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1 IntrodutionWe ontinue the study of adversarial paket routing networks as initiated in Borodin etal. [8℄, and signi�antly advaned in Andrews et al. [3℄, Aiello et al. [1℄, Gamarnik [10℄,Andrews and Zhang [6℄, Andrews [5℄, and Bhattaharjee and Goel [7℄. Briey stated thesepapers analyze stability and queue sizes for various networks and greedy (work preserving)sheduling rules when (uniform size) input pakets are being generated by an adversary. Agreedy sheduling rule insures that some paket rosses a given edge (link) if the queue forthat edge is non-empty. For a given input proess, a network is stable with respet to asheduling rule if all edge queues are bounded. (Here the bound may depend on the networkbut does not depend on the duration of the proess.) A network is universally stable (forthe adversarial input proesses being onsidered) if any greedy sheduling rule an be usedand stability is guaranteed. Similarly, a sheduling rule is universally stable if stability isguaranteed for any network.Most studies of paket routing networks assume that one paket an ross an edge ina single time step. This assumption is well motivated when we assume that all edges (=ommuniation links) are idential. However, it is also reasonable to assume that a paketrouting network ould ontain di�erent types of links, in whih ase we would need to assigna apaity and/or a speed to eah edge. Note that we are still assuming uniform paketsizes so that the apaity or speed at whih pakets pass through a partiular edge does notdepend on the paket. One we allow the servie time of an edge to depend on the paketswe are e�etively assuming a general multilass queuing network. An adversarial analysis ofgeneral multilass queuing networks was begun in Tsaparas [14℄.In this paper, we onsider the impat on stability results when edge apaities and speedsare introdued.1 These edge apaities or speeds may either be stati or dynami (i.e.hanging over time). In the ase of dynami edge apaities or slowdowns, we assume thatan adversary is setting these apaities (or slowdowns) as well as determining the pakets (i.e.paths) being injeted at eah time step. As a speial ase of dynami speeds or apaities,we are in e�et approximating the fault tolerane of a network where edges an temporarilyfail (i.e. have in�nite slowdown or zero apaity) 2. We shall show (under a very naturalassumption on the lass of sheduling rules being onsidered) that the property of a rulebeing universally stable is preserved in the ontext of stati edge apaities. However, theuniversal stability of a sheduling rule is not neessarily preserved in the ontext of dynamiapaities with LIS (i.e. the sheduling rule that gives priority to the longest in systempaket) being a notable example of a rule that does not remain universally stable.We have not yet been able to show that universal stability of a rule is preserved in theontext of stati edge speeds but all known rules previously studied enjoy this property.Indeed many rules also remain universally stable in the ontext of dynami edge slowdowns.However, as in the ase of dynami edge apaities, LIS is again a notable example whereuniversal stability is not preserved. Finally, with regard to the universal stability of networks,1In this paper, we only study the e�et of introduing either apaities or speeds (but not both).2With respet to an edge failure , it is lear that universal stability of a network will not neessarily bepreserved sine we an derive a non universal network from a universal network by removing edges. However,universal staility of a rule will be preserved sine the rule is assumed to be universally stable for any network.2



we an show that universal stability is preserved under dynami edge apaities and speeds.2 De�nitionsWe assume the reader is familiar with the basi de�nitions of a greedy sheduling rule,stability of a network system (G;�;S), and universal stability of a rule or network (see,for example, Borodin et al. [8℄). These de�nitions were given in the ontext of \standard"oblivious paket routing where all edges have a uniform apaity and uniform speed ofone paket/step and eah paket has a �xed simple path (independent of other pakets) itmust traverse. We now want to onsider networks in whih edges an have di�erent integerapaities or speeds whih may or may not vary over time. We will let e(t) denote theapaity of edge e at time step t. That is, we assume edge e is apable of simultaneouslytransmitting up to e(t) pakets at time t. When this apaity does not depend on time wesimply write e.The de�nition for the (time varying) speed of an edge is a little more problemati. Forthe purpose of this paper we will restrit ourselves to a synhronous framework. We willassume we know the maximum speed possible (normalized to 1 paket/step). We let thepositive integer se(t) denote the slowdown of edge e at time t. To make the semantis ofthis slowdown preise, we hose the following interpretation whih allows us to maintain asynhronous view of paket routing. If a paket P is sheduled to traverse link e at time tand at time t the slowdown of this link is se(t), then paket P ompletes the traversal of e attime t + se(t) and during this interval of time, no other paket an be sheduled on e. Andagain we simply write se for the ase of stati slowdown.Let w be an arbitrary positive integer, e any edge in the network and � any sequeneof w onseutive time steps. We de�ne N(�; e) to be the number of pakets injeted by theadversary during time interval � that traverse edge e.De�nition. Consider the ase of edges with apaities. For any �; 0 < � � 1, we de�nea (w; �) adversary as an adversary whih injets pakets (= paths) subjet to the followingload ondition: for every sequene � of w onseutive time steps and for every edge e,N(�; e) � �Pt2� e(t).De�nition. Now onsider the ase of edges with slowdowns. Again, let 0 < � � 1. We�rst onsider the ase of stati slowdowns and de�ne a (w; �) adversary as one whih injetspaths subjet to the following load ondition: for every sequene � of w onseutive timesteps and for every edge e, N(�; e) � �Pt2� 1se = �w 1se .The de�nition for an adversary in the ontext of the dynami slowdown model re-quires some are. The most obvious extension of the stati model ondition is : N(�; e) ��Pt2� 1se (t). However, our de�nition of edge slowdown , se(t) at a given time t, impatsthe e�etive speed of the edge e for the next se(t) time steps. Indeed beause we are onlyonsidering greedy sheduling rules, an adversary an start a paket on edge e at time tand then this edge is unavailable for the next se(t) time steps no matter what values aregiven for the slowdowns se(t0) for t < t0 < t + se(t). Hene for any time t0, we de�ne thee�etive slowdown ~se(t) at time t0 to be the maxt[se(t)jt � t0 < t + se(t)℄. Now we an3



de�ne a (w; �) adversary as one whih injets paths subjet to the load ondition: for everysequene � of w onseutive time steps and for every edge e, N(�; e) � �Pt2� 1~se(t) Note thatthis de�nition oinides with the de�nition for the stati slowdown model sine in this ase,~se(t) = se(t) = se.For either (stati or dynami) apaities or slowdowns, we say that a (w; �) adversaryinjets pakets at rate � with window size w. A rate � adversary is a (w; �) adversary forsome w.De�nition. Let G be a network (with or without edge apaities or slowdowns) and S asheduling rule. A network environment (G;S) is �-stable if for every initial on�guration 3C0(G), and every w, there is a bound B = B(C0(G); w) suh that for any rate � adversary(with window w), the size of every queue is bounded by B at any time. A sheduling ruleS is universally �-stable if (G; S) is �-stable for all G. Similarly, a network G is universally�-stable if (G; S) is �-stable for all greedy 4 sheduling rules S.Examples. For uniform apaities and speeds, any ring is a universally �-stable networkfor any � < 1 ([3℄) and any DAG is 1-stable ([8℄). Andrews et al. [1℄ show that a number ofsheduling rules, namely \longest in system" (LIS), \farthest to go" (FTG) and \shortestin system" (SIS) are universally �-stable sheduling rules for any � < 1. Gamarnik [11℄shows that \nearest to origin" (NTO) is universally 1-stable . However, FIFO and NTGare not universally �-stable for any � > 0 (Andrews et al. [1℄, Bhattaharjee and Goel [7℄,Borodin et al. [8℄).De�nition. A greedy sheduling rule S is apaity invariant i� for every set A of paketsin an edge queue, S indues a total order on the pakets in A that is independent of theapaities of the network edges, and furthermore, for all A0 � A, the total order indued byS on A0 is onsistent with the total order indued by S on A. Equivalently, S is apaityinvariant if the relative order (imposed by the rule) of any pair of pakets in a queue isindependent of the apaity of the edges and independent of other pakets. We laim thatthis is a very natural assumption as it insures that the de�nition of the rule when appliedat an edge (having an arbitrary apaity) is unambiguous.5 Sine the ontext will always belear, we will simply say \invariant (sheduling) rule".Examples. FIFO, LIFO, FTG, NTG, SIS, LIS, NTO are all invariant rules. Infat, all natural sheduling rules are invariant rules. As an example of a non-invariant rule,onsider the rule of using LIS if the number of pakets in the queue is less than 10, andLIFO otherwise.3The initial on�guration is not really signi�ant for the purposes of this paper and heneforth it will beignored.4In this ontext, a greedy sheduling rule is one that always sends as many pakets as available aross anedge, up to its apaity.5We would ertainly not want to allow the rule \LIS if all edges have apaity one, else FIFO". On theother hand the \speed invariant" restrition prohibits a rule suh as \most time to go" whih is a naturalgeneralization of FTG. It is not lear what is the most appropriate restrition for studying networks withedge speeds. 4



3 Networks with Edge CapaitiesTheorem 1. There is a paket routing network G (namely the 4 node baseball graphintrodued by Andrews et al. [3℄) suh that when G is allowed to have dynami apaities,(G;LIS) is not stable. (Reall that LIS is universally stable with regard to standard paketrouting networks against any rate � < 1 adversary.) More spei�ally, if G0 denotes Gwhen all dynami edge apaities are either 1 or C, then (G0; LIS) an be unstable for rate� > C2C�1 .Proof: The proof is motivated by the onstrution in Andrews et al. [3℄ showing that for thebaseball graph, neither NTG nor FIFO are �-stable for a suÆiently large �. See Figure 1
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e3Figure 1: Baseball graphAs in the Andrews et al. proof for NTG, we assume that the pakets are injeted in stagesand eah stage onsists of two substages. At the start of a stage we assume that there is aset X of at least t pakets queued at nodes v4 and v1 (with at least one paket at node v1)that need to traverse edges e1; e2. It suÆes to show that at the end of the stage, more thant pakets will be queued at nodes v2 and v3 (with at least one paket at node v3)waiting totraverse edges e3; e4. To simplify the proofs we avoid the use of oors and eilings. Let � bethe rate of an adversary whih sets the apaities of the edges and injets pakets as follows:1. For the �rst 1�C+1 � t steps, all edges have apaity C exept for edge e2 whih hasapaity 1. (Note that when C is large, we are relatively shutting down edge e2.)During these steps, the adversary injets a set Y of �C�C+1 � t pakets that need totraverse the path e4; e1; e02; e3. By the nature of the LIS rule, all of these Y pakets arebloked by the X pakets as they enter node v1. At the end of this substage, there are�C�C+1 �t pakets inX (respetively, in Y ) that still need to traverse edge e2 (respetively,the path e4; e1; e02; e3).2. For the next �C(�C+1)2 � t steps. all edges have apaity C exept for edge e02 whih hasapaity 1. The adversary now injets a set Z of [ �C(�C+1) ℄2 � t pakets whih need to5



traverse the path e2; e3; e4. All the pakets in Z will be bloked by the X pakets.Hene at the end of this substage, we have jY j+ jZj � 2[ �C�C+1 ℄2 � t. For �C�C+1 >p(1=2),there are then more than t pakets queued at nodes v2 and v3 (with at least one paketat node v3) that need to traverse edges e3 and e4. Note that for C � 3, we an set� < 1.However, we now show that the property of an invariant sheduling rule being universally�-stable is preserved when adding stati apaities to edges.Theorem 2. Let S be an invariant sheduling rule, whih is universally �-stable for stan-dard unit apaity networks. Then, for any � > 0, S is universally (�� �)-stable for integerapaity networks.Proof: Intuitively, a direted graph G = (V;E) having edge apaities e for e 2 E, anbe thought of as a non-simple, unit apaity graph ~G with e parallel edges 6 replaing eahapaitated edge e. Assume (for ontradition) that there exists � > 0 suh that (G; S) isnot (�� �)-stable. Therefore, for all w and for all B, there exists a (w; �� �) adversary thatprodues a �nite sequene of paket injetions whih auses some queue to exeed size B.We would like to simulate S on G by using S on ~G. The simulation will be suh that wean argue that the queue size in ~G exeeds B= where  = maxe e. This will ontradit the�-stability of ( ~G; S). The issue is how to assign pakets to the parallel edges so that the rateondition is not violated. Resolving this issue requires some are.Coneptually, for any edge e and time t, we onsider the set Ae;t of the �rst e paketsqueued at e (in the order indued by S), or all the pakets queued at e, if there are fewerthan e pakets there. Map the pakets in Ae;t to the e parallel edges in ~G by a uniformly atrandom mathing. This indues a probability distribution over mappings of pakets to theedges of ~G. Note that beause the adversary (produing the large queue size in G) is �nite,every paket eventually reahes every edge in its path (in G) and thus the mapping of paketsto edges in ~G is well de�ned. We shall argue that there exists a point in this distribution suhthat the indued injetion rate on eah edge of ~G preserves the rate less than � onstraint.The theorem follows as the paket traversals sheduled by S in ~G are exatly the same as thetraversals sheduled by S in G (this follows from the invariant property of S). It is worthnoting that we do not have to onstrut the mathing of pakets to parallel edges; we onlyneed to know it exists.Let us now onsider a (�� �; w) adversary for some suÆiently large window w. Considerwindows beginning at time j for j = 0; 1; : : :. Let Wj denote the jth suh window. Therandom mathings disussed above are now viewed as randomly hoosing a seleted edge(let's all it a slot) in ~G for eah edge (in G) in the path of a paket injeted in this window.We say that a window Wj is good if for every slot in ~G there are at most (�� �=2) �w paketsinjeted during Wj that are assigned to this slot by the random mapping. We want to show6However, this intuition annot always be applied sine the baseball graph an also be thought of as a 4node ring with two edges having apaity 2. Sine the ring is a universally stable network, FIFO is stableon any ring but FIFO is not stable on the baseball graph. Although it is possible that the theorem holdsfor any network system (G;S), our proof relies on the assumption that S is universally stable.6



that there is a positive probability that every window will be good and hene there is amapping whih indues an injetion by a (�� �=2; w) adversary in ~G.Of ourse, if Wj and Wj0 overlap then the events \Wj is good" and \Wj0 is good" arenot independent. Moreover, if pakets p (injeted during Wj) and p0 (injeted during Wj0)are involved in the same mathing, then again the events \Wj is good" and \Wj0 is good"are not independent, even if these windows do not overlap. However, for a given window W ,the event \W is good" is independent of any ombination of other suh events exluding theabove mentioned events, the number of whih is bounded by 2w+[(���)�w�Pe e℄2 = �(G)w(where �(G) is a onstant that only depends on the graph G ) The fat that dependeny islimited will allow us to invoke the Lov�asz Loal Lemma (see [13℄).We now bound the probability that a window W is not good. Consider an edge e inG and the t � (� � �)we pakets injeted during W that may need to traverse e. If itwere not for the fat that the random mathings impose a ondition on whih slots an beassigned to a paket, we ould view the random proess of assigning slots to pakets as atraditional balls and bins experiment. Namely, we are throwing (�� �)we balls (=pakets)at e bins (=slots). The expeted number of pakets assigned to a slot is obviously (�� �)wand using the Cherno� bound, the probability that the number of pakets assigned to a slotexeeds (� � �=2) � w is at most e�
(w). However, this analysis is awed beause the ballspartiipating in any single mathing are not being thrown independently. Intuitively, the fatthat the balls have to satisfy a mathing onstraint should only help to redue the maximumongestion on a slot. We an make this intuition preise by the following argument.We onsider the proess of sequentially throwing balls into a given slot. De�ne a sequeneof random variables Y0; Y1; : : : Yt where Y0 is the expeted number of balls that will end upin this slot and Yi is the same expetation after i balls have been thrown. Note that Y(���)wis the �nal ongestion on this slot. Clearly by linearity of expetations, Y0 = (� � �)w. Byde�nition Yi = E[Yi+1jYi℄. Moreover, we laim jYi+1�Yij � 1. This follows beause any ballis orrelated by the mathing with at most e other balls in the sequene and the ontributionof all these balls to the ongestion is at most 1. Hene the sequene is a martingale. Wenow an alulate an upper bound on the probability that the �nal ongestion on a slot ismore than ((r � �=2)w = Y0 + w�=2 = Y0 + �pt for � = w�=2pt � �pw2p(���)e . By Azuma'sinequality [13℄, this probability is less than e��2=2 � e� �28(r��)ew.By the union bound, the probability that any slot is overongested (that is, that thewindow W is not good) is at mostPe e � e� �28(���)ew. To apply the loal lemma we need thisprobability to be at most 1=e(d+1) where d = �(G)w is the bound on the dependeny. Thislearly holds for suÆiently large w.We an now apply Theorem 2 to show that (in ontrast to LIS), some ommon shedulingrules do remain universally stable with respet to dynamially hanging apaities.Theorem 3. The SIS and NTO sheduling rules are universally stable for dynamiallyhanging integer apaity networks.Proof: (Sketh) For simpliity assume that there is a known bound  on the largest apaityallowed. (This assumption an be removed by noting as in the proof of Theorem 2 that if7



there was a ounterexample to universal stability then this ounterexample would only usea �nite set of apaities.) Next we observe that for the SIS and NTO rules, newly injetedpakets will take priority over pakets in the system. Now at any point of time t, supposewe have an edge e with apaity e(t) < . Then we an injet  � e(t) \dummy" paketswhih only need to traverse this edge. This an be done without violating the load onditionfor a network in whih every edge has (stati) apaity . Now we appeal to Theorem 2 toobtain the desired result.We now turn our attention to universally stable networks. From the results of Goel [12℄and �Alvarez, Blesa, and Serna [2℄ we know that there is a nie haraterization of the lassof direted graphs whih are universally stable (in the ontext of unit edge apaities). Thisharaterization is based on the following fats:� The unidiretional yle and all DAGS are universally stable.� A digraph is universally stable if and only if all of its strongly onneted omponentsare universally stable.� The unidiretional yle is the only strongly onneted digraph that is universallystable.7One an then establish the same fats for the arbitrary apaity model and obtain:Theorem 4. Let G be a universally stable network in the unit apaity model. Then Gremains stable in the ontext of dynami edge apaities.Proof sketh: Using the idea of dummy pakets, it is easy to see that by modifying a givensheduling rule so that it gives priority to these dummy pakets, we an assume that everyedge has a �xed (stati) apaity . We then must show that the universal stability proofsfor DAGs and for the yle an be generalized to the ase of a �xed stati apaity . Theproof is then ompleted following the haraterization of Goel [12℄ and of �Alvarez et al.[2℄.We briey indiate how to modify the DAG and yle proofs:8� For DAGs, we modify the  funtion in Theorem 1 of [9℄. Let edge e have edgesf1; : : : ; fk entering the tail of e. For our ase, the indutive de�nition is then: (e) = maxf2 � w;Q0(e)g+ kXi=1  (fi):The goal is to show that for all t = l � w � 0 and all e 2 G, we haveAt(e) �  (e) (1)where At(e) denotes the number of pakets (not already absorbed) that have arrivedby time t and are eventually destined to ross edge e. One then argues by indutionon l and by ases, aording to whether or not At�w(e) �  � w +Pki=1  (fi).7Here we are assuming simple paths.8There are some minor di�erenes in notation and in the de�nitions of a rate 1 � � adversary as theyappear in [9℄ and [4℄. The former paper inorporates the initial queues Q0(e) and the latter paper dispenseswith the notion of a window in favor of an additive onstant. For simpliity we will just indiate how tomodify the proofs as they appear in these papers. 8



� For the unidiretional yle, we modify the de�nition of the f funtion in the proof ofTheorem 3.7 of [4℄. For our ase, we needf(j; T0) = Q + (b+ 1)(j � i0)f(j; t) = Q�  � �(t� T0) +  � (b+ 1)(1 + j � i0)for t > T0:The goal is to show that for all appliable pairs (j; t); Pj;t � f(j; t) where Pj;t denotesthe number of pakets (not already absorbed) that have arrived by time t and areeventually destined to ross edge j. Essentially the  in the term  � (b+ 1)(1 + j � i0)is suÆient to modify the proof of Lemma 3.6 where one argues by ases depending onwhether or not  pakets rossed edge j in the past (t� T0) onseutive steps. The in the term  � �(t� T0) is needed for the rest of the proof in Theorem 3.7 of [4℄.
4 Networks with Edge SlowdownsWe will now see that every universally stable network remains universally stable when edgesan have slowdowns and this holds even for dynami edge slowdowns.Theorem 5. Let G be a universally stable network at every rate � < 1 in the standardpaket routing ontext. Consider any sheduling rule S and any exeution of the derivednetwork system (G0;S) in whih the inputs are being generated by an adversary in theontext of dynami edge slowdowns (see De�nition 2). Then the system (G0;S) remainsstable for all rates � < 1.Proof: The idea is similar to Theorem 3. Essentially we want to simulate the behaviorof the network system (G0;S) by a standard paket routing system (G;S 0). We do so bydelaying (real) pakets at a slow edge by using newly injeted dummy pakets traversingthat edge alone. We give the dummy pakets higher priority in order to fore the delay ofthe real pakets. This remains a greedy rule (all it S 0) and hene we are assured stabilityfor (G;S 0) sine G is universally stable.More spei�ally, onsider a rate � adversary with window w for the network G0 withslowdowns. To simplify the disussion let's �rst assume that the edge slowdowns are statiwith integer se � 1 being the slowdown of edge e. Then in any window of w steps there areat most w � �se pakets injeted that need to traverse edge e. Consider an edge with slowdownse � 2. Then during these w time steps there are at least w � se��se steps in whih no paketsare injeted that need to traverse edge e. When a paket P is ready to traverse edge e we�rst injet se � 1 dummy pakets that only need to traverse edge e and whih are givenpriority over paket P . Then paket P ompletes its traversal of e in se steps. The injetionrate of the derived adversary is still less than 1 (with the same window w) and hene we areindeed assured stability. The same proof applies to dynamially hanging slowdowns. When9



there is a paket P ready to traverse edge e at time t, the adversary injets ~se(t)� 1 dummypakets.The idea in the above proof an be used to show that ertain sheduling rules remainuniversally stable in the ontext of (dynamially hanging) edge slowdowns. For example,onsider farthest to go (FTG) and any paket routing network G = (V;E). We an modifyG so that from every node v 2 V , there is a path �e of length jV j + 1 direted away fromV . Now to simulate a slowdown of ~se(t) on edge e at time t, if a paket P wants traversee, the adversary injets ~se(t)�1~se(t) dummy pakets that need to traverse e and then �e. Sinethese dummy pakets have the farthest distane to go they have priority over P and henedelay P for ~se(t) steps.For SIS and NTO the same idea (of inserting dummy pakets) an used and in theseases we do not have to add extra edges sine priority of the dummy pakets is ensuredby the de�nition of the rule (assuming that dummy pakets have priority over real paketsoriginating at the same node. We thus have:Theorem 6. SIS;NTO and FTG remain universally stable in the ontext of dynamiallyhanging edge slowdowns.This simple dummy paket idea does not diretly extend to the LIS rule. For stati edgeslowdowns, we know that LIS remains universally stable by the result of Tsaparas [14℄ whoshows that LIS remains universally stable even in the ontext that for eah edge and eahpaket P , there is a given speed or alternatively (sine we are assuming a maximum speed)a given slowdown se(P ) de�ning the speed at whih P traverses e. However, the situation isdi�erent for LIS and dynamially hanging edge slowdowns as we now see.Theorem 7. LIS is not � stable for dynamially hanging edge slowdowns for any � >12(D�1D ) where D is the maximum slowdown allowed.Proof: The proof is quite similar to the proof of Theorem 1. We again assume that thepakets are injeted in stages and eah stage onsists of two substages. At the start of astage we now assume that there is a set X of at least t pakets queued at node v4 that needto traverse edges e4 or e04, followed by edges e1; e2. It suÆes to show that at the end ofthe stage, more than t pakets will be queued at node v2 waiting to traverse edges e2 or e02followed by edges e3 and e4. Again, to simplify the proofs we avoid the use of oors andeilings. Let � be the rate of an adversary whih sets the slowdowns of the edges and injetspakets as follows: We abuse the de�ntion of a rate � adversary and ignore the fat that theadversary must observe the \e�etive slowdown" load ondition. The justi�ation for thisabuse is that when t is suÆiently large (ompared to D), the adversary an utilize the fullspeed edges (i.e. slowdown = 1) for almost all steps in the phase.1. For the �rst t steps, no edge has a slowdown exept edge e2 whih has slowdown D.During these t steps, the adversary injets a set Y of � � t pakets that need to traversethe path e1; e02; e3. By the nature of the LIS rule, all of these Y pakets are bloked bythe X pakets. At the end of this substage, there are (approximately) D�1D � t pakets10



in X that still need to traverse edge e2 and �t pakets in Y that need to traverse thepath e1; e02; e3.2. For the next D�1D � t steps no edge has a slowdown exept edge e02 whih has slowdownD. During these steps, the adversary injets a set Z of �D�1D � t pakets that need totraverse the path e2; e3; e4. All the pakets in Z will be bloked by the X pakets andbeause of the slowdown in edge e02 there will still be �D�1D � t pakets in Y . Hene atthe end of this substage, we have jY j + jZj � 2�D�1D � t. For � > 12(D�1D ) , this numberexeeds t. Note that for D � 3, we an set � < 1.
5 Conlusions and Open ProblemsWe have shown that that LIS does not have the dynami stability properties of other univer-sally stable sheduling rules. We have also shown that (for apaity invariant rules) universalstability is preserved under stati apaities, and (for known rules) under stati slowdowns.There are many open problems that remain inluding the following:� Is there a natural de�nition of a \speed invariant" rule suh that universal stability ofa speed invariant sheduling rule is preserved under stati slowdowns?� For a given network system (G;S), is stability preserved for either stati apaities orslowdowns?� Can these stability preserving results be extended to an asynhronous framework (i.e.for arbitrary real valued speeds)?AknowledgementsWe thank Eyal Kushilevitz and Yishay Mansour for helpfull disussions in the initial stagesof this researh. We also wish to thank Adi Ros�en for pointing out an inaurate de�nitionin an earlier version of the paper.Referenes[1℄ W. Aiello, E. Kushilevitz, R. Ostrovsky, A. Ros�en Adaptive Paket Routingfor Bursty Adversarial TraÆ. In Pro. of the 30th Ann. ACM Symposium on the Theoryof Computing (STOC), 359-368, 1998.[2℄ C. �Alvarez, M. Blesa, and M. Serna. A Charaterization of Universal Stability forDireted Graphs in the Adversarial Queueing Model. Tehnial Report LSI-02-4-R,Departament de Llenguatges i Sistemes, Universitat Polit�enia Catalunya, January2002. 11
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