
A

Max-Sum Diversification, Monotone Submodular Functions and
Dynamic Updates

Allan Borodin, University of Toronto
Aadhar Jain, Under Armour Connected Fitness
Hyun Chul Lee, Under Armour Connected Fitness
Yuli Ye, Wish

Result diversification is an important aspect in web-based search, document summarization, facility loca-
tion, portfolio management and other applications. Given a set of ranked results for a set of objects (e.g. web
documents, facilities, etc.) with a distance between any pair, the goal is to select a subset S satisfying the
following three criteria: (a) the subset S satisfies some constraint (e.g. bounded cardinality); (b) the subset
contains results of high “quality”; and (c) the subset contains results that are “diverse” relative to the dis-
tance measure. The goal of result diversification is to produce a diversified subset while maintaining high
quality as much as possible. We study a broad class of problems where the distances are a metric, where the
constraint is given by independence in a matroid, where quality is determined by a monotone submodular
function, and diversity is defined as the sum of distances between objects in S. Our problem is a general-
ization of the max sum diversification problem studied in [Gollapudi and Sharma 2009] which in turn is
a generalization of the max sum p-dispersion problem studied extensively in location theory. It is NP-hard
even with the triangle inequality. We propose two simple and natural algorithms: a greedy algorithm for a
cardinality constraint and a local search algorithm for an arbitrary matroid constraint. We prove that both
algorithms achieve constant approximation ratios.

CCS Concepts: rInformation systems→ Information retrieval diversity; rTheory of computation→
Design and analysis of algorithms; Approximation algorithms analysis;

Additional Key Words and Phrases: diversification, dispersion, submodular functions, greedy algorithms,
local search

1. INTRODUCTION
Suppose a search engine wishes to provide a more nuanced service to users who wish
to be provided with a diversity of web page responses to a query. Without the diver-
sity requirement, any set S of web pages achieves some quality value f(S) relative to
the query as determined by the search engine. It is reasonable to assume that this
quality function is a monotone submodular function; that is (informally), additional
pages will not lessen the value but any increase in value will be at a decreasing rate.
Now the user may wish to balance that quality score with a diversity requirement. For
example, the user may want to limit the number of retured pages that primarily fall
within different topics and as well limit the total number of web pages being returned.
This requirement can be enforced by a matroid constraint. The user may also want
the results to represent different styles of writing as say represented by a vector of in-
dicative word occurrences in the web doucments being returned. This kind of diversity

Author’s addresses: A. Borodin, Department of Computer Science, University of Toronto, 10 Kings College
Rd., Toronto, Ontario, Canada M5S3G4; email: bor@cs.toronto.edu; A. Jain, Under Armour Connected
Fitness, Mountain View, California; email: ajain@myfitnesspal.com; H.C.Lee, Under Armour Connected
Fitness, Mountain View, California; email: clee@myfitnesspal.com; Y. Ye, Wish Toronto Office, Unit 609, 15
Wertheim Court, Richmond Hill, Ontario, Canada L4B3H7; email: yuli.ye@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1549-6325/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 A. Borodin et al.

can be modeled by a distance function d between the documents and it is reasonable to
assume that this distance function is a metric. This is an example of the general result
diversification problem we consider in this paper.

Result diversification has many important applications in databases, operations re-
search, information retrieval, and finance. In this paper, we study and extend a partic-
ular version of result diversification, known as max-sum diversification. More specif-
ically, we consider the setting where we are given a set of elements in a metric space
and a set valuation function f defined on every subset. For any given subset S, the
overall objective is a linear combination of f(S) and the sum of the distances induced
by S. The goal is to find a subset S satisfying some constraints that maximizes the
overall objective.

This diversification problem was first studied by Gollapudi and Sharma [2009] for
modular (i.e. linear) set functions and for sets satisfying a cardinality constraint (i.e. a
uniform matroid). The max-sum p-dispersion problem seeks to find a subset S of cardi-
nality p so as to maximize

∑
x,y∈S d(x, y). The diversification problem is then a linear

combination of a quality function f() and the max-sum dispersion function. Gollapudi
and Sharma give a greedy 2 approximation algorithm for some metrical distance diver-
sification problems by reducing to the analogous dispersion problem. More specifically
for max-sum diversification they use the greedy algorithm of Hassin, Rubsenstein and
Tamir [1997]. Hassin et al. give a non greedy algorithm for a more general problem
where the goal is to construct k subsets each having p elements. (We will restrict at-
tention to the case k = 1.) Their non greedy algorithm obtains the ratio 2 − 1

dp/2e
and hence the same approximation holds for the Gollapudi and Sharma diversification
problem.

The first part of our paper considers an extension of the modular case to the mono-
tone submodular case, for which the algorithm in [Gollapudi and Sharma 2009] no
longer applies. We are able to maintain the same 2-approximation using a natural,
but different greedy algorithm. We then further extend the problem by considering
any matroid constraint and show that a natural single swap local search algorithm
provides a 2-approximation in this more general setting. This extends the Nemhauser,
Wolsey and Fisher [1978] approximation result for the problem of submodular function
maximization subject to a matroid constraint (without the distance function compo-
nent). We note that the dispersion function is a supermodular function 1 and hence the
Nemhauser et al. result does not immediately extend to our diversification problem.

Submodular functions have been extensively considered since they model many nat-
ural phenomena. For example, in terms of keyword based search in database systems,
it is well understood that users begin to gradually (or sometimes abruptly) lose interest
the more results they have to consider [Vieira et al. 2011a; 2011b]. But on the other
hand, as long as a user continues to gain some benefit, additional query results can
improve the overall quality but at a decreasing rate. In a related application, Lin and
Bilmes [2011] argue that monotone submodular functions are an ideal class of func-
tions for text summarization. Following and extending the results in [Gollapudi and
Sharma 2009], we consider the case of maximizing a linear combination of a submod-
ular quality function f(S) and the max-sum dispersion subject to a cardinality con-
straint (i.e., |S| ≤ p for some given p). We present a greedy algorithm that is somewhat
unusual in that it does not try to optimize the objective in each iteration but rather op-

1Motivated by the analysis in this paper, Borodin et al. [2014] introduce the class of weakly submodular
functions and show that the max-sum dispersion measure as well as all monotone submodular functions
are weakly submodular. Furthermore, it is shown that the problem of maximizing such functions subject
to cardinality (resp. general matroid) constraints can be polynomial time approximated within a constant
factor by a greedy (resp. local search) algorithm.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:3

timizes a closely related potential function. We show that our greedy approach matches
the greedy 2-approximation 2 in [Gollapudi and Sharma 2009] obtained for diversifica-
tion with a modular quality function. We note that the greedy algorithm in [Gollapudi
and Sharma 2009] utilizes the max dispersion algorithm of Hassin, Rubinstein and
Tamir [1997] which greedily adds edges whereas our algorithm greedily adds vertices.

Our next result continues with the submodular case but now we go beyond a cardi-
nality constraint (i.e., the uniform matroid) on S and allow the constraint to be that
S is independent in a given matroid. This allows a substantial increase in generality.
In a partition matroid, the universe U is partitioned into sets S1, . . . , Sm and the inde-
pendent sets S satisfy S = ∪1≤i≤mSi with |Si| ≤ pi for some given bounds pi on each
block of the partition. The cardinality constraint is then a special case of a partition
matroid with m = 1. While diversity might be represented by the distance between
retrieved database tuples under a given criterion (for instance, a kernel based diver-
sity measure called answer tree kernel is used in [Zhao et al. 2011]), we could use a
partition matroid to insure that (for example) the retrieved database tuples come from
a variety of different sources. That is, we may wish to have pi tuples from a specific
database field i. This is, of course, another form of diversity but one orthogonal to di-
versity based on the given criterion. Similarly in the stock portfolio example, we might
wish to have a balance of stocks in terms of say risk and profit profiles (using some
statistical measure of distance) while using a submodular quality function to reflect a
users submodular utility for profit and using a partition matroid to insure that differ-
ent sectors of the economy are well represented. Another important class of matroids
(relevant to the above applications) is that of transversal matroids. In a transversal
matroid, the universe U is a union of (possibly) intersecting sets C = C1, . . . , Cm and
a set S = {s1, . . . sr} ⊆ U is an independent set in the traversal matroid induced by
the collection if there is an injective function φ from S into C with say φ(si) = Ci and
φ(si) ∈ Ci. That is, S forms a set of representatives for each set Ci or equivalently there
is a matching between S and C. (Note that a given si could occur in other sets Cj .) In
a database application, our goal might be to derive a set S such that the database tu-
ples in S form a set of representatives for the collection. We also note that Schrijver
et al [2003] show that the intersection of any matroid with a uniform matroid is still
a matroid so that in the above examples, we could further impose the constraint that
the set S has at most p elements.

Our final theoretical result concerns dynamic updates. Here we restrict attention
to a modular set function f(S); that is, we now have weights on the elements and
f(S) =

∑
u∈S w(u) where w(u) is the weight of element u. This allows us to consider

changes to the weight of a single element as well as changes to the distance function.
The rest of the paper is organized as follows. In Section 2, we discuss related work

in dispersion and result diversification. In Section 3, we formulate the problem as a
combinatorial optimization problem and discuss the complexity of the problem. In Sec-
tion 4, we consider max-sum diversification with monotone submodular set quality
functions subject to a cardinality constraint and give a conceptually simple greedy al-
gorithm that achieves a 2-approximation. We extend the problem to the matroid case
in Section 5 and discuss dynamic updates in Section 6. Section 7 carries out a num-
ber of experiments. In particular, we compare our greedy algorithm with the greedy
algorithm of Gollapudi and Sharma. Section 8 concludes the paper.

2Clearly, in the modular case for p constant, a brute force trial of all subsets of size p is an optimum, albeit
inefficient, algorithm.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 A. Borodin et al.

2. RELATED WORK
With the proliferation of today’s social media, database and web content, ranking be-
comes an important problem as it decides what gets selected and what does not, what
is to be displayed first and what is to be displayed last. Many early ranking algorithms,
for example in web search, are based on the notion of “relevance”, i.e., the closeness of
the object to the search query. However, there has been a rising interest to incorporate
some notion of “diversity” into measures of quality.

One early work in this direction is the notion of “Maximal Marginal Relevance”
(MMR) introduced by Carbonell and Goldstein in [Carbonell and Goldstein 1998]. More
specifically, MMR is defined as follows:

MMR = max
Di∈R\S

[λ · sim1(Di, Q)− (1− λ) max
Dj∈S

sim2(Di, Dj)],

where Q is a query; R is the ranked list of documents retrieved; S is the subset of
documents in R already selected; sim1 is the similarity measure between a document
and a query, and sim2 is the similarity measure between two documents. The param-
eter λ controls the trade-off between novelty (a notion of diversity) and relevance. The
MMR algorithm iteratively selects the next document with respect to the MMR objec-
tive function until a given cardinality condition is met. The MMR heuristic has been
widely used, but to the best of our knowledge, it has not been theoretically justified.
Our paper provides some theoretical evidence why MMR is a legitimate approach for
diversification. The greedy algorithm we propose in this paper can be viewed as a nat-
ural extension of MMR.

There is extensive research on how to diversify returned ranking results to satisfy
multiple users. Namely, the result diversity issue occurs when many facets of queries
are discovered and a set of multiple users expect to find their desired facets in the first
page of the results. Thus, the challenge is to find the best strategy for ordering the
results such that many users would find their relevant pages in the top few slots.

Rafiei et al. [Rafiei et al. 2010] modeled this as a continuous optimization problem.
They introduce a weight vector W for the search results, where the total weight sums
to one. They define the portfolio variance to be WTCW , where C is the co-variance
matrix of the result set. The goal then is to minimize the portfolio variance while the
expected relevance is fixed at a certain level. They report that their proposed algorithm
can improve upon Google in terms of the diversity on random queries, retrieving 14%
to 38% more aspects of queries in top five, while maintaining a precision very close to
Google.

Bansal et al. [Bansal et al. 2010] considered the setting in which various types of
users exist and each is interested in a subset of the search results. They use a per-
formance measure based on discounted cumulative gain, which defines the useful-
ness (gain) of a document as its position in the resulting list. Based on this measure,
they suggest a general approach for developing approximation algorithms for rank-
ing search results that captures different aspects of users’ intents. They also take into
account that the relevance of one document cannot be treated independent of the rel-
evance of other documents in a collection returned by a search engine. They consider
both the scenario where users are interested in only a single search result (e.g., nav-
igational queries) and the scenario where users have different requirements on the
number of search results, and develop good approximation solutions for them.

The database community has studied the query diversification problem, which is
mainly for keyword search in databases [Liu et al. 2009; Yu et al. 2009; Drosou and
Pitoura 2009; Vieira et al. 2011b; Zhao et al. 2011; Vieira et al. 2011a; Demidova et al.
2010]. Given a very large database, an exploratory query can easily lead to a vast an-
swer set. Typically, an answer’s relevance to the user query is based on top-k or tf-idf.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:5

As a way of increasing user satisfaction, different query diversification techniques have
been proposed including some system based ones taking into account query parame-
ters, evaluation algorithms, and dataset properties. For many of these, a max-sum type
objective function is usually used.

Other than those discussed above, there are many papers studying result diversi-
fication in different settings, via different approaches and through different perspec-
tives, for example [Zhai et al. 2003; Chen and Karger 2006; Zhu et al. 2007; Yue and
Joachims 2008; Radlinski et al. 2008; Agrawal et al. 2009; Brandt et al. 2011; Santos
et al. 2011; Dou et al. 2011; Slivkins et al. 2010]. The reader is referred to [Agrawal
et al. 2009; Drosou and Pitoura 2010] for a good summary of the field. Most relevant to
our work is the paper by Gollapudi and Sharma [Gollapudi and Sharma 2009], where
they develop an axiomatic approach to characterize and design diversification systems.
Furthermore, they consider three different diversification objectives and using earlier
results in facility dispersion, they are able to give algorithms with good worst case
approximation guarantees. This paper is a continuation of research along this line.

Minack et al. [Minack et al. 2011] have studied the problem of incremental diversi-
fication for very large data sets. Instead of viewing the input of the problem as a set,
they consider the input as a stream, and use a simple online algorithm to process each
element in an incremental fashion, maintaining a near-optimal diverse set at any point
in the stream. Although their results are largely experimental, this approach signifi-
cantly reduces CPU and memory consumption, and hence is applicable to large data
sets. Our dynamic update algorithm deals with a problem of a similar nature, but in
addition to our experimental results, we are also able to prove theoretical guarantees.
To the best of our knowledge, our work is the first of its kind to obtain a near-optimality
condition for result diversification in a dynamically changing environment.

Independent of our conference paper [Borodin et al. 2012], Abbassi, Mirrokni and
Thakus [Abbassi et al. 2013] have also shown that the (Hamming distance 1) local
search algorithm provides a 2-approximation for the max-sum dispersion problem sub-
ject to a matroid constraint. Their version of the dispersion problem is somewhat more
general in that they additionally consider that the points are chosen from different
clusters. They indirectly consider a quality measure by first restricting the universe
of objects to high quality objects and then apply dispersion. They provide a number of
interesting experimental results.

3. PROBLEM FORMULATION
Although the notion of “diversity” naturally arises in the context of databases, social
media and web search, the underlying mathematical object is not new. As presented
in [Gollapudi and Sharma 2009], there is a rich and long line of research in location
theory dealing with a similar concept; in particular, one objective is the placement of
facilities on a network to maximize some function of the distances between facilities.
The situation arises when proximity of facilities is undesirable, for example, the dis-
tribution of business franchises in a city. Such location problems are often referred to
as dispersion problems; for more motivation and early work, see [Erkut 1990; Erkut
and Neuman 1989; Kuby 1987].

Analytical models for the dispersion problem assume that the given network is rep-
resented by a set V = {v1, v2, . . . , vn} of n vertices along with a distance function be-
tween every pair of vertices. The objective is to locate p facilities (p ≤ n) among the
n vertices, with at most one facility per vertex, such that some function of distances
between facilities is maximized. Different objective functions are considered for the
dispersion problems in the literature including: the max-sum criterion (maximize the
total distances between all pairs of facilities) in [Wang and Kuo 1988; Erkut 1990;
Ravi et al. 1994], the max-min criterion (maximize the minimum distance between a

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. Borodin et al.

pair of facilities) in [Kuby 1987; Erkut 1990; Ravi et al. 1994], the max-mst (maxi-
mize the minimum spanning tree among all facilities) and many other related criteria
in [Halldórsson et al. 1995; Chandra and Halldórsson 2001]. When the distances are
arbitrary, the max-sum problem is a weighted generalization of the densest subgraph
problem which is a known difficult problem not admitting a PTAS ([Khot 2006] and not
known to have a constant approximation algorithm. Sometimes the problem is studied
for specific metric distances (e.g as in Fekete and Meijer [Fekete and Meijer 2003]) or
for restricted classes of weights (e.g. as in Czygrinow [Czygrinow 2000]) where there
can be a PTAS. Our diversification problem is a generalization of the max sum p-
dispersion problem assuming arbitrary metric distances. For the max-sum criteria and
for most of the objective criteria, the dispersion problem is NP-hard, and approxima-
tion algorithms have been developed and studied; see [Chandra and Halldórsson 2001]
for a summary of known results. Our diversification problem is a generalization of the
following max sum p-dispersion problem for arbitrary metric distances. Most relevant
to this paper is the max-sum dispersion problem with metric distances.

PROBLEM 1. Max-Sum p Dispersion

Let U be the underlying ground set, and let d(·, ·) be a metric distance function
on U . Given a fixed integer p, the goal of the problem is to find a subset S ⊆ U that:

maximizes
∑
{u,v}:u,v∈S d(u, v)

subject to |S| = p,

The problem is known to be NP-hard by an easy reduction from Max-Clique, and as
noted by Alon [Alon 2014], there is evidence that the problem is hard to compute in
polynomial time with approximation 2− ε for any ε > 0 when p = nr for 1/3 ≤ r < 1 (for
suffiently large n). Namely, based on the assumption that the planted clique problem is
hard 3, Alon et al [Alon et al. 2011] show that it is hard to distinguish between a graph
having a large planted clique of size p and one in which the densest sub-graph of size p
is of density at most an arbitrarily small constant δ. Considering the complement of a
random graph G in G(n, 1/2), their result says that it is hard to distinguish between a
graph having an independent set of size p and one in which the density of edges in any
size p-sub-graph is at least (1− δ). Adding another node to the complement graph that
is connected to all nodes inG, the graph distance metric is now the {1, 2}metric formed
by the transitive closure so that adjacent nodes have distance 1 and non adjacent nodes
have distance 2. So we therefore cannot distinguish between graphs where there exists
a set of nodes S of size p (for p as above) where

∑
(u,v)∈S d(u, v) =

(
p
2

)
∗ 2 and one where

in every set of size p, we have
∑

(u,v)∈S d(u, v) ≤
(
p
2

)
[(1− δ) + 2δ].

In [Ravi et al. 1994], Ravi, Rosenkrantz and Tayi give a greedy algorithm (greed-
ily choosing vertices) that is shown to have approximation ratio no worse than 4 and
no better than 2

1+2/p(p−1) . Hassin, Rubenstein and Tamir [Hassin et al. 1997] improve
upon the Ravi et al result by an algorithm that greedily chooses edges yielding an ap-
proximation ratio of 2. Hassin et al also give an algorithm based on maximum match-
ing that provides a 2 − 1

dp/2e approximation for a more general problem; namely, the
algorithm must find a subset U ′ which is partitioned into k disjoint subsets, each of size
p so as to maximize the pairwise sum of all pairs of vertices in U ′. The more general
(p, k) problem is similar to a partition matroid constraint but in a partition matroid,
the partition is given as part of the definition of the matroid and each block of the
partition has its own cardinality constraint.

3See [Meka et al. 2015] for the latest evidence with regard to the hardness of the planted clique problem.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:7

Answering an open problem stated in Hassin et al., Birnbaum and Goldman [Birn-
baum and Goldman 2009] give an improved analysis proving that the Ravi et al. greedy
algorithm results in a 2p−2

p−1 approximation for the max-sum p dispersion problem. This
then shows that a 2-approximation is a tight bound (as p grows) for the Ravi et al.
greedy algorithm. More generally, Birnbaum and Goldman show that greedily choos-
ing a set of d nodes provides a 2p−2

p+d−2 approximation. Our analysis in Section 4 yields
an alternative proof that the Ravi et al. greedy algorithm approximation ratio is no
worse than 2 even when extended to the max-sum p diversification problem (with a
monotone submodular value function) considered in Section 4.

PROBLEM 2. Max-Sum p Diversification

Let U be the underlying ground set, and let d(·, ·) be a metric distance function
on U . For any subset of U , let f(·) be a non-negative set function measuring the value
of a subset. Given a fixed integer p, the goal of the problem is to find a subset S ⊆ U
that:

maximizes f(S) + λ
∑
{u,v}:u,v∈S d(u, v)

subject to |S| = p,

where λ is a parameter specifying a desired trade-off between the two objectives.
The max-sum diversification problem is first proposed and studied in the context

of result diversification in [Gollapudi and Sharma 2009] 4, where the function f(·) is
modular. In their paper, the value of f(S) measures the relevance of a given subset to
a search query, and the value

∑
{u,v}:u,v∈S d(u, v) gives a diversity measure on S. The

parameter λ specifies a desired trade-off between diversity and relevance. They reduce
the problem to the max-sum dispersion problem, and using an algorithm in [Hassin
et al. 1997], they obtain an approximation ratio of 2.

In this paper, we first study the problem with more general valuation functions;
namely, normalized, monotone submodular set functions. For notational convenience,
for any two sets S, T and an element e, we write S ∪{e} as S+ e, S \ {e} as S− e, S ∪T
as S + T , and S \ T as S − T . A set function f is normalized if f(∅) = 0. The function is
monotone if for any S, T ⊆ U and S ⊆ T ,

f(S) ≤ f(T).

It is submodular if for any S, T ⊆ U , S ⊆ T with u ∈ U ,

f(T + u)− f(T) ≤ f(S + u)− f(S).

In the remainder of paper, all functions considered are normalized and monotone. We
proceed to our first contribution, a greedy algorithm (different than the one in [Golla-
pudi and Sharma 2009]) that obtains a 2-approximation for monotone submodular set
functions.

4. SUBMODULAR FUNCTIONS
Submodular set functions can be characterized by the property of a decreasing
marginal gain as the size of the set increases. As such, submodular functions are
well-studied objects in economics, game theory and combinatorial optimization. Sub-
modular functions have also attracted attention in different fields of computer science.
For example, Kempe et al. [2003] study the problem of selecting a set of most influ-
ential nodes to maximize the total information spread in a social network. They have

4In fact, they have a slightly different but equivalent formulation.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 A. Borodin et al.

shown that under two basic stochastic diffusion models, the expected influence of an
initially chosen set is submodular, hence the problem admits a good approximation
algorithm. In natural language processing, Lin and Bilmes [Lin et al. 2009; Lin and
Bilmes 2010; 2011] have studied a class of submodular functions for document summa-
rization. These functions each combine two terms, one which encourages the summary
to be representative of the corpus, and the other which positively rewards diversity.
Their experimental results show that a greedy algorithm with the objective of max-
imizing these submodular functions outperforms the existing state-of-art results in
both generic and query-focused document summarization.

Both of the above mentioned results are based on the fundamental work of
Nemhauser, Wolsey and Fisher [1978], which gave an e

e−1 -approximation for maxi-
mizing monotone submodular set functions over a uniform matroid. This bound is now
known to be tight even for a general matroid [2011] whereas the greedy algorithm pro-
vides a 2-approximation for an arbitrary matroid (and a k + 1-approximation for the
intersection of k matroids) as shown in [Fisher et al. 1978]. Our max-sum diversifica-
tion problem with monotone submodular set functions can be viewed as an extension
of that problem: the objective function now not only contains a submodular part, but
also has a super-modular part: the sum of distances.

Since the max-sum diversification problem with modular set functions studied
in [Gollapudi and Sharma 2009] admits a 2-approximation algorithm, it is natural
to ask what approximation ratio is obtainable for the same problem with monotone
submodular set functions. The Gollapudi and Sharma algorithm is based on the ob-
servation that the diversity function with modular set functions can be reduced to the
max-sum p dispersion problem by changing the metric. Namely, the reduction defines
the metric d′(u, v) = w(u) + w(v) + 2λd(u, v). It is clear then that this reduction and
the algorithm in [Gollapudi and Sharma 2009] does not apply to the submodular case
where elements do not have weights but rather only marginal weights. While this sug-
gests that a greedy algorithm using marginal weights might apply (as we will show),
this still requires a proof and in general one cannot expect the same approximation ra-
tio. In what follows we assume (as is standard when considering submodular functions)
access to an oracle for finding an element u ∈ U − S that maximizes f(S + u) − f(S).
When f is modular, this simply means accessing the element u ∈ U − S having maxi-
mum weight.

THEOREM 4.1. There is a simple linear time greedy algorithm that achieves a 2-
approximation for the max-sum diversification problem with monotone submodular set
functions satisfying a cardinality constraint.

Before giving the proof 5 ”of Theorem 4.1, we introduce some additional notation.
We extend the notion of distance function to sets. For disjoint subsets S, T ⊆ U , we let
d(S) =

∑
{u,v}:u,v∈S d(u, v), and d(S, T) =

∑
{u,v}:u∈S,v∈T d(u, v).

Now we define various types of marginal gain. For any given subset S ⊆ U and an
element u ∈ U − S: let φ(S) be the value of the objective function, du(S) =

∑
v∈S d(u, v)

be the marginal gain on the distance, fu(S) = f(S + u) − f(S) be the marginal gain
on the weight, and φu(S) = fu(S) + λdu(S) be the total marginal gain on the objective

5While greedy algorithms are conceptually simple to state and understand operationally, it can be the case
that the analysis of an approximation ratio is not at all simple. For example, the Birnbaum and Goldman
proof that the greedy algorithm is a 2-approximation for the cardinality constrained metric sum dispersion
problem is such a proof. Their proof answered an explicit 12 year old conjecture by Hassin et al [1997]
following the 4-approximation by Ravi et al [1994]. The earlier Ravi et al paper gave an example showing
that the greedy algorithm was no better than a 2-approximation motivating the conjecture by Hassin et al.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:9

function. Let f ′u(S) = 1
2fu(S), and φ′u(S) = f ′u(S) + λdu(S). We consider the following

simple greedy algorithm:

GREEDY ALGORITHM
S = ∅
while |S| < p

find u ∈ U − S maximizing φ′u(S)
S = S + u

end while
return S

Note that the above greedy algorithm is “non-oblivious” (in the sense of [Khanna
et al. 1998]) as it is not selecting the next element with respect to the objective function
φ(·). This might be of an independent interest. We utilize the following lemma in [Ravi
et al. 1994].

LEMMA 4.2. Given a metric distance function d(·, ·), and two disjoint sets X and Y ,
we have the following inequality: (|X| − 1)d(X,Y) ≥ |Y |d(X).

Now we are ready to prove Theorem 4.1.

PROOF. Let O be the optimal solution, and G, the greedy solution at the end of the
algorithm. Let Gi be the greedy solution at the end of step i, i < p; and let A = O ∩Gi,
B = Gi −A and C = O −A. By lemma 4.2, we have the following three inequalities:

(|C| − 1)d(B,C) ≥ |B|d(C) (1)
(|C| − 1)d(A,C) ≥ |A|d(C) (2)
(|A| − 1)d(A,C) ≥ |C|d(A) (3)

Furthermore, we have

d(A,C) + d(A) + d(C) = d(O) (4)

Note that the algorithm clearly achieves the optimal solution if p = 1. If |C| = 1, then
i = p− 1 and Gi ⊂ O. Let v be the element in C, and let u be the element taken by the
greedy algorithm in the next step, then φ′u(Gi) ≥ φ′v(Gi). Therefore, 1

2fu(Gi)+λdu(Gi) ≥
1
2fv(Gi) + λdv(Gi), which implies φu(Gi) = fu(Gi) + λdu(Gi) ≥ 1

2fu(Gi) + λdu(Gi) ≥
1
2fv(Gi) + λdv(Gi) ≥ 1

2φv(Gi) and hence φ(G) ≥ 1
2φ(O).

Now we can assume that p > 1 and |C| > 1. We apply the following non-negative
multipliers to equations (1), (2), (3), (4) and add them: (1) ∗ 1

|C|−1 + (2) ∗ |C|−|B|p(|C|−1) + (3) ∗
i

p(p−1) + (4) ∗ i|C|
p(p−1) ; we then have d(A,C) + d(B,C) − i|C|(p−|C|)

p(p−1)(|C|−1)d(C) ≥ i|C|
p(p−1)d(O).

Since p > |C|, d(C,Gi) ≥ i|C|
p(p−1)d(O). By submodularity and monotonicity of f ′(·), we

have
∑
v∈C f

′
v(Gi) ≥ f ′(C ∪Gi)− f ′(Gi) ≥ f ′(O)− f ′(G). Therefore,∑

v∈C φ
′
v(Gi) =

∑
v∈C [f ′v(Gi) + λd({v}, Gi)]

=
∑
v∈C f

′
v(Gi) + λd(C,Gi) ≥ [f ′(O)− f ′(G)] + λi|C|

p(p−1)d(O).

Let ui+1 be the element taken at step (i + 1), then we have φ′ui+1
(Gi) ≥

1
p [f ′(O) − f ′(G)] + λi

p(p−1)d(O). Summing over all i from 0 to p − 1, we have φ′(G) =∑p−1
i=0 φ

′
ui+1

(Gi) ≥ [f ′(O)−f ′(G)]+ λ
2 d(O). Hence, f ′(G)+λd(G) ≥ f ′(O)−f ′(G)+ λ

2 d(O),

and φ(G) = f(G) + λd(G) ≥ 1
2 [f(O) + λd(O)] = 1

2φ(O). This completes the proof.
The greedy algorithm runs in time proportional to p (for the p iterations) times the

cost of computing φ′u(S) for a given u and S. When f is modular, the time for updating
φ′u(S) can be bounded by O(n). Namely, each iteration costs O(n) time (to search over

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. Borodin et al.

all elements u in U \ S) and update φ′(S). Updating f ′(S) is clearly O(1) while naively
updating du(S) would take time O(p). But as observed by Birnbaum and Goldman
[2009], du(V ′) can be maintained for all V \ S within the same O(n) needed to search
V ′ so that updating φ′(S) only costs time O(1). Hence the total time is O(np), linear in
n when p is a constant.

COROLLARY 4.3. The Ravi et al. [1994] greedy algorithm for dispersion has approx-
imation ratio no worse that 2.

PROOF. The identically zero function f is monotone submodular and for this f , our
greedy algorithm is precisely the dispersion algorithm of Ravi et al.

We note that for the dispersion problem, Birnbaum and Goldman [2009] show that
their bound for the greedy algorithm is tight. In particular, for the greedy algorithm
that adds one element at a time, the precise bound is 2p−2

p−1 .

5. MATROIDS AND LOCAL SEARCH
Theorem 4.1 provides a 2-approximation for max-sum diversification when the set
function is submodular and the set constraint is a cardinality constraint, i.e., a uniform
matroid. It is natural to ask if the same approximation guarantee can be obtained for
an arbitrary matroid. In this section, we show that the max-sum diversification prob-
lem with monotone submodular function admits a 2-approximation subject to a general
matroid constraint.

Matroids are well studied objects in combinatorial optimization. A matroid M is a
pair 〈U,F〉, where U is a set of ground elements and F is a collection of subsets of U ,
called independent sets, with the following properties :

— Hereditary: The empty set is independent and if S ∈ F and S′ ⊂ S, then S′ ∈ F .
— Augmentation: If A,B ∈ F and |A| > |B|, then ∃e ∈ A−B such that B ∪ {e} ∈ F .

The maximal independent sets of a matroid are called bases ofM. Note that all bases
have the same number of elements, and this number is called the rank of M. The
definition of a matroid captures the key notion of independence from linear algebra
and extends that notion so as to apply to many combinatorial objects. We have already
mentioned two classes of matroids relevant to our results, namely partition matroids
and transversal matroids.

PROBLEM 3. Max-Sum Diversification for Matroids

Let U be the underlying ground set, and F be the set of independent subsets of
U such that M = 〈U,F〉 is a matroid. Let d(·, ·) be a (non-negative) metric distance
function measuring the distance on every pair of elements. For any subset of U , let
f be a non-negative monotone submodular set function measuring the weight of the
subset. The goal of the problem is to find a subset S ∈ F that:

maximizes f(S) + λ
∑
{u,v}:u,v∈S d(u, v)

where again λ is a parameter specifying a desired trade-off between the two objectives.
As before, we let φ(S) be the value of the objective function. Note that since the function
φ(·) is monotone, S is essentially a basis of the matroid M. The greedy algorithm in
Section 4 still applies, but it fails to achieve any constant approximation ratio even for
a linear quality function f including the identically zero function; that is, for max-sum
dispersion. (See the Appendix.) This is in contrast to the seminal result of Nemhauser,
Wolsey and Fisher [1978] showing that the greedy algorithm is optimal (respectively,
a 2-approximation) for linear functions (respectively, monotone submodular functions)
subject to a matroid constraint. Note that the problem is trivial if the rank of the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:11

matroid is less than two. Therefore, without loss of generality, we assume the rank is
at least two. Let

{x, y} = argmax{x,y}∈F [f({x, y}) + λd(x, y)].

We now consider the following oblivious local search algorithm:

LOCAL SEARCH ALGORITHM
let S be a basis ofM containing both x and y
while there is an u ∈ U − S and v ∈ S such that S + u− v ∈ F and φ(S + u− v) > φ(S)

S = S + u− v
end while
return S

THEOREM 5.1. The local search algorithm achieves an approximation ratio of 2 for
max-sum diversification with a matroid constraint.

Note that if the rank of the matroid is two, then the algorithm is clearly optimal.
From now on, we assume the rank of the matroid is greater than two. Before we prove
the theorem, we first give several lemmas. All the lemmas assume the problem and the
underlying matroid without explicitly mentioning it. LetO be the optimal solution, and
S, the solution at the end of the local search algorithm. Let A = O ∩ S, B = S − A and
C = O −A.

LEMMA 5.2. For any two sets X,Y ∈ F with |X| = |Y |, there is a bijective mapping
g : X → Y such that X − x+ g(x) ∈ F for any x ∈ X.

This is a known property of a matroid and its proof can be found in [Brualdi 1969].
Since both S andO are bases of the matroid, they have the same cardinality. Therefore,
B and C have the same cardinality. By Lemma 5.2, there is a bijective mapping g : B →
C such that S − b + g(b) ∈ F for any b ∈ B. Let B = {b1, b2, . . . , bt}, and let ci = g(bi)
for all i. Without loss of generality, we assume t ≥ 2, for otherwise, the algorithm is
optimal by the local optimality condition.

LEMMA 5.3. f(S) +
∑t
i=1 f(S − bi + ci) ≥ f(S −

∑t
i=1 bi) +

∑t
i=1 f(S + ci).

PROOF. Since f is submodular,
f(S)− f(S − b1) ≥ f(S + c1)− f(S + c1 − b1),
f(S − b1)− f(S − b1 − b2) ≥ f(S + c2)− f(S + c2 − b2),
. . .
f(S −

∑t−1
i=1 bi)− f(S −

∑t
i=1 bi) ≥ f(S + ct)− f(S + ct − bt).

Summing up these inequalities, we have f(S) − f(S −
∑t
i=1 bi) ≥

∑t
i=1 f(S + ci) −∑t

i=1 f(S − bi + ci), and the lemma follows.

LEMMA 5.4.
∑t
i=1 f(S + ci) ≥ (t− 1)f(S) + f(S +

∑t
i=1 ci).

PROOF. Since f is submodular,
f(S + ct)− f(S),
f(S + ct−1)− f(S) ≥ f(S + ct + ct−1)− f(S + ct),
f(S + ct−2)− f(S) ≥ f(S + ct + ct−1 + ct−2)− f(S + ct + ct−1)
. . .
f(S + c1)− f(S) ≥ f(S +

∑t
i=1 ci)− f(S +

∑t
i=2 ci)

Summing up these inequalities, we have
∑t
i=1 f(S+ci)−tf(S) ≥ f(S+

∑t
i=1 ci)−f(S),

and the lemma follows.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. Borodin et al.

LEMMA 5.5.
∑t
i=1 f(S − bi + ci) ≥ (t− 2)f(S) + f(O).

PROOF. Combining Lemma 5.3 and Lemma 5.4, we have
f(S) +

∑t
i=1 f(S − bi + ci)

≥ f(S −
∑t
i=1 bi) +

∑t
i=1 f(S + ci)

≥ (t− 1)f(S) + f(S +
∑t
i=1 ci) =(t− 1)f(S) + f(S + C)

≥ (t− 1)f(S) + f(O). Therefore, the lemma follows.

LEMMA 5.6. If t > 2, d(B,C)−
∑t
i=1 d(bi, ci) ≥ d(C).

PROOF. For any bi, cj , ck, we have d(bi, cj) + d(bi, ck) ≥ d(cj , ck). Summing up these
inequalities over all i, j, k with i 6= j, i 6= k, j 6= k, we have each d(bi, cj) with i 6= j is
counted (t − 2) times; and each d(ci, cj) with i 6= j is counted (t − 2) times. Therefore
(t− 2)[d(B,C)−

∑t
i=1 d(bi, ci)] ≥ (t− 2)d(C), and the lemma follows.

LEMMA 5.7.
∑t
i=1 d(S − bi + ci) ≥ (t− 2)d(S) + d(O).

PROOF.
∑t
i=1 d(S − bi + ci)

=
∑t
i=1[d(S) + d(ci, S − bi)− d(bi, S − bi)]

= td(S) +
∑t
i=1 d(ci, S − bi)−

∑t
i=1 d(bi, S − bi)

= td(S) +
∑t
i=1 d(ci, S)−

∑t
i=1 d(ci, bi)−

∑t
i=1 d(bi, S − bi)

= td(S) + d(C, S)−
∑t
i=1 d(ci, bi)− d(A,B)− 2d(B).

There are two cases. Case 1: If t > 2 then by Lemma 5.6, we have
d(C, S)−

∑t
i=1 d(ci, bi) = d(A,C)+d(B,C)−

∑t
i=1 d(ci, bi)≥ d(A,C)+d(C). Furthermore,

since d(S) = d(A) + d(B) + d(A,B), we have 2d(S)− d(A,B)− 2d(B) ≥ d(A). Therefore∑t
i=1 d(S − bi + ci)

= td(S) + d(C, S)−
∑t
i=1 d(ci, bi)− d(A,B)− 2d(B)

≥ (t− 2)d(S) + d(A,C) + d(C) + d(A) ≥ (t− 2)d(S) + d(O).
Case 2: If t = 2, then since the rank of the matroid is greater than two, A 6= ∅. Let z be
an element in A, then we have

2d(S) + d(C, S)−
∑t
i=1 d(ci, bi)− d(A,B)− 2d(B)

= d(A,C) + d(B,C)−
∑t
i=1 d(ci, bi) + 2d(A) + d(A,B)

≥ d(A,C) + d(c1, b2) + d(c2, b1) + d(A) + d(z, b1) + d(z, b2)
≥ d(A,C) + d(A) + d(c1, c2) ≥ d(A,C) + d(A) + d(C) = d(O).

Therefore
∑t
i=1 d(S − bi + ci) = td(S) + d(C, S) −

∑t
i=1 d(ci, bi) − d(A,B) − 2d(B)

≥ (t− 2)d(S) + d(O). This completes the proof.
Now with the proofs of Lemma 5.5 and Lemma 5.7, we are ready to complete the

proof of Theorem 5.1.

PROOF. Since S is a locally optimal solution, we have φ(S) ≥ φ(S − bi + ci) for all i.
Therefore, for all i we have f(S) + λd(S) ≥ f(S − bi + ci) + λd(S − bi + ci).

Summing up over all i, we have tf(S)+λtd(S) ≥
∑t
i=1 f(S−bi+ci)+λ

∑t
i=1 d(S−bi+

ci). By Lemma 5.5, we have tf(S) + λtd(S) ≥ (t− 2)f(S) + f(O) + λ
∑t
i=1 d(S − bi + ci).

By Lemma 5.7, we have tf(S) + λtd(S) ≥ (t − 2)f(S) + f(O) + λ[(t − 2)d(S) + d(O)].
Therefore, 2f(S) + 2λd(S)) ≥ f(O) +λd(O). φ(S) ≥ 1

2φ(O). This completes the proof.
Theorem 5.1 shows that even in the more general case of a matroid constraint, we

can still achieve the approximation ratio of 2. As is standard in such local search algo-
rithms, with a small sacrifice on the approximation ratio, the algorithm can be modi-
fied to run in polynomial time by requiring at least an ε-improvement at each iteration
rather than just any improvement.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:13

6. DYNAMIC UPDATES
In this section, we discuss dynamic updates for the max-sum diversification problem
subject to a cardinality constraint with modular set functions. The setting is that we
have initially computed a good solution (satisfying the cardinality constraint p) with
some approximation guarantee. The weights are changing over time, and upon seeing
a change of weight, we want to maintain the quality (the same approximation ratio) of
the solution by modifying the current solution without completely recomputing it. We
use the number of updates to quantify the amount of modification needed to maintain
the desired approximation. An update is a single swap of an element in S with an ele-
ment outside S, where S is the current solution. We ask the following question: ”Can
we maintain a good approximation ratio with a limited number of updates?”
Since the best known approximation algorithm achieves approximation ratio of 2, it
is natural to ask whether it is possible to maintain that ratio through local updates.
And if it is possible, how many such updates it requires. To simplify the analysis, we
restrict to the following oblivious update rule. Let S be the current solution, and let u
be an element in S and v be an element outside S. The marginal gain v has over u with
respect to S is defined to be

φv→u(S) = φ(S \ {u} ∪ {v})− φ(S).

OBLIVIOUS (SINGLE ELEMENT SWAP) UPDATE RULE
Find a pair of elements (u, v) with u ∈ S and v 6∈ S maximizing φv→u(S). If φv→u(S) ≤ 0,
do nothing; otherwise swap u with v.

Since the oblivious local search in Theorem 5.1 uses the same single element swap
update rule, it is not hard to see that we can maintain the approximation ratio of
2. However, it is not clear how many updates are needed to maintain that ratio. We
conjecture that the number of updates can be made relatively small (i.e., constant) by
a non-oblivious update rule and carefully maintaining some desired configuration of
the solution set. We leave this as an open question.

However, we are able to show that if we relax the requirement slightly, i.e., aiming
for an approximation ratio of 3 instead of 2, and restrict slightly the magnitude of the
weight-perturbation, we are able to maintain the desired ratio with a single update.
Note that the weight restriction is only used for the case of a weight decrease (Theo-
rem 6.6). We divide weight-perturbations into four types: a weight increase (decrease)
which occurs on an element, and a distance increase (decrease) which occurs between
two elements. We denote these four types: (I), (II),(III), (IV); and we have a correspond-
ing theorem for each case. Before getting to the theorems, we first prove the following
two lemmas. After a weight-perturbation, let S be the current solution set, and O be
the optimal solution. Let S∗ be the solution set after a single update using the oblivious
update rule, and let ∆ = φ(S∗)− φ(S). We let Z = O ∩ S, X = O \ Z and Y = S \ Z.

LEMMA 6.1. There exists z ∈ Y such that φz(S\{z}) ≤ 1
|Y | [f(Y)+2λd(Y)+λd(Z, Y)].

PROOF. If we sum up all marginal gain φy(S\{y}) for all y ∈ Y , we have
∑
y∈Y φy(S\

{y}) = f(Y) + 2λd(Y) + λd(Z, Y). By an averaging argument, there must exist z ∈ Y
such that φz(S \ {z}) ≤ 1

|Y | [f(Y) + 2λd(Y) + λd(Z, Y)].

Lemma 6.1 ensures the existence of an element in S such that after removing it from
S, the objective function value does not decrease much. The following lemma ensures
that there always exists an element outside S which can increase the objective function
value substantially if we bring it in.

LEMMA 6.2. If φ(S∗) < 1
3φ(O), then for all y ∈ Y , there exists x ∈ X such that

φx(S \ {y}) > 1
|X| [2φ(Z) + 3φ(Y) + 3λd(Z, Y) + 3∆].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. Borodin et al.

PROOF. For any y ∈ Y , and by Lemma 4.2, we have
f(X) + λd(S \ {y}, X)
= f(X) + λd(Z,X) + λd(Y \ {y}, X)
≥ f(X) + λd(Z,X) + λd(X).

Note that since φ(S∗) = φ(S) + ∆ < 1
3φ(O), we have

φ(O) = φ(Z) + f(X) + λd(X) + λd(Z,X)
> 3φ(Z) + 3φ(Y) + 3λd(Z, Y) + 3∆. Therefore,

f(X) + λd(S \ {y}, X)
≥ f(X) + λd(Z,X) + λd(X) > 2φ(Z) + 3φ(Y) + 3λd(Z, Y) + 3∆.

This implies there must exist x ∈ X such that φx(S \ {y}) > 1
|X| [2φ(Z) + 3φ(Y) +

3λd(Z, Y) + 3∆].
Combining Lemma 6.1 and 6.2, we can give a lower bound for ∆. We have the fol-

lowing corollary.

COROLLARY 6.3. If φ(S∗) < 1
3φ(O), then we have |Y | > 3 and furthermore ∆ >

1
|Y |−3 [2φ(Z) + 2f(Y) + λd(Y) + 2λd(Z, Y)].

PROOF. By Lemma 6.1, there exists y ∈ Y such that φy(S\{y}) ≤ 1
|Y | [f(Y)+2λd(Y)+

λd(Z, Y)]. Since φ(S∗) < 1
3φ(O), by Lemma 6.2, for this particular y, there exists x ∈ X

such that φx(S \ {y}) > 1
|X| [2φ(Z) + 3φ(Y) + 3λd(Z, Y) + 3∆]. Since |X| = |Y |, we have

∆ > 1
|Y | [2φ(Z) + 2f(Y) + λd(Y) + 2λd(Z, Y) + 3∆]. If |Y | ≤ 3, then it is a contradiction.

Therefore |Y | > 3. Rearranging the inequality, we have ∆ > 1
|Y |−3 [2φ(Z) + 2f(Y) +

λd(Y) + 2λd(Z, Y)].

COROLLARY 6.4. If p ≤ 3, then for any weight or distance perturbation, we can
maintain an approximation ratio of 3 with a single update.

PROOF. This is an immediate consequence of Corollary 6.3 since p = |S| ≥ |Y |.
Given Corollary 6.4, we will assume p > 3 for all the remaining results in this sec-

tion. We first discuss weight-perturbations on elements.

THEOREM 6.5. [TYPE (I)] For any weight increase, we can maintain an approxima-
tion ratio of 3 with a single update.

PROOF. Suppose we increase the weight of s by δ. Since the optimal solution can
increase by at most δ, if ∆ ≥ 1

3δ, then we have maintained a ratio of 3. Hence we
assume ∆ < 1

3δ. If s ∈ S or s 6∈ O, then it is clear the ratio of 3 is maintained. The
only interesting case is when s ∈ O \ S. Suppose, for the sake of contradiction, that
φ(S∗) < 1

3φ(O), then by Corollary 6.3, we have |Y | > 3 and ∆ > 1
|Y |−3 [2φ(Z) + 2f(Y) +

λd(Y)+2λd(Z, Y)]. Since ∆ < 1
3δ, we have δ > 1

|Y |−3 [6φ(Z)+6f(Y)+3λd(Y)+6λd(Z, Y)].

On the other hand, by Lemma 6.1, there exists y ∈ Y such that φy(S \{y}) ≤ 1
|Y | [f(Y)+

2λd(Y) + λd(Z, Y)].
Now considering a swap of s with y, the loss by removing y from S is φy(S\{y}), while

the increase that s brings to the set S \ {y} is at least δ (as s is increased by δ, and the
original weight of s is non-negative). Therefore the marginal gain of the swap of s
with y is φs→y ≥ δ−φy(S \ {y}) and hence φs→y(S) ≥ δ− 1

|Y | [f(Y) + 2λd(Y) +λd(Z, Y)].

However, φs→y(S) ≤ ∆ < 1
3δ. Therefore, we have 1

3δ > δ− 1
|Y | [f(Y)+2λd(Y)+λd(Z, Y)].

This implies δ < 1
|Y | [

3
2f(Y) + 3λd(Y) + 3λ

2 d(Z, Y)], which is a contradiction.

THEOREM 6.6. [TYPE (II)] For a weight decrease of magnitude δ, we can maintain
an approximation ratio of 3 with dlog p−2

p−3

w
w−δ e updates, where w is the weight of the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:15

solution before the weight decrease. In particular, if δ ≤ w
p−2 , we only need a single

update.

PROOF. Suppose we decrease the weight of s by δ. Without loss of generality, we
can assume s ∈ S. Suppose, for the sake of contradiction, that φ(S∗) < 1

3φ(O), then by
Corollary 6.3, we have |Y | > 3 and ∆ > 1

|Y |−3 [2φ(Z) + 2f(Y) + λd(Y) + 2λd(Z, Y)] ≥
1
p−3φ(S). Therefore φ(S∗) > p−2

p−3φ(S). This implies that we can maintain the approxi-
mation ratio with dlog p−2

p−3

w
w−δ e number of updates. In particular, if δ ≤ w

p−2 , we only
need a single update.

We now discuss the weight-perturbations between two elements. We assume that
such perturbations preserve the metric condition. Furthermore, we assume p > 3 for
otherwise, by Corollary 6.3, the ratio of 3 is maintained.

THEOREM 6.7. [TYPE (III)] For any distance increase, we can maintain an approx-
imation ratio of 3 with a single update.

PROOF. Suppose we increase the distance of (x, y) by δ, and for the sake of con-
tradiction, we assume that φ(S∗) < 1

3φ(O), then by Corollary 6.3, we have |Y | > 3

and ∆ > 1
|Y |−3 [2φ(Z) + 2f(Y) + λd(Y) + 2λd(Z, Y)]. Since ∆ < 1

3δ, we have δ >
3

|Y |−3 [2φ(Z) + 2f(Y) + λd(Y) + 2λd(Z, Y)] ≥ 3
p−3φ(S).

If both x and y are in S, then it is not hard to see that the ratio of 3 is maintained.
Otherwise, there are two cases:

(1) Exactly one of x and y is in S, without loss of generality, we assume y ∈ S. Consid-
ering that we swap x with any vertex z ∈ S other than y. Since after the swap, both
x and y are now in S, by the triangle inequality of the metric condition, we have
∆ ≥ (p − 1)δ − φ(S) > (2

3p − 2)δ. Since p > 3, we have ∆ > (2
3p − 2)δ ≥ 2

3δ > 2∆,
which is a contradiction.

(2) Both x and y are outside in S. By Lemma 6.1, there exists z ∈ Y such that φz(S \
{z}) ≤ 1

|Y | [f(Y) + 2λd(Y) + λd(Z, Y)]. Consider the set T = {x, y} with S \ {z}, by
the triangle inequality of the metric condition, we have d(T, S \ {z}) ≥ (p − 1)δ.
Therefore, at least one of x and y, without loss of generality, assuming x, has the
following property: d(x, S \ {z}) ≥ (p−1)δ

2 . Considering that we swap x with z, we
have: ∆ ≥ (p−1)

2 δ− 1
|Y | [f(Y)+2λd(Y)+λd(Z, Y)]. Since ∆ < 1

3δ, we have 1
3δ >

(p−1)
2 δ−

1
|Y | [f(Y)+2λd(Y)+λd(Z, Y)]. This implies that δ < 6

3p−5 ·
1
|Y | [f(Y)+2λd(Y)+λd(Z, Y)].

Since p > 3, we have δ < 1
|Y | [

6
7f(Y) + 12λ

7 d(Y) + 6λ
7 d(Z, Y)], which is a contradiction.

Therefore, φ(S∗) ≥ 1
3φ(O); this completes the proof.

THEOREM 6.8. [TYPE (IV)] For any distance decrease, we can maintain an approx-
imation ratio of 3 with a single update.

PROOF. Suppose we decrease the distance of (x, y) by δ. Without loss of generality,
we assume both x and y are in S, for otherwise, it is not hard to see the ratio of 3
is maintained. Suppose, for the sake of contradiction, that φ(S∗) < 1

3φ(O), then by
Corollary 6.3, we have |Y | > 3 and ∆ > 1

|Y |−3 [2φ(Z) + 2f(Y) + λd(Y) + 2λd(Z, Y)]≥
1
p−3φ(S). If ∆ ≥ δ, then the ratio of 3 is maintained. Otherwise, δ > ∆ ≥ 1

p−3φ(S). By
the triangle inequality of the metric condition, we have φ(S) ≥ (p − 2)δ > p−2

p−3φ(S) >

φ(S), which is a contradiction.
Combining Theorem 6.5, 6.6, 6.7, 6.8, we have the following corollary.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 A. Borodin et al.

Table I: Comparison of Greedy A and Greedy B (N = 50, Synthetic Data)
p OPT GreedyA GreedyB LS AFGreedyA AFGreedyB AFLS AFGreedyB

GreedyA

AF LS
GreedyB

3 4.888 4.295 4.658 4.856 1.138 1.049 1.006 1.084 1.042
4 7.817 7.553 7.632 7.802 1.034 1.024 1.001 1.010 1.022
5 11.274 10.353 10.943 11.255 1.088 1.030 1.001 1.056 1.028
6 15.249 14.49 14.971 15.221 1.052 1.018 1.001 1.033 1.016
7 19.563 18.385 19.211 19.501 1.064 1.018 1.003 1.044 1.015

Table II: Comparison of Greedy A, Greedy B and LS (N = 500, Synthetic Data Set)
p GreedyA GreedyB LS AFGreedyB

GreedyA

AF LS
GreedyB

TimeGreedyA TimeGreedyB Time GreedyA
GreedyB

5 10.49 11.526 11.829 1.099 1.026 4637 ms 15 ms 309.133
10 37.63 38.67 39.135 1.028 1.012 6045 ms 46 ms 131.413
15 77.27 80.345 81.1 1.039 1.009 6919 ms 100 ms 69.19
20 133.82 138.709 139.21 1.036 1.003 9067 ms 195 ms 46.497
25 204.05 210.622 211.25 1.032 1.002 10157 ms 331 ms 30.685
30 292.12 298.2 299 1.020 1.002 11361 ms 488 ms 23.280
35 391.14 399 401.04 1.020 1.005 12247 ms 582 ms 21.042
40 507.12 516.99 518 1.019 1.001 13833 ms 751 ms 18.419
45 639.12 650.51 651.18 1.017 1.001 14591 ms 938 ms 15.555
50 779.74 797.25 798.53 1.022 1.001 16849 ms 1304 ms 12.921
55 944.90 962.24 963.04 1.018 1.000 17117 ms 1500 ms 11.411
60 1117.37 1137.18 1138.27 1.017 1.000 18399 ms 1931 ms 9.528
65 1309.96 1333.53 1334.8 1.017 1.000 18439 ms 2134 ms 8.640
70 1514.75 1537.21 1538.58 1.014 1.000 19171 ms 2441 ms 7.853
75 1733.68 1761.57 1762.854 1.016 1.000 36305 ms 4427 ms 8.200

COROLLARY 6.9. If the initial solution achieves approximation ratio of 3, then for
any weight-perturbation of TYPE (I), (III), (IV); and any weight-perturbation of TYPE
(II) that is no more than 1

p−2 of the current solution for p > 3 and arbitrary for p ≤ 3,
we can maintain the ratio of 3 with a single update.

7. EXPERIMENTS
While we emphasize that the results in this paper are mainly theoretical in nature, we
present some experimental results in this section to provide additional insight about
the relative performance and efficiency of our algorithms. More specifically, we wish to
understand the differences between the two types of greedy algorithms (i.e. incremen-
tally adding edges vs incrementally adding vertices) and how much local search can
improve upon such greedy algorithms. To the extent that we can determine optimal
solutions (i.e. for small problem instances), we want to understand how well these con-
ceptually simple algorithms approximate optimality in a sense that goes beyond worst
case analysis. All of our experiments are with respect to various cardinality constraints
p.

In section 7.1, we will first consider the relative performance of two greedy algo-
rithms and local search with respect to a synthetic data set. In section 7.2, we in-
troduce two small algorithmic improvements (one for each of the greedy algorithms)
that do not impact the approximation ratios but allow for a fairer comparison of the
algorithms. This is followed in section 7.3 by experiments for a well-known dataset
(LETOR) that has been actively used for different information and machine learning
problems and especially for ”learn to rank” research [Qin et al. 2010]. In section 7.4,
we again consider the synthetic data set as in section 7.1 and make some observations
on the performance of local search for dynamically changing data.

For the synthetic data as well as the LETOR data set, we consider the max-sum
diversification problem with modular set functions and a cardinality constraint p so
as to be able to compare the greedy and local search algorithms as well as comparing
our greedy algorithm with the algorithm of Gollapudi and Sharma [2009] whose work
motivated this paper. We will refer to their diversification algorithm as Greedy A. We
recall that their algorithm consists of a reduction to the max-sum p-dispersion prob-
lem and then uses the Hassin, Rubenstein and Tamir [1997] algorithm that greedily

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:17

Table III: Comparison of (Improved) Greedy A, Greedy B and LS (N = 50, LETOR
Data Set)

p OPT GreedyA GreedyB LS AFGreedyA AFGreedyB AFLS AFGreedyB
GreedyA

AF LS
GreedyB

3 7.088 6.140 7.088 7.088 1.154 1.000 1.000 1.154 1.000
4 10.020 10.020 10.000 10.020 1.000 1.002 1.000 0.998 1.002
5 12.571 12.470 12.570 12.571 1.008 1.000 1.000 1.008 1.000
6 15.315 15.060 15.060 15.315 1.017 1.017 1.000 1.000 1.016
7 18.540 17.290 17.949 18.540 1.072 1.033 1.000 1.038 1.032

Table IV: Comparison of (Improved) Greedy A, Greedy B and LS (N = 370, LETOR
Data Set)

p GreedyA GreedyB LS AFGreedyB
GreedyA

AF LS
GreedyB

TimeGreedyA TimeGreedyB Time GreedyA
GreedyB

5 13.996 13.999 13.999 1.000 1.000 2365 ms 426 ms 5.552
10 37.570 37.970 37.970 1.011 1.000 2370 ms 504 ms 4.702
15 69.590 71.600 71.600 1.029 1.000 2694 ms 421 ms 6.399
20 110.900 113.640 113.640 1.025 1.000 3280 ms 470 ms 6.979
25 154.590 162.400 162.480 1.051 1.000 3223 ms 587 ms 5.491
30 192.260 220.450 220.730 1.147 1.001 4364 ms 785 ms 5.559
35 253.790 288.490 288.970 1.137 1.002 4762 ms 758 ms 6.282
40 317.290 366.520 367.215 1.155 1.002 4599 ms 864 ms 5.323
45 397.230 454.500 455.100 1.144 1.001 6088 ms 1028 ms 5.922
50 486.440 552.500 553.150 1.136 1.001 5323 ms 1155 ms 4.609
55 584.830 660.430 661.370 1.129 1.001 7360 ms 1536 ms 4.792
60 686.970 778.140 779.220 1.133 1.001 5585 ms 1684 ms 3.317
65 805.520 905.660 906.880 1.124 1.001 7349 ms 1855 ms 3.962
70 930.600 1042.970 1044.120 1.121 1.001 5381 ms 2041 ms 2.636
75 1054.940 1189.970 1191.360 1.128 1.001 8480 ms 2212 ms 3.834

Table V: Comparison of (Improved) Greedy A, Greedy B and LS (N = 50, LETOR Data
Set, Avg. over 5 Queries)

p AFGreedyA AFGreedyB AFLS AFGreedyB
GreedyA

AF LS
GreedyB

3 1.030 1.000 1.000 1.03 1.000
4 1.009 1.004 1.000 1.004 1.004
5 1.020 1.012 1.000 1.007 1.012
6 1.059 1.018 1.000 1.04 1.018
7 1.096 1.022 1.000 1.07 1.022

chooses edges yielding an approximation ratio of 2. We will experimentally compare
the performance and time complexity of their algorithm against our greedy by vertices
algorithm which also has approximation ratio 2. We will refer to our greedy algorithm
as Greedy B. We also consider how much a limited amount of local search improves the
results obtained by our Greedy B algorithm. That is, we follow Greedy B by a 1-swap
local search algorithm that searches for any improvement in each iteration. We refer
to this local search algorithm as LS with the understanding that it is being initialized
by Greedy B and terminated when either a local maximum is reached or when the
algorithm runs for ten times the time of the Greedy B initialization. More precisely,
the elapsed time is polled after each possible swap is considered and the algorithm
terminates once this time exceeds 10 times the running time of the Greedy B running
time.

7.1. Experiments with synthetic data sets
Our synthetic data sets are generated by uniformly at random assigning each vertex
v (i.e. element of the metric space) a value f(v) ∈ [0, 1], and for each distance d(u, v)
assigning a value in [1,2]. We note that the {1,2}metric is the metric relative to which
the suggested hardness of approximation is derived. We construct such data sets for
various values of N , the size of the universe, and for p, the cardinality constraint. In
all cases, we set λ = .2, where λ is the parameter defining the relative weight between

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 A. Borodin et al.

Table VI: Comparison of (Improved) Greedy A, Greedy B and LS (N = 370, LETOR
Data Set, Avg. over 5 Queries)

p AFGreedyB
GreedyA

AF LS
GreedyB

T imeGreedyA T imeGreedyB T imeGreedyA
GreedyB

5 1.005 1 1714 303 5.657
10 1.016 1 1997 289 6.910
15 1.036 1 2387 381 6.265
20 1.056 1.002 2767 522 5.301
25 1.047 1.003 3280 574 5.714
30 1.086 1.003 2959 537 5.510
35 1.081 1.003 3387 622 5.445
40 1.105 1.003 3208 704 4.557
45 1.119 1.002 4154 837 4.963
50 1.146 1.002 4126 1035 3.986
55 1.141 1.002 5559 1298 4.283
60 1.156 1.002 5059 1411 3.585
65 1.152 1.002 5722 1534 3.730
70 1.157 1.002 4766 1691 2.818
75 1.151 1.001 7272 2180 3.336

the quality f(S) of a set S and its max-sum dispersion d(S) =
∑
u,v∈S d(u, v). For small

N , we can compute the optimal value and can therefore compute and compare the
experimental approximation ratios for Greedy A, Greedy B and LS.

In Table 1 (resp. Table 2), we present results on the relative performance and time
elapsed for Greedy A, Greedy B, and LS for N = 50 (resp. N = 500). For each setting of
the N, p parameters we ran 5 trials and averaged the results. We observe these aver-
age values for each parameter setting for an algorithm ALG, and report the “observed
average approximation ratio”, namely OPT−average

ALG−average , denoted AFALG for the N = 50

data where we are able to compute the optimum value. Similarly, we denote the “rel-
ative average approximation” between two algorithms as AFALG2

ALG1

. We also report the

average time elapsed 6 for each algorithm, denoted as TALG. We make the following
observations based on these trials:

— In all cases, the Greedy algorithms and LS perform quite well with regard to the
optimum (when it is computed); this is not surprising as it is often the case that
algorithms perform well for random or “real” data in contrast to worst case approx-
imation ratios. More specifically, for N = 50 and p ≤ 7, the approximation ratio for
Greedy B ranges (roughly) between 1.02 and 1.05 while the approximation ratio for
LS ranges between 1.002 and 1.007.

— As expected, the time bounds for Greedy B are substantially better than for Greedy
A as Greedy B is iterating over all vertices rather than over all edges as in Greedy
A.

— In all cases (for average performance), Greedy B outperforms Greedy A. For N =
500, the relative improvement appears generally to be decreasing as p increases,
where for the largest values of p = 70 and 75, the relative improvement is roughly
1.5%. We observed in our experiments that the relative improvement was 2.5% if
one just compared the dispersion results d().

— As we would expect, local search (as defined to always stop within 10 times the
running time of Greedy B) can sometimes improve upon the results of Greedy B.

6The time is reported in milliseconds (ms), with algorithms implemented in Java running on a Macbook Pro
with 2.4 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:19

Table VII: Comparison of documents being returned by (Improved) Greedy A, Greedy
B and LS for the top 50 document LETOR data set

Greedy A Greedy B LS OPT N p
4 4 4 4

29 29 29 29 50 3
46 24 24 24

Greedy A Greedy B LS OPT N p
4 4 4 4

29 29 29 29 50 4
24 24 24 24
12 12 12 12

Greedy A Greedy B LS OPT N p
4 4 4 4

29 29 29 29
24 24 24 24 50 5
12 12 12 12
46 49 49 49

Greedy A Greedy B LS OPT N p
4 4 4 4

29 29 29 29
24 24 24 24 50 6
12 12 12 12
46 46 46 46
49 49 35 35

Greedy A Greedy B LS OPT N p
4 4 4 4

29 29 29 29
24 24 24 24
12 12 12 12 50 7
0 49 37 37
8 46 46 46
14 35 35 35

For the small data set, the improvement of LS ranges (roughly) between 2% and
4%. For the large data set, as p increases, LS becomes less effective. In particular,
for p ≥ 40, LS improves upon Greedy B by at most .1%.

7.2. Improving Greedy A and Greedy B
The performance of Greedy A for odd values of p is marred by the fact, that as defined,
Greedy A chooses an arbitrary last vertex rather than the best last vertex. For larger p,
this does not have a significant impact but it is perhaps best to ignore small odd values
of p. The performance of Greedy B is marred by the fact, that as defined, it chooses its
first vertex arbitrarily rather than choosing a best pair. Our results for average perfor-
mance raises the question as to whether or not Greedy B might outperform Greedy A
for all inputs, that is, for all parameter settings. In order to make the comparison fair,
for Greedy A we will choose the best final node rather than an arbitrary node when
p is odd, and for Greedy B, we will start with the best pair of nodes rather than an
arbitrary node. These minor changes do not effect the approximation ratios but can
improve the observed performance of the algorithms. Using these improved greedy al-
gorithms we found one trial (for N = 50, p = 4) where Greedy A outperformed Greedy
B. While running the algorithms with these improvements does not alter the basic ob-
servations above, we will hereafter use the improved greedy algorithms for the LETOR
data set experiments that now follow.

7.3. Experiments with the LETOR datasets
The LETOR datasets are well known datasets that have been mainly used for research
on learning to rank problems. For our experiments, we use MSLR-WEB10K7 which is
a random sampling of 10,000 queries. Each item in a LETOR data set represents a
document related to a query. The relevance judgments are obtained from a retired

7 http://research.microsoft.com/en-us/projects/mslr/download.aspx

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 A. Borodin et al.

labeling set of a commercial web search engine (Microsoft Bing), which take 5 values
from 0 (irrelevant) to 4 (perfectly relevant). The features are basically extracted by the
provider of the LETOR dataset, and are those widely used in the research community.
As such, each item u has an integral relevance score r(u) (relative to the query) ranging
from 0 to 5, a set of feature attributes with their respective values, and a query id.
Thus, we take (as ground truth), the quality score f(S) =

∑
u∈S r(u). We define (and

take as ground truth) a metric distance f(u, v) function given by the cosine similarity
between the feature vectors for u and v. For Table III and Table IV, we chose one
data set (chosen at random from the original LETOR dataset) and created a data set
consisting of the top (by relevance score) 50 and top 370 documents. We applied the
(Improved) Greedy A, B and limited local search algorithms to these two data sets for
various settings of the cardinality parameter p. For the smaller 50 document data set
we also computed the optimal values. We observe some qualitative differences between
these “real data” experiments and the experiments for synthetic data.

— For the small data set, while the (Improved) Greedy A is slightly better for p =
4, (Improved) Greedy B is better in the other cases with a reasonably substantial
advantage for p = 3 and p = 7.

— LS is able to find an optimal solution for all the small data set experiments.
— For the larger 370 document set, in contrast to the synthetic data experiments, the

advantage of (Improved) Greedy B over Greedy A is more pronounced for larger
values of p, the cardinality constraint. The advantage of Greedy B over Greedy A
rises to about 15% and then levels off at around 12%.

— For the larger data set, the improvement due to local search never exceeds .3%.

We also ran 5 different data sets (i.e. generated by 5 different queries) and aver-
aged the results with respect to both the top 50 results and the top 370 results as
shown in Table V and Table VI respectively. Note that in these tables, we are omitting
the objective function values that have been previously included in other tables. We
are averaging our results over different LETOR datasets (i.e. queries) and therefore
reporting on the average objective function values wont be fully meaningful. These av-
erage results support what we found in Table III and Table IV, namely that (Improved)
Greedy B significantly outperforms (Improved) Greedy A and that limited local search
provides a very small advantage over (Improved) Greedy B. In Table VII, we present
the difference in the documents being returned for the 50 document data set. Here the
OPT documents are the true set of optimal documents with respect to the diversifi-
cation function applied to the values of the document relevance scores and the cosine
distance function. As an example, consider the results for the N = 50, p = 7 setting
of the parameters. Here OPT and (Improved) Greedy B differ on one document while
(Improved) Greedy A differs on 3 documents.

7.4. Approximation Ratio in Dynamic Updates
For dynamic updates, we use same synthetic data as in Section 7.1. We have three
different dynamically changing environments:

(1) VPERTURBATION: each perturbation is a weight change on an item; that is, an item
(vertex) u is randomly chosen and its value is reset uniformly at random from [0, 1].

(2) EPERTURBATION: each perturbation is a distance change between two items; that
is, a pair of distinct items {u, v} is randomly chosen and the distance d(u, v) is reset
uniformly at random from [1, 2].

(3) MPERTURBATION: each perturbation is one of the above two with equal probability.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:21

Fig. 1: Approximation Ratio in Dynamic Updates

For each of the environments above and every value of λ, we start with our greedy
solution (a 2-approximation) and run 20 steps of simulation, where each step consists
of a random weight change of the stated type, followed by a single application of the
oblivious update rule. We repeat this 100 times and record the worst approximation ra-
tio occurring during these 100 updates. The results are shown in Fig. 1; the horizontal
axis measures λ values, and the vertical axis measures the approximation ratio.

We have the following observations:

(1) In any dynamically changing environment, the maintained ratio is well below the
provable ratio of 3. The worst observed ratio is about 1.11.

(2) The maintained ratios are decreasing to 1 for increasing λ ≥ 0.6.

From the experiment, we see that the simple local search update rule seems effective
for maintaining a good approximation ratio in a dynamically changing environment.

8. CONCLUSION
We study the max-sum diversification with monotone submodular set functions and
give a natural 2-approximation greedy algorithm for the problem when there is a car-
dinality constraint. We further extend the problem to matroid constraints and give
a 2-approximation local search algorithm for the problem. We examine the dynamic
update setting for modular set functions, where the weights and distances are con-
stantly changing over time and the goal is to maintain a solution with good quality
with a limited number of updates. We propose a simple update rule: the oblivious (sin-
gle swap) update rule, and show that if the weight-perturbation is not too large, we can
maintain an approximation ratio of 3 with a single update. The diversification problem
has many important applications and there are many interesting future directions. Al-
though in this paper we restricted ourselves to the max-sum objective, there are many
other well-defined notion of diversity that can be considered, see for example [Chandra
and Halldórsson 1996] and [Gollapudi and Sharma 2009]. The max-sum case can be
also studied for specific metrics such as the `1-norm in Euclidean space as considered
by Fekete and Meijer [2003] who provide a linear time optimal algorithm for constant
p and a PTAS when p is part of the input. Their PTAS algorithm also provides a (2+ε)-
approximation for the `2-norm. Their algorithms exploit the geometric nature of the
metric space. Other specific metric spaces are also of interest.

In the general matroid case, the greedy algorithm given in Section 4 fails to achieve
any constant approximation ratio, but one can also consider other “greedy-like algo-
rithms” such as the partial enumeration greedy method used (for example) successfully
for monotone submodular maximization subject to a knapsack constraint in Sviridenko

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 A. Borodin et al.

[2004]? Can such a technique also be used to provide an approximation for our diver-
sification problem? Can our results be extended to provide a constant approximation
for the diversification problem subject to a knapsack constraint? In a dynamic update
setting, we only considered the diversification problem for a modular set function sub-
ject to a cardinality constraint. Here, we used the oblivious single swap update rule to
maintain a 3-approximation. It is interesting to see if it is possible to maintain a better
ratio than 3 with a limited number of updates, by larger cardinality swaps, and/or by
a non-oblivious update rule. We leave this as an open question. It is also an open ques-
tion as to whether we can maintain a good solution subject to an arbitrary matroid
constraint. The approximation ratio and application of diversification maximization in
a distributed setting is pursued in a recent paper by Abbasi-Zadeh et al [2017].

Finally, a crucial property used throughout our results is the triangle inequality. In
our conference paper [Borodin et al. 2012], we asked the question as to whether we
can relate the approximation ratio to the parameter of a relaxed triangle inequality?
Sydow [2014] provides a partial answer to this question showing that the matching
based algorithm of Hassin et al [1997] can be applied to an α ≥ 1 relaxed metric (where
d(x, y) + d(y, z) ≥ αd(x, z)) resulting in a (tight) 2

α approximation ratio for the car-
dinality constrained max-sum dispersion problem. Independently, Abbasi-Zadeh and
Ghadiri [2015] obtain the 2

α approximation ratio for the cardinality constraint, and a
2
α2 approximation ratio for an arbitrary matroid constraint.

REFERENCES
Zeinab Abbassi, Vahab S. Mirrokni, and Mayur Thakur. 2013. Diversity maximization under matroid con-

straints. In The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2013, Chicago, IL, USA, August 11-14, 2013. 32–40.

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009. Diversifying search results.
In WSDM. 5–14.

Noga Alon. 2014. (2014). Personal communication.
Noga Alon, Sanjeev Arora, Rajsekar Manoikaran, Dana Moshkovitz, and Omri Weinstein. 2011. Inapprox-

imability of Densest κ-Subgraph from Aveage Case Harsdness. (2011). Unpublished manuscript.
Nikhil Bansal, Kamal Jain, Anna Kazeykina, and Joseph Naor. 2010. Approximation Algorithms for Diver-

sified Search Ranking. In ICALP (2). 273–284.
Benjamin E. Birnbaum and Kenneth J. Goldman. 2009. An Improved Analysis for a Greedy Remote-Clique

Algorithm Using Factor-Revealing LPs. Algorithmica 55, 1 (2009), 42–59.
Alan Borodin, Dai Le, and Yuli Ye. 2014. Weakly Submodular Functions. CoRR abs/1401.6697 (2014).
Allan Borodin, Hyun Chul Lee, and Yuli Ye. 2012. Max-Sum diversification, monotone submodular functions

and dynamic updates. In ACM Symposium on Principles of Database Systems (PODS). 155–166.
Christina Brandt, Thorsten Joachims, Yisong Yue, and Jacob Bank. 2011. Dynamic ranked retrieval. In

WSDM. 247–256.
Richard A. Brualdi. 1969. Comments on Bases in Dependence Structures. Bulletin of the Australian Mathe-

matical Society 1, 02 (1969), 161–167.
Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2011. Maximizing a Monotone Submod-

ular Function Subject to a Matroid Constraint. SIAM J. Comput. 40, 6 (2011), 1740–1766.
Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based reranking for reordering docu-

ments and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval (SIGIR ’98). ACM, New York, NY, USA, 335–336.

Barun Chandra and Magnús M. Halldórsson. 1996. Facility Dispersion and Remote Subgraphs. In Pro-
ceedings of the 5th Scandinavian Workshop on Algorithm Theory. Springer-Verlag, London, UK, 53–65.
http://portal.acm.org/citation.cfm?id=645898.756652

Barun Chandra and Magnús M. Halldórsson. 2001. Approximation Algorithms for Dispersion Problems. J.
Algorithms 38, 2 (2001), 438–465.

Harr Chen and David R. Karger. 2006. Less is more: probabilistic models for retrieving fewer relevant
documents. In SIGIR. 429–436.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Max-Sum Diversification, Monotone Submodular Functions and Dynamic Updates A:23

Andrzej Czygrinow. 2000. Maximum dispersion problem in dense graphs. Oper. Res. Lett. 27, 5 (2000), 223–
227.

Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl. 2010. DivQ: diversification for key-
word search over structured databases. In Proceeding of the 33rd international ACM SIGIR conference
on Research and development in information retrieval (SIGIR ’10). ACM, 331–338.

Zhicheng Dou, Sha Hu, Kun Chen, Ruihua Song, and Ji-Rong Wen. 2011. Multi-dimensional search result
diversification. In WSDM. 475–484.

Marina Drosou and Evaggelia Pitoura. 2009. Diversity over Continuous Data. IEEE Data Eng. Bull. 32, 4
(2009), 49–56.

Marina Drosou and Evaggelia Pitoura. 2010. Search result diversification. SIGMOD Record 39, 1 (2010),
41–47.

Erhan Erkut. 1990. The discrete p-dispersion problem. European Journal of Operational Research 46, 1
(May 1990), 48–60.

Erhan Erkut and Susan Neuman. 1989. Analytical models for locating undesirable facilities. European Jour-
nal of Operational Research 40, 3 (June 1989), 275–291.

Sándor P. Fekete and Henk Meijer. 2003. Maximum Dispersion and Geometric Maximum Weight Cliques.
Algorithmica 38, 3 (2003), 501–511.

M. Fisher, G. Nemhauser, and L. Wolsey. 1978. An analysis of the approximations for maximizing submod-
ular set functions-II. Mathematical Programming Studies 8 (1978), 73–87.

Sreenivas Gollapudi and Aneesh Sharma. 2009. An axiomatic approach for result diversification. In World
Wide Web Conference Series. 381–390.

Magnús M. Halldórsson, Kazuo Iwano, Naoki Katoh, and Takeshi Tokuyama. 1995. Finding
subsets maximizing minimum structures. In Symposium on Discrete Algorithms. 150–159.
DOI:http://dx.doi.org/10.1145/313651.313683

Refael Hassin, Shlomi Rubinstein, and Arie Tamir. 1997. Approximation algorithms for maximum disper-
sion. Oper. Res. Lett. 21, 3 (1997), 133–137.

David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social
network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’03). ACM, New York, NY, USA, 137–146.

Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V. Vazirani. 1998. On Syntactic versus Com-
putational Views of Approximability. SIAM J. Comput. 28, 1 (1998), 164–191.

Subhash Khot. 2006. Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite Clique.
SIAM J. Comput. 36, 4 (2006), 1025–1071.

Michael J. Kuby. 1987. Programming Models for Facility Dispersion: The p-Dispersion and Maxisum Dis-
persion Problems. Geographical Analysis 19, 4 (1987), 315–329.

Hui Lin and Jeff Bilmes. 2010. Multi-document Summarization via Budgeted Maximization of Submodular
Functions. In HLT-NAACL. 912–920.

Hui Lin and Jeff Bilmes. 2011. A Class of Submodular Functions for Document Summarization. In North
American chapter of the Association for Computational Linguistics/Human Language Technology Con-
ference (NAACL/HLT-2011). Portland, OR. (long paper).

Hui Lin, Jeff Bilmes, and Shasha Xie. 2009. Graph-based Submodular Selection for Extractive Summariza-
tion. In Proc. IEEE Automatic Speech Recognition and Understanding (ASRU). Merano, Italy.

Ziyang Liu, Peng Sun, and Yi Chen. 2009. Structured Search Result Differentiation. PVLDB 2, 1 (2009),
313–324.

Raghu Meka, Aaron Potechin, and Avi Wigderson. 2015. Sum-of-squares Lower Bounds for Planted Clique.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 87–96.

Enrico Minack, Wolf Siberski, and Wolfgang Nejdl. 2011. Incremental diversification for very large sets: a
streaming-based approach. In SIGIR. 585–594.

G. Nemhauser, L. Wolsey, and M. Fisher. 1978. An analysis of the approximations for maximizing submod-
ular set functions-I. Mathematical Programming 14 (1978), 265–294.

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection for research on learning
to rank for information retrieval. Inf. Retr. 13, 4 (2010), 346–374.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse rankings with multi-
armed bandits. In ICML. 784–791.

Davood Rafiei, Krishna Bharat, and Anand Shukla. 2010. Diversifying web search results. In WWW. 781–
790.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 A. Borodin et al.

S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. 1994. Heuristic and Special Case Algorithms for Dispersion
Problems. Operations Research 42, 2 (March-April 1994), 299–310.

Rodrygo L. T. Santos, Craig Macdonald, and Iadh Ounis. 2011. Intent-aware search result diversification.
In SIGIR. 595–604.

Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer.
Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. 2010. Learning optimally diverse rankings

over large document collections. In ICML. 983–990.
Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject to a knapsack constraint.

Oper. Res. Lett. 32, 1 (2004), 41–43.
Marcin Sydow. 2014. Improved Approximation Guarantee for Max Sum Diversification with Parameterised

Triangle Inequality. In Foundations of Intelligent Systems - 21st International Symposium, ISMIS 2014,
Roskilde, Denmark, June 25-27, 2014. Proceedings. 554–559.

Marcos R. Vieira, Humberto Luiz Razente, Maria Camila Nardini Barioni, Marios Hadjieleftheriou, Divesh
Srivastava, Caetano Traina Jr., and Vassilis J. Tsotras. 2011a. DivDB: A System for Diversifying Query
Results. PVLDB 4, 12 (2011), 1395–1398.

Marcos R. Vieira, Humberto Luiz Razente, Maria Camila Nardini Barioni, Marios Hadjieleftheriou, Divesh
Srivastava, Caetano Traina Jr., and Vassilis J. Tsotras. 2011b. On query result diversification. In ICDE.
1163–1174.

D. W. Wang and Yue-Sun Kuo. 1988. A study on two geometric location problems. Inf. Process. Lett. 28
(August 1988), 281–286. Issue 6.

Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It takes variety to make a world: diversification
in recommender systems. In Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology (EDBT ’09). 368–378.

Yisong Yue and Thorsten Joachims. 2008. Predicting diverse subsets using structural SVMs. In ICML. 1224–
1231.

Sepehr Abbasi Zadeh and Mehrdad Ghadiri. 2015. Max-Sum Diversification, Monotone Submodular Func-
tions and Semi-metric Spaces. CoRR abs/1511.02402 (2015).

Sepehr Abbasi Zadeh, Mehrdad Ghadiri, Vahab S. Mirrokni, and Morteza Zadimoghaddam. 2017. Scalable
Feature Selection via Distributed Diversity Maximization. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA. 2876–2883.

ChengXiang Zhai, William W. Cohen, and John D. Lafferty. 2003. Beyond independent relevance: methods
and evaluation metrics for subtopic retrieval. In SIGIR. 10–17.

Feng Zhao, Xiaolong Zhang, Anthony K. H. Tung, and Gang Chen. 2011. BROAD: Diversified Keyword
Search in Databases. PVLDB 4, 12 (2011), 1355–1358.

Xiaojin Zhu, Andrew B. Goldberg, Jurgen Van Gael, and David Andrzejewski. 2007. Improving Diversity in
Ranking using Absorbing Random Walks. In HLT-NAACL. 97–104.

A. THE GREEDY ALGORITHM APPLIED TO DIVERSIFICATION WITH A MATROID
CONSTRAINT

We observe that for the more general matroid constraint diversification problem, the
greedy algorithm in section 4 no longer achieves any constant approximation ratio.
More specifically, consider the max-sum diversifciation problem as in Gallopudi and
Sharma [Gollapudi and Sharma 2009] (that is, for a modular quality function f()) but
now subject to a partition matroid constraint. Partition the universe into A = {a, b}
with cardinality constraint 1 and C = {c1, c2, . . . cr} with no cardinality constraint.
Let the objective be f(S) =

∑
u∈S qu +

∑
u,v∈S d(u, v) where the quality and distance

functions are defined as follows: q(a) = ` + ε, q(x) = 0 for all x 6= a, and for all x,
d(b, x) = `, d(u, x) = ε for all u 6= b. The greedy algorithm (starting with a or with the
best pair (a, b) will yield f(S) = f(C∪{a}) = `+ε+ε ·

(
r
2

)
+rε while the optimal solution

will be f(C ∪ {b}) = r · `+ ε ·
(
r
2

)
. Hence the approximation can be made arbitrarily bad

by choosing ε = 1

(r
2)

and taking r sufficiently large.

By the reduction in [Gollapudi and Sharma 2009] to the metric dispersion prob-
lem, the above example shows that the greedy algorithm will also suffer the same
unbounded approximation ratio for the metric dispersion problem.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

