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We consider auctions in which greedy algorithms, paired with first-price or critical-price payment rules, are
used to resolve multi-parameter combinatorial allocation problems. We study the price of anarchy for social
welfare in such auctions. We show for a variety of equilibrium concepts, including Bayes-Nash equilibrium,
low-regret bidding sequences, and asynchronous best-response dynamics, the resulting price of anarchy
bound is close to the approximation factor of the underlying greedy algorithm.

1. INTRODUCTION
The field of algorithmic mechanism design studies systems that depend upon interac-
tion with participants whose behaviour is motivated by their own goals, rather than
those of a designer. Relevant solutions must therefore merge the computational con-
siderations of computer science with the game-theoretic insights of economics. The fo-
cus of this paper is the multi-parameter domain of combinatorial allocation problems
when the goal is to assign m objects to n agents in order to maximize the social wel-
fare, subject to arbitrary downward-closed feasibility constraints. This class includes
all combinatorial auction problems that allow single-minded declarations including
multi-unit combinatorial auctions, unsplittable flow problems, and many others.

For the goal of optimizing social welfare, the celebrated Vickrey-Clarke-Groves
(VCG) mechanism addresses game-theoretic issues in a strong sense. In the absense
of collusion, it induces full cooperation (ie. truthtelling) as a dominant strategy. How-
ever, the VCG mechanism requires that the underlying welfare-maximization problem
be solved exactly. For all but the simplest settings, this optimality requirement is un-
desirable: exact maximization may be computationally intractible, it may require an
unrealistic amount of communication from the buyers, and the resulting winner de-
termination rules may be difficult to explain to a typical participant. One way to by-
pass these complexity issues is to design new, specially-tailored mechanisms for spe-
cific assignment problems. Indeed, there has been significant progress in designing
dominant strategy incentive compatible (DSIC) alternatives to the VCG mechanism.
While this venture has been largely successful in settings where agent preferences are
single-dimensional [Archer and Tardos 2001; Briest et al. 2005; Lehmann et al. 1999;
Mu’alem and Nisan 2008], general settings have proven more difficult. It has been
shown that the approximation ratios achieveable by DSIC mechanisms and their non-
incentive compatible counterparts exhibit a large asymptotic gap for some problems
[Papadimitriou et al. 2008; Dobzinski 2011; Dughmi and Vondrák 2011; Dobzinski and
Vondrak 2012].
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Alternatively, one might study classes of “natural” allocation algorithms, that ap-
pear intuitive as auction allocation rules, with the hope that they have desireable
incentive properties when implemented as mechanisms. As it turns out, for many
combinatorial allocation problems, conceptually simple deterministic algorithms (e.g.
greedy algorithms) meet or approach the best-known approximation factors subject
to computational constraints [Lehmann et al. 1999; Mu’alem and Nisan 2008; Briest
et al. 2005; Babaioff and Blumrosen 2004]. These natural methods tend to be com-
putationally efficient and easy for bidders to understand, which are desirable proper-
ties in auctions. Unfortunately, such algorithms are not, in general, DSIC [Lehmann
et al. 1999; Borodin and Lucier 2010]. Rather than abandoning these methods in fa-
vor of other, potentially more complex, mechanisms, we are pursuing an alternative
approach. Namely, rather than striving for dominant strategy truthfulness, it may be
acceptable for a system to admit strategic manipulation, so long as the designer’s objec-
tives are met after such manipulation occurs. To this end, we explore the performance
of mechanisms at equilibria of bidder behavior, given an appropriate model of beliefs.
Broadly speaking, our motivating question is: When can an algorithm be implemented
as a mechanism that achieves high social welfare at every equilibrium?1 And how ro-
bust are the resulting mechanisms to variations of the equilibrium concept?

We demonstrate that for combinatorial allocation problems, any “greedy-like” ap-
proximation algorithm can be converted into a mechanism that achieves nearly the
same approximation factor at every equilibrium of bidder behaviour. Our analysis is
very general, and applies to a range of different equilibrium concepts, including pure
and mixed Nash equilibria, Bayes-Nash (correlated) equilibria, no-regret equilibria,
and iterated myopic best-response. We are thus able to decouple computational issues
from incentives issues for this class of algorithms, as one can design a greedy algo-
rithm without considering its economic implications, and then apply a straightforward
pricing scheme in order to achieve good performance at equilibrium.

Performance of games at equilibrium has been studied extensively in the algorithmic
game theory literature as the price of anarchy (POA) of a given game 2: the ratio be-
tween the optimal outcome and the worst-case outcome at any equilibrium [Papadim-
itriou 2001]. Put into these terms, our goal is to convert an algorithm with approxi-
mation factor c ≥ 1 into a mechanism whose price of anarchy is not much larger than
c.

This paper is a synthesis and revision of results in [Lucier and Borodin 2010], [Lucier
2010], and results in the first author’s thesis [Lucier 2011]. The paper is organized as
follows. The remainder of this section outlines our results and relates our work to re-
cent papers in this area. Section 2 defines the necessary concepts and applications for
our results. Section 3 introduces the concept of strongly loser-independence (general-
izing the loser-independence concept from [Chekuri and Gamzu 2009]) which becomes
the key property of greedy algorithms that we will exploit. Sections 4 and 5 analyze
(respectively) price of anarchy results for first-price and critical-price mechanisms. In
Sections 6 and 7 we consider solution concepts for repeated games: under regret mini-
mization and best-response dynamics, respectively. Section 8 concludes with some open
problems.

1Dominant strategy truthfulness of an approximation mechanism is conceptually stronger as a solution con-
cept than that of a mechanism that approximates the optimal social welfare at every equilibrium. However,
as noted elsewhere [Christodoulou et al. 2008], Bayesian Nash equilibrium is not, strictly speaking, a relax-
ation of dominant strategy truthfulness. There exist truthful mechanisms whose approximation ratios are
not preserved at all Nash equilibria, such as the famous Vickrey auction.
2For the purpose of this paper, we shall not consider cost minimization problems. We note that the price of
anarchy concept was introduced in terms of cost minimization games but to the best of our knowledge the
only price of anarchy results for mechanism induced games apply to maximization problems.
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1.1. Our Results
The basic question of algorithmic mechanism design is this: when can computation-
ally efficient algorithms be converted into mechanisms that preserve approximation
bounds with respect to truthfulness or POA results? We address the price of anarchy
considerations with respect to social welfare maximization for a broad class of allo-
cation problems. In the full information and Bayesian setting, we study the price of
anarchy for first price and critical price mechanisms derived from greedy algorithms.
Roughly speaking (and in contrast to results regarding approximation and truthful
mechanisms) we are able to show that there is often little or no loss from the approx-
imation ratio of a greedy algorithm to the corresponding mechanism price of anarchy.
We also study the long term behavior of the use of these mechanisms when used in
repeated games.

One-Shot Auctions.. We first consider one-shot auctions, in which the allocation prob-
lem is resolved only once. Following Christodoulou et al. [Christodoulou et al. 2008],
we focus our attention on the standard (in economics) incomplete information setting,
where the appropriate equilibrium concept is Bayes-Nash equilibrium. That is, we as-
sume that agents’ preferences are private, but drawn independently from commonly-
known prior distributions, and that players apply strategies at equilibrium given this
partial knowledge. We pose the question: can a given black-box approximation algo-
rithm be converted into a mechanism that approximately preserves its approximation
ratio at every Bayes-Nash Equilibrium? We show that for a broad class of greedy algo-
rithms, the answer is yes.

Theorem (informal): Suppose A is a greedy c-approximate allocation rule for a
combinatorial allocation problem. Then the auction that uses A to choose allocations,
and uses a pay-your-bid payment scheme, has a Bayes-Nash Price of Anarchy of at
most c+O(c2/ec).

We also show that the small (and exponentially decreasing) loss in our price of an-
archy bound is necessary, by giving an example (for every c ≥ 2) where the resulting
price of anarchy is at least c+ Ω( c

e4c ).
We note that the mechanisms we consider are all prior-free. Thus, as in the full-

information case, while we assume the existence of type distributions in order to model
rational agent behaviour, our mechanism need not be aware of these distributions.
In the special case that each player’s type distribution is a point mass, Bayes-Nash
equilibrium reduces to standard Nash equilibrium. Our mechanisms therefore also
preserve approximation ratios at every (mixed or pure) Nash equilibrium of the full
information game. Our analysis also extends to the more general class of coarse cor-
related equilibria. For the case of pure Nash equilibrium, our price of anarchy bound
improves to c.

As is standard, our bounds on the Bayesian price of anarchy will assume that agent
types are distributed independently. However, we show that a weaker bound of O(c)
holds when agent types are drawn from an arbitrary distribution over the space of all
type profiles. This result applies to greedy algorithms that are non-adaptive, as de-
scribed in Section 2.4. Thus, even if agent types are arbitrarily correlated, our mecha-
nisms yield performance at equilibrium asymptotically matching that of the underly-
ing allocation algorithm.

A similar bound also applies to mechanisms that use the critical-price payment
scheme, which is a natural extension of second-price payments in single-item auctions.
Such a payment scheme charges each bidder the minimum bid at which he would have
maintained his allocation. These bounds require a standard no-overbidding assump-
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tion, which is that agents are avoid bidding more than their value for any given subset
of items.

Theorem (informal): Suppose A is a greedy c-approximate allocation rule for a
combinatorial allocation problem. Then, under the assumption that agents do not over-
bid, the auction that uses A to choose allocations, and uses a critical-price payment
scheme, has a Bayes-Nash Price of Anarchy of at most c+ 1.

We also show that the extra +1 term is necessary, by giving an example for every c ≥
2 in which the resulting price of anarchy is exactly c+ 1. As with the first-price results,
our bounds extend to coarse correlated equilibria, and a bound of O(c) holds if agent
valuations can be correlated. Furthermore, we show that a slight modification to the
mechanism allows us to replace the no-overbidding assumption with the (conceptually
weaker) assumption that bidders avoid weakly dominated strategies.

Repeated Auctions.. Our bounds on efficiency at equilibrium do not explicitly model
the manner by which agents reach equilibrium, or impose upon the agents any com-
putational constraints whatsoever. We simply posit that equilibria (or approximate
equilibria3) are predictive of the behavior of rational agents in high-stakes auctions.
However, in settings where auctions are explicitly repeated, one might naturally model
the dynamics under which bidder behavior evolves.

We will therefore also consider a repeated-game variant of combinatorial allocation
problems, in which an auction problem is resolved multiple times with the same objects
and bidders. Perhaps the most well-studied modern examples of repeated auctions are
auctions for advertising spaces or slots [Edelman et al. 2005], but this model applies
also to bandwidth auctions (such as the FCC spectrum auction), airline landing rights
auctions [Cramton et al. 2005], etc. In these settings a mechanism for the (one-shot)
auction problem corresponds to a repeated game to be played by the agents. Rather
than view a repeated auction as an extensive-form game, we consider models of limited
rationality that attempt to capture natural bidding behaviour. We we study two such
models: external regret minimization and asynchronous best-response dynamics.

In the first model, agents can play arbitrary sequences of strategies for the repeated
auction, under the assumption that they obtain low regret relative to the best fixed
strategy in hindsight. More precisely, for each bidder, the difference between the av-
erage utility obtained by the bidder and the average utility that would have been ob-
tained by the best single declaration in hindsight must tend to 0 as the number of auc-
tion rounds increases. Under the assumption that bidders are able to minimize exter-
nal regret, our goal is to design an auction mechanism that achieves an approximation
to the optimal social welfare on average over sufficiently many rounds of the repeated
auction. This is precisely the problem of designing a mechanism with bounded price
of total anarchy, as introduced by Blum et al [Blum et al. 2008]. As observed by Blum
and Mansour [Blum and Mansour 2007] and Roughgarden [Roughgarden 2009; 2012],
in the full information setting, price of anarchy with respect to coarse correlated equi-
librium is equal to the total price of anarchy. Hence, the bounds stated above for coarse
correlated equilibrium apply also to the total price of anarchy. We further show that
for the greedy mechanisms we consider, regret-minimizing strategies can be computed
efficiently, assuming a natural representation of the bidders’ valuation functions.

3All of our bounds on social efficiency degrade gracefully when agents apply strategies in approximate
equilibrium. Namely, whenever we convert a c approximate allocation algorithm into a mechanism achieving
say f(c) price of anarchy, the same proof shows that the mechanism achieves at least (and often better) an
f(c+ γ) approximation at every (1+ γ) approximate equilibrium. Notably, if c ≥ 1+ γ, the c-approximation
for pure equilibria of the first price mechanism remains a c approximation at every approximate equilbrium.
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Theorem (informal): Suppose A is a greedy c-approximate allocation rule for a
combinatorial allocation problem. Then the auction that uses A to choose allocations,
and charges critical payments, achieves a (c + 1) approximation to the optimal wel-
fare when agents apply regret-minimizing strategies. Moreover, a regret-minimizing
strategy can be implemented in time polynomial in the number of XOR bids4 used to
represent an agent’s valuation.

In the second model, we assume that agents choose strategies that are myopic best-
responses to the current strategies of the other agents. We model this behaviour as fol-
lows: on each auction round, an agent is chosen uniformly at random, and that agent
is given the opportunity to change his strategy to the current myopic best-response.
As in the regret-minimization model, our goal is to design auction mechanisms that
achieve approximations to the best possible social welfare on average over sufficiently
many auction rounds, with high probability over the random choices of bidders to up-
date. This is the concept of the price of (myopic) sinking, as introduced by Goemans et
al [Goemans et al. 2005].

We conjecture that any greedy c-approximate allocation rule can be implemented as
a mechanism with price of sinking O(c). As partial progress toward this conjecture, we
design mechanisms tailored to two particular combinatorial allocation problems: the
unrestricted combinatorial auction problem and the cardinality-restricted combinato-
rial auction. Each mechanism has price of sinking O(c), where c is the approximation
factor of the best-known algorithm.

We recall that one method for bounding the price of sinking is to prove that there
exists an equilibrium state that is reachable from any declaration profile by some
polynomial-length sequence of best-response steps. This would imply that an equilib-
rium state would be reached with high probability after exponentially many steps. We
do not take this approach, but rather prove that the average social welfare obtained
after a polynomial number of steps will approximate the optimal welfare with high
probability.

1.2. Related Work
The seminal paper in algorithmic game theory and more specifically algorithmic mech-
anism design is that of Nisan and Ronen [Nisan and Ronen 1999]. The basic issue
introduced in [Nisan and Ronen 1999] is to reconcile the competing demands for rev-
enue and social welfare optimization with the need for computational efficiency in the
context of self interested (i.e. selfish) agents. The two most studied solution concepts in
algorithmic game theory are truthfulness (i.e. incentive compatability) and behavior at
(all) equilbria (i.e. the price of anarchy (POA) concept). Initial POA results for games
were first introduced to algorithmic game theory in the seminal papers by Papdim-
itriou [Papadimitriou 2001] and Roughgarden and Tardos [Roughgarden and Tardos
2000]. Christodoulou et al. [Christodoulou et al. 2008] initiated the study of the price
of the price of anarchy in the Bayesian setting. Whereas the emphasis of algorithmic
mechanism design has been to consider the approximations achieveable by truthful
mechanisms, to the best of our knowledge, our conference paper [Lucier and Borodin
2010] was the first to consider this constructive aspect of mechanism design and price
of anarchy.

Since the initial conference version of this work there has been significant progress
on the understanding of the price of anarchy of mechanisms in various auction set-
tings. Some examples include the Generalized Second Price auction for sponsored

4Equivalently, the minimum number of (subset, value) pairs (Si, wi) needed so that valuation v satisfies
v(T ) = maxi : Si⊆T {wi}.
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search ads [Caragiannis et al. 2012], simultaneous single-item auctions [Christodoulou
et al. 2008; Hassidim et al. 2011; Bhawalkar and Roughgarden 2011; Feldman et al.
2013], and multi-unit auctions [Markakis and Telelis 2012; de Keijzer et al. 2013]. A
framework unifying much of this work was proposed by Syrgkanis and Tardos [Syrgka-
nis and Tardos 2013].

Chekuri and Gamzu [Chekuri and Gamzu 2009] defined “loser-independent algo-
rithms”, and in the conference version of our paper [Lucier and Borodin 2010] we ar-
gued that the basic property of greedy algorithms that we were exploiting was a multi-
parameter version of loser-independence. In the first author’s thesis [Lucier 2011], a
strengthening of loser-independence, called strong loser-independence, was introduced
to simplify the proofs and that will be the basic property of greedy algorithms we will
use in this paper. Loser-independence is conceptually related to the concept of smooth-
ness, which was introduced by Roughgarden [Roughgarden 2009] as a general way to
derive price of anarchy results for one shot and repeated games (without reference to
mechanisms that derive games). Loser-independence has been shown to be different
from this original notion of smoothness [Lucier 2011]. However, alternative notions of
smoothness defined by Lucier and Paes Leme [Lucier and Leme 2011] and Syrgkanis
and Tardos [Syrgkanis and Tardos 2013] can also be used to derive results similar to
our results. In particular, Syrgkanis and Tardos use their smoothness condition to de-
rive many price of anarchy results for allocation mechanisms, including those derived
from greedy c-approximation algorithms. Their result for the (non correlated) mixed
Bayesian and coarse correlated equilbrium improved upon our conference results: as
in our current paper, they show that the resulting price of anarchy approaches c with
a term exponentially decreasing in c. In particular, they show that the price of anarchy
is never worse than c + .58. As we will show in Section 3.1, our application of strong
loser-independence can be interpreted as a proof of smoothness.

2. PRELIMINARIES
2.1. Feasible Allocation Problems
We consider a setting in which there are n agents and a set M of m objects. An al-
location to agent i is a subset xi ⊆ M . A valuation function v : 2M → R assigns a
value to each allocation. We assume that valuation functions are monotone, meaning
v(S) ≤ v(T ) for all S ⊆ T ⊆ M , and normalized so that v(∅) = 0. A valuation function
v is single-minded if there exists a set S ⊆ M and a value y ≥ 0 such that for all
T ⊆ M,v(T ) = y if S ⊆ T and 0 otherwise. A valuation profile v is a vector of n valua-
tion functions, one for each agent. In general we will use boldface to represent vectors,
subscript i to denote the ith component, and subscript −i to denote all components ex-
cept i, so that v = (vi,v−i). An allocation profile x is a vector of n allocations. The goal
in our social welfare maximization problems is to choose an allocation for each agent
in order to maximize the sum of agent values.

A combinatorial allocation problem is defined by a set of feasible allocations, which is
the set of permitted allocation profiles. We further assume in combinatorial allocation
problems that this feasibility constraint is separable, meaning that if x is feasible then
(∅,x−i) is also feasible5 for all i. Note that separability is a weaker assumption than
the standard downward-closure property of packing problems, which would stipulate
that if x is feasible then (yi,x−i) is also feasible for all yi ⊆ xi. An allocation rule
A assigns to each valuation profile v a feasible outcome A(v); we write Ai(v) for the
allocation to agent i. An allocation rule is component-wise monotone if it satisfies the

5We note that the combinatorial public projects problem (CPPP) [Papadimitriou et al. 2008] is not separable.
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following property for every agent i:

If vi(S) < ṽi(S), vi(T ) = ṽi(T ) ∀T 6= S, and Ai(vi,v−i) = S, then Ai(ṽi,v−i) = S

We will tend to write A for both an allocation rule and an algorithm that implements
it. We will sometimes abuse notation and use x for an allocation rule, rather than a
specific allocation.

Each agent i ∈ [n] has a private valuation function vi, his type, which defines the
value he attributes to each allocation. The social welfare obtained by allocation profile
x, given type profile v, is SW (x,v) =

∑
i vi(xi). We write SWopt(v) for maxx{SW (x,v)}

and say that algorithm A is a c approximation algorithm 6 if SW (A(v),v) ≥ 1
cSWopt(v)

for all v.
A type profile v and an allocation rule A for a combinatorial allocation problem

define critical values, θi(S,v−i), for any agent i and set S ⊆ M . The value θi(S,v−i)
is the minimum amount that agent i could bid on set S and still win S, assuming the
other agents have profile v−i. That is, θi(S,v−i) = inf{z : xi(z,v−i) = S}. We note that
this definition of critical values holds even if it is not the case that increasing one’s
value for a set necessarily increases the probability of obtaining that set. However,
most of the mechanisms we consider in this work do satisfy this monotonicity property,
which motivates the terminology of a critical price.

2.2. Mechanisms
A direct revelation mechanismM(A, P ) is composed of an allocation rule A and a pay-
ment rule P that assigns a vector of n payments to each declared valuation profile. The
mechanism proceeds by eliciting a valuation profile d from each of the agents, called
the declaration profile. It then applies the allocation and payment rules to d to obtain
an allocation and payment for each agent. Crucially, we do not assume that d is equal
to v. We will write SW (d) for SW (A(d),v) when the allocation rule and type profile
are clear from context.

We will be concerned with two different payment rules, first price and critical price.
In a first price mechanism, an agent is charged their declared bid di(S) for any al-
located set S. For notational convenience, we letM1(A) denote the mechanism using
allocation ruleA and the first price payment rule. In the critical price payment rule, an
agent is charged his critical value θi(S,d−i) for any allocated set S. We will letM2(A)
denote the mechanism using allocation rule A and the critical price payment rule.

2.3. Equilibria of One-shot Auctions
The utility of agent i in mechanism M = (A, P ), given declaration profile d and type
profile v, is uvii (d) = vi(Ai(d)) − Pi(d). We will often omit the dependence on vi when
it is clear from context, and write simply ui(d). We say that declaration di weakly
dominates d′ if for all d−i, ui(di,d−i) ≥ ui(di

′,d−i), and that there exist at least one
d−i for which the inequality is strict.

We consider a Bayesian setting in which the true types of the agents are not fixed,
but are rather drawn from a known probability distribution F over the set of val-
uation profiles. We first assume that F = F1 × . . . × Fn is the product of indepen-
dent distributions, where Fi(vi) is the probability that agent i has type vi. (Later we
will also consider correlated distributions over type profiles.) We write SWopt(F) for
Ev∼F[SWopt(v)].

A bidding strategy for agent i is a function bi that maps a type vi to a distribution
over declarations for agent i. We think of bi(vi) as the (randomized) bidding strategy

6Our convention will be to have approximation ratios c ≥ 1.
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employed by agent i given that his true type is vi. We will abuse notation slightly and
also write bi(vi) for the random variable representing a declaration chosen from the
corresponding distribution. We write b(v) = b1(v1) × . . . × bn(vn) for the (distribution
over) declaration profiles resulting from applying the bid functions in b to type profile
v. The strategy profile b forms a (mixed) Bayesian Nash Equilibrium (BNE) if, for
every i ∈ [n] and every vi in the support of Fi, agent i maximizes his expected utility
by making a declaration drawn from distribution bi(vi). That is, for each agent i, each
possible type vi, and every distribution ωi

′ over declarations,

Ev−i∼F−i [ui(b(v))] ≥ Ev−i∼F−i,di∼ωi′ [ui(di,b−i(v−i))].

For a mechanism M = (A, P ), we will write SWM(F,b) to mean
Ev∼F [

∑
i vi(Ai(b(v)))], the expected social welfare given type distribution F and

strategy profile b.
The (mixed) Bayesian price of anarchy (BPoA) of mechanismM is defined as

sup
F,b

SWopt(F)

SWM(F,b)

where the supremum is over all type distributions F and mixed BNE b for F. In other
words, the BPoA of M is the worst-case ratio between the expected welfare at BNE
and the expected optimal welfare.

We can further extend the definition of BNE to allow a correlated distribution over
type profiles. The definition for correlated BNE and correlated Bayesian price of anar-
chy is then the same as the above definitions, where we would no longer assume that
F is a product of independent distributions.

Returning to the case in which F is a product distribution, a number of special cases
deserve mention. When all type distributions are point masses (i.e., each agent’s type
is determined), a BNE is referred to as a (mixed) Nash Equilibrium (NE). The Price of
Anarchy (PoA) of a mechanismM is defined analogously to the BPoA, but with respect
to fixed type profiles and mixed Nash equilibria. It follows that the BPoA is always at
least the PoA for a given mechanism. A BNE (or NE) is called pure if its constituent
bidding strategies are deterministic. In general a pure Nash equilibrium may not exist
for a given mechanism and type profile; see Appendix A.

One can generalize mixed NE by relaxing the assumption that the declaration distri-
butions are independent. That is, one might allow b(v) to be an arbitrary distribution
over declarations, rather than a product distribution. A distribution ω over declaration
profiles is a coarse correlated equilibrium (CCE) for type profile v if, for all i and all
declaration distributions ωi′,

Ed∼ω[ui(d)] ≥ Ed∼(ωi′,ω−i)[ui(d)]. (1)

Note that when the agent declaration distributions are independent, CCE is equiv-
alent to mixed NE. We define the analogous price of anarchy concepts; it follows that
the pure price of anarchy is at most the mixed price of anarchy which in turn is at most
the coarse correlated price of anarchy.

2.4. Greedy Allocation Rules
We describe a special type of allocation rule, which we will refer to as a greedy allo-
cation rule. These are motivated by the priority framework in Borodin, Nielsen and
Rackoff [Borodin et al. 2002] and the monotone greedy algorithms of Mu’alem and
Nisan [Mu’alem and Nisan 2008], extended to be adaptive as in Borodin and Lucier
[Borodin and Lucier 2010]. We begin with some definitions. A partial allocation profile
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Priority Algorithm

Input: Declaration profile d = d1, . . . , dn.

1. Fix a monotone priority function r. Let N = ∅.
2. Repeat until N = [n]:
3. Choose i /∈ N and feasible allocation S ⊆M for i given N that maximizes r(i, S, di(S))
4. Set xi = S; add player i to N
5. return x = (x1, . . . , xn)

Fig. 1. The framework for a non-adaptive priority algorithm.

for agents N ⊆ [n] is an allocation profile x with xi = ∅ for all i 6∈ N . A partial alloca-
tion profile is feasible if there is some feasible allocation profile that extends it. Given
a partial allocation profile x for subset N , some i 6∈ N , and allocation y ⊆ M , we say y
is a feasible allocation for i given N if the partial allocation remains feasible when we
set xi = y.

A priority function is a function r : [n] × 2M × R → R. We think of r(i, S, v) as the
priority of allocating S ⊆M to player i when vi(S) = v. We say that r is monotone if it
is non-decreasing in v and monotone non-increasing in S with respect to set inclusion.

We consider two types of greedy allocation algorithms. A non-adaptive greedy allo-
cation algorithm A is an allocation algorithm as defined in Figure 1. We say that A is
monotone when the priority function r is monotone. We assume that ties in step 3 are
broken in an arbitrary but fixed manner (i.e. we assume that the priority function is a
1-1 function inducing a total ordering).

A non-adaptive algorithm fixes a single priority function that is used throughout
its execution. By constrast, an adaptive greedy allocation algorithm can change its
priority function on each iteration, depending on the partial allocation formed on the
previous iterations.

2.5. Applications
We now describe some applications of greedy algorithms for particular combinatorial
allocation problems.

Combinatorial Auctions. The general combinatorial auction problem is defined
by the feasibility constraint that no two allocations can intersect. Lehmann et al
[Lehmann et al. 1999] show that the (non-adaptive) greedy allocation rule with
r(i, S, v) = v√

|S|
achieves a

√
2m approximation ratio for CAs.

Cardinality-restricted Combinatorial Auctions. In the special case that players’ de-
sires are restricted to sets of size at most k, the non-adaptive greedy algorithm with
r(i, S, v) = v is k-approximate assuming single-minded agents. This translates to a
(k + 1) approximate algorithm for general (i.e. multi-minded) agents.

Multiple-Demand Unsplittable Flow Problem. In the unsplittable flow problem
(UFP), we are given an undirected graph with edge capacities. The objects are the
edges, and each valuation function is such that agent i has some value v(s, t) for be-
ing given a path from s to t. Each agent additionally specifies a fractional demand
di ∈ [0, 1] corresponding to a desired amount of flow to send along the given path. An
allocation is feasible if the total allocated flow along each edge is no more than its
capacity. Let B be the minimum edge capacity. A primal-dual algorithm, which is an
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adaptive greedy allocation rule, obtains an O(m1/(B−1)) approximation for any B > 1
[Briest et al. 2005].

Convex Bundle Auctions. In a convex bundle auction, M is the plane R2, and al-
locations must be non-intersecting compact convex sets. We suppose that agents de-
clare valuation functions by making bids for such sets. Given such a collection of bids,
the aspect-ratio, R, is defined to be the maximum diameter of a set divided by the
minimum width of a set. A non-adaptive greedy allocation rule using a geometrically-
motivated priority function yields an O(R4/3) approximation [Babaioff and Blumrosen
2004]. Alternative greedy algorithms yield better approximation ratios for special
cases, such as rectangles.

Max-profit Unit Job Scheduling. In this problem, each bidder has a job of unit time
to schedule on one of multiple machines. A bidder has various windows of time of the
form (release time, deadline, machine) in which his job could be scheduled, with a
potentially different profit resulting from each window. The profits and windows are
private information to each bidder. The goal of the mechanism is to schedule the jobs
to maximize the total profit. The greedy algorithm that orders bids by value obtains a
3-approximation, and is symmetric with respect to agents and objects.

Unlike the previous examples, for the case of single-minded bidders, there is an op-
timal dynamic programming algorithm that runs in time O(n7) [Baptiste 1999]. Since
this algorithm solves the problem optimally, it is incentive compatible. In this case, the
resulting price of anarchy for the greedy algorithm is appealing primarily due to its
linear runtime and simple allocation rule.

3. STRONG LOSER-INDEPENDENCE
Chekuri and Gamzu [Chekuri and Gamzu 2009] introduced a property known as
loser-independence for combinatorial allocation algorithms in single-parameter do-
mains. They define an algorithm for a combinatorial allocation problem to be loser-
independent if, whenever Ai(di,d−i) = Ai(di′,d−i) = ∅ for some i, d−i, di, and di′, then
it must be that A(di,d−i) = A(di

′,d−i). That is, if a “losing” agent (i.e. an agent who
is allocated no items) modifies his declaration in such a way that he still receives no
items, this cannot affect the outcome of algorithm A. Note that loser-independence is
a condition on declaration profiles, rather than on bidding functions, since the loser-
independence notion is purely algorithmic and is not a condition on equilibria. In our
results we will make use of a stronger property of greedy algorithms, which we call
strong loser-independence.

DEFINITION 3.1. An allocation rule A is strongly loser-independent if, whenever d
and d′ satisfyA(d) 6= A(d′), there exists an agent i and set S 6= ∅ such that di(S) 6= di

′(S)
and either Ai(d) = S or Ai(di′,d−i) = S.

Roughly speaking, if A is a strongly loser-independent algorithm, then whenever a
valuation profile changes from d to d′ via modifications to “losing bids” (i.e. an agent
i’s declared value for sets that are not allocated to him, when others bid according to
d−i), algorithm A will return the same outcome on inputs d and d′. We note that our
definition requires that either Ai(d) = S or Ai(di′,d−i) = S, rather than Ai(d′) =
S. The intuition is that we think of “losing bids” as being losers with respect to the
original declaration profile d.

The property of strong loser-independence strengthens the definition of loser-
independence due to Chekuri and Gamzu in two ways. First, we extend from single-
parameter settings to multiple-parameter settings by considering losing bids rather
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than losing agents. Second, we require that the algorithm outcome be unaffected if
multiple agents simultaneously modify losing bids.

It is clear from the definitions that all strongly loser-independent algorithms are
loser-independent (i.e. by considering the case when d and d′ differ only on the decla-
ration of a single agent). However, not all loser-independent algorithms are strongly
loser-independent, even in single-minded domains. For example, consider the combina-
torial auction problem and suppose thatA is an algorithm that optimizes social welfare
exactly and breaks ties consistently. ThenA is loser-independent, since a losing agent’s
bid does not affect the optimal allocation. However,A is not strongly loser-independent,
as the following instance shows. Consider an auction of two items {a, b} to three bid-
ders. If the (single-minded) bidder declarations are d1({a, b}) = 10, d2({a}) = 3, and
d3({b}) = 3, then the outcome is that agent 1 wins his desired set. On the other hand,
if the bidder declarations are given by d′ where d1

′({a, b}) = 10, d2′({a}) = 6, and
d3
′({b}) = 6, then the outcome changes: agents 2 and 3 win their desired sets. However,

d and d′ do not differ in their declarations for any sets allocated by A(d), A(d1
′,d−i),

A(d2
′,d−i), or A(d3

′,d−i), as agent 1 wins his desired set in each of these four cases.
This contradicts the definition of strongly loser-independence.

As we now show, all greedy algorithms satisfy the strong loser-independence prop-
erty.

LEMMA 3.2. Every (monotone) adaptive greedy algorithm is
(component-wise monotone) and strongly loser-independent.

PROOF. The monotonicity property follows immediately when the priority function
in the greedy algorithm is a monotone function.

Let A be an adaptive greedy allocation rule, and choose any d and d′ such that
A(d) 6= A(d′). We will show that there exists some i and S such that di(S) 6= di

′(S) and
either Ai(d) = S or Ai(di′,d−i) = S.

Recall the definition of an adaptive greedy algorithm, and consider the iterations of
A on inputs d and d′. Let k be the first iteration in which the allocation of A differs
on these two inputs. Suppose that A allocates set U to agent ` on iteration k when the
input is d, and allocates T to agent j on iteration k when the input is d′.

For each iteration q < k, write iq for the agent allocated to by A (on either input
profile) and Sq for the set allocated to iq. Note that if diq (Sq) 6= diq

′(Sq) for any q < k
then we have the desired result with i = iq and S = Sq. We can therefore assume that
diq (Sq) = diq

′(Sq) for all q < k. This implies that the bids resolved by A are identical
on all iterations preceeding k on inputs d and d′, and therefore the values of ranking
functions used in each iteration up to k must be identical for inputs d and d′. Write rq
for the ranking function used in iteration q for each q ≤ k. Thus, since the allocation
on iteration k changed from choosing set U for agent ` to choosing set T for agent j, it
must be that either rk(`, U, d`(U)) 6= rk(`, U, d`

′(U)) or rk(j, T, dj(T )) 6= rk(j, T, dj
′(T )).

This implies that either d`(U) 6= d`
′(U) or dj(T ) 6= dj

′(T ).
If d`(U) 6= d`

′(U) then we have the desired result with i = ` and S = U , since
A`(d) = U . We can therefore assume that d`(U) = d`

′(U) and dj(T ) 6= dj
′(T ). Consider

now the behaviour of algorithm A on input (dj
′,d−i). We claim that Aj(dj ′,d−i) = T .

Note that this implies the desired result with i = j and S = T . To prove the claim,
recall that diq (Sq) = diq

′(Sq) for all q < k. Thus, for each q < k and each feasible set S
that could be allocated to agent j on iteration q,

rq(iq, Sq, diq (Sq)) = rq(iq, Sq, diq
′(Sq)) > rq(j, S, dj

′(S))

since A allocates Sq to iq on input d′. We conclude that, on input (dj
′,d−i), A allo-

cates Sq to agent iq on each iteration q < k . On iteration k, we have rk(j, T, dj
′(T )) >
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rk(j, T ′, dj
′(T ′)) for any feasible T ′ 6= T (since A allocates T to j on input d′) and

rk(j, T, dj
′(T )) > rk(`, U, d`

′(U)) = rk(`, U, d`(U)) ≥ rk(i, S, di(S))

for any feasible i 6= j, due to our assumption that d`′(U) = d`(U) and the fact that A
allocates U to ` on iteration k for input d. We therefore conclude that Aj(dj ′,d−i) = T
as required.

We next explore an implication of a strongly loser-independent algorithm A being a
worst-case c-approximation. If A is a c-approximate algorithm, then (on any input) the
sum of the declared values for its output profile approximates the sum of the declared
values for the optimal allocation. We now show that it also approximates the sum of
the critical values of the optimal allocation profile.

LEMMA 3.3. If A is a c-approximate strongly loser-independent algorithm, then for
any type profile v and allocation profile y,

∑
i∈[n] vi(Ai(v)) ≥ 1

c

∑
i∈[n] θi(yi,v−i).

PROOF. Choose any ε > 0. For all i, let vi′ be the single-minded declaration for
set yi at value θi(yi,v−i) − ε. Let vi∗ be the pointwise maximum of vi′ and vi. That
is, for all S ⊆ M , vi∗(S) = max{vi(S), vi

′(S)}. By definition of critical prices, we have
that Ai(vi∗,v−i) = Ai(v) for all i, and furthermore vi

∗(Ai(v)) = vi(Ai(v)). Since A
is strongly loser-independent, we must therefore have A(v) = A(v∗). Since A is a
c-approximation, we conclude that SW (x(v),v) = SW (x(v∗),v∗) ≥ 1

cSW (y,v∗) ≥
1
c

∑
i∈[n] θi(yi,v−i)− nε. The result follows by taking the limit as ε→ 0.

For brevity, for the remainder of this paper we will say “monotone strongly loser-
independent” to mean both strongly loser-independent and component-wise mono-
tone7.

3.1. Applying Strong Loser Independence
Strong loser-independence is a strictly algorithmic concept, devoid of game theoretic
considerations. Our general approach will be to derive price of anarchy results for any
mechanism that uses a strongly loser-independent c-approximation A as its allocation
algorithm. To do so, we will be using Lemma 3.3 in conjuction with the assumption
that a given bid profile is an equilibrium.

At a high level, our argument will be as follows. For each pricing rule and equilib-
rium concept, equilibrium will imply an inequality of the form

vi(yi) ≤ λ · θi(yi,d−i) + µ · vi(xi(d))

where y is an optimal allocation. (For Bayesian equilibrium, these terms will be expec-
tations.) This allows us to charge the optimal gain for each agent to its critical value
and its welfare from the algorithm. We then exploit Lemma 3.3 to convert this bound
into a relationship between the optimal welfare and the welfare at equilibrium. To
make this more specific, in our pure Nash equilibrium result for a first price mecha-
nism (Theorem 4.3), we show the following (somewhat stronger) inequality:

vi(yi) ≤ θi(yi,d−i) + vi(xi(d))− di(xi(d))

7For pure Nash equlibirium price of anarchy results, if we assume no over-bidding, we do not need mono-
tonicity but it is necessary for all of our other results.
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It will then follow (ignoring an nε term which disappears as ε→ 0) that:∑
i

vi(yi) ≤
∑
i

θi(yi,d−i) +
∑
i

vi(xi(d))−
∑
i

di(xi(d))

≤ (c− 1)
∑
i

di(xi(d)) +
∑
i

vi(xi(d))

In other words, the high-level approach is to charge an agent’s welfare in the opti-
mal outcome against his welfare at equilibrium plus the welfare of other “price-setting”
agents. This approach is similar to the smoothness argument as formulated by Syrgka-
nis and Tardos [Syrgkanis and Tardos 2013]. However, there is a difference in our
approaches. The smoothness condition in [Syrgkanis and Tardos 2013] is tailored to
allocation mechanisms and asserts the existence of some di (for each player i) satisfy-
ing such an inequality whereas we are assuming that d is an equilibrium. The benefit
of their immediate reduction to smoothness is that their price of anarchy results for
pure equilibria carry over immediately to Bayesian price of anarchy. However, this
prohibits establishing certain tight bounds; for example, in the first price mechanism
we show that the pure price of anarchy is c, which cannot be achieved via smoothness
since this bound does not hold for the Bayesian price of anarchy.

4. FIRST-PRICE MECHANISMS
In this section we analyze greedy algorithms paired with a first price payment scheme.
More precisely (with the exception of results relating to correlated Bayesian equilibir-
ium where we will consider more specific greedy allocations), given a strongly loser-
independent algorithm A, we will be studying the performance of the first-price mech-
anismM1(A) at equilibrium.

Our first step will be to show that a utility-maximizing declaration of an agent never
involves overbidding on a set that he may possibly be allocated. This will imply that
agents do not employ overbidding strategies at equilibrium. It may appear at first
glance that any strategy that recommends overbidding on sets is obviously dominated
for any allocation algorithm, since winning any bid larger than one’s true value leads to
negative utility. However, we must also show that an agent cannot find it advantageous
to overbid on some set S in order to affect his probability of winning some other set T .
We will demonstrate that such situations cannot occur when allocations are chosen by
a strongly loser independent algorithm.

For a type vi and a declaration di, we will write di for the declaration defined as
di(S) = min{vi(S), di(S)}. That is, di agrees with di, except that the declared value of
each set can be at most the true value for that set. Note that di = di precisely if di does
not overbid on any set.

We now show that any declaration di that overbids on a set that could potentially be
won is weakly dominated by strategy di.

LEMMA 4.1. For any monotone strongly loser independent allocation rule A, valu-
ation vi, and declaration profile d, we have ui(d) ≤ ui(di,d−i). Moreover, the inequality
is strict when di(A(d)) > vi(A(d)).

PROOF. Let S = Ai(d). Suppose first that di(S) > vi(S). Then ui(d) = vi(S)−di(S) <
0. Since vi(T ) − di(T ) ≥ 0 for every set T , this implies that ui(di,d−i) > ui(d), as
required.

Next suppose that di(S) ≤ vi(S), so that di(S) = di(S). We claim that Ai(di,d−i) =
S. Suppose not, for contradiction. Then we can construct a sequence of declarations
(d1, d2, . . . , dk), with d1 = di and dk = di, such that adjacent declarations differ only
on a single set and declared values only decrease. Suppose j is minimal such that
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Ai(dj ,d−i) 6= S; such a j > 1 must exist since, by assumption, Ai(di,d−i) 6= S. Then
(a) dj−1 and dj differ only on the value assigned to some set T , (b) dj−1(T ) > di

j(T ),
(c) Ai(dj−1,d−i) = S, and (d) Ai(dj ,d−i) 6= S. Strong loser-independence then implies
that Ai(dj ,d−i) = T . However, the fact that dj−1(T ) > dj(T ) then contradicts the
component-wise monotonicity of A.

We conclude by contradiction that Ai(di,d−i) = S. Since S is also A(d), we have
ui(d) = vi(S)− di(S) = ui(di,d−i) as required.

An immediate corollary is that if bi is a bidding strategy, and there exists a type vi
and set S such that (bi(vi))(S) > vi(S), then bi is weakly dominated by the strategy
bi. Moreover, bi is strictly better, in terms of utility, under any distribution of declara-
tions in which agent i wins set S with positive probability. We conclude that at any
BNE of mechanismM1(A), no player will overbid on a set that he wins with positive
probability.

COROLLARY 4.2. For any monotone strongly loser independent allocation rule A,
BNE b, type vi, and set S, if Prv−i∼F−i [Ai(b(v)) = S] > 0 then (bi(vi))(S) ≤ vi(S).

4.1. Pure Nash Equilibria
We are now ready to bound the price of anarchy ofM1(A). We begin with a result for
pure Nash equilibria, rather than the fully general BNE case.

THEOREM 4.3. Suppose A is a c-approximate monotone strongly loser independent
allocation rule for a combinatorial allocation problem. Then the price of anarchy of
M1(A) is at most c.

PROOF. Fix type profile v and suppose that b forms a pure Nash equilibrium. Since
the Nash equilibrium is pure, we will write d = b(v) for notational convenience. Let y
be an optimal allocation for v, and let x(·) denote the allocation rule for A. Lemma 3.3
implies ∑

i

di(xi(d)) ≥ 1

c

∑
i

θi(yi,d−i). (2)

Choose arbitrarily small ε > 0 and let di′ be the single-minded declaration for set yi at
value θi(yi,d−i) + ε. Then xi(di

′,d−i) = yi (from the definition of critical values) and
hence ui(di′,d−i) = vi(yi) − θi(yi,d−i) − ε. Since d is a Nash equilibrium, it must be
that

vi(yi)− θi(yi,d−i)− ε = ui(di
′,d−i)

≤ ui(di,d−i)
= vi(xi(d))− di(xi(d)).

Summing over all i and applying (2) and Corollary 4.2 we have∑
i

vi(yi) ≤
∑
i

θi(yi,d−i)−
∑
i

di(xi(d)) +
∑
i

vi(xi(d)) + nε

≤ (c− 1)
∑
i

di(xi(d)) +
∑
i

vi(xi(d)) + nε

≤ c
∑
i

vi(xi(d)) + nε
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which, taking ε→ 0, implies

SW (x(d),v) =
∑
i

vi(xi(d))

≥ 1

c

∑
i

vi(yi)

=
1

c
SWOPT (v)

as required.

The power of Theorem 4.3 is marred by the fact that, for some problem instances, the
mechanismM1(A) is not guaranteed to have a pure Nash equilibrium. An example is
given in Appendix A.

4.2. Bayes-Nash Equilibria
We are now ready to bound the mixed Bayesian price of anarchy for mechanism
M1(A).

THEOREM 4.4. Suppose A is a monotone strongly loser independent allocation rule
for a combinatorial allocation problem. Then the Bayesian price of anarchy of M1(A)
is at most8 c

1−e−c for every independent type distribution F.

We note that c
1−e−c ≤ c

(
1 + 2

ec

)
= c + O(c/ec). The remainder of this subsection is

dedicated to the proof of Theorem 4.4.
Fix a product distribution F over type profiles and let b(·) be a (possibly mixed)

Bayes-Nash equilibrium with respect to F. Choose some type declaration v and let yv

denote an optimal allocation for v. Following the proof of Theorem 4.3, we would like
to bound the expected value of θi(yvi ,d−i) with respect to vi(yvi ) and ui(b(v)) for each
i. We encapsulate this bound in Lemma 4.6 and Corollary 4.7, below. This will allow
us to use Lemma 3.3 to obtain a relation between the expected welfare of A and the
expected optimal welfare; this relationship is given in Lemma 4.5.

LEMMA 4.5. Suppose that A is a c-approximate monotone strongly loser indepen-
dent allocation rule and that there exist constants γ ≥ 0 and σi ∈ [0, c] for i ∈ [n] such
that, whenever b is a Bayes-Nash equilibrium forM1(A), it is the case that for all i, all
vi, and all S ⊆M ,

Ev−i [θi(S,b−i(v−i))] ≥ γvi(S)− σiEv−i [ui(b(v))].

Then Ev[SW (A(b(v)),v)] ≥ γ
cEv[SWOPT (v)].

LEMMA 4.6. Suppose that b is a Bayes-Nash equilibrium for mechanism M1(A)
and distribution F. Then for all i, all vi, and all S ⊆M ,

Ev−i [θi(S,b−i(v−i))] ≥ vi(S)−
(

1 + ln
vi(S)

Ev−i [ui(b(v))]

)
Ev−i [ui(b(v))].

Before proving Lemmas 4.5 and 4.6, let us show how they imply Theorem 4.4. We
first note the following simple corollary of Lemma 4.6.

8In the initial conference version of this work, we presented a bound of c + O(log c) on the BPOA. Subse-
quently, this bound was independently improved by Lucier [Lucier 2011] to c + O(c2/ec) and by Syrgkanis
and Tardos [Syrgkanis and Tardos 2013] to c + O(c/ec). We present here a slightly modifiied version of
the argument from Lucier [Lucier 2011], which yields the improved Syrgkanis and Tardos [Syrgkanis and
Tardos 2013] bound of c+O(c/ec).
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COROLLARY 4.7. Suppose that b is a Bayes-Nash equilibrium for mechanism
M1(A) and distribution F. Then for all i, all vi, and all S ⊆M ,

Ev−i [θi(S,b−i(v−i))] ≥ (1− e−c) · vi(S)− c ·Ev−i [ui(b(v))].

PROOF. Fix agent i. By Lemma 4.6, we know

Ev−i [θi(S,b−i(v−i))] ≥ vi(S)−
(

1 + ln
vi(S)

Ev−i [ui(b(v))]

)
Ev−i [ui(b(v))]. (3)

Note that if
(

1 + ln vi(S)
Ev−i [ui(b(v))]

)
≤ c then (3) immediately implies the desired result.

We can therefore assume otherwise, and choose α > 0 such that(
1 + ln

vi(S)

Ev−i [ui(b(v))]

)
= c+ α.

Rearranging, we get that vi(S) = eα ·ec−1 ·Ev−i [ui(b(v))]. Applying these two equalities
to (3), we have

Ev−i [θi(S,b−i(v−i))] ≥ vi(S)− (c+ α) ·Ev−i [ui(b(v))]

= vi(S)− α

eα
· vi(S)

ec−1
− c ·Ev−i [ui(b(v))].

Since α
eα achieves its maximum value of 1/e at α = 1, we can conclude that

Ev−i [θi(S,b−i(v−i))] ≥ vi(S)− 1

ec
· vi(S)− c ·Ev−i [ui(b(v))]

as required.

Theorem 4.4 follows directly from Corollary 4.7 and Lemma 4.5. We next complete
the proof of Theorem 4.4 by proving Lemmas 4.5 and 4.6.

Proof of Lemma 4.5 : Fix distribution F over type profiles and let b(·) be a (possibly
mixed) Bayes-Nash equilibrium with respect to F. Choose some type declaration v and
let yv denote an optimal allocation for v. We know that for all i ∈ [n] and v,

Ev′−i
[θi(y

v
i ,b−i(v

′
−i))] ≥ γvi(yvi )− σiEv′−i

[ui(bi(vi),b−i(v
′
−i)))].

Note the distinction between v′−i, over which we are taking expectations, and v−i,
which is the type profile fixed to define yvi . Now, summing over i and taking expectation
over all choices of v, we have

Ev

[∑
i

Ev′−i
[θi(y

v
i ,b−i(v

′
−i))]

]
≥ γEv

[∑
i

vi(y
v
i )

]
−Ev

[∑
i

σiEv′−i
[ui(bi(vi),b−i(v

′
−i))]

]
.

(4)

We now consider each of the three terms in (4). First, note that

Ev

[∑
i

vi(y
v
i )

]
= Ev[SWOPT (v)]. (5)
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Additionally,

Ev

[∑
i

σiEv′−i
[ui(bi(vi),b−i(v

′
−i))]

]
=
∑
i

σiEv,v′−i
[ui(bi(vi),b−i(v

′
−i))]

= Ev

[∑
i

σiui(b(v))

]

= Ev

[∑
i

σivi(xi(b(v)))

]
−Ev,d=b(v)

[∑
i

σidi(xi(b(v)))

]
(6)

where the final equality follows from the fact that our mechanism employs a first price
payment scheme. Finally,

Ev

[∑
i

Ev′−i
[θi(y

v
i ,b−i(v

′
−i))]

]

= Ev,v′

[∑
i

θi(y
v
i ,b−i(v

′
−i))

]
(type independence)

≤ cEv,v′,d′=b(v′)

[∑
i

di
′(xi(d

′))

]
(Lemma 3.3)

= cEv,d=b(v)

[∑
i

di(xi(d))

]
(7)

Where the final equality follows from a change of variables, since v does not appear
inside the expectation on the previous line. Substituting (5), (6), and (7) into (4), we
conclude that

cEv

[∑
i

di(xi(d))

]
≥ γEv[SWOPT (v)]−Ev

[∑
i

σivi(xi(b(v)))

]
+ Ev,d=b(v)

[∑
i

σidi(xi(b(v)))

]
and hence

γEv[SWOPT (v)] ≤ Ev

[∑
i

σivi(xi(b(v)))

]
+ Ev,d=b(v)

[∑
i

(c− σi)di(xi(d))

]

≤ Ev

[∑
i

σivi(xi(b(v)))

]
+ Ev

[∑
i

(c− σi)vi(xi(b(v)))

]

= Ev

[∑
i

cvi(xi(b(v)))

]
= cEv[SW (A(b(v)),v)]

where in the second inequality we used Corollary 4.2 plus the fact that (c− σi) ≥ 0 for
all i. Rearranging yields

Ev[SW (A(b(v)),v)] ≥ γ

c
Ev[SWOPT (v)]
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as required. 2

Proof of Lemma 4.6 : Fix any i, vi, and S. Since θi(S,d−i) ≥ 0 for all d−i, we have
that

Ev−i [θi(S,b−i(v−i))] ≥
∫ vi(S)

0

Pr[θi(S,b−i(v−i)) > z]dz

= vi(S)−
∫ vi(S)

0

Pr[θi(S,b−i(v−i)) ≤ z]dz.

Recall that bi(vi) must maximize the expected utility of agent i. Choose any z ≥ 0 and
consider the alternative strategy di which places a single-minded bid of z on set S.
Then since bi(vi) is an optimal strategy, we have that

Ev−i [ui(b(v))] ≥ Ev−i [ui(di,b−i(v−i))]

= (vi(S)− z) Pr[θi(S,b−i(v−i)) ≤ z]

where the equality follows since any single minded bid above the critical value for S
insures that S will be won, as a consequence of monotonicity. We conclude that

Pr[θi(S,b−i(v−i)) ≤ z] ≤
Ev−i [ui(b(v))]

(vi(S)− z)

for all 0 ≤ z < vi(S). We also know that Pr[θi(S,b−i(v−i)) ≤ z] ≤ 1 for all z. Write
r = vi(S)−Ev−i [ui(b(v))]. We then conclude that

Ev−i [θi(S,b−i(v−i))] ≥ vi(S)−
∫ r

0

Ev−i [ui(b(v))]

(vi(S)− z)
dz −

∫ vi(S)

r

1dz

= vi(S)−Ev−i [ui(b(v))]

∫ vi(S)

Ev−i [ui(b(v))]

1

y
dy −Ev−i [ui(b(v))]

= vi(S)−
(

1 + ln
vi(S)

Ev−i [ui(b(v))]

)
Ev−i [ui(b(v))]

as required. 2

COROLLARY 4.8. (of proof) The same bound on price of anarchy applies to coarse
correlated equilibrium.

PROOF. That such price of anarchy bounds can be applied to coarse correlated
equlibria in the full information setting was initially observed by Roughgarden
[Roughgarden 2009]. Specifically, in the proof of Theorem 4.4, all occurences of
Ev,d=b(v) can be replaced by Ed∼(di′,ω−i), resulting in a bound on the coarse correlated
PoA.

It may be tempting to conjecture that the (exponentially small) loss in approximation
factor in Theorem 4.4 is simply an artifact of the analysis, and that the Bayesian price
of anarchy of M1(A) is actually c. However, we now show by way of an example that
this loss is necessary; that is, there exist instances in which the mixed price of anarchy
(and hence the Bayesian price of anarchy) is strictly greater than c.

PROPOSITION 4.9. For any c ≥ 2, there is a combinatorial allocation problem P
and a non-adaptive greedy algorithm A such that A is a c-approximation for P, and
the mixed price of anarchy forM1(A) is at least c+ c2/e4c = c+ Ω(c2/e4c).
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PROOF. We begin by describing our combinatorial allocation problem. We choose
a parameter k > c that will be fixed later. Our auction has ck + k objects, which we
label aij for i ∈ [k], j ∈ [c] and bi for i ∈ [k]. There are 4k agents, labelled Ai, Bi, Ci,
and Di for i ∈ [k]. Our feasibility constraints are as follows. Each agent Bi or Ci can
receive only set {ai1} or ∅. Each agent Di can receive set {ai1, ak1} or ∅. Each agent
Ai can receive either set {ai1, ai2, . . . , aic}, set {bi}, or ∅. Under these restrictions, an
allocation is feasible if each object is assigned to at most one agent.

Let A be the non-adaptive greedy algorithm that orders bids by density: i.e. with
priority function r(i, S, v) = v/|S| when S is a feasible set for agent i. We claim that
when c ≥ 2, this algorithm obtains a c-approximation for the above combinatorial
auction. To see this, note that the (unique) set that can be allocated to any agent Bi, Ci,
or Di intersects sets of size at most c times larger, so if the greedy algorithm allocates
to one of these agents for a value of v, the total value of intersecting sets in the optimal
solution is at most cv. On the other hand, if the greedy algorithm allocates {bi} to agent
Ai, this conflicts only with the allocation of set {ai1, . . . , aic} to agent Ai, which again
has value at most c times greater. Finally, suppose that the greedy algorithm allocates
set {ai1, . . . , aic} to agent Ai, say with value vc (i.e. value density v). This allocation can
conflict only with a single allocation to an agent Bi, Ci, or Di plus an allocation of {bi}
to agent Ai, which comprises a total of at most 3 objects. Since the greedy algorithm
allocates by density, the total value of the conflicted bids is at most 3v. Since c ≥ 2,
we conclude that the allocation of {ai1, . . . , aic} to agent Ai is within a factor of c of the
value of any intersecting sets in the optimal allocation.

Consider now the following instance of this problem, specified by the following agent
types.

— For 1 ≤ i ≤ k− 1, agent Ai desires {ai1, ai2, . . . , aic} for value k− i and {bi} for value
0.

— Agent Ak desires {ak1, ak2, . . . , akc} for value k and {bk} for value 1.
— For 1 ≤ i ≤ k, agents Bi and Ci both desire set {ai1} for value (k − i)/c.
— For 1 ≤ i ≤ k, agent Di desires set {ai1, ak1} for value 2(k − i)/c.

Note that agent Ak has a value density of k/c for the desired set {ak1, . . . , akc}, and
each agent Ai with i < k has value density (k − i)/c for desired set {ai1, . . . , aic}. Also,
the agents Bi, Ci, and Di have a value density of (k − i)/c for their desired sets.

We will suppose that A applies the following fixed tie-breaking rules. For any i, A
will break a tie between agents Ai, Bi, Ci, and/or Di first in favour of Di, then in favour
of Bi, then Ai. We can also assume that A breaks ties between multiple desired sets
for agent Ai in favour of {bi}. Finally, A will favour allocating non-empty sets over
allocating the empty set (e.g., if an agent declares the zero valuations).

We now describe a mixed Nash equilibrium for this problem instance. Each agent
Ai declares the zero valuation. Each agent Bi and Ci declares his valuation truthfully.
Each agent Di will declare his valuation truthfully with some probability pi, and will
otherwise declare the zero valuation. We choose pi = 1

i+1 .
What is the outcome when agents bid in this way? First, each agent Ai is allocated

set {bi} (due to our assumed tie-breaking). For the items aij , only items with j = 1
will be allocated. For i < k, if agents D1, . . . , Di−1 declare the zero allocation and Di

does not, then object a1i will be allocated to Di. If not, then item a1i will be allocated to
agent Bi. Item ak1 will be allocated to Di where i is the smallest such that Di does not
declare the zero valuation, or Bk if D1, . . . , Dk all declare the zero valuation.

We now argue that this distribution of declarations is indeed a mixed Nash equilib-
rium. With probability 1, no agent Bi, Ci, or Di can obtain positive utility from any
declaration (since their desired sets conflict with other bids of the same value density),
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so their distributions over declarations that obtain utility 0 are necessarily optimal.
Furthermore, for each i < k, agent Ai cannot obtain positive utility so his bidding
strategy is also optimal. Agent Ak obtains utility 1; his only hope for obtaining more
utility is to declare a value less than k− 1 for set {ak1, . . . , akc}. However, if he declares
some value k − z with z > 1, say with x = dze, then he can win his desired set only if
bidders D1, . . . , Dx−1 all bid the zero valuation, since otherwise an agent Dj with j < x
would win his desired set, blocking the bid by agent Ak. The probability that bidders
D1, . . . , Dx−1 all declare the zero valuation is 1

2
2
3 · · ·

x−1
x = 1

x ≤
1
z . Thus, for any z, agent

Ak can obtain utility z with probability at most 1/z, for an expected utility of at most
1. The given declaration by agent Ak is therefore optimal.

We will now bound the social efficiency of this equilibrium. The optimal obtainable
welfare is k +

∑k−1
i=1 (k − i) = 1

2k(k + 1), by allocating set {ai1, . . . , aic} to agent Ai for
all i. In the equilibrium we’ve described, object bk is allocated to agent Ak for a value
of 1 and each object ai1 for i < k is allocated to either Bi or Di at a per-item value of
(k − i)/c. For each i < k, object a1k will be allocated to bidder Di precisely if bidders
D1, . . . , Dj−1 declare the zero valuation but Di does not, which occurs with probability

1
i(i+1) . Object a1k will be allocated to either Bk or Dk with the remaining probability,
which is 1

k . Noting that each of Bi and Di has a per-item value of (k − i)/c for their
desired sets, we conclude that the expected total value obtained is

1 +
∑
i<k

k − i
c

+
∑
i<k

1

i(i+ 1)
· k − i

c
+

1

k
· k − k

c

=1 +
1

c

[
1

2
(k2 − k) + k −

∑
i<k

1

i+ 1
− 1

]

=1 +
1

c

[
1

2
(k2 + k)−Hk

]
where Hk is the kth harmonic number.

We conclude that the mixed price of anarchy for this mechanism is at least

1
2 (k2 + k)

1 + 1
c

[
1
2 (k2 + k)−Hk

] > c

(
k2 + k

k2 + k + 2c− 2 ln k

)
where we used the fact that Hk > ln k. Choose k = e2c. Then our mechanism has mixed
price of anarchy at least

c

(
e4c + e2c

e4c + e2c − 2c

)
> c

(
e4c

e4c − c

)
> c

(
1 +

c

e4c

)
as required.

4.3. Correlated Types
Recall that our bound for Bayesian Price of Anarchy required that agent types be dis-
tributed independently. We now provide an alternative (weaker) bound that holds even
if agent types are arbitrarily correlated. The key to the new analysis is in considering
a deviating behaviour for each agent that does not depend on the other agents’ types.
The particular deviation we will consider is that of bidding half of one’s true value for
every set. Our analysis will additionally require that the underlying allocation algo-
rithm is a fixed order greedy algorithm.
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THEOREM 4.10. Suppose A is a c-approximate non-adaptive greedy algorithm for
a combinatorial allocation problem. ThenM1(A) has Correlated Bayesian Price of An-
archy at most 4c, for any type distribution F.

The key to this result lies in the following lemma.

LEMMA 4.11. Suppose A is a c-approximate non-adaptive greedy algorithm for a
combinatorial allocation problem. Then for all type profiles v and all strategy profiles
b(·), ∑

i

ui(vi/2,b−i(v−i)) ≥
1

2c
SWOPT (v)− SW (A(b(v)),v).

PROOF. Let y denote the optimal allocation for type profile v. Choose agent i, and
consider the outcome of A on input profile (vi/2,b−i(v−i)). Let xi = Ai(vi/2,b−i(v−i)).
Note that it must either be that θi(yi,b−i(v−i)) ≥ 1

2vi(yi) or not. In the latter case,
agent i must obtain some allocation xi with r(i, xi, vi(xi)/2) ≥ r(i, yi, vi(xi)/2). Since
A is a non-adaptive greedy algorithm, this then implies that vi(xi) ≥ 1

cvi(yi), since
otherwise A would obtain less than a 1

c fraction of the optimal social welfare on the
input in which agent i places bids only on sets xi and yi, and all other agents bid 0.

We conclude that for all i, either θi(yi,b−i(v−i)) > 1
2vi(yi) or else vi(xi) ≥ 1

cvi(yi). Let
N = {i | θi(yi,b−i(v−i)) > 1

2vi(yi)} be the set of agents for which the former condition
holds. We then note that

∑
i∈N

1

2
vi(yi) <

∑
i∈N

θi(yi,b−i(v−i)) ≤ cSW (A(b(v)),b(v)) ≤ cSW (A(b(v)),v)

where the second inequality is due to Lemma 3.3 and the third is due to Lemma 4.1.
Furthermore, since vi(xi) ≥ 1

cvi(yi) for all i 6∈ N , we have

∑
i 6∈N

1

2
vi(yi) ≤

∑
i 6∈N

c

2
vi(xi(vi/2,b−i(v−i))) ≤ c

∑
i

ui(vi/2,b−i(v−i))

where the second inequality follows because we are using the first-price payment
scheme. Combining these inequalities yields

∑
i

ui(vi/2,b−i(v−i)) + SW (A(b(v)),v) ≥ 1

2c
SWOPT (v)

as required.

Theorem 4.10 now follows easily from Lemma 4.11. Recall that Lemma 4.11 holds for
all strategy profiles, not just strategies in equlibrium. If we take b to be an equilibrium
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profile under type distribution F, then

Ev[SW (A(b(v)),v)] ≥ Ev

[∑
i

ui(b(v))

]
=
∑
i

EviEv−i|vi [ui(bi(vi),b−i(v−i))]

≥
∑
i

EviEv−i|vi

[
ui

(vi
2
,b−i(v−i)

)]
= Ev

[∑
i

ui

(vi
2
,b−i(v−i)

)]

≥ Ev

[
1

2c

∑
i

SWOPT (v)− SW (A(b(v)),v)

]
(Lemma 4.11)

from which we conclude that

Ev[SW (A(b(v)),v)] ≥ 1

4c
Ev

[∑
i

OPT (v)

]
completing the proof of Theorem 4.10.

5. CRITICAL-PRICE MECHANISMS
We begin by studying the performance of critical (i.e. second) price mechanisms at
equilibrium. The mechanism we study is M2(A), which is defined with respect to an
arbitrary monotone strongly loser-independent algorithm A. Recall that M2(A) pro-
ceeds by first collecting a declaration profile from the agents, then passing the ob-
served declarations to A as input. The mechanism returns the allocation provided by
A as output, and charges each agent his critical value for the set received (computed
via additional calls to A; see Section 5.4).

We will show that every Bayes-Nash equilibria ofM2(A) has a social welfare guar-
antee nearly matching that of the original algorithm A. This result requires that we
make an assumption on the bidding strategies applied by the users; namely, that they
do not overbid, meaning that they do not bid more than their true value on any given
set S. This overbidding assumption is necessary to exclude certain degenerate equi-
libria, such as one agent making an infinitely large bid on the set of all objects and
other bidders bidding 0. We note that such assumptions are reasonable in general;
even the truthful Vickrey auction of a single item requires a no-overbidding assump-
tion to bound the efficiency of the outcome at equilibrium. In Section 5.3 we discuss
ways to relax this assumption by modifying the mechanism slightly.

5.1. Bayes-Nash Equilibria
We begin by analyzing the Bayesian price of anarchy for the critical price mechanism
M2(A). Given that agents will not overbid, a simple modification of Theorem 4.4 yields
a result for BNE under critical prices.

THEOREM 5.1. Suppose A is a c-approximate monotone strongly loser independent
allocation rule, and that b is a Bayes-Nash equilibrium of M2(A) in which agents do
not overbid. Then the expected welfare when agents declare according to b is a (c + 1)-
approximation to the expected optimal welfare.
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LEMMA 5.2. Suppose that b is a Bayes-Nash equilibrium for mechanism M2(A)
and distribution F. Then for all i, all vi, and all S ⊆M ,

Ev−i [θi(S,b−i(v−i))] ≥ vi(S)−Ev−i [vi(xi(bi(vi),b−i(v−i)))]

PROOF. Choose any i, vi, and S. Let di be a single-minded declaration for set S at
value vi(S), and consider a strategy under which agent i declares di when his type is
vi. Under this strategy, the expected utility of agent i with type vi is

Ev−i [ui(di,b−i(v−i))] ≥ Ev−i [max{vi(S)− θi(S,b−i(v−i)), 0}]
≥ vi(S)−Ev−i [θi(S,b−i(v−i))].

(8)

Since bi is an equilibrium strategy for agent i, it must be that

Ev−i [ui(di,b−i(v−i))] ≤ Ev−i [ui(bi(vi),b−i(v−i))]

≤ Ev−i [vi(xi(bi(vi),b−i(v−i)))].
(9)

Combining equations (8) and (9) leads to the desired result.

Following the proof of Theorem 4.4, we conclude that for all equilibria b, if we write
yv for an optimal allocation for any given type profile v, then

Ev

[∑
i

Ev′−i
[θi(y

v
i ,b−i(v

′
−i))]

]
≥ Ev

[∑
i

vi(y
v
i )

]

−Ev

[∑
i

Ev′−i
[vi(xi(bi(vi),b−i(v

′
−i)))]

]
.

(10)

Just as in the proof of Theorem 4.4, we obtain the bounds

Ev

[∑
i

vi(y
v
i )

]
= Ev[SWOPT (v)],

Ev

[∑
i

Ev′−i
[vi(xi(bi(vi),b−i(v

′
−i)))]

]
= Ev[SW (A(b(v)),v)],

Ev

[∑
i

Ev′−i
[θi(y

v
i ,b−i(v

′
−i))]

]
≤ cEv[SW (A(b(v)),v)]

which, taken together with (10), completes the proof of Theorem 5.1. Note that when
deriving the last inequality above, we do not invoke Lemma 4.1 (as in the proof of
Theorem 4.4); instead, we use the assumption that agents do not overbid. 2

In precisely the same way as for the first-price mechanism, the bound on the price
of anarchy also extends to coarse correlated equilibrium.

COROLLARY 5.3. (of proof) The bound of (c+ 1) on the price of anarchy applies also
to coarse correlated equilibrium.

We next show that this gap between the approximation factor of the original algo-
rithm and the price of anarchy of the critical price mechanism is required for large
c. For any c ≥ 1 we exhibit a combinatorial allocation problem and a non-adaptive
greedy algorithm A such that the approximation factor of A is c + 1

c but the (pure)
price of anarchy ofM2(A) is c+1. This leads us to conclude that, in general, the bound
in Theorem 5.1 cannot be improved beyond c+ 1− θ( 1

c ).
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PROPOSITION 5.4. For any c ≥ 1, there is a combinatorial allocation problem P and
a non-adaptive greedy algorithm A such that A is a (c + 1

c )-approximation for P, and
the pure price of anarchy forM2(A)is c+ 1.

PROOF. Consider a combinatorial auction problem with two objects a, b and two
players, under the restriction that each player can be allocated at most one object and
player 2 cannot be allocated object b. Algorithm A will be the following non-adaptive
greedy algorithm: if v1(a) ≥ 1

cv2(a) and v1(a) ≥ cv1(b) then allocate a to player 1 and ∅
to player 2; otherwise allocate b to player 1 and a to player 2. Note that this is a c + 1

c
approximation algorithm, since whenever the algorithm allocates a to player 1 we have
v2(a) +v1(b) ≤ (c+ 1

c )v1(a), and whenever the algorithm allocates a to player 2 we have
v1(a) ≤ c(v1(b) + v2(b)).

Consider the mechanismM2(A), and suppose that the agents have a type profile in
which v1(a) = v1(b) = 1 and v2(a) = c. Then the declaration profile d1(a) = 1, d1(b) = 0,
and d2(a) = 0 is in equilibrium, since agent 1 cannot improve upon his utility of 1 and
agent 2 cannot affect the outcome without paying at least θ2(a, d1) = c, for a utility of 0.
The social welfare at this equilibrium is 1, but a total of c+ 1 is possible by allocating a
to player 2 and allocating b to player 1. Thus the price of anarchy forM2(A) is at least
c+ 1.

5.2. Correlated Types
Theorem 5.1 requires that agent types be distributed independently. As with the first-
price mechanism, we can provide a somewhat weaker bound that holds even when
agent types are arbitrarily correlated. And as in Theorem 5.1 this result additionally
requires that the underlying allocation algorithm is a non-adaptive greedy algorithm.

THEOREM 5.5. Suppose A is a c-approximate non-adaptive greedy algorithm for
a combinatorial allocation problem, and that agents do not overbid. Then M2(A) has
Correlated Bayesian Price of Anarchy at most 4c, for any type distribution F.

The proof of Theorem 5.5 follows that of Theorem 4.10 almost exactly. The sole dif-
ference is that the invocation of Lemma 4.1 in the proof of Theorem 4.10 is replaced by
an appeal to the no-overbidding assumption. We omit the details for brevity.

5.3. Overbidding and Restricted Expressiveness
Our analysis to this point made use of a no-overbidding assumption, which states that
no agent will place a bid larger than her true value on any given set. However, our
use of the no-overbidding assumption is marred by the fact that a restriction to no-
overbidding strategies is not always rational when agents have complete confidence
about their opponents’ type distributions. As the following example shows, an agent
may be strictly better off by overbidding, even in a full-information setting. In other
words, a strategy with overbidding is not necessarily dominated.

Example 5.1. Consider a combinatorial auction with 3 objects, {a, b, c}, and 3 bid-
ders, under the feasibility restriction that each agent can be allocated at most one
object. Let A be the greedy algorithm that orders bids by value. Suppose the types of
the players are as follows: t1(b) = 2, t1(c) = 4, t2(c) = 3, t3(a) = 1, t3(b) = 6, and all
other values are 0. Consider the following bidding strategies for agents 2 and 3: bidder
2 declares truthfully with probability 1, and bidder 3 either declares single-mindedly
for a with value 1, or single-mindedly for b with value 6, each with equal probability.

How should agent 1 declare to maximize utility? We can limit our analysis to pure
strategies (as any optimal randomized strategy has only optimal strategies in its sup-
port). Suppose agent 1 does not overbid and declares at most 2 for object b. If he also
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MechanismM∗2(A):

Input: Declaration profile d = d1, . . . , dn.

1. d′ ← SIMPLIFY(d).
2. Allocate A(d′), charge critical prices.

Procedure SIMPLIFY:

Input: Declaration profile d = d1, . . . , dn.

1. For each i ∈ [n]:
2. Choose Si ∈ argmaxS{di(S)}, breaking

ties in favour of smaller sets.
3. di

′ ← (Si, di(Si)).
4. Return (d′1, . . . , d

′
n).

Fig. 2. Simplifying declarations in a critical price mechanism.

declares at least 3 for object c, then he wins c with probability 1 for an expected utility
of 1. If he doesn’t declare at least 3 for object c, then he wins b with probability 1/2 and
nothing otherwise, again for an expected utility of 1. So agent 1 can gain a utility of at
most 1 if he does not overbid. If, however, he declares 5 for b and 4 for c, then he wins b
with probability 1/2 and wins c otherwise, for an expected utility of 3/2. If agent 1 bids
in this way, the resulting combination of strategies forms a mixed Nash equilibrium.
Thus, in mixed equilibria, an agent may strictly improve his utility by overbidding.

We now show that if we modify mechanismM2(A) by effectively limiting the expres-
siveness of the bids made by the agents, then we obtain the same efficiency bounds at
equilibria but furthermore guarantee that any bidding strategy that involves overbid-
ding is dominated. Thus, as long as agents avoid dominated strategies (a very mild
assumption), all equilibria of rational play lead to approximately efficient outcomes.

For a monotone strongly loser independent allocation rule A, the modified mecha-
nism M∗2(A) is as described in Figure 2. Mechanism M∗2(A) proceeds by first simpli-
fying the declaration given by each agent, then passing the simplified declarations to
algorithm A. The resulting allocation is paired with a payment scheme that charges
critical prices.

The simplification process SIMPLIFY essentially converts any declaration into a
single-minded declaration (and does not affect declarations that are already single-
minded). We can therefore assume without loss of generality that agents always make
single-minded declarations to this mechanism, as additional information is not used.9

Fix a particular combinatorial auction problem and type profile v, and let A be an
arbitrary strongly loser-independent approximation algorithm. Since v is fixed, we can
think of a strategy for each agent i as a declaration di ∈ Vi. Let d be a declaration
profile; we suppose each di is a single-minded bid for set Si (and, in general, we will
write Si for the desired set in declaration di). We draw the following conclusion about
the bidding choices of rational agents.

LEMMA 5.6. Let A be monotone strongly loser independent allocation rule, and fix
type profile v. Then for each agent i, a single-minded declaration di for set Si is an
undominated strategy for mechanismM∗2(A) if and only if di(Si) = vi(Si).

9We note, however, that this is not the same as assuming that agents are single-minded; our results hold for
bidders with general private valuations.
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PROOF. Fix some d−i and suppose di is a single-minded declaration for set Si On
input (di,d−i), mechanism M∗2(A) either allocates Si or ∅ to agent i. Thus agent i’s
utility for declaring di, ui(di,d−i), is vi(Si) − θi(Si,d−i) when di(Si) > θi(Si,d−i), and
0 otherwise (where θi denotes critical prices with respect to M∗2(A)). A declaration of
di(Si) = vi(S) therefore maximizes ui(di,d−i) for all d−i.

Next suppose that di(Si) 6= vi(Si); we will show that di is dominated. Let di′ be
the single-minded declaration for Si at value vi(Si). Suppose there is some d−i such
that θiA(Si,d−i) lies strictly between di(Si) and vi(Si). For simplicity we will assume
such a d−i exists; handling the general case requires only a technical extension of
notation10. Then if di(Si) < vi(Si), then ui(di

′,d−i) > 0 = ui(di,d−i). Otherwise, if
di(Si) > vi(Si)), then ui(di

′,d−i) ≥ 0 > ui(di,d−i). Thus, in either case, we have
ui(di

′,d−i) > ui(di,d−i), and therefore declaration di
′ strictly dominates declaration

di.

Given Lemma 5.6, we can analyze the efficiency of equilibria of M∗2(A) in a man-
ner identical to M2(A). Rather than explicitly assuming that agents do not overbid,
Lemma 5.6 implies that they will not.

THEOREM 5.7. Suppose A is a c-approximate monotone strongly loser independent
allocation rule, and that b(·) is a Bayes-Nash equilibrium ofM∗2(A). Then the expected
welfare when agents declare according to b is a (c + 1) approximation to the expected
optimal welfare.

5.4. Calculating Critical Prices
For many allocation algorithms (such as all of the algorithms discussed in Section 2.5),
the calculation of critical prices is a simple task, which can be performed in parallel
with the computation of an allocation profile. We leave the development of such pric-
ing methods to the creators of the allocation algorithms to which our reduction may
be applied. However, even if a specially-tailored algorithm for computing exact crit-
ical prices is not available, we note that critical prices for a given black-box greedy
algorithm can be determined to within an additive ε error in polynomial time via sim-
ple binary search. Thus, assuming that valuation space is discretized by multiples of
ε, critical prices can be determined efficiently. If valuation space is continuous, then
our interpretation is that any equilibrium for the (exact) critical-price mechanism will
be an (additive) ε-approximate equilibrium for a mechanism that uses ε-approximate
critical prices.

We now describe the procedure for determining critical prices in more detail. Fix
greedy allocation rule A, agent i, and declarations d. Suppose that Ai(di,d−i) = S.
We wish to resolve the value of θi(S,d−i) in the range [0, di(S)] using binary search
in the following way. For all z ≥ 0, write di

z for the single-minded declaration for
set S at value z. Given query value z ∈ [0, di(S)], we check if Ai(diz, di) = S. If so,
decrease the value of z; otherwise, increase the value of z. SinceA is monotone, we have
that Ai(diz,d−i) = S if and only if z > θi(S,d−i). This procedure resolves the value
of v to within ε in O(log di(S)/ε) iterations. Thus, for any given input to mechanism
M2(A), the critical prices for all agents’ allocated sets can be found in O(n log(vmax/ε))
invocations of algorithm A, where vmax = maxi,S di(S).

10If θiA(Si,d−i) never lies between di(Si) and vi(Si)) for any d−i, then MA(di,d−i) = MA(di′,d−i)
for all d−i, so di and di′ are equivalent strategies. We can therefore think of di as being “the same” as a
single-minded declaration for Si at value vi(Si). We will ignore this technical issue for the remainder of the
proof, in the interest of clarity.
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6. REPEATED AUCTIONS AND REGRET MINIMIZATION
Up to this point, we have considered the perfomance of mechanisms for one-shot allo-
cation problems. We now turn to repeated auctions. In this section, we focus on agents
that apply regret minimizing strategies. We consider an instance of a combinatorial
allocation problem that proceeds in rounds. The problem will be resolved by a direct
revelation mechanismM, say with allocation algorithm A, which independently exe-
cutes on each round of the auction. As before, we will tend to write x for the allocation
rule associated with algorithm A.

We assume that neither the agent types nor the mechanism changes between rounds
of the auction. When the agents have types v and D = (d1,d2, . . . ,dT , . . .) is a sequence
of declared valuation profiles, we let DT denote the length-T prefix of D and we write
SWA(DT ) = 1

T

∑
t SW (x(dt),v) for the average welfare obtained over the T declara-

tions in DT . We will sometimes replace subscript A by M, in which case the social
welfare is for the allocation rule ofM.

Declaration sequence D = (d0,d1, . . . ) minimizes external regret for agent i if, for
any fixed declaration di, the sequence of finite prefixes satisfies

∑T
t=1 ui(d

t
i,d

t
−i) ≥∑

t ui(di,d
t
−i)+o(T ). That is, as T increases, the per-round utility of agent i approaches

the utility of the optimal fixed strategy in hindsight. The price of total anarchy [Blum
et al. 2008] is the worst-case ratio between optimal welfare and the welfare of a decla-
ration that minimizes external regret; that is,

sup
v,D

SWopt(v)

SW (M(D),v)
.

THEOREM 6.1. For any c-approximate monotone strongly loser independent alloca-
tion rule A, mechanismM1(A) (respectively,M∗2(A)) has price of total anarchy at most

c
1−e−c (resp. c+ 1).

PROOF. As observed by Blum and Mansour [Blum and Mansour 2007] and Rough-
garden [Roughgarden 2009; 2012], in the full information setting, price of total anarchy
is equal to price of anarchy with respect to coarse correlated equilibrium. The result
then follows immediately from Corollaries 4.8 and 5.3.

One can suppose that each bidder employs an algorithm to determine which decla-
ration to make at time t, given the bidding history up to time t. We say that such an
algoritm minimizes regret if employing the algorithm results in a sequence that min-
imizes external regret for the employing agent, for any bidding behavior of the other
agents. Our interest in external regret minimization is motivated by the existence of
simple and efficient bidding algorithms for minimizing regret. Indeed, the price of to-
tal anarchy captures mechanism performance when agents apply reasonable learning
techniques over the course of repeated participation. In this sense we feel that this
analysis is predictive of outcomes that would be observed in practice in a repeated
auction. The remainder of this section will be dedicated to elaborating on this point of
computational tractability.

The standard algorithmic approach to minimizing external regret is the “follow the
perturbed leader” (FPL) algorithm [Hannan 1957; Kalai and Vempala 2005], which
requires time and space polynomial in the number of actions that can be taken by an
agent. Note that, in general, an action in a combinatorial auction mechanism corre-
sponds to a declared valuation, of which there are super-polynomially many. So FPL is
not immediately applicable as an approach for arbitrary mechanisms.

We note, however, that the mechanism M∗2(A) (for a
monotone strongly loser independent allocation rule A) has some desirable prop-
erties that make it well-suited to the application of FPL techniques. Recall that,
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for this mechanism, it suffices to consider only single-minded declarations from
agents. Furthermore, from Lemma 5.6, all undominated strategies for agent i involve
selecting a single set Si and making a single-minded declaration for set Si at its true
value vi(Si). An action in a given round therefore corresponds to a single set of items
upon which to bid.

Of course, this still leaves an exponentially large (in m) space of actions, in general.
One should therefore consider the format in which agent valuations are represented.
For instance, a natural way to express an agent valuation is in XOR format [Sandholm
2002; Nisan 2000], which is a collection of single-minded valuations (i.e., set-value
pairs) with the semantics that the value of a set S will be the maximum specified
value for any set contained in S. The sets in the XOR representation are called the
desired sets of agent i. This is an especially natural representation for many greedy
algorithms, which typically iterate over the desired sets.

For a valuation represented in XOR format, it suffices to consider only bids for de-
sired sets. This is because any other bid, say for a set S, would be dominated by a bid
for the desired set that determines the value of S. Thus, if valuations are represented
in XOR format, it suffices to consider a space of actions that is polynomial in the in-
put size. One can therefore apply FPL in an efficient manner, leading to the following
conclusion.

THEOREM 6.2. Computing a regret-minimizing for agent i in mechanism M∗2(A)
can be done in time, per round, that is polynomial in n and the size of the XOR repre-
sentation of agent i’s valuation.

7. REPEATED COMBINATORIAL AUCTIONS AND BEST-RESPONSE AGENTS
In this section we consider the problem of designing mechanisms for agents that
apply myopic best-response strategies asynchronously. Declaration sequence D =
(d0,d1, . . . ) is an instance of response dynamics if for all prefixes, and for all 1 ≤ t ≤ T ,
profiles dt−1 and dt differ on the declaration of at most one player. Response dynam-
ics D is an instance of best-response dynamics if, whenever dt−1 and dt differ on the
declaration of agent i, dti maximizes agent i’s utility given the declarations of the other
bidders. That is, dti ∈ argmaxd{ui(d,dt−i)}. In our model, agents are chosen for update
uniformly at random to make a best-response, one agent per round. We will also as-
sume that if a bidder is chosen for update but cannot improve his utility, he will choose
to maintain his previous strategy.

We begin our analysis of myopic bidders by considering mechanismM∗2(A) from Sec-
tion 5 for a given monotone greedy algorithm A. One might ask whether or not this
mechanism converges to equilibrium under best-response dynamics. A simple example
shows that this is not the case: there are circumstances in which mechanism M∗2(A)
has probability 0 of ever converging to a pure Nash equilibrium via best-response dy-
namics, despite the existence of a pure equilibrium.

Example 7.1. Consider a combinatorial auction with 6 agents and 4 objects, say
{a, b, c, d}, under the feasibility constraint that each agent can receive at most 2 items.
Let A be the greedy allocation rule that allocates sets greedily by value. We consider
an input instance given by the following set of true values (where the value for a set
not listed is taken to be the maximum over its subsets).
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player set value
1 {a, b} 4
1 {d} 6
2 {a} 2
2 {b, c} 5
3 {c} 4
4 {d} 5

Suppose the auction is resolved by mechanism M∗2(A), and agents apply best-
response dynamics. Agents 3 and 4 are single-minded and always maximize their util-
ity by declaring truthfully. Agents 1 and 2 each have a strategic choice to make when
bidding: which of their two desired sets should they bid upon? Note that once this de-
cision is made, the way to bid is determined by Lemma 5.6 (i.e. bid truthfully for the
desired set). It can be verified that from each of the resulting 4 possible declaration
profiles, some player has incentive to change declaration. Thus best-response dynam-
ics need not converge to an equilibrium.

The non-convergence of best-response dynamics is not a technical artifact of the
model. Since the cyclic behavior described above employs undominated strategies by
the players, we view it as a reasonable outcome to expect in such an auction (especially
if players are not willing or able to randomize). The example above motivates a study
of the total11 (or equivalently the average) social welfare ofM∗2(A), over many rounds
of best-response dynamics. We conjecture that, on average, the best-response dynamics
on mechanism M∗2(A) obtains an approximation to the optimal social welfare that is
within a constant factor of the approximation ratio of the original algorithm A.

CONJECTURE 7.1. If A is a c-approximate monotone strongly loser independent
allocation rule, thenM∗2(A) has O(c) price of (myopic) sinking.

We leave the resolution of Conjecture 7.1 as an open problem. More generally, al-
though we believe mechanism M∗2(A) is an appropriate mechanism, the underly-
ing goal is to have some black box transformation that converts a c-approximate
monotone strongly loser independent allocation rule into a mechanism with O(c) price
of myopic sinking. As partial progress, we will focus on two specific combinatorial auc-
tion settings: the general combinatorial auction problem, and combinatorial auctions
under a cardinality restriction. For these two settings, we will construct alternative
mechanisms and analyze the welfare they generate under best-response dynamics.

7.1. The Approach
Our bound on the price of total anarchy of M∗2(A) in Theorem 6.1 and our price of
anarchy bound in Theorem 5.1 rely on a particular insight: if the social welfare of
an auction outcome is low relative to the optimal welfare, then there must exist some
agent i for whom the optimal assignment has a low critical price. We used this to argue
that an outcome with low welfare cannot occur at equilibrium, since this agent i could
improve his utility by pursuing his allocation in the optimal assignment.

The difficulty when extending this intuition to asynchronous best-response dynam-
ics is that even if an agent can improve his utility by attempting to win some set for
which the critical price is low, it may be that he has no chance to do so because he is
not chosen to update his bid. Since each agent can expect to update his bid only once
in every n rounds, our concern is that an agent spends most rounds wishing to make a

11While other measures are possible, such as the minimum welfare over the cycle, the total or average
welfare seems to be more relevant to a mechanism and is consistent with the regret minimization measure
in section 6.
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MechanismMsCA:

Input: Declaration profile d = d1, . . . , dn.

1. d′ ← SIMPLIFY(d), % say di′ = (Si, vi)
2. (T1, . . . , Tn)← AsCA(d′).
3. For each i such that Ti 6= ∅:
4. I ← {j : Sj ∩ Ti 6= ∅}. % I is the set of bids that intersect Si
5. τi ← 2

∑
j∈I dj(Sj).

6. If di′(Ti) ≤ τi, set Ti ← ∅, τi ← 0.
7. Allocate T1, . . . , Tn and charge τ1, . . . , τn. % Critical prices.

Fig. 3. MechanismMsCA, an implementation of greedy algorithm AsCA for the s-CA problem. This mech-
anism uses procedure SIMPLIFY from Figure 2 in Section 5.3.

utility-improving bid, but that this improvement happens to be unavailable whenever
it is that agent’s turn to update.

We address this difficulty in two steps. First, we modify our mechanism so that
the social welfare is never much less than the sum of the bids of all players - even
those that are not allocated their desired sets. We accomplish this by designing the
mechanism so that a winning bid must be significantly larger than the sum of all
conflicting bids. This implies that if agent i places a large bid on round t, then we can
think of agent i as making a large contribution to the social welfare even if she does
not win her bid. Second, we demonstrate that with high probability, in almost half of
the rounds (or more), either agent i places a large bid or else the critical price for her
optimal allocation is high. Thus, even though agent i can modify her declaration only
very infrequently, her (possibly indirect) contribution to the social welfare will still be
large for approximately half of the rounds.

7.2. A Mechanism for s-CAs
Consider the s-CA problem, which is a combinatorial auction in which the feasibility
constraint requires that no agent can be allocated more than s objects. An algorithm
that greedily assigns sets in descending order by value obtains an s-approximation.
Call this algorithm AsCA. We will construct a mechanism MsCA based on AsCA; it
is described in Figure 3. This algorithm simplifies incoming bids (in the same way as
M∗2(A)) and runs algorithmAsCA to find a potential allocation. However, an additional
condition for inclusion in the solution is imposed: the value declared for a set must be
at least twice the sum of all bids for intersecting sets. Potential allocations that satisfy
this condition are allocated, and the mechanism charges critical prices (that is, the
smallest value at which an agent would be allocated their set by MsCA, which is not
necessarily the same as the critical price for AsCA).

We note that since our mechanism implements a monotone algorithm and charges
critical prices, Lemma 5.6 implies that undominated strategies for agent i involve
choosing a set Si and making a truthful single-minded bid for Si at value vi(Si). We
will therefore assume that agents bid in this manner. However, the agent still has a
strategic decision regarding which set Si to choose.

We begin our analysis with some notation. Suppose that d is a declaration profile,
where each di is single-minded for some set Si. For any set T , define the set of bids
intersecting agent i’s bid for T in d to be Ii(d, T ) = {j : j 6= i, Sj ∩T 6= ∅}. We also define
Li(d, T ) = {j : j ∈ Ii(d, T ), dj(Sj) < vi(T )} to be the set of lower intersecting bids. We
recursively define the set of ancestors, Ai(d, T ), for agent i with respect to T and d; it
is the set of all lower intersecting bids, plus all ancestors of those lower intersecting
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bids. That is,

Ai(d, T ) = Li(d, T ) ∪
⋃

j∈Li(d,T )

Aj(d, Sj).

We say that d is separated for agent i if di(Si) ≥ 2
∑
j∈Li(d,Si) dj(Sj). Profile d is

separated if it is separated for every bidder. Since an agent gains positive utility in
mechanism McSA only if the declaration is separated for him, we draw the following
conclusion.

LEMMA 7.2. If a declaration profile d is separated, then it remains separated after
a step of the best-response dynamics for mechanismMsCA.

PROOF. Suppose agent i is chosen to update his bid, say from di to d̃i. Let d̃ =
(d̃i,d−i). If agent i cannot improve his utility then d̃ = d, so d̃ is separated as required.
Suppose otherwise, so agent i changes the set upon which he bids from, say, Si to S̃i.
Since ui(d̃i,d−i) > 0, it must be that d̃i(S̃i) > 2

∑
j∈Ii(d̃,S̃i) dj(Sj). This implies that

d̃ is separated for agent i. It remains to verify that d̃ is separated for each j 6= i.
Since d̃ is separated for agent i, it must be that d̃i(S̃i) > dj(Sj) for all j such that
S̃i ∩ Sj 6= ∅. This then implies that i 6∈ Lj(d̃, Sj) for each j 6= i. Moreover, only the
declaration of agent i changes between d and d̃, and hence Lj(d̃, Sj) and Lj(d, Sj) can
differ only on whether they include i. We conclude that, for all j 6= i, either Lj(d̃, Sj) =

Lj(d, Sj) or Lj(d̃, Sj) = Lj(d, Sj)\{i}. In either case, Lj(d̃, Sj) ⊆ Lj(d, Sj), and hence∑
k∈Lj(d̃,Sj) d̃k(Sk) ≤

∑
k∈Lj(d,Sj) dk(Sk). Therefore, since d is separated for all j 6= i, d̃

must be separated for each j 6= i as well.

Motivated by Lemma 7.2, we will focus on separated declaration profiles12 for the
remainder of this section. We will show that, for any separated declaration profile,
MsCA extracts a constant fraction of the sum of all declared bids, as welfare.

LEMMA 7.3. For all separated declarations d, SWMsCA
(d) ≥ 1

2

∑
i di(Si).

PROOF. We first claim that, for each agent i,

di(Si) ≥
∑

j∈Ai(d,Si)

dj(Sj). (11)

12More formally, we could assume an initial empty declaration (which is trivially separated) so that by in-
duction all declarations will be separated. Alternatively, we can modify mechanism MsCA so that, with
vanishingly small probability, an alternative allocation rule is used. This alternative rule chooses an agent
at random, and assigns him all objects at no cost as long as the input declaration is separated for that agent.
Thus, any separated declaration by agent i results in positive expected utility. Since any non-separated dec-
laration by an agent results in a utility of 0 for that agent, it must be that the utility-maximizing declaration
by any agent must be separated.
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This follows by structural induction on the recursive definition of Ai(d, T ), since for
each i we have

di(Si) ≥ 2
∑

j∈Li(d,Si)

dj(Sj)

≥
∑

j∈Li(d,Si)

dj(Sj) +
∑

j∈Li(d,Si)

∑
k∈Aj(d,Sj)

dk(Sk)

≥
∑

j∈Ai(d,Si)

dj(Sj)

where the first inequality follows by separatedness.
Let N ⊆ [n] be the set of agents that receive non-empty sets in MsCA(d). We next

claim that for all j 6∈ N , either Sj = ∅ or there exists some i ∈ N such that j ∈ Ai(d, Si).
To see this, let i be such that di(Si) is maximal, subject to j ∈ Ai(d, Si). Note that such
an i must exist whenever Sj 6= ∅, though it could be that i = j. By maximality, the
bid of i cannot intersect with any larger bid in d, so i is allocated a nonempty set by
AsCA(d). Moreover, by separatedness, the allocation to i is not set to ∅ on line 6 of
MsCA(d). Thus i ∈ N , as claimed.

Now, taking a sum over all j 6∈ N and applying (11), we can conclude∑
j 6∈N

dj(Sj) ≤
∑
i∈N

∑
j∈Ai(d,Si)

dj(Sj) ≤
∑
i∈N

di(Si). (12)

We then have ∑
i

di(Si) =
∑
i∈N

di(Si) +
∑
j 6∈N

dj(Sj)

≤
∑
i∈N

di(Si) +
∑
i∈N

di(Si)

= 2SWMsCA
(d)

as required.

We are now ready to bound the price of sinking for MsCA. We will achieve the fol-
lowing bound.

THEOREM 7.4. Choose ε > 0 and suppose D = d1, . . . , dT is an instance of best-
response dynamics with random player order, where agents play undominated strate-
gies, and T > ε−1n. Then

SWMsCA
(D) ≥

(
1− 2ε

16s+ 8

)
SWOPT (v)

with probability at least 1− ne−Tε2/32n.

Before proving Theorem 7.4, let us make some remarks. If we take ε to be a small
constant and assume T = Ω(n1+δ) for some δ > 0, we conclude that SWMsCA

(D) >
1

O(s)SWopt(v) with high probability. Thus MsCA implements an O(s) approximation
to the s-CA problem for best-response bidders over sufficiently many rounds. In other
words,MsCA has O(s) price of (myopic) sinking.

We now begin with the proof of the theorem. Let y be an optimal allocation with
respect to the agents’ true types v. For a given time step t ≤ T , we will define a notion
of “good” agents on step t. Let Gt1 denote the set of agents for which di

t(Si) ≥ 1
2vi(yi),

and let G2 denote the set of agents for which
∑
j∈Ii(dt,yi) d

t
j(Sj) >

1
4vi(yi). That is, Gt1
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is the set of agents making relatively large bids at time t, and Gt2 is the set of agents i
for whom a relatively large bid (that is, up to 1

4vi(yi)) on set yi would not be a winning
bid. Write Gt = Gt1 ∪Gt2; we will refer to Gt as the set of good agents at time t.

We will first argue that, at any given time t, the welfare achieved by our mechanism
achieves a good approximation to the welfare of the optimal outcome, restricted to
agents in Gt.

LEMMA 7.5. For all t, SWMsCA
(dt) ≥ 1

8s+4

∑
i∈Gt vi(yi).

PROOF. By Lemma 7.3 and the definition of Gt1, we have

SWMsCA
(dt) ≥ 1

2

∑
i

di
t(Si) ≥

1

2

∑
i∈Gt1

di
t(Si) ≥

1

4

∑
i∈Gt1

vi(yi). (13)

Next, by Lemma 7.3 and the definition of Gt2, we have

SWMsCA
(dt) ≥ 1

2

∑
i

di
t(Si)

≥ 1

2
· 1

s

∑
i

∑
j∈Ii(dt,yi)

dtj(Sj)


≥ 1

2s

∑
i∈Gt2

∑
j∈Ii(dt,yi)

dtj(Sj)

≥ 1

8s

∑
i∈Gt2

vi(yi)

(14)

where the second inequality follows because each set Sj can intersect at most |Sj | ≤ s
sets yi, and the final inequality is by the definition of Gt2. Combining (13) and (14)
yields the desired result.

In light of Lemma 7.5, our goal is to show that each agent is good sufficiently of-
ten over the course of an instance D of best-response dynamics. To this end, we will
establish bounds on the probability that an agent lies in G1 or G2.

LEMMA 7.6. For any i and t, Pr[i ∈ Gt+1
1 |i ∈ Gt1] ≥ 1− 1

n .

PROOF. If i ∈ Gt1, and i is not selected by the best-response dynamics following
round t, then it must be that i ∈ Gt+1

1 . Since i is selected with probability 1/n, the
result follows.

LEMMA 7.7. For any i and t, Pr[i ∈ Gt+1
1 |i 6∈ Gt] ≥ 1

n .

PROOF. Suppose i 6∈ Gt, and that i is selected by the best-response dynamics process
following round t. Since i 6∈ Gt2, it must be that that θi(yi,d−i) = 2

∑
j∈Ii(d,yi) dj(Sj) in

mechanismMsCA, so agent i would obtain utility at least 1
2vi(yi) by making a single-

minded declaration for set yi at value vi(yi). His utility-maximizing declaration must
therefore make at least this much utility, and therefore is a bid for some set Si with
vi(Si) ≥ 1

2vi(yi). Thus, with probability 1
n , agent i is selected and necessarily chooses

dt+1
i such that i ∈ Gt+1

1 .

We now show that the above observations imply that any given agent will be in Gt

reasonably often, with high probability. This will follow immediately from the following
technical lemma, whose proof we defer:
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LEMMA 7.8. Suppose that {At}t≤T and {Bt}t≤T are sequences of binary random
variables satisfying the following properties:

(1) At +Bt ≤ 1 for all t,
(2) Pr[At+1 = 1|Bt = 1] ≥ 1

n for all t, and
(3) Pr[At+1 = 1|At = 1] ≥ 1− 1

n for all t.

Then Pr[
∑
tB

t ≥ ( 1
2 + ε)T ] ≤ e−Tε2/32n.

COROLLARY 7.9. For any agent i, with probability at least 1 − e−Tε
2/32n, agent i

will be in Gt for at least ( 1
2 − ε)T values of t.

PROOF. Let At be the indicator for event i ∈ Gt1, and let Bt be the indicator for the
event i 6∈ Gt. By Lemma 7.6 and Lemma 7.7, we can apply Lemma 7.8 to conclude that
i 6∈ Gt for at most ( 1

2 + ε)T values of t, with the required probability.

We are now ready to prove the main result of this section.

Proof of Theorem 7.4 : Corollary 7.9 implies that each agent i will be in Gt for
at least ( 1

2 − ε)T values of t, with probability at least 1 − e−Tε2/32n. The union bound
then implies that this occurs for every agent with probability at least 1 − ne−Tε2/32n.
Conditioning on the occurrance of this event, Lemma 7.5 implies

SWMsCA
(D) =

1

T

∑
t

SWMsCA
(dt)

≥ 1

(8s+ 4)T

∑
t

∑
i∈Gt

vi(yi)

≥ 1

(8s+ 4)T

∑
i

T

(
1

2
− ε
)
vi(yi)

≥
(

1− 2ε

16s+ 8

)
SWOPT (v)

which implies the required bound. 2

7.3. Proof of Lemma 7.8
Our proof will make use of the method of average bounded differences. We will begin by
giving a brief statement of this technique; see, for example, [Dubhashi and Panconesi
2009] for a more thorough treatment. Suppose that z1, . . . , zn are (not necessarily in-
dependent) random variables, and let f be real-valued function of z1, . . . , zn satisfying
the property that, for each i ∈ [n] and any two values a, a′ that zi can assume, there is
a non-negative value ci such that

|E[f |z1, . . . , zi−1; zi = a]− E[f |z1, . . . , zi−1; zi = a′]| ≤ ci
where the expectations are with respect to the values of zi+1, . . . , zn. Then the method
of average bounded differences states that Pr[f > E[f ]+`] ≤ e−`2/2c for all ` > 0, where
c =

∑
i∈[n] c

2
i .

We now proceed with the proof of Lemma 7.8. First recall the statement of the
lemma. Suppose that {At}t≤T and {Bt}t≤T are sequences of binary random variables
satisfying the following properties:

(1) At +Bt ≤ 1 for all t,
(2) Pr[At+1 = 1|Bt = 1] ≥ 1

n for all t, and
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(3) Pr[At+1 = 1|At = 1] ≥ 1− 1
n for all t.

We wish to prove that Pr[
∑
tB

t ≥ ( 1
2 + ε)T ] ≤ e−Tε2/32n.

Consider the steps in which At and Bt are not both 0; let R = {t : At+Bt ≥ 1} be this
set of steps. For all r ≤ |R|, let t(r) denote the rth largest element of R. That is, t(r)
is the step at which either At or Bt is 1 for the rth time. Let Cr denote the (indicator
variable for the) event that on the rth step in which either At or Bt is 1, it is Bt that
is 1. Then

∑
r≤T Cr =

∑
t≤T B

t, so it is enough to show that Pr[
∑
r≤T C

r > ( 1
2 + ε)T ] <

e−Tε
2/32n.

Since Pr[At+1 = 1|Bt = 1] ≥ 1/n, we have that Pr[Cr+1|Cr] ≤ (1 − 1/n). Moreover,
if Cr does not occur, then At(r) occurs, and hence (since Pr[At+1 = 1|At = 1] ≥ 1 − 1

n ),
Cr+1 occurs with probability at most 1/n. That is, Pr[Cr+1|¬Cr] ≤ 1/n.

Let D1, D2, . . . , DT be a random walk on {0, 1} defined by Pr[Dr|Dr−1] = (1 − 1/n),
Pr[Dr|¬Dr−1] = 1/n, and initial conditionD0. Then our bounds above imply that

∑
r Cr

is stochastically dominated by
∑
rDr, and hence Pr[

∑
r Cr > ( 1

2 + ε)T ] ≤ Pr[
∑
rDr >

( 1
2 + ε)T ]. It will therefore suffice to show that Pr[

∑
r≤T Dr > ( 1

2 + ε)T ] < e−Tε
2/32n.

The definition of Dr yields

Pr[Dr] =
1

n
(1− Pr[Dr−1]) +

(
1− 1

n

)
Pr[Dr−1]

=
1

n
+

(
1− 2

n

)
Pr[Dr].

Solving this linear recurrence (with initial condition D0 ∈ {0, 1}) yields

Pr[Dr] =
1

2
(1− (1− 2/n)r) +D0(1− 2/n)r

=
1

2
+ (D0 −

1

2
)(1− 2/n)r.

Linearity of expectation then implies

E

[∑
r

Dr

]
=

1

2
T +

(
D0 −

1

2

)
n

2
(1− (1− 2/n)T+1).

From this we conclude that

E

[∑
r

Dr

]
<

1

2
T +

n

4
(15)

and moreover ∣∣∣∣∣E
[∑

r

Dr

∣∣∣∣∣D0 = 1

]
− E

[∑
r

Dr

∣∣∣∣∣D0 = 0

]∣∣∣∣∣ < n

2
. (16)

Let k = T/n and define random variables F1, . . . , Fk by Fi =
∑
r∈[in,(i+1)n−1]Dr. Note

that Fi ∈ [0, n] for all i. Note also that∑
r

Dr =
∑
i

Fi. (17)

We would now like to apply the method of average bounded differences to random
variables F1, . . . , Fk and function f =

∑
i Fi. To do so, we must consider the expectation
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E[
∑
i Fi|F1, . . . , Fi−1, Fi = α] for α ∈ [0, n]. But note that the influence of F` on the

values of F`+1, . . . , Fk is captured entirely by the value of D(`+1)n−1, and from (16) the
influence of D(`+1)n−1 on

∑T
r=(`+1)nDr =

∑k
r=`+1 Fr is bounded by n

2 . Since the value
of F` also influences the sum

∑
i Fi directly by at most n (due to its being included in

the summation), we conclude that for all α, α′ ∈ [0, n],∣∣∣∣∣∣E
∑

j

Fj

∣∣∣∣∣∣F1, . . . , Fi−1, Fi = α

−E

∑
j

Fj

∣∣∣∣∣∣F1, . . . , Fi−1, Fi = α′

∣∣∣∣∣∣ ≤ 3n/2.

Thus, by the method of average bounded differences (and recalling that k = T/n), we
conclude that

Pr

∑
j

Fj > E

∑
j

Fj

+ (ε/2)T

 ≤ e−(Tε/2)2/2(3n/2)2k < e−Tε
2/18n. (18)

Our final step is to bound E
[∑

j Fj

]
+ (ε/2)T from the left-hand side of (18). Since

T > ε−1n, we have from (17) and (15) that

E

∑
j

Fj

+ (ε/2)T = E

∑
j

Dj

+ (ε/2)T ≤ 1

2
T +

n

4
+ (ε/2)T <

(
1

2
+ ε

)
T.

Thus (18) implies

Pr

∑
j

Fj >

(
1

2
+ ε

)
T

 < e−Tε
2/32n

and the result follows.

7.4. A Mechanism for General CAs
Consider the following algorithm for the general CA problem: first try greedily (by
value) assigning sets of size at most

√
m, then try allocating all items to the single

agent with the highest declared value; return whichever of those two solutions gen-
erates more welfare. This algorithm is known to be an O(

√
m) approximation for the

general CA problem [Halldórsson 2000]. We will construct a mechanismMrCA based
on this algorithm; it is described in Figure 5. The mechanismMCA essentially imple-
ments two copies of MsCA (as described in the previous section): one for sets of size
at most

√
m (which we will callM√mCA), and one for allocating all objects to a single

bidder. We call the latter the “grand bundle mechanism”MGB , given in Figure 4. It is
tempting to simply deterministically return whichever of the two solutions yields the
largest social welfare. However, we will see in Appendix B that this deterministic algo-
rithm will not always have a good POA in the one shot game. Instead we will consider
a randomized mechanism in each round, one that randomly chooses betweenM√mCA
andMGB .

The analysis of the average social welfare obtained byMCA closely follows the anal-
ysis forMsCA. Our high-level approach is to apply this analysis twice: once for alloca-
tions of sets of size at most

√
m, and once for allocations of all objects to a single bidder.

The final result is the following.

THEOREM 7.10. Choose ε > 0 and suppose D = d1, . . . , dT is an instance of best-
response dynamics with random player order, where agents play undominated strate-
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MechanismMGB :
Input: Declaration profile d = d1, . . . , dn.

% A Vickery auction, thinking of M as a single item.
1. Let (T1, . . . , Tn)← (∅, . . . , ∅).
2. Let j ← argmaxj{dj(M)}.
3. Set Tj ←M .
4. Return (T1, . . . , Tn) and charge critical prices.

Fig. 4. MechanismMGB , an implementation of the grand bundle algorithm.

MechanismMrCA:
Input: Declaration profile d = d1, . . . , dn.

0 For each i, define di′ to be di′(T ) = maxS⊆T,|S|≤
√
m{di(S)}.

1. With probability 1/2, returnMsCA(d′) for s =
√
m.

2. Else returnMGB(d).

Fig. 5. MechanismMrCA, randomized mechanism for the CA problem.

gies, and T > ε−1n. Then

SWMrCA
(D) ≥

(
1− 2ε

O(
√
m)

)
SWopt(v)

with probability at least 1− 2ne−Tε
2/32n.

PROOF. The initializations in mechanisms MGB , MsCA, and MrCA ensure that
declared valuations are used in the following way: with probability 1/2, only the bids
on M are used; otherwise, the mechanism considers only the single highest bid on any
set of size at most

√
m. Given this, it is without loss of generality to assume that each

declaration di is the XOR of two single-minded bids: one for the set M of all items, and
one for a set Si of size at most

√
m.

Since MGB is a Vickrey auction on the grand bundle, undominated strategies for
MGB involve bidding truthfully on M . Also, our prior analysis of MsCA implies that
undominated strategies for MsCA involve bidding truthfully on the chosen set Si.
Thus, for mechanism MrCA the undominated strategies are precisely those that bid
truthfully both on M and on Si.

Let y be the optimal allocation in which each non-empty set has size greater than√
m. Then SW (y,v) ≤

√
mmaxi vi(M), since there can be at most

√
m non-empty sets

in y. Since we can assume the agent will be bidding truthfully for set M inMGB (and
has no strategic decision as to which set to bid for as in MsCA), we can immediately
apply the above

√
m approximation analysis. Recalling that we are calling mechanism

MGB with probability 1
2 inMrCA, we conclude that

SWMrCA
(D) ≥ 1

2
· 1√

m
SW (y,v).

Now let z be the optimal allocation of sets of size at most
√
m. From Theorem 7.4

and again recalling that we are calling M√mCA with probability 1
2 , we conclude that
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with probability at least 1− ne−Tε2/32n,

SWMrCA
(D) ≥ 1

2
· 1− 2ε

8
√
m
SW (z,v).

Taking the union bound over the events described above, and noting that
SWOPT (v) ≤ SW (z,v) + SW (y,v), we conclude that, with probability at least 1 −
ne−Tε

2/32n,

SWMrCA
(D) ≥ 1− 2ε

18
√
m
SWOPT (v)

as required.

We conclude that mechanism MrCA implements an O(
√
m) approximation to the

combinatorial auction problem for best-response bidders, with high probability, when-
ever T = Ω(n1+δ) for δ > 0.

8. CONCLUSION AND OPEN PROBLEMS
A central theme in algorithmic mechanism design concerns the transformation of al-
gorithms into mechanisms that satisfy some game-theoretic solution concept (e..g in-
centive compatability, approximations at equilbrium). In contrast to incentive compat-
ibility (where generally we do not expect to be able to preserve approximation bounds),
we show that for a wide class of greedy algorithms, approximation bounds for combi-
natorial allocation algorithms can be transformed into mechanisms that enjoy closely
matching price of anarchy bounds. Notably, these results apply to Bayesian equilibira
and some forms of repeated auctions.

We leave open a number of interesting challenges. Our results are motivated by, and
pertain to, monotone greedy algorithms as formally defined in Section 2.4. In fact, the
key property of such algorithms are that they are monotone strongly loser-independent
as defined in Section 3 and, with the exception of the results for correlated equilibria
and best response dynamics, our results hold for arbitrary monotone strongly loser-
independent algorithms. In particular, our result for correlated equilibria of the first-
price mechanism requires that the allocation algorithm A is a fixed order greedy algo-
rithm and achieves a price of anarchy bound of 4c, in contrast to our c+ o(1) result for
independent agent distributions. Can the price of anarchy bound for correlated equi-
libria be improved? Can it be extended to adaptive greedy or more generally strongly
loser independent algorithms? Our results for best response dynamics are restricted
to particular greedy algorithms for the combinatorial auction problem and we lack a
general approach that will work for all greedy allocation algorithms.

Greedy algorithms for allocation problems often provide the best known approxi-
mations for combinatorial auction problems, but are nevertheless a restricted class
of algorithms. The basic open question in this regard is: for what class of allocation
algorithms can a given approximation algorthm A be transformed into a determin-
istic or randomized mechanism M(A) that provides a POA bound (closely) matching
A’s approximation ratio? We also note that our framework does not capture all algo-
rithms that are typically thought of as greedy, since our definition assumes that it
is the player-allocation pairs that are considerd greedily. This excludes, for example,
the greedy algorithm for combinatorial auctions where the valuation function of ev-
ery agent is a monotone submodular function. That algorithm considers each item (in
any arbitrary order) and awards it to the agent having the maximum marginal gain
for that item. This suggests the question as to whether or not price of anarchy re-
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sults could be extended to more general forms of greedy allocation rules. Similarly, the
recent Buchbinder et al [Buchbinder et al. 2012] randomized online algorithm for un-
constrained non-monotone submodular maximzation also considers items (rather than
bids) in a greedy alglorithm. Can our methodology be extended to include non mono-
tone combinatorial auctions (i.e. no free disposal)? It is also interesting to consider
more general settings of incomplete information, such as interdependent valuations
— See Roughgarden and Talgam-Cohen [Roughgarden and Talgam-Cohen 2013].
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Magnús M. Halldórsson. 2000. Approximations of Weighted Independent Set and Hereditary Subset Prob-
lems. J. Graph Algorithms Appl. 4, 1 (2000).

J. Hannan. 1957. Approximation to Bayes risk in repeated plays. In Contributions to the Theory of Games,
M. Dresher, A. Tucker, and P. Wolfe (Eds.), Vol. 4. Princeton University Press.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, and Noam Nisan. 2011. Non-price equilibria in markets
of discrete goods. In EC. 295–296.

A. Kalai and S. Vempala. 2005. Efficient algorithms for online decision problems. J. Comput. System Sci. 71,
3 (2005), 291 – 307. DOI:http://dx.doi.org/DOI:10.1016/j.jcss.2004.10.016 Learning Theory 2003.

D. Lehmann, L. I. O’Callaghan, and Y. Shoham. 1999. Truth Revelation in Approximately Efficient Combi-
natorial Auctions. In Proc. 1st ACM Conf. on Electronic Commerce. ACM Press, 96–102.

B. Lucier. 2010. Beyond Equilibria: Mechanisms for Repeated Combinatorial Auctions. In Proc. 1st Symp.
on Innovations in Computer Science.

B. Lucier. 2011. The Power of Uncertainty: Algorithmic Mechanism Design in Settings of Incomplete Infor-
mation. (2011). University of Toronto, PHD thesis.

B. Lucier and A. Borodin. 2010. Price of Anarchy for Greedy Auctions. In Proc. 21st ACM Symp. on Discrete
Algorithms.

Brendan Lucier and Renato Paes Leme. 2011. GSP auctions with correlated types. In EC. 71–80.
Evangelos Markakis and Orestis Telelis. 2012. Uniform Price Auctions: Equilibria and Effi-

ciency. In Algorithmic Game Theory, Maria Serna (Ed.). Springer Berlin Heidelberg, 227–238.
DOI:http://dx.doi.org/10.1007/978-3-642-33996-7 20

A. Mu’alem and N. Nisan. 2008. Truthful Approximation Mechanisms for Restricted Combinatorial Auc-
tions. Games and Economic Behavior 64 (2008), 612–631. Issue 2.

N. Nisan. 2000. Bidding and allocation in combinatorial auctions. In Proc. 2nd ACM Conf. on Electronic
Commerce.

N. Nisan and A. Ronen. 1999. Algorithmic Mechanism Design. In Proc. 31st ACM Symp. on Theory of Com-
puting. ACM Press, 129–140.

C. Papadimitriou. 2001. Algorithms, Games and the Internet. In Proc. 33rd ACM Symp. on Theory of Com-
puting. ACM Press, 749–752.

C. Papadimitriou, M. Schapira, and Y. Singer. 2008. On the Hardness of Being Truthful. In Proc. 49th IEEE
Symp. on Foundations of Computer Science.

T. Roughgarden. 2009. Intrinsic Robustness of the Price of Anarchy. In Proc. 40th ACM Symp. on Theory of
Computing.

Tim Roughgarden. 2012. Intrinsic robustness of the price of anarchy. Commun. ACM 55, 7 (2012), 116–123.
Tim Roughgarden and Inbal Talgam-Cohen. 2013. Optimal and near-optimal mechanism design with inter-

dependent values. In EC. 767–784.
T. Roughgarden and Eva Tardos. 2000. How Bad is Selfish Routing?. In 41st Annual Symposium on Foun-

dations of Computer Science. 93–102.
T. Sandholm. 2002. Algorithm for Optimal Winner Determination in Combinatorial Auctions. Artificial In-

telligence 135 (2002), 1–54.
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A. EXISTENCE OF PURE NASH EQUILIBRIA
As stated in section 4, the power of our pure price of anarchy bounds such as Theorem
4.3, is marred by the fact that, for some problem instances, the mechanism M1(A)
is not guaranteed to have a pure Nash equilibrium. This is true even under the as-
sumption that private valuations and payments are discretized, so that all values and
payments are multiples of some aribtrarily small ε > 0. A simple example forM1(A)
is given below.
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Example A.1. Consider an instance of the combinatorial auction problem with two
objects, M = {a, b}, and three agents. Our feasibility constraint is that each agent can
be assigned at most one object, and moreover agent 2 cannot be allocated object b and
agent 3 cannot be allocated object a. Let A be the greedy algorithm that ranks bids
by value. Suppose the true types of the agents are as follows: v1(a) = 4, v1(b) = 2,
v2(a) = 3, v2(b) = 0, v3(a) = 0, and v3(b) = 3.

We now prove that no pure Nash equilibrium exists for this example, even if we
assume that agents declare multiples13 of some ε > 0. Assume for contradiction that
there is a Nash equilibrium d for type profile v and mechanismM1(A).

We know that agent 1 does not win item b with a payment greater than 2, as this
would cause him negative utility (so he would certainly not be in equilibrium). Thus
it must be that A3(d) = {b}, since otherwise agent 3 could change his declaration to
win {b} and increase his utility. Thus, since agent 1 does not win item {b}, we conclude
that A1(d) = {a}, since otherwise agent 1 could change his declaration to win {a} and
increase his utility.

Now note that if d1({a}) < 3, agent 2 could increase his utility by making a winning
declaration for {a}. Thus d1({a}) ≥ 3, and hence u1(d) ≤ 4 − 3 = 1. This also implies
that d1({a}) > d1({b}), so agent 3 would win {b} regardless of his bid. Thus, since agent
3 maximizes his utility up to an additive ε, it must be that d3({b}) ≤ ε. But then agent
1 could improve his utility by changing his declaration and bidding 0 for {a} and 2ε for
{b}, obtaining utility 2− 2ε > 1. Therefore d is not an equilibrium, a contradiction.

B. COMBINING MECHANISMS
A standard technique in the design of allocation rules is to consider both a greedy
rule that favours allocation of small sets, and a simple rule that allocates all objects
to a single bidder, and apply whichever solution obtains the better result [Bartal et al.
2003; Briest et al. 2005; Halldórsson 2000; Mu’alem and Nisan 2008]. When bidders
are single-minded, such a combination rule will be incentive-compatible [Mu’alem and
Nisan 2008]. We would like to extend our results to cover rules of this form, but the
price of anarchy for such a rule (with either the first-price or critical-price payment
scheme) may be much worse than its combinatorial approximation ratio. Consider the
following example.

Example B.1. Consider the combinatorial auction problem. Suppose A is the non-
adaptive greedy algorithm with priority rule r(i, S, v) = v if |S| ≤

√
m, and r(i, S, v) = 0

otherwise. Let A′ be the non-adaptive greedy algorithm with priority rule r(i, S, v) = v
if S = M , and r(i, S, v) = 0 otherwise. Then A′ simply allocates the set of all objects to
the player that declares the highest value for it. Let Amax be the allocation rule that
applies whichever ofA or A′ obtains the better result; that is, on input d, Amax returns
A(d) if SW (A(d),d) > SW (A′(d),d), otherwise returns A′(d). It is known that Amax
is a O(

√
m) approximate algorithm [Mu’alem and Nisan 2008].

Our instance of the CA problem is the following. We have n = m ≥ 2, say with
M = {a1, . . . , am}. Choose ε > 0 arbitrarily small. For each i, the private type of agent
i, vi, is the pointwise maximum of two single-minded valuation functions: one for set
{ai} at value 1, and the other for set M at value 1 + ε. An optimal allocation profile for
v would assign {ai} to each agent i, for a total welfare of m.

We construct a declaration profile as follows. For each i, di is the single-minded
valuation function for set M at value 1 + ε. On input d, Amax will assign M to some

13That is, our lack of pure equilibrium is not due to the possibility of infinitesimal improvements. One can
also interpret our example as demonstrating that there is no (1+ ε)-approximate pure Nash equilibrium for
small ε > 0.
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agent, for a total welfare of 1 + ε. Also, d is a pure Nash equilibrium for M1(Amax)
and Mcrit(Amax): all agents receive a utility of 0, and there is no way for any single
agent to obtain positive utility by deviating from d. Taking ε → 0, we conclude that
the price of anarchy for any of these mechanisms is Ω(m), which does not match the
combinatorial O(

√
m) approximation ratio of Amax.

In light of the example above, one must consider different ways to combine two al-
location rules. For instance, one could implement each rule as a separate mechanism,
then randomly choose between the two with equal probability. This is the approach
taken in Section 7.4. Such an approach can work well when the two allocation rules
work with disjoint parts of the declaration space, so that agents can optimize their bids
separately for each mechanism.
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