CSC375 Dinic's max flow algorithm) Reference: R. Tarjan's Monograph

We are given a flow network $\mathcal{F} = (G, s, t, c)$. Dinic's algorithm can be viewed as an implementation of the generic Ford Fulkerson algorithm. It is a strongly polynomial time algorithm that runs in time $O(mn^2)$ where G = (V, E) and m = |E|, n = |V|.

In a directed graph G=(V,E) with distinguisheed source node s, we define level(v), the level of node v, to be the length of the shortest path from s to v. The levelled graph $L=(V,E_L)$ associated with G is the graph obtained by taking the set of edges $E_L=\{(u,v)\in E \text{ such that }|level(v)=level(u)+1\}$. When G is the underlying graph of a flow network, we can also view L as a flow network where the capacity of any edge in E_L is set to its capacity in E. We need one more (central) definition, namely the concept of a blocking flow. We say that a flow f' is a blocking flow for network $\mathcal{F}=(G,s,t,c)$ if every s-t path Π in G is saturated by f'; that is, for at least one edge e in Π , f'(e)=c(e). Finally, we recall that for a flow f in an flow network \mathcal{F}_f we let G_f denote the residual graph which gives rise to the residual network $\mathcal{F}_f=(G_f,s,t,c_f)$ where $c_f(e)=c(e)-f(e)$.

Dinic's Algorithm

```
f(e) := 0 for all e \in E; L = levelled graph associated with G
```

% Initialize with the trivial all zero flow and L the levelled graph for the given input network

```
While level(t) < \infty inL find a blocking flow f' in L f := f + f' ; construct G_f; L := L_f = the levelled graph associated with G_f End While
```

The Ford Fulkerson max flow-min cut implies that upon termination, Dinic's algorithm correctly computes a maximum flow in the input network \mathcal{F} .

The termination and efficiency of Dinic's algorithm follows from the following results:

Theorem 1: Dinic's algorithm terminates in n-1 iterations (i.e. in n-1 blocking steps)

Theorem 2: The residual graph G_f and its associated levelled graph L can be constructed in time O(m)

Theorem 3: A blocking flow in a levelled graph can be computed in time O(mn) and hence Dinic's algorithm always terminates within time (mn^2)

The proof of Theorem 2 is quite obvious using breadth first search to compute L_f . Theorem 3 is achieved using depth first search as sketched in class. The more interesting theorem is Theorem 1. The crucial lemma (as discussed in class) needed for Theorem 1 is the following:

Lemma: Let L_i be the levelled graph at the end of iteration i and let $level_i(v)$ be its level function. Then $level_{i+1}(v) \geq level_i(v)$ for all $v \in V$ and $level_{i+1}(t) > level_i(t)$. That is, the level of the target node t must increase after a blocking step.

Theorem 1 follows immediately from the Lemma since $level(t) < \infty$ implies $level(t) \le n-1$.

Recall that a *unit network* is one in which all edges have capacities in $\{0,1\}$ and for all nodes $v \neq s,t$, either v has at most one incoming edge of capacity 1 or at most one outgoing edge of capacity 1. In particular, the network associated with bipartite matching is a unit network.

The following results provide a significant improvement for the bounds in Dinic's algorithm when applied to unit networks (and hence when applied to maximum matching in a bipartite graph). We note that for any flow f in a unit network, G_f is also a unit network.

Theorem 4: If \mathcal{F} is a *unit network*, then Dinic's algorithm terminates within $2\sqrt{n}$ blocking steps.

Theorem 5: A blocking flow in a unit network can be computed (again by the same depth first search used for Theorem 3) in O(m) steps. Hence a max flow in a unit network (and max matching in a bipartite graph) can can be computed in $O(m\sqrt{n})$ steps.

Sketch of proof:

After \sqrt{n} blocking steps, we known by the creitical lemma that every s-t path has length at least $\sqrt(n)$. If the f^* is a max flow and f is the flow after the first $\sqrt(n)$ blocking steps, then there is a (max) flow f' in G_f of value $val(f^*) - val(f)$. Since G_f is also a unit network, such a flow must be realized by node disjoint paths and hence there are at least $[val(f^*) - val(f)] \cdot \sqrt{n} \leq n$ nodes which implies that $val(f^*) - val(f) \leq \sqrt{n}$. Thus in at most an additional

 \sqrt{n} iterations (even if only a single augmenting path is found in each step), the algorithm will terminate.