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1 Introdu
tionWe 
ontinue the study of adversarial pa
ket routing networks as initiated in Borodin etal. [8℄, and signi�
antly advan
ed in Andrews et al. [3℄, Aiello et al. [1℄, Gamarnik [10℄,Andrews and Zhang [6℄, Andrews [5℄, and Bhatta
harjee and Goel [7℄. Brie
y stated thesepapers analyze stability and queue sizes for various networks and greedy (work preserving)s
heduling rules when (uniform size) input pa
kets are being generated by an adversary. Agreedy s
heduling rule insures that some pa
ket 
rosses a given edge (link) if the queue forthat edge is non-empty. For a given input pro
ess, a network is stable with respe
t to as
heduling rule if all edge queues are bounded. (Here the bound may depend on the networkbut does not depend on the duration of the pro
ess.) A network is universally stable (forthe adversarial input pro
esses being 
onsidered) if any greedy s
heduling rule 
an be usedand stability is guaranteed. Similarly, a s
heduling rule is universally stable if stability isguaranteed for any network.Most studies of pa
ket routing networks assume that one pa
ket 
an 
ross an edge ina single time step. This assumption is well motivated when we assume that all edges (=
ommuni
ation links) are identi
al. However, it is also reasonable to assume that a pa
ketrouting network 
ould 
ontain di�erent types of links, in whi
h 
ase we would need to assigna 
apa
ity and/or a speed to ea
h edge. Note that we are still assuming uniform pa
ketsizes so that the 
apa
ity or speed at whi
h pa
kets pass through a parti
ular edge does notdepend on the pa
ket. On
e we allow the servi
e time of an edge to depend on the pa
ketswe are e�e
tively assuming a general multi
lass queuing network. An adversarial analysis ofgeneral multi
lass queuing networks was begun in Tsaparas [14℄.In this paper, we 
onsider the impa
t on stability results when edge 
apa
ities and speedsare introdu
ed.1 These edge 
apa
ities or speeds may either be stati
 or dynami
 (i.e.
hanging over time). In the 
ase of dynami
 edge 
apa
ities or slowdowns, we assume thatan adversary is setting these 
apa
ities (or slowdowns) as well as determining the pa
kets (i.e.paths) being inje
ted at ea
h time step. As a spe
ial 
ase of dynami
 speeds or 
apa
ities,we are in e�e
t approximating the fault toleran
e of a network where edges 
an temporarilyfail (i.e. have in�nite slowdown or zero 
apa
ity) 2. We shall show (under a very naturalassumption on the 
lass of s
heduling rules being 
onsidered) that the property of a rulebeing universally stable is preserved in the 
ontext of stati
 edge 
apa
ities. However, theuniversal stability of a s
heduling rule is not ne
essarily preserved in the 
ontext of dynami

apa
ities with LIS (i.e. the s
heduling rule that gives priority to the longest in systempa
ket) being a notable example of a rule that does not remain universally stable.We have not yet been able to show that universal stability of a rule is preserved in the
ontext of stati
 edge speeds but all known rules previously studied enjoy this property.Indeed many rules also remain universally stable in the 
ontext of dynami
 edge slowdowns.However, as in the 
ase of dynami
 edge 
apa
ities, LIS is again a notable example whereuniversal stability is not preserved. Finally, with regard to the universal stability of networks,1In this paper, we only study the e�e
t of introdu
ing either 
apa
ities or speeds (but not both).2With respe
t to an edge failure , it is 
lear that universal stability of a network will not ne
essarily bepreserved sin
e we 
an derive a non universal network from a universal network by removing edges. However,universal staility of a rule will be preserved sin
e the rule is assumed to be universally stable for any network.2



we 
an show that universal stability is preserved under dynami
 edge 
apa
ities and speeds.2 De�nitionsWe assume the reader is familiar with the basi
 de�nitions of a greedy s
heduling rule,stability of a network system (G;�;S), and universal stability of a rule or network (see,for example, Borodin et al. [8℄). These de�nitions were given in the 
ontext of \standard"oblivious pa
ket routing where all edges have a uniform 
apa
ity and uniform speed ofone pa
ket/step and ea
h pa
ket has a �xed simple path (independent of other pa
kets) itmust traverse. We now want to 
onsider networks in whi
h edges 
an have di�erent integer
apa
ities or speeds whi
h may or may not vary over time. We will let 
e(t) denote the
apa
ity of edge e at time step t. That is, we assume edge e is 
apable of simultaneouslytransmitting up to 
e(t) pa
kets at time t. When this 
apa
ity does not depend on time wesimply write 
e.The de�nition for the (time varying) speed of an edge is a little more problemati
. Forthe purpose of this paper we will restri
t ourselves to a syn
hronous framework. We willassume we know the maximum speed possible (normalized to 1 pa
ket/step). We let thepositive integer se(t) denote the slowdown of edge e at time t. To make the semanti
s ofthis slowdown pre
ise, we 
hose the following interpretation whi
h allows us to maintain asyn
hronous view of pa
ket routing. If a pa
ket P is s
heduled to traverse link e at time tand at time t the slowdown of this link is se(t), then pa
ket P 
ompletes the traversal of e attime t + se(t) and during this interval of time, no other pa
ket 
an be s
heduled on e. Andagain we simply write se for the 
ase of stati
 slowdown.Let w be an arbitrary positive integer, e any edge in the network and � any sequen
eof w 
onse
utive time steps. We de�ne N(�; e) to be the number of pa
kets inje
ted by theadversary during time interval � that traverse edge e.De�nition. Consider the 
ase of edges with 
apa
ities. For any �; 0 < � � 1, we de�nea (w; �) adversary as an adversary whi
h inje
ts pa
kets (= paths) subje
t to the followingload 
ondition: for every sequen
e � of w 
onse
utive time steps and for every edge e,N(�; e) � �Pt2� 
e(t).De�nition. Now 
onsider the 
ase of edges with slowdowns. Again, let 0 < � � 1. We�rst 
onsider the 
ase of stati
 slowdowns and de�ne a (w; �) adversary as one whi
h inje
tspaths subje
t to the following load 
ondition: for every sequen
e � of w 
onse
utive timesteps and for every edge e, N(�; e) � �Pt2� 1se = �w 1se .The de�nition for an adversary in the 
ontext of the dynami
 slowdown model re-quires some 
are. The most obvious extension of the stati
 model 
ondition is : N(�; e) ��Pt2� 1se (t). However, our de�nition of edge slowdown , se(t) at a given time t, impa
tsthe e�e
tive speed of the edge e for the next se(t) time steps. Indeed be
ause we are only
onsidering greedy s
heduling rules, an adversary 
an start a pa
ket on edge e at time tand then this edge is unavailable for the next se(t) time steps no matter what values aregiven for the slowdowns se(t0) for t < t0 < t + se(t). Hen
e for any time t0, we de�ne thee�e
tive slowdown ~se(t) at time t0 to be the maxt[se(t)jt � t0 < t + se(t)℄. Now we 
an3



de�ne a (w; �) adversary as one whi
h inje
ts paths subje
t to the load 
ondition: for everysequen
e � of w 
onse
utive time steps and for every edge e, N(�; e) � �Pt2� 1~se(t) Note thatthis de�nition 
oin
ides with the de�nition for the stati
 slowdown model sin
e in this 
ase,~se(t) = se(t) = se.For either (stati
 or dynami
) 
apa
ities or slowdowns, we say that a (w; �) adversaryinje
ts pa
kets at rate � with window size w. A rate � adversary is a (w; �) adversary forsome w.De�nition. Let G be a network (with or without edge 
apa
ities or slowdowns) and S as
heduling rule. A network environment (G;S) is �-stable if for every initial 
on�guration 3C0(G), and every w, there is a bound B = B(C0(G); w) su
h that for any rate � adversary(with window w), the size of every queue is bounded by B at any time. A s
heduling ruleS is universally �-stable if (G; S) is �-stable for all G. Similarly, a network G is universally�-stable if (G; S) is �-stable for all greedy 4 s
heduling rules S.Examples. For uniform 
apa
ities and speeds, any ring is a universally �-stable networkfor any � < 1 ([3℄) and any DAG is 1-stable ([8℄). Andrews et al. [1℄ show that a number ofs
heduling rules, namely \longest in system" (LIS), \farthest to go" (FTG) and \shortestin system" (SIS) are universally �-stable s
heduling rules for any � < 1. Gamarnik [11℄shows that \nearest to origin" (NTO) is universally 1-stable . However, FIFO and NTGare not universally �-stable for any � > 0 (Andrews et al. [1℄, Bhatta
harjee and Goel [7℄,Borodin et al. [8℄).De�nition. A greedy s
heduling rule S is 
apa
ity invariant i� for every set A of pa
ketsin an edge queue, S indu
es a total order on the pa
kets in A that is independent of the
apa
ities of the network edges, and furthermore, for all A0 � A, the total order indu
ed byS on A0 is 
onsistent with the total order indu
ed by S on A. Equivalently, S is 
apa
ityinvariant if the relative order (imposed by the rule) of any pair of pa
kets in a queue isindependent of the 
apa
ity of the edges and independent of other pa
kets. We 
laim thatthis is a very natural assumption as it insures that the de�nition of the rule when appliedat an edge (having an arbitrary 
apa
ity) is unambiguous.5 Sin
e the 
ontext will always be
lear, we will simply say \invariant (s
heduling) rule".Examples. FIFO, LIFO, FTG, NTG, SIS, LIS, NTO are all invariant rules. Infa
t, all natural s
heduling rules are invariant rules. As an example of a non-invariant rule,
onsider the rule of using LIS if the number of pa
kets in the queue is less than 10, andLIFO otherwise.3The initial 
on�guration is not really signi�
ant for the purposes of this paper and hen
eforth it will beignored.4In this 
ontext, a greedy s
heduling rule is one that always sends as many pa
kets as available a
ross anedge, up to its 
apa
ity.5We would 
ertainly not want to allow the rule \LIS if all edges have 
apa
ity one, else FIFO". On theother hand the \speed invariant" restri
tion prohibits a rule su
h as \most time to go" whi
h is a naturalgeneralization of FTG. It is not 
lear what is the most appropriate restri
tion for studying networks withedge speeds. 4



3 Networks with Edge Capa
itiesTheorem 1. There is a pa
ket routing network G (namely the 4 node baseball graphintrodu
ed by Andrews et al. [3℄) su
h that when G is allowed to have dynami
 
apa
ities,(G;LIS) is not stable. (Re
all that LIS is universally stable with regard to standard pa
ketrouting networks against any rate � < 1 adversary.) More spe
i�
ally, if G0 denotes Gwhen all dynami
 edge 
apa
ities are either 1 or C, then (G0; LIS) 
an be unstable for rate� > C2C�1 .Proof: The proof is motivated by the 
onstru
tion in Andrews et al. [3℄ showing that for thebaseball graph, neither NTG nor FIFO are �-stable for a suÆ
iently large �. See Figure 1
e02e4 e2 v2

v3v4
v1e04 e1

e3Figure 1: Baseball graphAs in the Andrews et al. proof for NTG, we assume that the pa
kets are inje
ted in stagesand ea
h stage 
onsists of two substages. At the start of a stage we assume that there is aset X of at least t pa
kets queued at nodes v4 and v1 (with at least one pa
ket at node v1)that need to traverse edges e1; e2. It suÆ
es to show that at the end of the stage, more thant pa
kets will be queued at nodes v2 and v3 (with at least one pa
ket at node v3)waiting totraverse edges e3; e4. To simplify the proofs we avoid the use of 
oors and 
eilings. Let � bethe rate of an adversary whi
h sets the 
apa
ities of the edges and inje
ts pa
kets as follows:1. For the �rst 1�C+1 � t steps, all edges have 
apa
ity C ex
ept for edge e2 whi
h has
apa
ity 1. (Note that when C is large, we are relatively shutting down edge e2.)During these steps, the adversary inje
ts a set Y of �C�C+1 � t pa
kets that need totraverse the path e4; e1; e02; e3. By the nature of the LIS rule, all of these Y pa
kets areblo
ked by the X pa
kets as they enter node v1. At the end of this substage, there are�C�C+1 �t pa
kets inX (respe
tively, in Y ) that still need to traverse edge e2 (respe
tively,the path e4; e1; e02; e3).2. For the next �C(�C+1)2 � t steps. all edges have 
apa
ity C ex
ept for edge e02 whi
h has
apa
ity 1. The adversary now inje
ts a set Z of [ �C(�C+1) ℄2 � t pa
kets whi
h need to5



traverse the path e2; e3; e4. All the pa
kets in Z will be blo
ked by the X pa
kets.Hen
e at the end of this substage, we have jY j+ jZj � 2[ �C�C+1 ℄2 � t. For �C�C+1 >p(1=2),there are then more than t pa
kets queued at nodes v2 and v3 (with at least one pa
ketat node v3) that need to traverse edges e3 and e4. Note that for C � 3, we 
an set� < 1.However, we now show that the property of an invariant s
heduling rule being universally�-stable is preserved when adding stati
 
apa
ities to edges.Theorem 2. Let S be an invariant s
heduling rule, whi
h is universally �-stable for stan-dard unit 
apa
ity networks. Then, for any � > 0, S is universally (�� �)-stable for integer
apa
ity networks.Proof: Intuitively, a dire
ted graph G = (V;E) having edge 
apa
ities 
e for e 2 E, 
anbe thought of as a non-simple, unit 
apa
ity graph ~G with 
e parallel edges 6 repla
ing ea
h
apa
itated edge e. Assume (for 
ontradi
tion) that there exists � > 0 su
h that (G; S) isnot (�� �)-stable. Therefore, for all w and for all B, there exists a (w; �� �) adversary thatprodu
es a �nite sequen
e of pa
ket inje
tions whi
h 
auses some queue to ex
eed size B.We would like to simulate S on G by using S on ~G. The simulation will be su
h that we
an argue that the queue size in ~G ex
eeds B=
 where 
 = maxe 
e. This will 
ontradi
t the�-stability of ( ~G; S). The issue is how to assign pa
kets to the parallel edges so that the rate
ondition is not violated. Resolving this issue requires some 
are.Con
eptually, for any edge e and time t, we 
onsider the set Ae;t of the �rst 
e pa
ketsqueued at e (in the order indu
ed by S), or all the pa
kets queued at e, if there are fewerthan 
e pa
kets there. Map the pa
kets in Ae;t to the 
e parallel edges in ~G by a uniformly atrandom mat
hing. This indu
es a probability distribution over mappings of pa
kets to theedges of ~G. Note that be
ause the adversary (produ
ing the large queue size in G) is �nite,every pa
ket eventually rea
hes every edge in its path (in G) and thus the mapping of pa
ketsto edges in ~G is well de�ned. We shall argue that there exists a point in this distribution su
hthat the indu
ed inje
tion rate on ea
h edge of ~G preserves the rate less than � 
onstraint.The theorem follows as the pa
ket traversals s
heduled by S in ~G are exa
tly the same as thetraversals s
heduled by S in G (this follows from the invariant property of S). It is worthnoting that we do not have to 
onstru
t the mat
hing of pa
kets to parallel edges; we onlyneed to know it exists.Let us now 
onsider a (�� �; w) adversary for some suÆ
iently large window w. Considerwindows beginning at time j for j = 0; 1; : : :. Let Wj denote the jth su
h window. Therandom mat
hings dis
ussed above are now viewed as randomly 
hoosing a sele
ted edge(let's 
all it a slot) in ~G for ea
h edge (in G) in the path of a pa
ket inje
ted in this window.We say that a window Wj is good if for every slot in ~G there are at most (�� �=2) �w pa
ketsinje
ted during Wj that are assigned to this slot by the random mapping. We want to show6However, this intuition 
annot always be applied sin
e the baseball graph 
an also be thought of as a 4node ring with two edges having 
apa
ity 2. Sin
e the ring is a universally stable network, FIFO is stableon any ring but FIFO is not stable on the baseball graph. Although it is possible that the theorem holdsfor any network system (G;S), our proof relies on the assumption that S is universally stable.6



that there is a positive probability that every window will be good and hen
e there is amapping whi
h indu
es an inje
tion by a (�� �=2; w) adversary in ~G.Of 
ourse, if Wj and Wj0 overlap then the events \Wj is good" and \Wj0 is good" arenot independent. Moreover, if pa
kets p (inje
ted during Wj) and p0 (inje
ted during Wj0)are involved in the same mat
hing, then again the events \Wj is good" and \Wj0 is good"are not independent, even if these windows do not overlap. However, for a given window W ,the event \W is good" is independent of any 
ombination of other su
h events ex
luding theabove mentioned events, the number of whi
h is bounded by 2w+[(���)�w�Pe 
e℄2 = �(G)w(where �(G) is a 
onstant that only depends on the graph G ) The fa
t that dependen
y islimited will allow us to invoke the Lov�asz Lo
al Lemma (see [13℄).We now bound the probability that a window W is not good. Consider an edge e inG and the t � (� � �)w
e pa
kets inje
ted during W that may need to traverse e. If itwere not for the fa
t that the random mat
hings impose a 
ondition on whi
h slots 
an beassigned to a pa
ket, we 
ould view the random pro
ess of assigning slots to pa
kets as atraditional balls and bins experiment. Namely, we are throwing (�� �)w
e balls (=pa
kets)at 
e bins (=slots). The expe
ted number of pa
kets assigned to a slot is obviously (�� �)wand using the Cherno� bound, the probability that the number of pa
kets assigned to a slotex
eeds (� � �=2) � w is at most e�
(w). However, this analysis is 
awed be
ause the ballsparti
ipating in any single mat
hing are not being thrown independently. Intuitively, the fa
tthat the balls have to satisfy a mat
hing 
onstraint should only help to redu
e the maximum
ongestion on a slot. We 
an make this intuition pre
ise by the following argument.We 
onsider the pro
ess of sequentially throwing balls into a given slot. De�ne a sequen
eof random variables Y0; Y1; : : : Yt where Y0 is the expe
ted number of balls that will end upin this slot and Yi is the same expe
tation after i balls have been thrown. Note that Y(���)wis the �nal 
ongestion on this slot. Clearly by linearity of expe
tations, Y0 = (� � �)w. Byde�nition Yi = E[Yi+1jYi℄. Moreover, we 
laim jYi+1�Yij � 1. This follows be
ause any ballis 
orrelated by the mat
hing with at most 
e other balls in the sequen
e and the 
ontributionof all these balls to the 
ongestion is at most 1. Hen
e the sequen
e is a martingale. Wenow 
an 
al
ulate an upper bound on the probability that the �nal 
ongestion on a slot ismore than ((r � �=2)w = Y0 + w�=2 = Y0 + �pt for � = w�=2pt � �pw2p(���)
e . By Azuma'sinequality [13℄, this probability is less than e��2=2 � e� �28(r��)
ew.By the union bound, the probability that any slot is over
ongested (that is, that thewindow W is not good) is at mostPe 
e � e� �28(���)
ew. To apply the lo
al lemma we need thisprobability to be at most 1=e(d+1) where d = �(G)w is the bound on the dependen
y. This
learly holds for suÆ
iently large w.We 
an now apply Theorem 2 to show that (in 
ontrast to LIS), some 
ommon s
hedulingrules do remain universally stable with respe
t to dynami
ally 
hanging 
apa
ities.Theorem 3. The SIS and NTO s
heduling rules are universally stable for dynami
ally
hanging integer 
apa
ity networks.Proof: (Sket
h) For simpli
ity assume that there is a known bound 
 on the largest 
apa
ityallowed. (This assumption 
an be removed by noting as in the proof of Theorem 2 that if7



there was a 
ounterexample to universal stability then this 
ounterexample would only usea �nite set of 
apa
ities.) Next we observe that for the SIS and NTO rules, newly inje
tedpa
kets will take priority over pa
kets in the system. Now at any point of time t, supposewe have an edge e with 
apa
ity 
e(t) < 
. Then we 
an inje
t 
 � 
e(t) \dummy" pa
ketswhi
h only need to traverse this edge. This 
an be done without violating the load 
onditionfor a network in whi
h every edge has (stati
) 
apa
ity 
. Now we appeal to Theorem 2 toobtain the desired result.We now turn our attention to universally stable networks. From the results of Goel [12℄and �Alvarez, Blesa, and Serna [2℄ we know that there is a ni
e 
hara
terization of the 
lassof dire
ted graphs whi
h are universally stable (in the 
ontext of unit edge 
apa
ities). This
hara
terization is based on the following fa
ts:� The unidire
tional 
y
le and all DAGS are universally stable.� A digraph is universally stable if and only if all of its strongly 
onne
ted 
omponentsare universally stable.� The unidire
tional 
y
le is the only strongly 
onne
ted digraph that is universallystable.7One 
an then establish the same fa
ts for the arbitrary 
apa
ity model and obtain:Theorem 4. Let G be a universally stable network in the unit 
apa
ity model. Then Gremains stable in the 
ontext of dynami
 edge 
apa
ities.Proof sket
h: Using the idea of dummy pa
kets, it is easy to see that by modifying a givens
heduling rule so that it gives priority to these dummy pa
kets, we 
an assume that everyedge has a �xed (stati
) 
apa
ity 
. We then must show that the universal stability proofsfor DAGs and for the 
y
le 
an be generalized to the 
ase of a �xed stati
 
apa
ity 
. Theproof is then 
ompleted following the 
hara
terization of Goel [12℄ and of �Alvarez et al.[2℄.We brie
y indi
ate how to modify the DAG and 
y
le proofs:8� For DAGs, we modify the  fun
tion in Theorem 1 of [9℄. Let edge e have edgesf1; : : : ; fk entering the tail of e. For our 
ase, the indu
tive de�nition is then: (e) = maxf2
 � w;Q0(e)g+ kXi=1  (fi):The goal is to show that for all t = l � w � 0 and all e 2 G, we haveAt(e) �  (e) (1)where At(e) denotes the number of pa
kets (not already absorbed) that have arrivedby time t and are eventually destined to 
ross edge e. One then argues by indu
tionon l and by 
ases, a

ording to whether or not At�w(e) � 
 � w +Pki=1  (fi).7Here we are assuming simple paths.8There are some minor di�eren
es in notation and in the de�nitions of a rate 1 � � adversary as theyappear in [9℄ and [4℄. The former paper in
orporates the initial queues Q0(e) and the latter paper dispenseswith the notion of a window in favor of an additive 
onstant. For simpli
ity we will just indi
ate how tomodify the proofs as they appear in these papers. 8



� For the unidire
tional 
y
le, we modify the de�nition of the f fun
tion in the proof ofTheorem 3.7 of [4℄. For our 
ase, we needf(j; T0) = Q + 
(b+ 1)(j � i0)f(j; t) = Q� 
 � �(t� T0) + 
 � (b+ 1)(1 + j � i0)for t > T0:The goal is to show that for all appli
able pairs (j; t); Pj;t � f(j; t) where Pj;t denotesthe number of pa
kets (not already absorbed) that have arrived by time t and areeventually destined to 
ross edge j. Essentially the 
 in the term 
 � (b+ 1)(1 + j � i0)is suÆ
ient to modify the proof of Lemma 3.6 where one argues by 
ases depending onwhether or not 
 pa
kets 
rossed edge j in the past (t� T0) 
onse
utive steps. The 
in the term 
 � �(t� T0) is needed for the rest of the proof in Theorem 3.7 of [4℄.
4 Networks with Edge SlowdownsWe will now see that every universally stable network remains universally stable when edges
an have slowdowns and this holds even for dynami
 edge slowdowns.Theorem 5. Let G be a universally stable network at every rate � < 1 in the standardpa
ket routing 
ontext. Consider any s
heduling rule S and any exe
ution of the derivednetwork system (G0;S) in whi
h the inputs are being generated by an adversary in the
ontext of dynami
 edge slowdowns (see De�nition 2). Then the system (G0;S) remainsstable for all rates � < 1.Proof: The idea is similar to Theorem 3. Essentially we want to simulate the behaviorof the network system (G0;S) by a standard pa
ket routing system (G;S 0). We do so bydelaying (real) pa
kets at a slow edge by using newly inje
ted dummy pa
kets traversingthat edge alone. We give the dummy pa
kets higher priority in order to for
e the delay ofthe real pa
kets. This remains a greedy rule (
all it S 0) and hen
e we are assured stabilityfor (G;S 0) sin
e G is universally stable.More spe
i�
ally, 
onsider a rate � adversary with window w for the network G0 withslowdowns. To simplify the dis
ussion let's �rst assume that the edge slowdowns are stati
with integer se � 1 being the slowdown of edge e. Then in any window of w steps there areat most w � �se pa
kets inje
ted that need to traverse edge e. Consider an edge with slowdownse � 2. Then during these w time steps there are at least w � se��se steps in whi
h no pa
ketsare inje
ted that need to traverse edge e. When a pa
ket P is ready to traverse edge e we�rst inje
t se � 1 dummy pa
kets that only need to traverse edge e and whi
h are givenpriority over pa
ket P . Then pa
ket P 
ompletes its traversal of e in se steps. The inje
tionrate of the derived adversary is still less than 1 (with the same window w) and hen
e we areindeed assured stability. The same proof applies to dynami
ally 
hanging slowdowns. When9



there is a pa
ket P ready to traverse edge e at time t, the adversary inje
ts ~se(t)� 1 dummypa
kets.The idea in the above proof 
an be used to show that 
ertain s
heduling rules remainuniversally stable in the 
ontext of (dynami
ally 
hanging) edge slowdowns. For example,
onsider farthest to go (FTG) and any pa
ket routing network G = (V;E). We 
an modifyG so that from every node v 2 V , there is a path �e of length jV j + 1 dire
ted away fromV . Now to simulate a slowdown of ~se(t) on edge e at time t, if a pa
ket P wants traversee, the adversary inje
ts ~se(t)�1~se(t) dummy pa
kets that need to traverse e and then �e. Sin
ethese dummy pa
kets have the farthest distan
e to go they have priority over P and hen
edelay P for ~se(t) steps.For SIS and NTO the same idea (of inserting dummy pa
kets) 
an used and in these
ases we do not have to add extra edges sin
e priority of the dummy pa
kets is ensuredby the de�nition of the rule (assuming that dummy pa
kets have priority over real pa
ketsoriginating at the same node. We thus have:Theorem 6. SIS;NTO and FTG remain universally stable in the 
ontext of dynami
ally
hanging edge slowdowns.This simple dummy pa
ket idea does not dire
tly extend to the LIS rule. For stati
 edgeslowdowns, we know that LIS remains universally stable by the result of Tsaparas [14℄ whoshows that LIS remains universally stable even in the 
ontext that for ea
h edge and ea
hpa
ket P , there is a given speed or alternatively (sin
e we are assuming a maximum speed)a given slowdown se(P ) de�ning the speed at whi
h P traverses e. However, the situation isdi�erent for LIS and dynami
ally 
hanging edge slowdowns as we now see.Theorem 7. LIS is not � stable for dynami
ally 
hanging edge slowdowns for any � >12(D�1D ) where D is the maximum slowdown allowed.Proof: The proof is quite similar to the proof of Theorem 1. We again assume that thepa
kets are inje
ted in stages and ea
h stage 
onsists of two substages. At the start of astage we now assume that there is a set X of at least t pa
kets queued at node v4 that needto traverse edges e4 or e04, followed by edges e1; e2. It suÆ
es to show that at the end ofthe stage, more than t pa
kets will be queued at node v2 waiting to traverse edges e2 or e02followed by edges e3 and e4. Again, to simplify the proofs we avoid the use of 
oors and
eilings. Let � be the rate of an adversary whi
h sets the slowdowns of the edges and inje
tspa
kets as follows: We abuse the de�ntion of a rate � adversary and ignore the fa
t that theadversary must observe the \e�e
tive slowdown" load 
ondition. The justi�
ation for thisabuse is that when t is suÆ
iently large (
ompared to D), the adversary 
an utilize the fullspeed edges (i.e. slowdown = 1) for almost all steps in the phase.1. For the �rst t steps, no edge has a slowdown ex
ept edge e2 whi
h has slowdown D.During these t steps, the adversary inje
ts a set Y of � � t pa
kets that need to traversethe path e1; e02; e3. By the nature of the LIS rule, all of these Y pa
kets are blo
ked bythe X pa
kets. At the end of this substage, there are (approximately) D�1D � t pa
kets10



in X that still need to traverse edge e2 and �t pa
kets in Y that need to traverse thepath e1; e02; e3.2. For the next D�1D � t steps no edge has a slowdown ex
ept edge e02 whi
h has slowdownD. During these steps, the adversary inje
ts a set Z of �D�1D � t pa
kets that need totraverse the path e2; e3; e4. All the pa
kets in Z will be blo
ked by the X pa
kets andbe
ause of the slowdown in edge e02 there will still be �D�1D � t pa
kets in Y . Hen
e atthe end of this substage, we have jY j + jZj � 2�D�1D � t. For � > 12(D�1D ) , this numberex
eeds t. Note that for D � 3, we 
an set � < 1.
5 Con
lusions and Open ProblemsWe have shown that that LIS does not have the dynami
 stability properties of other univer-sally stable s
heduling rules. We have also shown that (for 
apa
ity invariant rules) universalstability is preserved under stati
 
apa
ities, and (for known rules) under stati
 slowdowns.There are many open problems that remain in
luding the following:� Is there a natural de�nition of a \speed invariant" rule su
h that universal stability ofa speed invariant s
heduling rule is preserved under stati
 slowdowns?� For a given network system (G;S), is stability preserved for either stati
 
apa
ities orslowdowns?� Can these stability preserving results be extended to an asyn
hronous framework (i.e.for arbitrary real valued speeds)?A
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