CSC375 Dinic’s max flow algorithm)
Reference: R. Tarjan’s Monograph

We are given a flow network F = (G, s,t,¢). Dinic’s algorithm can be viewed
as an implementation of the generic Ford Fulkerson algorithm. It is a strongly
polynomial time algorithm that runs in time O(mn?) where G = (V, E) and
m=|E|,n=|V]|.

In a directed graph G = (V, E) with distinguisheed source node s, we define
level(v), the level of node v, to be the length of the shortest path from s to
v. The levelled graph L = (V, E,) associated with G is the graph obtained by
taking the set of edges E = {(u,v) € E such that |level(v) = level(u) + 1}.
When G is the underlying graph of a flow network, we can also view L as a flow
network where the capacity of any edge in Ef, is set to its capacity in E. We
need one more (central) definition, namely the concept of a blocking flow. We
say that a flow f' is a blocking flow for network F = (G, s,t,c¢) if every s — t
path I in G is saturated by f'; that is, for at least one edge e in II, f'(e) = c(e).
Finally, we recall that for a flow f in an flow network F, we let G; denote the
residual graph which gives rise to the residual network Fy = (Gy, s, t, cy) where

ci(e) = c(e) — f(e).

Dinic’s Algorithm

f(e) :=0for all e € E; L = levelled graph associated with G
% Initialize with the trivial all zero flow and L the levelled graph for the

given input network
While level(t) < ooinL

find a blocking flow f’in L

f=f+r;

construct Gy; L := Ly = the levelled graph associated with G
End While

The Ford Fulkerson max flow-min cut implies that upon termination, Dinic’s
algorithm correctly computes a maximum flow in the input network F.

The termination and efficiency of Dinic’s algorithm follows from the follow-
ing results:

Theorem 1: Dinic’s algorithm terminates in n — 1 iterations (i.e. in n — 1
blocking steps)

Theorem 2: The residual graph Gy and its associated levelled graph L can
be constructed in time O(m)



Theorem 3: A blocking flow in a levelled graph can be computed in time
O(mn) and hence Dinic’s algorithm always terminates within time (mn?)

The proof of Theorem 2 is quite obvious using breadth first search to com-
pute Ly. Theorem 3 is achieved using depth first search as sketched in class.
The more interesting theorem is Theorem 1. The crucial lemma (as discussed
in class) needed for Theorem 1 is the following:

Lemma: Let L; be the levelled graph at the end of iteration i and let
level;(v) be its level function. Then level;1(v) > level;(v) for all v € V' and
level;i11(t) > level;(t). That is, the level of the target node ¢ must increase after
a blocking step.

Theorem 1 follows immediately from the Lemma since level(t) < oo implies
level(t) <n — 1.

Recall that a unit network is one in which all edges have capacities in {0,1}
and for all nodes v # s, t, either v has at most one incoming edge of capacity 1 or
at most one outgoing edge of capacity 1. In particular, the network associated
with bipartite matching is a unit network.

The following results provide a significant improvement for the bounds in
Dinic’s algorithm when appiled to unit networks (and hence when applied to
maximum matching in a bipartite graph). We note that for any flow f in a unit
network, G is also a unit network.

Theorem 4: If F is a unit network, then Dinic’s algorithm terminates within
24/n blocking steps.

Theorem 5: A blocking flow in a unit network can be computed (again by
the same depth first search used for Theorem 3) in O(m) steps. Hence a max
flow in a unit network (and max matching in a bipartite graph) can can be
computed in O(m+/n) steps.

Sketch of proof:

After \/n blocking steps, we known by the creitical lemma that every s — ¢
path has length at least \f(n) If the f* is a max flow and f is the flow after
the first y/(n) blocking steps, then there is a (max) flow f' in G of value
val(f*) —wval(f). Since G is also a unit network, such a flow must be realized
by node disjoint paths and hence there are at least [val(f*) — val(f)]-v/n <n
nodes which implies that val(f*) —val(f) < v/n. Thus in at most an additional



V/n iterations (even if only a single augmenting path is found in each step), the
algorithm will terminate.



