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BOUNDS ON UNIVERSAL SEQUENCES*

AMOTZ BAR-NOYt, ALLAN BORODINt, MAURICIO KARCHMERt, NATHAN LINIAL?,
AND MICHAEL WERMANt

Abstract. Universal sequences for graphs, a concept introduced by Aleliunas [M.Sc. thesis, University
of Toronto, Toronto, Ontario, Canada, January 1978] and Aleliunas et al. [Proc. 20th Annual Symposium
on Foundation of Computer Science, 1979, pp. 218-223] are studied. By letting U(d, n) denote the minimum
length of a universal sequence for d-regular undirected graphs with n nodes, the latter paper has proved
the upper bound U(d, n)= O(d2r log n) using a probabilistic argument. Here a lower bound of U(2, n)-
(n log n) is proved from which U(d, n)-l’I(n log n) for all d is deduced. Also, for complete graphs
U(n-1, n)=gl(n log n/log log n). An explicit construction of universal sequences for cycles (d 2) of
length r/O(lgn) is given.
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1. Introduction. In addition to their obvious computational interest, graph con-
nectivity problems play a central role in complexity theory. Let STCON (respectively,
USTCON) denote the problem of determining if a directed (respectively, undirected)
graph has a path from a given source node s to a given goal node t. As usual, let
NSPACE(S) (respectively, DSPACE (S) and RSPACE (S)) denote those sets accepted
in nondeterministic (respectively, deterministic and random) space S. Savitch’s [7]
fundamental result that NSPACE (S) DSPACE (S2) is based on the fact that STCON
is complete for NSPACE (log n) with respect to log-space reducibility. (In fact, it is
complete with respect to log-depth=NC reducibility.) Similarly, Lewis and
Papadimitriou [6] show that USTCON is complete for symmetric log-space bounded
computation.

It is easy to see that STCON_ NC2 DSPACE (log2 n). However, despite con-
siderable attention to this problem, there has been no improvement to this upper
bound. In one of the few significant attempts to give evidence that STCON is not
contained in DSPACE (log n), Cook and Rackoff [4] introduce the JAG (Jumping
Automata for Graphs) model and show that within this restricted model STCON
requires space (log n/log log n).

Although USTCON appears to be a computationally easier problem (and indeed
Cook and Rackoff [4] cannot prove such a strong result for JAGs operating on
undirected graphs), the best known deterministic algorithms for USTCON also apply
to STCON. However, when we consider random space bounded computations, the
situation seems to be different, since Aleliunas et al. [2] show that USTCON is in
RSPACE (log n).

Motivated by the Cook and Rackoff [4] paper, Aleliunas 1] (for the special case
of degree two) and then Aleliunas et al. [2] introduce the concept of a "universal
sequence" for graphs. Let G(d, n) denote the class of all connected d-regular graphs
with n nodes and with labeled edges. Think of every edge as a pair of directed edges.
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Every directed edge is labeled with a label from {0,..., d-1} in such a way that
edges going out from the same vertex are labeled differently. (It is easy to verify that
for 2_<-d <_-n- 1, G(d, n) is not empty if and only if dn is even, see Lovfisz [5, Ex.
5.2.] A sequence s sis2 sr in {0,. ., d- 1}* is interpreted as a sequence of edge
traversal commands. Thus a sequence s and a node Uo on a graph G in G(d, n) define
a unique sequence of nodes Uo, Ul,’", Ur in G with (ui-1, ui) labeled by s for

1,. ., r. We say that s visits the set of nodes {Uo," ", ur}. A sequence s covers a
graph G in G(d, n) if the sequence visits every node in G independent of the starting
node. A sequence s is universal for G(d, n) if s covers every G in G(d, n). Finally,
we let U(d, n) denote the minimal length of a universal sequence for G(d, n). We will
see in 5 that the restriction to regular graphs serves some aesthetic purposes.

Aleliunas et al. [2] show that the expected time for a random walk to visit all
nodes of G=(V, E) is at most 21E] ]V[. (No such result holds for directed graphs.)
Hence the result that USTCON is in RSPACE (log n). They then use this result to
assert the existence of a (nonuniform) universal sequence s(d, n) for G(d, n). The
length of s(d, n) is asymptotically bounded by

dn log (IG(d, n)l)= O(d2n log n).

In fact, they argue that most sequences of this length must be universal. Clearly, such
universal sequences give a nonuniform method to test connectivity (using only two
pebbles in the JAG model) within O(log n) space.

There are a number of reasons to study U(d, n) further. If we could obtain a

"sufficiently" explicit construction of polynomial length, then USTCON would be in
DSPACE (log n). (We need to be able to generate any element of the sequence in
DSPACE (log n).) In order to beat the previously mentioned log2 n deterministic space
bound, it suffices to show, by an explicit construction, that U(3, n)= r/(lgn). In this
regard, we should also note that at present there is no deterministic sublinear space
algorithm that runs in polynomial time. Second, for the purpose of time-space tradeoffs,
it is important to determine the asymptotic behavior of U(d, n) by any type of
construction since lower bound techniques tend to apply to nonuniform models. In
this regard an U(d, n)=O(dn) or even O(n2) lower bound would have serious
implications for any attempt at time-space lower bounds. In addition to complexity
theory, universal sequences may play a role in the study of distributed systems (e.g.,
anonymous rings). And finally, of course, we think that the study of U(d, n) raises a
number of interesting combinatorial problems.

In 2 and 3 we consider the special case of d 2, the subject of Aleliunas [1].
First we give an explicit construction of length n(lg n. Then we prove a nonlinear
lower bound, U(2, n)= l)(n log n). Section 4 considers the other extreme, namely the
case of complete graphs (d n-1). Here we observe that the probabilistic bound
yields an upper bound of n31og n. We are able to prove that U(n-l,n)=
f(n log2 n/log log n). In order to establish this lower bound, we view the problem as
a game consisting of a graph generator (perhaps thought of as a taxi driver) versus a

very powerful sequence generator (thought of as a passenger) where the passenger
wants to see all n sites in as little time as possible and the driver would like to prolong
the tour as long as possible. In 5 we discuss the implication of the previous results
for arbitrary d.

2. An explicit construction for the ease of d = 2. There is only one regular connected
graph of degree two, namely a cycle. In order to study U(2, n), there is an equivalent
way to formulate the problem as first discussed by Aleliunas in [1]. Instead of
considering different labelings of the n-cycle, we consider the infinite line and label
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each integer coordinate (= node) with a "0" or "1" with the interpretation that at a
node labeled "b" the edge to the right is labeled "b" and the edge to the left is labeled
"1 b." We now interpret U(2, n) as the smallest length of a sequence that is guaranteed
to visit at least n nodes on any labeled line.

From the probabilistic constructions of Aleliunas [1] and Aleliunas et al. [2] we
know that U(2, n)= O(n3). In fact, Aleliunas [1] conjectured U(2, n) to be exactly
(). Exhaustive tests confirm U(2, n)= () for n < 8 but we are aware of at least one
claim (again by testing) that U(2, n)<() for n=9.

To gain insight for both a lower bound and an explicit construction, we first
consider a special class of labeled lines. Let ODD denote the class of labeled lines of
the form. 0 i’ i20i31 i4 , where all/j are odd. Let L(n) be the class of all sequences
that cover at least n nodes on any line in ODD and let U(n) denote the minimal
length of any sequence in L(n). Without loss of generality, we shall assume that n is
even in order to avoid ceilings and floors. Let n’= n + so that n’ is odd.

LEMMA 1. The sequence w, (0n’ln’) n/2+) has the following properties:
(A) If begun on the leftmost node of a block labeled with zeros (respectively, on the

rightmost node of a block labeled with ones) w, will move right (respectively, left) until
encountering the first block of nodes with an even number of zeros or ones wherein it will
terminate on the leftmost zero or rightmost one ofthis block. Ifno such block is encountered
within thefirst n nodes visited, the sequence will be exhausted having visited at least n nodes.

(B) If not started on a leftmost zero or rightmost one the directional behavior of
on the line will depend on the parity of the initial location within the block on which the
sequence is started. In any case the sequence will either visit n nodes or will terminate on
the leftmost zero or rightmost one of some block of even length. In particular, w, L( n
and U(n) <-_ (n + 1)2.

LEMMA 2. The sequence v, defined reeursively by v =01 and v, Vn/z(On’ln’)Vn/2
is in L(n) so that U(n)= O(n log n).

We leave it to the reader to verify both lemmas. Let us remark that Theorem 2 of
the next section shows that Lemma 2 is asymptotically optimal. We use the w, sequences
repeatedly to explicitly construct a universal sequence of length n o(Iog ). We chose to
use the w, sequences for ODD rather than the shorter O(n log n) sequences v since
its properties are easier to state and since the shorter length v, would not significantly
change the length of the universal sequence of Theorem 1.

THEOREM 1. There is a recursively defined sequence s(n) that is universalfor G(2, n)
with length Is(n)l n lgn). Furthermore, any bit of s(n) can be computed in time
bounded by a polynomial in n.

Proof By induction on n we construct s(n). The basis of the induction is immedi-
ate. Let wn be as in Lemma and let s(n/2)=sls2...s,. Then, s(n)=
w,sl w,s2 w,s,w,. Consider any labeled line and mark the leftmost zero and rightmost
one in every even-length block. Note that in a segment of length n at most n/2 nodes
have been marked. Now after the first w,, s(n) has either visited n nodes or has
positioned itself on a marked node. Once on a marked node, a sequence symbol si of
s(n/2) will move either left or right so that the next w, (by Lemma 1) will continue
to move in that direction until it is stopped at the next marked node. In this way we
are guaranteed to visit at least n nodes with some wn or at least n/2 marked nodes
and all the nodes within the blocks containing those marked nodes. In either case, at
least n nodes have been visited.

To bound the length we see that [s(n)[<-(n+ 1)2]s(n/2)[ from which the length
bound easily follows. It is also easy to see how to compute any particular bit of s(n)
in polynomial time.
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3. A lower bound for the case of d =2. The aim of this section is to prove an
(n log n) lower bound for U(2, n). We shall pick a small subset of ODD and show
that, just to traverse this subset, a sequence must be "long."

We begin by introducing some notation. Let S be the set of infinite lines of the
form: 0la0al a" ", a odd. Let Sn be the set of segments of length n of lines in S
with starting point a leftmost zero. We show that a sequence that traverses every line
in Sn must be (n log n) long. We say that a sequence a is good for a segment w if,
when started at the left of w, a eventually reaches the right of w. For a string w {0, 1}*
and x {0, 1} let :xw be the number of occurrences of x in w.

We illustrate the idea of our proof by considering some very simple sequences.
So let a cover every line in S where is of the form Or,lr,... 0rk lrk with all ri odd.
Assume, moreover, that a covers at least n/2 locations to the right of the starting point.

FACT 1. O r‘ lr’ is good for 0al if and only if ri _-> a and ri is odd.
Define aj to be the biggest odd number less than or equal to n/(2j). Fact 1 implies

that at least j ri’s must be bigger than a so that

I1 E aj E -2 =a(n log n).
j=

We now give a lower bound for arbitrary a’s. Consider the runs of a sequence
and the sequence la on a line from S. Since we start from a leftmost zero, these runs
are symmetric with respect to the starting point. For a sequence fi, let R, (L) be the
set of indices j such that/3 covers at least n/2 nodes to the right (left) of the starting
point when run on the line 0 0 a. . Either Yj Ra aj "(n log n) or Ej L aj
f(n log n). Since R L and the lengths of a and a differ only by one we assume,
without loss of generality, that YjR aj 12(n log n). We deal only with the runs of
on lines 0 1 a;0. . , where j 6 R.

Fact 1 motivates the following lemma.
LEMMA 3. Let a’ be good for 0 , then a’ //1 0 bl2 l’13, where

(C1) +off o# ,fl a, and ,fl # ofl a;
(C2) Every nonempty prefix and suffix of() has more zeros (ones) than ones (zeros).

Proof (C1) is necessary in order to pass the block of zeros or ones. (C2) can be
obtained by extending u to the right and u2 to the left so as to make/3. minimal, and
extending u2 to the right and u3 to the left to make fio minimal. Note that #oU2
:: 1U2o [’-]

We denote/3 o u2/3 by/3 and call it an a-block./3 o and/3 are called half blocks
LEMMA 4. Let a’ be good for (oala)m; then a’ contains tn disjoint a-blocks.
We say that two half blocks have a trivial intersection if they are either disjoint

or one is contained in the other.
LEMMA 5. Let fl,, be an ai-block and aj-block respectively’, then floa, and

have a trivial intersection.

Proof Follows by the prefix and suffix properties of/3 0 and 1aj

We say that a sequence {flx.}=1,..., xj {0, 1} of half blocks is nested if we have
the following.

(i) Every two half blocks have a trivial intersection;
(ii) /3 .; /3 implies that there exists an j, k such that/3 _/3,_ fl, 2 being

the complement of x.
LEMMA 6. Let a cover every line in S. Then a contains a nested sequence

1,. ., n/2 ofhalf blocks where, again, a is the biggest odd number less than or equal
to n/(2j).
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Proof The proof is by induction on i. Let Ba, be a set of disjoint ai-blocks in
By Lemma 4 and the fact that iai <= n, IBa,[ >- i. When l, pick any half block of any
fla,. Assume the lemma is true for i-1. Let B {/3i}..=,...,i_ be the nested sequence
constructed up to step i- 1. We will show how to find a half block of B, that preserves
the nestedness of B.

For each /3a, Ba; define

in(fli {j[flX f-] flX : BX
ai aj

A
ai aj-"

Intuitively, In() is the set of half blocks that prevent , Dora being properly nested.
CA 1. {n(a,)}, B, are,pairwise disjoint. To see this, suppose that

j In() In(,) for some and and without loss of generality assume that
appears in to the left of Furthermore, assume that x is of type O, i.e. x O.

Then, either flo fl, or ifo fl , then fl fl0 (because of suffix and prefixai ai aj

properties of the blocks). In either case, we get j In(). If x l, a similar argument
shows that j In (fl).

CLAIM 2. There exists a , such that In(,)=. This is true by Claim 1 and
the fact that there are arblocks in B.

Choose a fl, as in Claim 2 and consider a minimal (in the inclusion sense)
such that ’ fl. . If no such ’ exists then , is disjoint to every X so that

2. xj
ai

we can pick any half block of t. Otherwise, fla’, fl and letting x ff we have that

}=1,...,- U {d,} is properly nested.
LEMMA 7. Let B= {fl.}=l,...,i be a nested sequence. en

j=l j=l

Proof Without loss of generality, assume that the half blocks in B are ordered
so that is not contained in fl for j 1,..., i-1. We proceed by induction on i.

i--1 xi i--1The case 1 is obvious. Assume the lemma is true for 1 so that ]w= a = a.By (ii) in the definition of nested sequences, we have that the maximal . % i,,., which are maximalare of opposite type, i.e., x g. Let be the union of the
i--1half blocks contained in fl d,. For d, to have (C1) we need [d,-= [ ag so that

X
Tnog 2. A universal sequence for S, satisfies [a[ =(n log n).
Proof The proof follows immediately from Lemmas 6 and 7.

4. The complete graph. There is only one graph in G(n 1, n), namely Kn. While
connectivity is no longer an issue, the question of U(n-1, n) is still surprisingly
difficult and interesting.

The probabilistic construction of Aleliunas et al. [2] shows that U(n-1, n)-
O(n log n) as the upper bound for any d. In fact, a more specific probabilistic analysis
of random walks in Kn shows that the expected length to visit all nodes is O(n log n).
From this follows U(n 1, n) O(n log2 n).

For the lower bound, we consider the following two-player game, played between
D (the driver) and P (the passenger). There is a fixed integer n and the game is with
a taxi moving on a graph in G(d, n). The game starts at any node of the graph. At
each step, P can either direct the taxi along a directed edge that has already been
traversed before, or he/she may let D choose any untraversed edge. In particular, if
the present node is being visited for the first time, then D moves. The game ends at
the first time when all nodes of the graph have been visited. P pays D the number of
steps the game took.
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We denote by DP(d, n) the value of this game. Our result is Theorem 3.
THEOREM 3.

( n lg2 n )nZ-3n+3>-DP(n-l’n)>-
loglogn

COROLLARY 1.

n log2 n ) [3U(n-l,n)>-f
log logn

Proof of Theorem 3. The upper bound is obvious. P plays a strategy according to
which he lets D play all the time. This insures that no edge is traversed twice in the
same direction, so when (n- 1)(n-2) + steps elapse all nodes must be visited.

To prove the lower bound, we consider a strategy for D that is defined inductively.
At any time T in the game there is a digraph Br on V(Kn) consisting of all directed
edges traversed thus far. The induction hypothesis follows:

(,) D has a strategy that causes the game to last at least T(n)=
(n log n)/(30 log log n) steps in such a way that all indegrees in Br do not
exceed log n.

We proceed to show how the strategy is carried over from n to 2n. In the first
stage D applies (,) to the first n nodes, thus he stays there at least T(n)=
(n log n)/(30 log log n) steps, with no indegree exceeding log2 n. At the first time after
T(n) at which D gets the right to move, he moves to node n + 1. Now for another
T(n) steps he stays at nodes {n+ 1,..., 2n} according to (,). After these two stages,
which take more than 2 T(n) steps, no indegree exceeds log2 n and node 2n + is still
isolated. Now begins a merging stage. To carry out the induction we show that for
(n log n)/(5log log n) steps D can proceed in the game with no indegree exceeding
logZ(2n). Since T(2n)-2T(n) <-_ (n log n)/(51og log n) the induction hypothesis is
maintained. We claim the following easy lemma.

LEMMA 8. Let G be a digraph, S c_ V( G), and let d >= 3. be the largest indegree in
G. Then there are at least VI/2 nodes u for which all paths from u to S have length at

least (log VI- log Isl- 1)/log d.
Now let us consider the set S of all nodes of largest outdegree. Whenever D is

given the move, he chooses to go to a node whose indegree is strictly less than log (2n)
and whose distance in Br from S is as large as possible. Note that the average indegree
is at most T(2n)/(2n)=(logZ(2n))/(3Ologlog(2n)) so that all but 2n/(301og-
log (2n)) o(n) nodes have indegree strictly less than log (2n). Thus during the whole
process there are always many nodes with small indegree. In our case, all indegrees
are at most log (2n) and it follows by Lemma 8 that for every node u and for at least
half of the nodes v, the distance from v to u is at least log n/(5 log log n). Therefore,
if ISI then with this strategy the game proceeds at least log n/(5 log log n) steps
more before the maximum outdegree increases. Ignoring momentarily the possibility
that ISI is larger, no degree reaches 2n before (n log n)/(5 log log n) steps. As long as
the maximum outdegree is less then 2n the missing node will not be reached and the
induction hypothesis is established since T(2n)-2T(n) =< (n log n)/(5 log log n).

To complete the proof for arbitrary ]SI--> 1, consider the number of steps needed
to increase the outdegree by two. We investigate a segment of the game during which
the largest outdegree in Br increases from rn to rn + 2. Let us concentrate on that step
where for the first time some outdegree reaches rn + 2 and let us say that at this point
the number of nodes of degree rn + is k. If k-_> (2 log n)/(5 log log n) then our claim
about the number of steps remains valid since the increase of the outdegree of any



274 BAR-NOY, BORODIN, KARCHMER, LINIAL, AND WERMAN

node requires at least one move (of D). On the other hand, if k < (2 log n)/(5 log log n)
then by Lemma 8 at the beginning of the stage there is a node whose distance from
all k nodes of outdegree rn + 1 is at least log (n/k)/log (log2 n) > (2 log n)/(5 log log n)
and, all of our previous arguments carry through. Thus DP(n)>= T(n)=
(n log2 n)/(30 log log n) and the proof is complete.

5. Bounds for arbitrary graphs. Given the U(2, n)=O(n log n) result, it is a little
tedious but not difficult to derive the same (or improved as a function of n) lower
bounds for all degrees. We again note that G(d, n) is nonempty for 2-< d =< n- 1 if
and only if dn is even, so that we always assume that dn is even.

Aleliunas [1] has shown that U(2, n) <= U(d, (d 1)n). We modify his construction
to obtain Lemma 9.

LEMMA 9. U(2, n)<=(2/d)U(d, (d-1)n).
Proof We show how to derive a universal sequence s’ for G(2, n) from a universal

sequence s for G(d, (d 1)n). For any a, b {0, 1,. , d 1} let s(a, b) be the sequence
obtained from s by replacing each a by 0, each b by 1 and deleting all other symbols.
Now let a, b be the least frequently occurring symbols in s and define s’-- s(a, b) so
that Is’l<-_(2/d)lsl. We will show that s’ is universal for G(2, n).

Let C be any labeled n-cycle. We want to construct a labeled graph Gc in
G(d, (d- 1)n) whose traversal by s will guarantee that s’ covers C. Let Kd_--(V,Ei i)
for0 <= <= n- be n copies of the complete graph Kd_ Say Vi= {v il,..., Vd-1}.i Then
GC U Vi, U E [’-j D), where

)m n))10 =< =< n 1, _--<j _--< d 1}.D= {(vj, vJ i+
correspond to nodes in C while the edges in D correspond toIntuitively, the Kd_

the edges in C. We label the edges in E by any labeling from {0, 1,. ., d- 1}\{a, b}.
We label the edges in D in a way which corresponds exactly to the labeling in C. That

i+1is, if i, i+ 1) has label "0" (respectively, "1 in C then for all j, (vj, v has label
i--1a (respectively, b) and (v, v has label b (respectively, a). Clearly Gc is in

G(d, (d- 1)n). Now it should be clear that as s traverses the graph Gc, it is precisely
the labels {a, b} that cause a traversal between neighboring (in the cycle) copies of
Ka-1. Thus s covers G implies s’ covers C.

LEMMA 10. U(d, n)<-(d/d)U(d2, (d2-dl+ 1)n) for all d<-_d2.
Proof This is an immediate generalization of the construction in Lemma 9.
LEMMA 11. U(d, n) =l)(n log n-n log d).
Proof If n was divisible by d-1, this lemma would follow immediately from

Lemma 9 and Theorem 2. For arbitrary sufficiently large n q(d- 1)+ r we proceed
as follows. If r 0 then we would follow the construction of Lemma 9 and form a
cycle" with q=n/(d-1) copies of Kd_ 1. If r>0 we form q-3 copies of Ka_I--
(W,E ) and a set of nodes W with IWl=n-(q-3)(d-1)=3(d-1)+r. As before,
each copy Kd- will play the role of a node in a cycle as will W. We only have to
describe how to fit W into a cyclic structure.

q--3Suppose we want W to have K_ and Kd_ as its cyclic neighbors. Since dn is
even, it follows that dl Wl is even and wl-> d + 1. Thus we can form a d-regular graph
W, E) and remove d node-disjoint edges, say (u, wj). We connect W to K

_
and

q-3 K+_Kd- by edges {(u, v)} and {(w./, v-3)} for l<=j<=d-1. We connect Kd_ to
(1 _--< <= q- 3) as in Lemma 9. In this way we are able to construct a d-regular graph
Gc on n nodes. And again, as in Lemma 9, for any universal sequence s for G(d, n)
we construct s’= s(a, b), where a and b are the least frequently occurring symbols in
s. By labeling the "cycle" in Gc to mimic the labeling in C we can argue that if s is
started on some node in Kfd(_q-3)/2], then s’ would cover at least [(q-3)/2] nodes in
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C. Since C is an arbitrary member of G(2, n), this insures that s’ covers at least
[(q-3)/2] nodes in any infinite labeled line. Therefore U(2, n/(3d))=<
U(2, (q- 3)/2) -<_ (2/d) U(d, n) for any sufficiently large n which together with Theorem
2 yields Lemma 11.

Lemma 11 shows that for small d (say d =<n , e < 1), we have U(d, n) f(n log n).
For large d, there is a simple way to achieve the same bound using the driver-passenger
game introduced in 4.

LEMMA 12. U(d, n)>= DP(d, n)= l)(n log d).
Proof The driver’s strategy is simply first to form a directed cycle on n nodes

with the first n labels. Then whenever the driver has a free choice he chooses to direct
the new edge to the nearest nonadjacent node on the cycle. This continues until some
node has degree d. On the ith tour of the cycle, the driver takes at least [n/iJ steps
and the game continues for at least d tours. Thus,

In terms of n, the largest known lower bound is obtained for d n/2-1 by another
simple driver-passenger game.

LEMMA 13. For d<=n/2-1, U(d,n)>=DP(d,n)>=d(n-d).
Proof The game will construct G= (V, E) in G(d, n) with V= V1U V2, w, I-

n- d- 1, v=l d + 1. G is constructed so that a given universal sequence will visit
only nodes in V1 within the first d (n d 1) steps. This is simply achieved by thinking
of the driver generating a d-regular graph on V minus an edge. We complete the
construction of G by choosing any complete graph on V2 minus an edge with an
arbitrary labeling. Now if (u, w) (respectively, (/’/2, W2)) is missing from V (respec-
tively, V2), then G is the union of these graphs on V1 and V2 joined by the two edges
(u, u2) and (vl, v2). The driver forces the sequence (passenger) to stay on V1 until
d(n- d- 1) steps have expired and then trivially forces another d steps to cover the
nodes of V2o

THEOREM 4. For all d <= (n/2 1),

U(d, n)=l)((n log n)+d(n-d)).

Proof The proof is immediate from Lemmas 11, 12, and 13.
Our final result emphasizes the importance of the case d 3. Theorem 5 below is

based on Theorem 4.13 of Cook and Rackott [4]. Let G’(d, n) denote the class of all
graphs with n nodes and all degrees less than or equal to d labeled by {0, 1,. ., d- 1}.
In this case a sequence s in {0, 1,..., d- 1}* and a node Uo in a graph G in G’(d, n)
uniquely defines a sequence of nodes u0, u,..., ul. in G with (ui-1, ui) labeled si if

ui-1 has an out edge so labeled and ui u-i if u_ does not have an out edge labeled
by s. And now, as before, let U’(d, n) denote the minimal length of a universal
sequence for G’(d, n).

The following is a direct consequence of Theorem 4.13 in Cook and Rackott [4].
LEMMA 14. There is a finite state transducer computing a function

f: {0, 1, 2}*-->{0, 1,..., d- 1}*

with the property that if s is universal for G’(3, (2d-1)n) then f(s) is universal for
G’(d, n). Furthermore, ]f(s)]<-(1/log d)[s] so that

1
U’(d, n)<= U’(3 (2a 1)n).

log d
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In order to place this result within the context of regular graphs we need to justify
our introductory comment that regularity is not a significant restriction.

LEMMA 15. U’(d, n) <= U(d, d’n), where d’-- d ifd is even and d’-- d + 1 ifd is odd.
Proof For any G’ in G’(d, n) we construct a G in G(d, d’n) by taking d’ copies

of G’. If x has degree 3 < d in G’ we connect all d’ copies of x by a graph in G(d 3, d’)
(a perfect matching if 6 d- 1). The new edges are labeled by the labels missing at
x in G’. It is easily verified that a sequence that covers G covers G’ as well. If all the
degrees in G’ are d and d- a slight modification is needed, which we omit.

THEOREI 5.

U(d,n)<= U(3,2(2d-1)n).
log d

Furthermore, there is a finite state transducer computing a function

f: {0, 1, 2}*-{0, 1,..., d- 1}*

such that if s is universal for G(3, 2(2d 1) n) then f(s) is universal for G(d, n).
Proof The Cook and Rackoff construction on which Lemma 14 is based produces

graphs where every node has degree two or three. In this case, we can take d’= d 1 2
in the construction of Lemma 15. The theorem then follows immediately from Lemmas
14 and 15.

6. Conclusion. Perhaps the main technical result of this paper is the proof of a
nonlinear lower bound for d 2, thus answering a specific challenge in Aleliunas et.
al. [2]. However it is clear that even for this restricted case we are far from understanding
the true nature of U(2, n). We know that the crucial aspect of labeled lines is the
parity of the blocks. (We claim that, within a factor of n, we can assume that every
block has length or 2.) It seems feasible to us that some of the ideas developed here
will lead to an explicit polynomial length universal sequence for G(2, n). We also
expect to be able to narrow the gap between the lower and upper bounds for U(2, n).

For the complete graph, many obvious questions remain. It seems reasonable to
be able to explicitly construct a "good" universal sequence. At present, we only know
the brute force approach that gives n IG(n-1, n)l. It is not difficult to see that a
sequence universal for G(n-1, n) will traverse at least n nodes when applied to
members of G(n, n + 1). But we cannot see how to use this fact to construct such
sequences. It also seems reasonable that we can narrow the gap for DP(n 1, n).

Theorem 5 emphasizes the importance of U(3, n). In particular, any explicit
universal sequence beyond brute force for G(3, n) would be of interest. It will also
be of interest if we could find for d >= 3 a simple d-ary infinite graph that would play
the role that the infinite line played for d --2.

Finally, there are many alternative universal sequence formulations that could be
used for determining graph connectivity. One formulation we find particularly interest-
ing is to number the nodes V={1,..., n} and consider sequences in {1,..., n}*.
Now, a sequence command causes a move to node if there is an edge from the
.currently scanned node to node i. Otherwise, it remains in the current node. Random
walk arguments again show the existence of polynomial length universal sequences.

Note added in proof. Bridgland [J. Algorithms, 8 (1987), pp. 395-404] has given
another construction for a universal sequence of length ngn. His construction
differs from ours. We were informed also of a construction by Barrington [private
communication] for the same problem. Since the completion of this research in June
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1986 there has been much activity in this area, and some of our results have been
improved. Istrail [Proc. 20th Annual ACM Symposium on Theory of Computing, 1988,
pp. 491-503] presents an explicit construction of a sequence of polynomial length that
is universal for d 2. The ideas required go beyond the ones presented here. Karlott,
Paturi, and Simon [unpublished manuscript] have given an explicit construction of a
sequence universal for complete graphs whose length is n(lg n). The construction of
a polynomial length sequence even for complete graphs remains open. Alon and Ravid
[Discrete Appl. Math., to appear] have improved our lower bound for U(n- 1, n) to
nZ/log n. Their bound does not apply to our driver-passenger game. Also in the closely
related area of random walks on graphs there has been considerable progress. A special
issue of the Journal of Theoretical Probability, D. Aldous, ed., will be dedicated to the
subject. A paper by Kahn, Linial, Nisan, and Saks that will appear therein shows that
the expected cover time for regular graphs is only O(n2). This yields an improvement
on the upper bound for U(d, n) over the one in [2].
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