-extracted communities shows
that the SCE communities are quite dense and hence just having a
few seed nodes within these tightly linked induced subgraphs will
result in the same extracted community. The test we have devised
will return strong similarity values if either the algorithm is insen-
sitive to a large amount of noise in the seed set or if the community
extraction results were very good. With its minimal dependence on
seeds and the dense structure of the resulting communities,SCE
exhibits better “seed invariance”. The different results for SCE(W)
and SCE(W+K) are due to their reliance on seeds without having
the same quality of results.

7. CONCLUSION
We have explored the benefit of page semantics in the discov-

ery of viral communities from a given graph. Based on the RFIM
model, we proposed two different problem settings and showed
how the community mined from a web graph could be fine-tuned
through the use of parametric flow. We also proposed a way of
ranking the community members from the flows produced as an
outcome of the community extraction process. Our preliminary
experiments indicate that the quality of extracted blog communi-
ties using our more semantic approach is better than that obtained

10The average degree for the SCE-extracted communities varied
from 25.8 to 33.9.



C
ρ
ALG

Algorithm Camry Mustang Ipod Playstation Xbox Final
SCE 0.874532873 0.697045371 0.799871536 0.882362604 0.706890864 0.79214065

SCE(W) 0.366153072 0.482200014 0.497170059 0.577346068 0.669444444 0.518462731
SCE(W+K) 0.765443151 0.482469911 0.827127952 0.804461942 0.667749671 0.709450526

Cτ
ALG

SCE 0.992546507 0.990974607 0.979552823 0.976225676 0.712733465 0.930406616
SCE(W) 0.992205438 0.636585429 0.993286855 0.984068612 0.802921811 0.881813629

SCE(W+K) 0.818263205 0.717425432 0.862932455 0.843996063 0.661406359 0.780804703

Table 6: Seed Invariance Results

through mainly pure link-based approaches. One very promising
future direction follows the insightful temporal analysiswork of
Kleinberg [14]. We can apply time sequence analysis to blogsor
postings within a blog to obtain further ranking information of sites
within a discovered community. We are in the process of using
such time sequence analysis to discover additional implicit links
between sites as well as to reinforce the weights of existinglinks
so as to improve the community extraction process and study its dy-
namic behavior (e.g. how fast communities evolve, and how often
new influential sites emerge). We are also studying how FlowRank
compares with the work of Kempe, Kleinberg and Tardos [12] for
discovering influential sites within a community. We believe that
community similarity tests as suggested in Section 6.5 can be used
to help adaptively refine the selection of keywords and seed nodes.
Finally, we are considering alternatives to our seed invariance mea-
sure so as to provide improved non-subjective evidence for the
quality of an extraction algorithm and for evaluating the quality
of community ranking functions.
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